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ABSTRACT
We study the problem of implementing graph algorithms efficiently
on Pregel-like systems, which can be surprisingly challenging.
Standard graph algorithms in this setting can incur unnecessary in-
efficiencies such as slow convergence or high communication or
computation cost, typically due to structural properties of the in-
put graphs such as large diameters or skew in component sizes.
We describe several optimization techniques to address these in-
efficiencies. Our most general technique is based on the idea of
performing some serial computation on a tiny fraction of the in-
put graph, complementing Pregel’s vertex-centric parallelism. We
base our study on thorough implementations of several fundamen-
tal graph algorithms, some of which have, to the best of our knowl-
edge, not been implemented on Pregel-like systems before. The
algorithms and optimizations we describe are fully implemented in
our open-source Pregel implementation. We present detailed exper-
iments showing that our optimization techniques improve runtime
significantly on a variety of very large graph datasets.

1. INTRODUCTION
Executing graph algorithms efficiently and at scale is impor-

tant for many applications that process data in the form of a large
graph. Examples include recommendation algorithms that run on
large social networks [39], clustering algorithms on gene expres-
sion data [47], spam detection on the web graph [45], and many
others. As graphs grow to sizes that far exceed the memory of a
single machine, applications need to perform their computations
on distributed systems. Google’s Pregel [35], and its open-source
implementations, such as Giraph [17] and GPS [42], are distributed
message-passing systems targeted to large-scale graph computa-
tions. Like MapReduce [12] and Hadoop [20] for record-oriented
data, Pregel-like systems offer transparent scalability, automatic
fault-tolerance, and a simple programming interface based around
implementing a small set of functions.
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This paper tackles the challenge of implementing graph algo-
rithms efficiently on Pregel-like systems, which can be surprisingly
difficult and require careful optimizations. We base our discussion
on thorough implementations of several fundamental graph algo-
rithms. We identify a variety of inefficiencies that arise when ex-
ecuting these algorithms on Pregel-like systems, and we describe
optimization techniques, some of which are applicable across mul-
tiple algorithms, to address them. Some of the algorithms we cover
have, to the best of our knowledge, not been implemented on Pregel-
like systems before: the Coloring algorithm for finding strongly
connected components [38], Boruvka’s algorithm for finding a min-
imum spanning forest [11], a graph coloring algorithm based on
Luby’s algorithm for finding maximal independent sets [33], and
the 1/2-approximation algorithm to maximum matching in general
weighted graphs [40].

In the remainder of this section we provide brief background,
and a summary of our approach and results. For reference, Tables 1
and 2 list the algorithms and optimization techniques covered in the
paper.

1.1 Pregel Overview
The computational framework introduced by Pregel is based on

the Bulk Synchronous Parallel (BSP) computation model [46]. At
the beginning of the computation, the vertices of the graph are dis-
tributed across Worker tasks running on different compute nodes.
Computation is broken down into iterations called supersteps, and
all workers synchronize at the end of each superstep. Algorithms
are implemented in a vertex-centric fashion inside a vertex.com-
pute() function, which gets called on each vertex exactly once in
every superstep. Inside vertex.compute(), vertices receive messages
from the previous superstep, update their local states, and send
messages to other vertices. In GPS [42] and Giraph [17], an op-
tional master.compute() function is executed by the Master task
between supersteps to perform serial computation, and for coor-
dination in algorithms that are composed of multiple vertex-centric
stages.

1.2 Costs of Computation
Broadly, there are four different costs involved when execut-

ing an algorithm on Pregel-like systems: (a) communication, i.e.,
number of messages transmitted between compute nodes; (b) num-
ber of supersteps; (c) memory, i.e., size of the local state stored
per vertex; and (d) computation performed by vertices in each su-
perstep. The optimization techniques we offer in this paper focus
on reducing the first two costs: communication and number of su-
persteps. For the algorithms we consider, memory size and local
computation are not dominant in overall run-time, nor do they ap-
pear to have room for significant improvement.
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Name Description Section
Strongly Connected Components (SCC) The Coloring algorithm from [38] 3.1
Minimum Spanning Forest (MSF) Parallel version of Boruvka’s algorithm [11] 3.2
Graph Coloring (GC) Greedy algorithm based on Luby’s parallel maximal independent

set algorithm [33]
3.3

Approximate Maximum Weight Matching
(MWM)

1/2-approximation algorithm for general graphs [40] 3.4

Weakly Connected Components (WCC) Algorithm from [25] 3.5

Table 1: Algorithms.

Name Description Algorithms Inefficiency Section
Finishing Computa-
tions Serially (FCS)

Performs serial version of the algorithm,
or a phase of the algorithm, inside mas-
ter.compute()

SCC, GC, MSF,
MWM, Backward-
Traversal phase of
SCC

Large-diameter graphs,
skew in component
sizes, small-size inde-
pendent sets

4

Storing Edges At Sub-
vertices (SEAS)

Stores the edges of supervertices in a dis-
tributed fashion among its subvertices

MSF High-cost single phase 5

Edge Cleaning On De-
mand (ECOD)

Edges are cleaned only when they are used
as part of the computation

MWM, MSF High-cost single phase 6

Single Pivot (SP) Detects giant component efficiently by start-
ing the computation from a single vertex

SCC, WCC Skew in component
sizes

7

Table 2: Optimization Techniques.

Sometimes, system-level optimizations—those that do not re-
quire any changes to the graph algorithm itself—can be used to re-
duce communication and memory. For example, some distributed
graph processing systems, such as KDT [34], PowerGraph [18],
and GPS [42], use graph partitioning techniques that can reduce the
communication cost significantly when executing some algorithms
on input graphs with skewed degree distributions. In this paper we
focus on optimizations that are algorithmic and do not appear to
have any system-level equivalents. Whether system-level alterna-
tives to some of our optimization techniques can be designed is an
interesting question for future work.

1.3 Optimization Techniques
In this paper we propose four optimization techniques:
• Finishing Computations Serially (FCS): Some algorithms or

phases of algorithms may converge very slowly (i.e., execute
many supersteps), while working on a tiny fraction of the input
graph. FCS monitors the size of the “active” graph on which the
computation is executing. If the active graph becomes small
enough, FCS sends it to the master, which performs the end
of the computation serially inside master.compute(), then sends
the results back to the workers. In the algorithms we consider,
slow convergence typically stems from structural properties of
the graph, such as skew in components sizes and small-size
maximal independent sets. From our experiments, we find that
FCS can eliminate between 20% to %60 of total superstep exe-
cutions (up to 16713 supersteps) when applied to several of our
algorithms and their phases on large graphs.
• Storing Edges At Subvertices (SEAS): SEAS is an optimiza-

tion we apply primarily to our MSF algorithm (Table 1), in
which sets of vertices (called subvertices) are merged to form
supervertices. In the natural Pregel implementation of super-
vertex formation, subvertices send their adjacency lists to the
supervertex, then become inactive. SEAS instead retains the
adjacency lists of subvertices and keeps them active. SEAS ef-
fectively avoids the cost of sending adjacency lists to the super-
vertex, at the expense of incurring some communication cost
between subvertices and supervertices, with overall run-time
benefits.

• Edge Cleaning On Demand (ECOD): “Edge cleaning” is a
common operation in graph algorithms, in which vertices delete
some neighbors from their adjacency lists based on some or all
of their neighbors’ values. The natural Pregel implementation
of edge cleaning can be expensive: vertices send each other
their values in one superstep, then clean their adjacency lists in
another superstep. ECOD avoids the edge cleaning phase com-
pletely, removing “stale” edges only when they are discovered
later in the computation.
• Single Pivot (SP): The SP optimization technique was pro-

posed originally in [41] for the WCC algorithm (Table 1). SP
avoids unnecessary communication when detecting very large
components in graphs with skewed component sizes. We show
that SP is also applicable to the SCC algorithm. While SP
shows only modest improvements for WCC in the setting of
[41], it shows good improvements for both SCC and WCC in
our setting.

1.4 Outline of the Paper
• Section 2 reviews the API of Pregel [35], and the API of GPS [42],

the open-source Pregel software we use for our work. We also
describe our experimental setup and datasets.
• Section 3 describes the algorithms we studied for this paper.

The Pregel implementations of some of our algorithms, to the
best of our knowledge, have not been described before, and
were quite challenging.
• Section 4 covers our FCS optimization technique, which can

eliminate many superstep executions when algorithms converge
slowly. FCS is based on performing serial computation inside
master.compute() on a small fraction of the input graph.
• Section 5 covers our SEAS optimization for Boruvka’s mini-

mum spanning forest algorithm.
• Section 6 covers our ECOD optimization technique, which can

be used to eliminate the edge cleaning phases in some algo-
rithms.
• Section 7 reviews the SP optimization from [41] and discusses

how skew in component sizes can yield unnecessarily high com-
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Name Vertices Edges Description
sk-2005 51M 1.9B (d), 3.5B (u) Web graph of the .sk domain from 2005
twitter 42M 1.5B (d), 2.7B (u) Twitter “who is followed by who” network

friendster 125M 1.8B (d), 3.1B (u) Friendster social network
uk-2005 39M 750M (d), 1.4B (u) Web graph of the .uk domain from 2005

random-2.5B 500M 2.5B (d), 4.3B (u) Graph with uniformly random edges

Table 3: Graph datasets.

munication cost in the strongly and weakly connected compo-
nents algorithms we study.
• Sections 8 and 9 discuss related and future work, respectively.

Sections 4–7 all include extensive experiments demonstrating
the benefits of our optimization techniques. All of our algorithms
and optimizations are fully implemented on GPS [42] and are avail-
able for public download [19].

2. PRELIMINARIES
• Vertex class: Programmers subclass the Vertex class and code

the vertex-centric logic of the computation by implementing
the vertex.compute() function. Inside vertex.compute(), vertices
can access their values, their incoming messages, and a map
of aggregators (see below). Each vertex has an active/inactive
flag. The system terminates computation when all vertices be-
come inactive.
• VertexValue class: Encapsulates the user-defined state associ-

ated with each vertex.
• Message class: Encapsulates the messages sent between ver-

tices.
• Aggregators (Global Objects): Objects visible to all vertices

and used for coordination, data sharing, and statistics aggre-
gation. In GPS, aggregators are called global objects. When
multiple vertices update the local copy of an object during a su-
perstep, the system merges the updates using a user-specified
merge function at the end of the superstep.
• Master class: Introduced by GPS and later adopted by Gi-

raph [17]. Programmers can optionally subclass the Master
class, and implement the master.compute() function, which gets
called at the beginning of each superstep. The Master class can
store its own local data and update the global objects before
they are broadcast to the vertices. When algorithms are com-
prised of multiple vertex-centric computations, such as the al-
gorithms we describe in this paper, the master.compute() func-
tion is used primarily to encapsulate the code that coordinates
the different vertex-centric computations. In this paper, we
will also use master.compute() in one of our optimization tech-
niques.

2.1 Experimental Setup
The directed (d) and undirected (u) graphs we used in our experi-

ments are specified in Table 3.1 We used three different clusters for
our experiments with varying number of compute nodes (m) and
workers (w): (1) Large-EC2(m, w): Amazon EC2’s large instance

1The Web and the Twitter graphs were provided by “The Labo-
ratory for Web Algorithmics” [31], using software packages Web-
Graph [8], LLP [7], and UbiCrawler [6]. The original Friendster
social graph is undirected; we assign a random direction to each
edge. For algorithms that take as input weighted graphs, we assign
each edge a weight between 0 and 1 uniformly at random.

machines (four virtual cores and 7.5GB of RAM); (2) Medium-
EC2(m, w): Amazon EC2’s medium instance machines (two vir-
tual cores and 3.75GB of RAM); (3) Local(m, w): our local clus-
ter’s machines (32 cores and 64GB of RAM). The machines in all
our setups were running Red Hat Linux OS. We ran our experi-
ments with fault-tolerance off and we ignore the initial data loading
stage in our measurements.

We note that the run-time results we report may vary on a Pregel-
like system other than GPS. However, except for our randomized
SP optimization, the number of supersteps our algorithms and op-
timizations take will be exactly the same across systems. The rela-
tive network I/O effects of our optimizations will also be similar in
all Pregel-like systems if the graph is partitioned randomly across
workers as we do in this paper. The differences in the actual net-
work I/O across systems would be due to the differences in the en-
coding and serialization of the IDs and messages between vertices.

We also note that we have not repeated our experiments in every
cluster and every possible compute node and worker configuration.
Experiments, not reported in the paper due to space constraints,
suggest that the relative performance benefits of our optimizations
do not vary significantly across configurations.

3. ALGORITHMS
We next describe the five graph algorithms we study in this paper

(Table 1). To the best of our knowledge, Pregel implementations of
the algorithms we present for the following problems have not been
published before: strongly connected components (SCC), mini-
mum spanning forest (MSF), graph coloring (GC) based on finding
maximal independent sets (MIS), and maximum weight matching
(MWM). We also note that implementing even the basic versions
of SCC and MSF is quite challenging, taking more than 700 lines
of code. Readers anxious to jump straight to our optimization tech-
niques may skip ahead to Section 4, coming back to this section as
a reference.

Most of our algorithms consist of multiple computational steps,
which we call “phases” (not to be confused with the multiple su-
persteps that occur within each phase). For example, an algorithm
might prune the graph in one phase and traverse it in another. In
our implementations of these algorithms, a “phase” global object
stores the current phase of the algorithm that is executing. The
master.compute() function contains the logic of which phase should
be executed in the next superstep, depending on the current phase
and possibly other global objects. As a simple example, in the
SCC algorithm (Section 3.1), when the current phase is “Forward-
Traversal-Rest”, the code fragment in Figure 1 is used by the mas-
ter class to determine whether to switch the phase to “Backward-
Traversal-Start”.

For each phase, the Vertex class contains one subroutine imple-
menting the vertex-centric logic of the phase. The vertex.compute()
function calls the appropriate subroutine according to the value of
the phase global object. As an example, Figure 2 shows the skele-
ton of the vertex.compute() function for SCC. All of our algorithms
are implemented using this general pattern.
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1 int numVerticesWithUpdatedColorIDs =
2 getGlobalObject (”num−updated”).value();
3 if (numVerticesWithUpdatedColorIDs > 0) {
4 setGlobalObject (“phase”, FW TRAVERSAL REST.value());
5 } else { setGlobalObject (“phase”,
6 BW TRAVERSAL START.value());}

Figure 1: Example SCCMaster code for switching phases.

1 public class SCCVertex extends
2 Vertex<SCCVertexValue, SCCMessage> {
3 public void compute(Iterable <SCCMessage> messages) {
4 Phase phase = getPhase(getGlobalObject (“phase”));
5 switch(phase) {
6 case TRANSPOSE GRAPH FORMATION 1: doTGF1();
7 case TRANSPOSE GRAPH FORMATION 2: doTGF2();
8 case TRIMMING: doTrimming();
9 case FW START: doFwTraversalStart();

10 case FW REST: doFwTraversalRest(messages); ... }}}

Figure 2: Skeleton code for SCCVertex.compute().

3.1 Strongly Connected Components
We implement the parallel Coloring algorithm from [38] for find-

ing strongly connected components. Figure 3 shows the original
algorithm, with four phases:
1. Transpose Graph Formation: The algorithm first constructs

the transpose of the input graph G (line 2).
2. Trimming: In the Trimming phase (line 4), the algorithm iden-

tifies trivial SCCs: vertices with only incoming or only outgo-
ing edges (or neither).

3. Forward-Traversal: In the Forward-Traversal phase, which is
encapsulated in the MaxForwardReachable() subroutine call on
line 6, the algorithm traverses G in parallel from each vertex.
During the traversals, each vertex v is colored by the maxi-
mum ID of the vertex that can reach v (possibly v itself). The
Forward-Traversal phase has two properties: (1) G is parti-
tioned into disjoint sets of vertices according to their colors,
called color sets. (2) If Si is the color set containing vertices
colored i, then SCCi, the SCC that vertex i belongs to, is en-
tirely contained in Si.

4. Backward-Traversal: In the Backward-Traversal phase (lines
7 –11), the algorithm detects one SCC for each color set Si, by
doing a traversal from vertex i in the transpose of G and limiting
the traversal to only the vertices in Si. The detected SCCs are
then removed from the graph.

The algorithm repeats the Trimming, Forward-Traversal, and Back-
ward-Traversal phases, each time detecting and removing from the
graph one or more SCCs. It terminates when there are no vertices
left in the graph.

In our distributed implementation of the algorithm, vertices con-
tain two fields: (1) colorID stores the color of a vertex v in the
Forward-Traversal phase and identifies v’s SCC at the end of the
computation, i.e., vertices with the same colorID after termination
are in the same SCC. (2) transposeNeighbors stores the IDs of v’s
neighbors in the transpose of the input graph. The four phases in
our distributed version operate as follows.
1. Transpose Graph Formation: Requires two supersteps. In the

first superstep, each vertex sends a message with its ID to all its
outgoing neighbors, which in the second superstep are stored in
transposeNeighbors.

1 Coloring(G(V,E))
2 GT = constructTransposeGraph(G)
3 while V 6= ∅
4 Trim G and GT

5 // colors vertices into disjoint color sets
6 MaxForwardReachable(G, start from every v ∈ V )
7 foreach p ∈ P in parallel:
8 if color (p) == p:
9 let Sp be the vertices colored p

10 SCCp = Sp ∩ BackwardReachable(GT , p)
11 remove SCCp from G and GT

Figure 3: Original Coloring algorithm for computing SCCs [38].

1 public void doFwStart() {
2 value(). colorID = getId ();
3 sendMessages(getOutgoingNeighbors(),
4 new SCCMessage(getId()));}
5 public void doFwRest(Iterable <SCCMessage> messages) {
6 int maxColorID = findMaxColorID(messages);
7 if (maxColorID > value().colorID) {
8 sendMessages(getOutgoingNeighbors(),
9 new SCCMessage(value().colorID));

10 updateGlobalObject(“updated-vertex-exists”, true);}}

Figure 4: SCCVertex subroutines for the Forward-Traversal phase.

2. Trimming: Takes one superstep. Every vertex with only in-
coming or only outgoing edges (or neither) sets its colorID to
its own ID and becomes inactive. Messages subsequently sent
to the vertex are ignored.

3. Forward-Traversal: Figure 4 shows the subroutines imple-
menting the Forward-Traversal phase in the Vertex class. There
are two subphases: Start and Rest. In the Start phase, each ver-
tex sets its colorID to its own ID and propagates its ID to its out-
going neighbors. In the Rest phase, vertices update their own
colorIDs with the maximum colorID they have seen, and prop-
agate their colorIDs, if updated, until the colorIDs converge.
The Master sets the phase global object to Backward-Traversal
when the colorIDs converge.

4. Backward-Traversal: We again break the phase into Start and
Rest. In Start, every vertex whose ID equals its colorID prop-
agates its ID to the vertices in transposeNeighbors. In each
of the Rest phase supersteps, each vertex receiving a message
that matches its colorID: (1) propagates its colorID in the trans-
pose graph; (2) sets itself inactive; (3) sets the “converged-
vertex-exists” global object (false at the start of the superstep)
to true. Messages subsequently sent to the vertex are ignored.
The Master sets the phase global object back to Trimming when
“converged-vertex-exists” remains false at the end of a super-
step.

3.2 Minimum Spanning Forest
We implement the parallel version of Boruvka’s MSF algorithm

from [11], referring the reader to [37, 11] for details. Figure 5
shows the original algorithm. The algorithm repeats four phases of
computation in iterations, each time adding a set of edges to the
MSF S it constructs, and removing some vertices from the graph
until there are no vertices left.
1. Min-Edge-Picking: In parallel, each vertex v picks its current

minimum-weight edge (v, u). Ties are broken by picking the
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1 Boruvkas MSF(G(V,E))
2 S = ∅
3 while V 6= ∅
4 foreach v ∈ V in parallel:
5 e = PickMinWeightEdge(v)
6 S = S ∪ e
7 v. sv = FindSupervertexOfConjoinedTree()
8 removeNeighborsInSameConjoinedTree()
9 relabelIDsOfNeighborsInDifferentConjoinedTrees ()

10 foreach sv r ∈ V in parallel:
11 r . adjacencyList = mergeAdjacencyListsOfConjoinedTree();
12 remove all subvertices from V

Figure 5: Parallel version of Boruvka’s MSF algorithm [11].

! "

#

$

%

&

'

(

)

*

!

!

Figure 6: Example of a conjoined-tree.

edge with minimum destination ID. Each picked edge (v, u)
is added to S. As proven in [11], the vertices and their picked
edges form disjoint subgraphs T1, T2, . . . , Tk, each of which
is a conjoined-tree: two trees, the roots of which are joined
by a cycle. Figure 6 shows an example of a conjoined-tree.
In the figure, vertex 0 picks vertex 1 as its minimum-weight
edge, vertex 1 picks vertex 3, vertex 2 picks vertex 3, etc. We
refer to the vertex with the smaller ID in the cycle of Ti as
the supervertex of Ti, for example vertex 5 in Figure 6. All
other vertices in Ti are called subvertices. The following phases
merge all of the subvertices of each Ti into the supervertex of
Ti.

2. Supervertex-Finding: Each vertex finds the supervertex of the
conjoined-tree it belongs to (line 7).

3. Edge-Cleaning-and-Relabeling: Each vertex v performs one
of two operations for each of its neighbors u: v removes u if
v and u are in the same conjoined-tree (line 8), or relabels u
with the supervertex of the conjoined-tree u belongs to, possi-
bly u itself (line 9). For correctness of the final output, the al-
gorithm stores the original source and destination IDs on each
edge, which remain unchanged throughout the computation.

4. Supervertex-Formation: The algorithm merges the relabeled
adjacency lists of each Ti at its supervertex, keeping the mini-
mum-weight edges for duplicates (lines 10-12). All subvertices
as well as supervertices with no edges are removed from the
graph.

In our distributed implementation, each vertex stores a type and
a pointer field, which are used in the Supervertex-Finding phase
(explained below). Each vertex v also has a pickedEdgeSrcID and a
pickedEdgeDstID field (initialized to null), which respectively store
the original source and destination IDs of the last edge v picks, i.e.,
the edge v picks in the last Min-Edge-Picking phase it participates
in. At the end of the computation, these fields identify the edges
that are in S.

1. Min-Edge-Picking: Each vertex picks its minimum-weight ed-
ge and writes its pickedEdgeSrcID and pickedEdgeDestID fields.

2. Supervertex-Finding: For finding supervertices we implement
the Simple Pointer Jumping Algorithm from [11]. There are two
subphases: Question and Answer. We explain the subphases
using the example conjoined-tree from Figure 6. Initially each
vertex v sets its type to Unknown and pointer to the neighbor
v picked in Min-Edge-Picking. In the first Question phase ev-
ery vertex v sends a question message to v.pointer. In our
example, vertex 0 sends a message to 1, and 5 and 6 send mes-
sages to each other. In the first Answer phase, 5 and 6 see that
they’ve sent each other messages and discover that they are part
of the cycle of the conjoined-tree. 5 sets its type to Supervertex
and 6 to PointsAtSupervertex. Every other vertex sets its type to
PointsAtSubvertex. In addition, if a vertex v receives a question,
it replies with an answer that contains the ID of v.pointer and
whether v.pointer is the supervertex. For example, 1 sends 0
the message <3, isSupervertex:false>, while 6 sends 7 and 8
the message <5, isSupervertex:true>.
From then on, we execute the Question and Answer phases
in iterations until every vertex points to the supervertex of its
conjoined-tree. Let di be the longest distance of any leaf vertex
in the conjoined-tree Ti to its supervertex, and let dmax be the
maximum over all di. Supervertex-Finding takes log(dmax)
supersteps.

3. Edge-Cleaning-and-Relabeling: Takes two supersteps. First,
each vertex v sends its ID and supervertex ID to all of its neigh-
bors. The supervertex ID is effectively the new ID for v. In
the second superstep, vertex v for each of its edges e = (v, u)
either deletes e if u has the same supervertex ID, or relabels e
to point to u’s new ID.

4. Supervertex-Formation: Takes two supersteps. First, every
subvertex sends its edges to its supervertex and becomes in-
active. Then, each supervertex merges and stores these edges,
keeping the minimum-weight for duplicates.

3.3 Graph Coloring (GC)
Graph coloring is the problem of assigning a color to each vertex

of an undirected graph such that no two adjacent vertices have the
same color. We implement the greedy algorithm from [16]. The
algorithm iteratively finds a maximal independent set (MIS) of ver-
tices, i.e., a maximal set of vertices such that no pair of vertices
are adjacent. The algorithm assigns the vertices in each MIS a new
color, then removes them from the graph, until there are no vertices
left in the graph.

For finding an MIS we use Luby’s classic parallel algorithm [33].
The algorithm maintains three sets of vertices:
• S: The MIS being constructed. Starts empty and grows in itera-

tions.
• NotInS: Vertices that have at least one edge to a vertex in S and

as a result cannot be in S.
• Unknown: Vertices that do not have an edge to any vertex in S

but are not yet in S.
In each iteration of MIS, each Unknown vertex v is first tentatively
added to S with 1

2×degree(v)
probability. Suppose v and some of its

neighbors, u1, u2, ..., uk, are added to S. Then, v is kept in S only if
its ID is less than all IDs of u1, u2, ..., uk. Otherwise, v is put back
to Unknown. By putting only the minimum ID vertex into S, the
algorithm guarantees that two neighbor vertices are not added to S,
i.e., vertices in S are independent. If a vertex w is in Unknown and
has an edge to any of the vertices that were added to S, then w is put
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into NotInS. Finally, vertices that remain in Unknown decrement
their degree counts by the number of their neighbors that were put
into NotInS. The iterations continue until there are no Unknown
vertices.

In our distributed implementation of GC, vertices have type and
degree fields that are used in the MIS construction, and a color
field to store the color of the vertex (initialized to null). There are
six phases:
• MIS-Degree-Initialization: Executed once for each MIS the

algorithm constructs. Takes two supersteps. First, each vertex
remaining in the graph sets its type to Unknown and sends an
empty message to all its neighbors. In the second superstep,
vertices set their degree fields to the number of messages they
receive.
• Selection: Takes one superstep. Each vertex v sets its type

to TentativelyInS with 1
2×degree(v)

probability, then notifies its
neighbors with a message containing its ID.
• Conflict-Resolution: Takes one superstep. Each vertex v that

is tentatively in S inspects the IDs of its messages. If v has
the minimum ID among its messages, it sets its type to InS,
then sends an empty “neighbor-in-set message” to its neigh-
bors. Otherwise, v sets its type back to Unknown.
• NotInS-Discovery-and-Degree-Adjusting-1: If v receives a

neighbor-in-set message, v sets its type to NotInS, becomes in-
active, and sends an empty “decrement degree” message to its
neighbors.
• Degree-Adjusting-2: Every vertex v that is of type Unknown

decreases its degree by the number of messages it receives. If
there are remaining Unknown vertices, the master sets the phase
back to Selection. Otherwise, the MIS construction is complete
and the master sets the phase to Color-Assignment.
• Color-Assignment: Each vertex that is of type InS sets its color

field to a new color, which is broadcast by the master inside a
global object, and becomes inactive. Vertices of type NotInS set
their types back to Unknown.

3.4 Approximate Maximum Weight Matching
(MWM)

A maximum weight matching (MWM) of a weighted undirected
graph G is a set of edges M such that each vertex v is adjacent to
at most one edge in M (i.e., M is a matching) and there is no other
matching that has higher weight than M. We implement the ap-
proximate MWM algorithm from [40]. In each iteration of MWM,
vertices select their maximum-weight neighbors. If u and v select
each other, the edge (u, v) is added to M, and u and v (along with
all edges pointing to them) are removed from the graph. The itera-
tions continue until there are no vertices left in the graph. A proof
that the algorithm computes a 1/2-approximation to the maximum
matching in the graph can be found in [40]. In our implementation
of the algorithm, we store a pickedEdge field per vertex, which is
initially null. There are three phases:
• Max-Weight-Edge-Picking: Every vertex picks its maximum

weight neighbor u (ties are broken by picking the neighbor with
minimum ID), stores it tentatively in its pickedEdge field, and
sends a message to u containing v’s ID.
• Match-Discovery: If v and u have picked each other, they send

a notification message to their neighbors that they are matched
and become inactive.
• Removing-Matched-Neighbors: Each unmatched vertex v re-

ceives messages from its matched neighbors, and removes them

from v’s adjacency list. The master sets the phase back to Max-
Weight-Edge-Picking if there are unmatched vertices, other-
wise terminates the computation.

3.5 Weakly Connected Components (WCC)
We implement the distributed HCC algorithm from [25]. HCC

consists of a single phase, which is identical to the Forward-Traver-
sal phase of the SCC algorithm from Section 3.1. In iterations,
vertices propagate their IDs and keep the maximum ID they have
seen until convergence. Similar to our implementation of Forward-
Traversal, we break the phase into two subphases. In the Start
phase, which takes one superstep, vertices initialize their wccIDs
to their own IDs and propagate their IDs to their neighbors. In the
Rest phase, vertices update their own wccIDs with the maximum
wccID they have seen, and propagate their wccIDs (if updated).
The Rest phase continues until wccIDs converge.

4. FINISHING COMPUTATIONS SERIAL-
LY (FCS)

We now describe our first optimization technique, Finishing
Computations Serially (FCS). FCS addresses slow convergence in
algorithms by performing some serial computation on a tiny frac-
tion of the input graph. Sections 4.1 and 4.2 give a high-level
description and explain the implementation of FCS, respectively.
Section 4.3 discusses the benefits and overheads of FCS. In Sec-
tions 4.4 and 4.5, we apply FCS to the SCC algorithm from Sec-
tion 3.1, addressing slow convergence due to large diameters and
skewed component sizes, respectively. In Section 4.6 we apply
FCS to the GC algorithm (Section 3.3), which converges slowly on
graphs with small-size maximal independent sets. Sections 4.4–4.6
include experimental results.

4.1 High-level Description
Sometimes, an algorithm or a phase of the algorithm may con-

verge very slowly, i.e., execute for a large number of supersteps,
while executing on a very small fraction of the input graph, which
we refer to as the active-subgraph. Since Pregel-like systems syn-
chronize and exchange coordination messages at each superstep,
slow convergence can significantly degrade performance. The pre-
mise of FCS is to avoid a large number of these small superstep
executions by finishing the computation on a small active-subgraph
serially, inside master.compute(). FCS monitors the size the active-
subgraph. Once the size of the active-subgraph is below a threshold
(5M edges by default), it sends the active-subgraph to the mas-
ter, which performs the rest of the computation serially, and sends
the results back to the workers. In the remainder of this section
we call the vertices that are in the active-subgraph, i.e., those that
can contribute to the computation in the remainder of the algorithm
or a phase of the algorithm, as potentially-active (not to be con-
fused with Pregel’s active/inactive flag). We call a vertex certainly-
inactive otherwise.

FCS can be applied to algorithms in which the size of the active-
subgraph shrinks throughout the computation. All of the algo-
rithms we study in this paper, except for WCC, have this “shrinking
active-subgraph” property. For example, the SCC algorithm (Sec-
tion 3.1) detects several components in each iteration and removes
them from the graph, decreasing the size of the active-subgraph.

FCS can also be applied to individual phases, if the active-sub-
graph of the phase is shrinking. As an example, consider the Back-
ward-Traversal phase of SCC. A vertex v becomes certainly-inac-
tive in two ways: (1) v receives a message that contains its colorID,
then v discovers its component; or (2) no vertex in the graph prop-
agates a message containing v’s colorID. In the second case, v will
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not discover its component in the rest of the phase and will be as-
signed a new colorID in the next iteration. In contrast, recall the
Forward-Traversal phase, in which vertices update and propagate
their colorIDs by the maximum until convergence. In this phase,
no vertex becomes certainly-inactive until the phase is complete,
as we cannot tell with certainty that a vertex will not update its
colorID later without observing the entire graph—a larger colorID
may be propagating from another part of the graph to the vertex.

4.2 Implementation
Our implementations of FCS all use three global objects, to store:

(1) the number of edges in the active-subgraph; (2) the active-
subgraph when serial computation is triggered; (3) the results of the
serial execution (e.g., the component IDs in SCC), which are used
by the potentially-active vertices to update their values in a super-
step following serial execution. Implementations of FCS in specific
algorithms and phases differ in the way the potentially-active ver-
tices are identified, and the way the serial computation is performed
inside master.compute(). In Sections 4.4–4.6, we explain the imple-
mentation differences among the algorithms and phases we apply
FCS to.

4.3 Cost Analysis
FCS avoids additional superstep executions after serial propaga-

tion is triggered. On the other hand, it incurs the overhead of: (a)
monitoring the size of the active-subgraph, which involves poten-
tially-active vertices incrementing a global object; (b) serial com-
putation at the master; (c) communication cost of sending the active-
subgraph to the master and the results of the computation back to
the workers; (d) one superstep execution for vertices to read the re-
sults. The actual benefits and overheads depend on the algorithm
and the graph, and we report experimental results in Sections 4.4–
4.6. We note that we expect FCS to yield good benefits only when
the algorithm or a phase converges very slowly. For example, FCS
can be applied to MSF, in which the active-subgraph shrinks, but
convergence is not slow.

We also note that in general one can trigger FCS as soon as the
active subgraph is as large as the size of the memory of of the mas-
ter worker. Triggering FCS earlier would reduce the number of
superstep executions and communication, at the expense of par-
allel computation. In practice, there will be an optimal threshold
that minimizes the run-time of the computation. However, we ad-
vise keeping a very low threshold (such as 5M edges) instead of
trying to find an optimal one. The motivation for FCS is to de-
tect and avoid situations in which the algorithm cannot parallelize
a computation due to the existence very small subgraphs, instead
of performing serial computations on large subgraphs.

4.4 FCS for Backward-Traversal Phase of SCC
(FCS-BT)

It has been observed that some real-world graphs have very large
actual diameters but very small “effective diameters” [10, 32]. In
other words, although most vertices are very close to each other, a
small fraction of the vertices are far apart. On a graph with diame-
ter d, the Backward-Traversal phase of SCC can take d supersteps:
a vertex v might be at distance d from the vertex that starts prop-
agating v’s colorID. However, if the graph has a short effective
diameter, most vertices may become certainly-inactive after a few
supersteps, with only a small fraction of the vertices participating
in the rest of the supersteps. To avoid some of these final superstep
executions, we apply FCS to Backward-Traversal, and refer to this
optimization as FCS-BT.

Figure 7: FCS-BT and FCS-SCC, Medium-EC2(90, 90).

In order to monitor the size of the subgraph, we identify a ver-
tex v as potentially-active if: (1) v has not yet received a message
containing its colorID; and (2) there is at least one vertex propa-
gating a message containing v’s colorID. We use a global object
propagating-colorIDs-set, which is updated by vertices that propa-
gate messages. Vertices that have not found their components look
at this object to check whether their colorIDs are being propagated.
For serial computation, we do a simple serial breadth-first search
traversal at the master.

4.4.1 Experiments
To evaluate the overall run-time benefits, we applied FCS-BT

to the SCC algorithm and ran experiments with and without the
optimization. Figure 7 (ignore the “FCS-SCC” bars for now; see
next section) shows the results. FCS-BT yields 1.3x and 2.3x run-
time improvements on the uk-2005 and sk-2005 web graphs, re-
spectively, when applied to the baseline SCC algorithm. In terms
of supersteps, FCS-BT reduced the total number of supersteps by
28% in uk-2005 (from 4546 to 3278) and 56% in sk-2005 (from
6509 to 2857). FCS-BT does not show much improvement on non-
web graphs, which have significantly smaller diameters than web-
graphs. As a result, on non-web graphs the total number of super-
steps the Backward-Traversal phases take is small (≤ 50) so elim-
inating them does not significantly improve performance. Over all
five experiments, monitoring the size of the active-subgraph slowed
down the run-time of supersteps before serial computation on aver-
age by 1.3%, which was minor compared to the benefits of FCS-BT.

4.5 FCS for SCC (FCS-SCC)
As observed in [32], real graphs can have skewed component

sizes and exhibit a large number of very small components. Even
if the small-size components comprise a small fraction of the orig-
inal graph, detecting them may take a large number of iterations.
Suppose 100 (say) small-size components are connected to each
other. Then, in the Forward-Traversal phase, a vertex with a large
ID from one component can color many other components and pre-
vent their detection. (Recall the algorithm from Section 3.1.) In an
entire iteration, the algorithm may detect only a few of the 100 con-
nected components. Therefore, we may have to run many iterations
of SCC before detecting all 100 components. Applying FCS to the
SCC algorithm as a whole (called FCS-SCC) can eliminate some of
these iterations. In our implementation of FCS-SCC, we monitor
the size of the active-subgraph simply by counting the edges of the
vertices whose components have not been discovered. For serial
computation, we use Kosaraju’s classic SCC algorithm [43].

4.5.1 Experiments
To evaluate the additional run-time benefits of FCS-SCC over

FCS-BT, we repeated our experiments from Section 4.4.1, using
FCS-BT in the Backward-Traversal phase and FCS-SCC for the
overall algorithm. Figure 7 shows that FCS-SCC yields between
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Figure 8: FCS on GC, Local(26, 104).

1.1x to 2.4x additional run-time improvement across our five data-
sets. FCS-SCC decreased the number of superstep executions by
up to an additional 39%. Similar to FCS-BT, FCS-SCC performs
better on web-graphs, which have very large diameters. Because
of the diameter, executing the forward and backward traversals can
take a very large number of supersteps; avoiding them increases
performance significantly. We note that the time it took to monitor
the active-subgraph and execute Kosaraju’s serial SCC algorithm
was negligible compared to the rest of the computation in all of our
experiments.

4.6 FCS for GC (FCS-GC)
The GC algorithm from Section 3.3 iteratively finds a maximal

independent set (MIS) M in the graph, gives all of the vertices in
M a color, and removes them from the graph. Thus, the active-
subgraph shrinks throughout the computation. When executing GC
on our datasets, we also observed that over time the active-subgraph
gets denser, and as a result the independent sets get smaller. Near-
ing the end of the algorithm, we can be left with a small clique
and need to find as many independent sets as there are vertices in
the clique. Each iteration takes at least five supersteps (see Sec-
tion 3.3), and hence on a clique of only 100 vertices, the algorithm
executes at least 500 supersteps. We apply FCS to GC (called FCS-
GC) to eliminate some of these supersteps. In our implementation,
we use a serial version of the algorithm also based on finding inde-
pendent sets: We compute the sets greedily, putting each vertex in
a queue, then one by one putting each vertex v in the set if none of
v’s neighbors is already in the set.

4.6.1 Experiments
To evaluate the benefits of FCS-GC, we ran the GC algorithm

with and without the optimization. Figure 8 shows a sample of our
experiments. FCS-GC yields between 1.1x to 1.4x run-time bene-
fits, reducing the superstep executions between 10% to 20%. (For
example, on the sk-2005 graph, FCS-GC reduced the number of
superstep executions from 85980 to 69267.) On active-subgraphs
of less than 5M edges, the serial computation takes under 5 seconds
and is negligible compared to the rest of the computation. Similar
to FCC-SCC, the cost of monitoring the active-subgraph was also
negligible.

5. STORING EDGES AT SUBVERTICES
(SEAS) IN MSF

5.1 High-level Description
Recall the MSF algorithm from Section 3.2. In the Supervertex-

Formation phase, a supervertex s receives and merges the adjacency

Figure 9: SEAS and ECOD on MSF, Large-EC2(76, 152).

lists of its subvertices, a high-cost operation. Our SEAS optimiza-
tion instead stores the edges of a supervertex s in a distributed fash-
ion among all of its subvertices. With the adjacency lists of super-
vertex s distributed, s must pick its minimum-weight edge in a dis-
tributed fashion. Moreover, if s is merged into another supervertex
in a particular iteration, it has to notify its subvertices of the new
supervertex they belong to. Nevertheless, the added work is off-
set by the improved performance of avoiding the very costly phase
of sending and merging the adjacency lists of all subvertices. We
note that SEAS can be applied to other algorithms that form super-
vertices during the computation but are not covered in this paper,
e.g., Karger’s classic randomized minimum cut algorithm [27] or
the METIS graph partitioning algorithm [36].

5.2 Implementation
In our implementation of SEAS, subvertices store a pointer to

their latest supervertices. The Min-Edge-Picking phase is now per-
formed in two supersteps. In the first superstep, subvertices send
their local minimum-weight edges to the supervertex. In the second
superstep, a supervertex s picks the minimum of its local edge and
the edges it receives. The Supervertex-Finding and Edge-Cleaning-
and-Relabeling phases are performed as usual. Instead of Superver-
tex-Formation, we perform a new phase called New-Supervertex-
Notification, which takes three supersteps: (1) Suppose we are in
iteration i. Every subvertex from iteration i− 1 sends a message to
its latest supervertex containing its ID. (2) Every supervertex s from
iteration i− 1 sends a message back to its supervertices containing
the ID of its new supervertex (possibly s itself). (3) Subvertices
from iteration i− 1 update their supervertices with the ID they re-
ceive.

5.3 Cost Analysis
Let Gi(Vi, Ei) be the remaining graph in the ith iteration of the

baseline MSF, and let SVi be the number of subvertices that have
at least one edge remaining in the ith iteration when SEAS is on. In
iteration i, SEAS avoids the computation of merging edge lists and
inserting merged edges at supervertices. However, SEAS’s effects
on communication are twofold. If we assume for simplicity that all
of the edges of supervertices in iteration i+1 come from their sub-
vertices, then SEAS roughly avoids |Ei| amount of communication
in iteration i. On the other hand SEAS incurs 3*|SVi| additional
communication: each subvertex sends one message to its superver-
tex in the Min-Edge-Picking and sends one and receives one mes-
sage in New-Supervertex-Formation. Therefore, whether SEAS in-
creases or decreases communication depends on how the sizes of Ei

and SVi change in each iteration. In effect, we avoid the commu-
nication and computation performed in the Supervertex-Formation
phase, which is proportional to the number of edges in the graph,
at the expense of increasing the cost of Min-Edge-Picking and in-
curring the costs of New- Supervertex-Formation, which are pro-
portional to the number of vertices in the graph.
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5.4 Experiments
To evaluate the effects of our SEAS optimization, we ran the

MSF algorithm both with and without the optimization. Figure 9
shows the results on our five datasets (ignore the
MSF+SEAS+ECOD bars for now). We find with SEAS the overall
performance increases between 1.15x and 3x across our data sets.
We also note that SEAS decreases the total communication cost of
the algorithm by up to 1.4x. Recall from the previous section that
we expect SEAS to perform better when |Ei| is large (SEAS avoids
more communication and computation) and |SVi| is low (SEAS
incurs less extra communication). Therefore SEAS’ performance
depends on the ratio of |Ei| to |SVi|. Random-2.5B is the spars-
est graph we experimented with (on average each vertex has only 5
vertices) and |SVi| was very high in each iteration of MSF (always
≥ 400M vertices). As a result, SEAS improved performance less
significantly for random-2.5B than other graphs.

6. EDGE CLEANING ON DEMAND

6.1 High-level Description
“Edge cleaning” is a common graph operation in which vertices

delete some of their neighbors according to the neighbors’ val-
ues. For example, in the Removing-Matched-Neighbors phase of
the MWM algorithm from Section 3.4, unmatched vertices remove
edges to their matched neighbors. Other examples include the (not
surprisingly named) Edge-Cleaning-and-Relabeling phase in SCC,
as well as phases from other algorithms that are not covered in this
paper. (For example, Karger’s classic randomized minimum cut al-
gorithm forms supervertices in iterations and “cleans” edges within
supervertices [27].) In the natural implementation of edge cleaning
on Pregel-like systems, vertices send messages to their neighbors in
one superstep, and remove neighbors in another, possibly based on
the contents of the messages. This implementation incurs a com-
munication cost proportional to the number of edges in the graph,
which might be expensive. In addition, sometimes an edge e might
be deleted unnecessarily: even if we keep e around, e may never be
used again or otherwise affect the computation.

Our ECOD optimization technique keeps stale edges around in-
stead of deleting them. Vertices “pretend” every edge is valid, and a
stale edge e is discovered and deleted only when a vertex attempts
to use e as part of the computation. Among the algorithms we
studied in this paper, ECOD can be applied to MWM and MSF,
although implementations of ECOD on different algorithms differ
in the way stale edges are discovered. We next describe the imple-
mentations and cost analysis of ECOD for each algorithm.

6.2 Implementation for MWM
Recall that in the Match-Discovery phase of our implementation

of MWM in Section 3.4, when a vertex v finds its match u (say),
v sends all its neighbors a notification message and becomes in-
active. In the following Removing-Matched-Neighbors phase, all
of v’s unmatched neighbors remove v from their adjacency lists.
With ECOD, instead v sends a message only to its neighbors that
requested a match with v, and only those neighbors remove v from
their adjacency lists in the Removing-Matched-Neighbors phase;
v’s other unmatched neighbors keep their “stale” edges to v. In ad-
dition, v now stays active in order for its neighbors to discover their
stale edges to v: If in a future iteration of the algorithm a vertex z
uses its stale edge to v and requests to match with v, v sends z a
notification message and z removes its stale edge to v; otherwise,
edge (z, v) is never removed. As we discuss below, ECOD may
decrease the number of vertices that converge in each iteration; i.e.
vertices that find a match or clean all their edges and discover that
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Figure 10: Example graph for ECOD cost analysis.

they will remain unmatched in the remainder of the computation.
To avoid very slow convergence we switch to regular edge-cleaning
if the number vertices that converge is below a threshold number of
vertices (1% of all the vertices in the graph by default).

6.3 Cost Analysis for MWM
ECOD decreases the amount of communication and computa-

tion a matched vertex generates: instead of sending a message to
all neighbors, matched vertices send messages only to those neigh-
bors that request to match with them. As a result, similar to SEAS,
ECOD effectively avoids costs that are proportional to the number
of edges in the graph, at the expense of incurring costs that are pro-
portional to the number of vertices. In our experiments (discussed
momentarily), we observed significant performance benefits from
this tradeoff. In addition, ECOD can avoid the communication and
computation of deleting some edges unnecessarily. For example,
consider an edge (v, u), and assume that v and u both match with
other vertices in the first iteration. Without ECOD, they would send
each other unnecessary notification messages.

On the other hand, ECOD may slow down the convergence of
the algorithm, decreasing the number of vertices that match (or that
discover not to match any other vertex) in each iteration, which
increases the number of iterations. Consider the simple graph in
Figure 10. Without ECOD, the algorithm takes two iterations. In
the first iteration, vertex 2 matches with 3, and 4 matches with 5. In
the second iteration, 1 matches with 0. Using ECOD, the algorithm
takes five iterations. In the first four iterations, vertex 1 attempts to
match with its heaviest edges 5, 4, 3, and 2 one by one and fails.
After removing these edges, it finally matches with 0 in the fifth
iteration.

6.4 Implementation for MSF
Recall that in the Edge-Cleaning-and-Relabeling phase of MSF

(Section 3.2), vertices send their supervertex IDs to their neighbors
in the first superstep. In the second superstep, vertices remove their
neighbors that have the same supervertex ID from their adjacency
lists. With ECOD, we omit this phase completely. As a result, dur-
ing Min-Edge-Picking, vertices cannot pick their minimum weight
edges directly in one superstep, as some of their edges may be stale.
Instead, we execute a Stale-Edge-Discovery phase, during which
vertices discover whether or not their minimum weight edges are
stale. In the first superstep, each vertex v tentatively picks its min-
imum weight edge u (say) and sends a “question” message to u
containing v’s ID and v’s supervertex ID, i (say). In the second
superstep, if u belongs to a different supervertex j (say), it sends
an answer message back to v containing the value j. In the third
superstep, if v receives an answer message, it successfully picks
u as its minimum-weight edge and relabels it to j; otherwise v re-
moves u. We run the Stale-Edge-Discovery phase a threshold num-
ber of times (two by default). We then run a final All-Stale-Edges-
Discovery phase, in which vertices that have not yet successfully
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Figure 11: Runtime of ECOD on MWM, Local(20, 80).

Figure 12: Network I/O of ECOD on MWM, Local(20, 80).

picked their minimum-weight edges send a question message to all
their neighbors and clean all of their stale edges.

6.5 Cost Analysis for MSF
ECOD avoids the communication and computation of the Edge-

Cleaning-and-Relabeling phase. On the other hand, ECOD in-
curs the extra communication and computation cost of question and
answer messages in the new Stale-Edge-Discovery and All-Stale-
Edges-Discovery phases. Without ECOD, in each Edge-Cleaning-
and-Relabeling phase, a message is sent over each remaining edge
in the graph. As a result, if an edge (v, u) is not picked as a
minimum-weight edge or cleaned for j iterations, v will send ex-
actly j messages over (v, u). In contrast with ECOD, v can ex-
change as few as one question and one answer message with u, and
certainly no more than j messages. There are two cases:
1. (v, u) is picked as a minimum-weight edge in the jth iteration:

Then, in the jth iteration, v exchanges one question and one
answer message with u in the Stale-Edge-Discovery phase, and
successfully picks u as its minimum-weight edge. In the first
j−1 iterations, v sends a message to u only if v cannot pick its
minimum-weight edge in the Stale-Edge-Discovery phases, and
has to clean all its stale edges in All-Stale-Edges-Discovery.

2. (v, u) is cleaned in the jth iteration: v exchanges one questions
and answer message with u and cleans (u, v). For the first j −
1 iterations, the situation is exactly as case (1) and v sends a
message to u only if v has to run All-Stale-Edges-Discovery in
the first j − 1 iterations.

As a result v cumulatively sends between 1 and j messages to u
in both cases. Therefore the amount of communication of ECOD
is less than or equal to baseline MSF’s. We have observed in our
experiments that with ECOD, significantly fewer messages are sent
over edges in general.

On the negative side, ECOD increases the overall number of
superstep executions. It avoids two superstep executions of the
Edge-Cleaning-and-Relabeling phase but executes the three super-
step Stale-Edge-Discovery phase several times.

6.6 Experiments

We evaluated ECOD on both MWM and MSF. As shown in Fig-
ures 11 and 12, ECOD improves run-time of MWM by up to 1.45x
and decreases the total communication cost between 1.3x to 3.1x
across our data sets. ECOD increased the number of supersteps be-
tween 1.7x to 2.2x. For MSF, we applied ECOD in combination
with our SEAS optimization (Section 5). The results were included
in Figure 9. When used in combination with SEAS, ECOD yields
between 1.2x and 3.3x additional run-time benefit. ECOD also de-
creased the total communication cost of MSF by up to 1.9x across
our experiments. For MSF, the overall performance improvements
on uk-2005 were modest because ECOD improved the communi-
cation cost only by 1.03x.

7. SINGLE PIVOT OPTIMIZATION (SP)
In this section we describe how skew in component sizes can

yield unnecessarily high communication cost in the component de-
tection algorithms we study. We review the Single Pivot (SP) op-
timization, which was originally described in reference [41] to im-
prove the performance of the WCC algorithm (Section 3.5). We
show that the optimization can also be applied to the SCC algorithm
from Section 3.1. While reference [41] reports minor performance
benefits running WCC on two small synthetic graphs (fewer than
240M edges), we report major benefits on our larger real-world
graphs for both WCC and SCC.

7.1 High-level Description and Implementa-
tion

In addition to a large number of small-size components, graphs
with skewed component sizes typically exhibit a single “giant” com-
ponent, which contains a significant fraction of the vertices in the
graph [10]. The SP optimization, originally described in [41] for
WCC, is designed to detect giant components efficiently. Initially,
the optimization picks a single vertex r (called the pivot) and finds
the component that r belongs to, by propagating r’s ID along its
neighbors (either in WCC or the Forward-Traversal phase of SCC).
The process is repeated until a large component is found, or a
threshold number of iterations is reached. At that point the original
algorithm is used for the remainder of the graph. To implement SP,
we added a new initial phase, Random-Pivot-Picking, to the WCC
and SCC algorithms. In this phase, every vertex updates a custom
global object that picks one of the vertices as pivot uniformly at
random. Then, only the pivot starts propagating its ID in the WCC
algorithm and the Forward-Traversal phase of the SCC algorithm.

7.2 Cost Analysis
The existence of a giant component can incur unnecessary costs

in the WCC algorithm: Let w be the vertex with maximum ID in the
giant component. Then all propagation messages inside the giant
component, except those that contain the ID of w, are unnecessary:
they will not contribute to the final wccID values.

The situation is potentially worse for the SCC algorithm. Let
CON denote the (usually) larger set of vertices that are connected to
the giant (strongly-connected) component, and let w be the vertex
with maximum ID in CON. There are two possibilities: (1) If w is
in the giant component, then in the Forward-Traversal phase, we
incur the same unnecessary propagation messages as in WCC. (2)
If w is not in the giant component, then we will detect the SCC that
w belongs to, which typically is much smaller than the giant one.
As a result, much of the computation and messages will be repeated
in a later iteration.

If SP picks a pivot vertex from the giant component, it avoids all
of the unnecessary propagation messages and computation costs of
detecting the giant component. On the other hand, for each iteration
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Figure 13: SP on WCC, Large-EC2(100, 100).

Figure 14: SP on SCC, Medium-EC2(90, 90).

failing to pick a pivot r from the giant component, SP decreases the
parallelism of the algorithms: instead of detecting multiple com-
ponents in an iteration, SP detects only r’s component. As a re-
sult, SP might increase the total number of superstep executions.
Also, in the Forward-Traversal phase of SCC, picking a pivot from
outside the giant component can result in unnecessary propagation
messages among many vertices that do not belong to the pivot’s
component. However, SP always incurs less communication cost
than baseline WCC. This follows from the observation that with
SP there will be exactly one message sent over each edge in the
component of pivot r, which is the cost incurred only in the first
iteration of baseline WCC.

7.3 Experiments
Figure 13 shows the results of our experiments adding SP to

WCC. Because SP introduces randomness, we repeated each ex-
periment three times and report the average of our measurements.
As shown, SP improves the run-time on average between 2.7x to
7.4x across all of our input graphs. Note because the giant com-
ponent in our undirected graphs is very large, consisting of more
than 90% of the vertices, in all of our trials SP detected the giant-
component in the first try.

For SCC, SP can be used in combination with FCS-BT and FCS-
SCC. To measure the additional benefits of SP, we repeated our
experiments from Section 4.5.1 with SP. Figure 14 shows the re-
sults. We again ran each experiment three times and report the
average run-times. SP yields between 1.1x to 2.1x additional run-
time benefits. In all our trials SP detected the giant component
within two tries. We note that the improvements were modest on
our web graphs. The run-time of SCC is dominated by the large
number of supersteps the Forward-Traversal phases execute due to
large diameters of the web graphs. None of the optimization tech-
niques we know of can avoid these superstep executions. Finally,
we note that considering all our optimizations together (FCS-BT,
FCS-SCC, and SP), the run-time of the baseline SCC algorithm
improved between 1.45x and 3.7x.

8. RELATED WORK

We first review related work in optimizing computations on Pregel-
like systems. Then we discuss related work on the algorithms we
cover in this paper.

References [34, 18, 42] describe graph partitioning techniques
for assigning graph vertices to machines, with the goal of reduc-
ing the communication cost of algorithms. These techniques are
effective when vertices send the same message to all of their neigh-
bors in each phase of the algorithm. However, these techniques are
less suitable when vertices sometimes communicate with a single
neighbor or supervertex, such as in the SCC, MSF, MWM, and GC
algorithms we cover in this paper. Combining messages [12, 35]
is another technique that can be used to reduce the communica-
tion cost of algorithms. This technique can be applied only when
vertices aggregate their messages using the same commutative and
associative function in every phase—a condition that does not hold
for most of the algorithms we cover in this paper (except WCC).
The SP optimization was introduced originally in [41] for finding
weakly-connected components in undirected graphs. They evaluate
the optimization on two small synthetic graphs that exhibit skew.
They report minor performance benefit for one graph and minor
performance loss for the other. We report significant performance
improvements when finding both strongly and weakly-connected
components in large graphs.

A variety of parallel algorithms exist for the graph problems we
cover in this paper: SCC [15, 44], MSF [13, 29], MWM [14, 40],
and GC [16, 24]. Some of these algorithms are designed for the
PRAM model and are not suitable for vertex-centric implementa-
tions, and some have been observed to not perform well on large-
scale real graphs [22, 44]. To the best of our knowledge, none have
been implemented on Pregel-like systems.

A variety of other graph algorithms have been implemented on
Pregel-like systems. The original Pregel paper [35] describes sev-
eral algorithms including PageRank, single-source shortest paths to
all vertices, a randomized maximal
matching in a bipartite graph, and an algorithm to cluster similar
vertices in a graph. Reference [41] describes Pregel implemen-
tations of several social network analysis algorithms: computing
the degrees of separation and the clustering coefficients of vertices,
computing the diameter of a graph, and finding the k-cores, tri-
angles, and k-trusses in a graph. Reference [23] describes Pregel
implementations of two other algorithms used in social network
analysis: computing the conductance [26] of a graph and an ap-
proximation algorithm to compute the betweenness centrality [9]
of vertices in a graph. Aside from the SP optimization in [41],
none of these references describe algorithm-level optimizations to
their baseline implementations.

9. FUTURE WORK
In our thorough algorithm implementations for this paper, we

observed that some phases, such as trimming, propagation of val-
ues until convergence, and constructing the transpose of the input
graph, appear across several different algorithms. We are in the
process of developing a library of basic graph operations that can
be reused across algorithms on Pregel-like systems. Our library
consists of the vertex-centric subroutines of our graph operations,
which can be called directly inside compute() functions. We plan
to integrate the optimization techniques from this paper into our
implementation of these subroutines to make executions more effi-
cient. Then we plan to develop a higher-level language for speci-
fying Pregel-like computations, whose primitives are the graph op-
erations in our library. Such a language would be analogous to the
Pig language for specifying MapReduce computations [?], which
has proven very successful. Our optimization techniques can also
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be used when compiling this high-level language into native com-
pute() functions.
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[13] F. Dehne and S. Götz. Practical Parallel Algorithms for Minimum
Spanning Trees. In Proceedings of the IEEE Symposium on Reliable
Distributed Systems, 1998.

[14] F. Manne and R. H. Bisseling. A Parallel Approximation Algorithm
for the Weighted Maximum Matching Problem. In In Proceedings of
the International Conference on Parallel Processing and Applied
Mathematics, 2007.

[15] L. Fleischer, B. Hendrickson, and A. Pinar. On Identifying Strongly
Connected Components in Parallel. In Proceedings of the IPDPS
Workshops on Parallel and Distributed Processing, 2000.

[16] A. H. Gebremedhin and F. Manne. Scalable Parallel Graph Coloring
Algorithms. Concurrency - Practice and Experience, 12(12), 2000.

[17] Apache Incubator Giraph. http://incubator.apache.org/giraph/.
[18] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin.

PowerGraph: Distributed Graph-Parallel Computation on Natural
Graphs. In Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation, 2012.

[19] GPS Source Code.
https://subversion.assembla.com/svn/phd-projects/gps/trunk.

[20] Apache Hadoop. http://hadoop.apache.org/.
[21] J. M. Hellerstein. The Declarative Imperative: Experiences and

Conjectures in Distributed Logic. SIGMOD Record, 39(1), 2010.
[22] S. Hong, N. C. Rodia, and K. Olukotun. On Fast Parallel Detection of

Strongly Connected Components (SCC) in Small-World Graphs.
Technical report, Stanford University, March 2013.
http://ppl.stanford.edu/papers/techreport2013 hong.pdf.

[23] S. Hong, S. Salihoglu, J. Widom, and K. Olukotun. Tech Report:
Compiling Green-Marl into GPS. Technical report, Stanford
University, October 2012.
http://ppl.stanford.edu/papers/tr gm gps.pdf.

[24] J. R. Allwright and R. Bordawekar and P. D. Coddington and K.
Dincer and C. L. Martin. A Comparison of Parallel Graph Coloring
Algorithms. Technical report, Syracuse University, 1995.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.45.4650.

[25] U. Kang, C. E. Tsourakakis, and C. Faloutsos. PEGASUS: A
Peta-Scale Graph Mining System – Implementation and
Observations. In Proceedings of the IEEE International Conference
on Data Mining, 2009.

[26] R. Kannan, S. Vempala, and A. Veta. On Clusterings: Good, Bad and
Spectral. In Symposium on Foundations of Computer Science, 2000.

[27] D. R. Karger. Global Min-Cuts in RNC, and Other Ramifications of a
Simple Min-Cut Algorithm. In Proceedings of the Symposium on
Discrete Algorithms, 1993.

[28] H. Karloff, S. Suri, and S. Vassilvitskii. A Model of Computation for
MapReduce. In Proceedings of the Annual ACM-SIAM Symposium
on Discrete Algorithms, 2010.

[29] I. Katriel, P. Sanders, and J. L. Traeff. A Practical Minimum
Spanning Tree Algorithm Using the Cycle Property. In Proceedings
of the European Symposium on Algorithms, 2003.

[30] Koutris, P. and Suciu, D. Parallel Evaluation of Conjunctive Queries.
In Proceedings of the ACM Symposium on Principles of Database
Systems, 2011.

[31] The Laboratory for Web Algorithmics.
http://law.dsi.unimi.it/datasets.php.

[32] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graph Evolution:
Densification and Shrinking Diameters. ACM Transactions on
Knowledge Discovery from Data, 1(1), 2007.

[33] M. Luby. A Simple Parallel Algorithm for the Maximal Independent
Set Problem. SIAM Journal on Computing, 15(4), 1986.

[34] A. Lugowski, D. Alber, A. Buluç, J. R. Gilbert, S. Reinhardt,
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