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ABSTRACT
State-of-the-art location-based services (LBSs) involve data
owners, requesting clients, and service providers. As LBSs
become new business opportunities, there is an increasing
necessity to verify the genuineness of service results. Unfor-
tunately, while traditional query authentication techniques
can address this issue, they fail to protect the confidentiality
of data, which is sensitive location information when LBSs
are concerned. Recent work has studied how to preserve
such location privacy in query authentication. However, the
prior work is limited to range queries, where private values
only appear on one side of the range comparison. In this pa-
per, we address the more challenging authentication prob-
lem on top-k queries, where private values appear on both
sides of a comparison. To start with, we propose two novel
cryptographic building blocks, followed by a comprehensive
design of authentication schemes for top-k queries based on
R-tree and Power Diagram indexes. Optimizations, security
analysis, and experimental results consistently show the ef-
fectiveness and robustness of the proposed schemes under
various system settings and query workloads.

1. INTRODUCTION
The boom of smartphones brings prosperity to location-

based services (LBSs) in almost all social and business sec-
tors, such as geo-social networks, merchandizing, marketing,
and logistics. While these LBSs drive new business oppor-
tunities, there is a rising necessity from the mobile users to
verify the genuineness of service results, such as a list of rec-
ommended local restaurants sorted by location and user rat-
ing. This issue is even more critical in an outsourced model
where businesses (or data owners) publish their data to a
third-party service provider (SP), who handles LBS queries
based on these data. As the SP is alleged to manipulate
query results in favor of their “sponsors”, to sustain growth
amid fierce competition, it will soon be obliged to provide
users not only the results, but also the proof of correctness.

In the spatial database literature, there are a lot of works
on query authentication [25, 26, 28]. In these works, the data
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owner publishes not only data (e.g., spatial objects) to the
SP, but also the endorsements of the data being published.
These endorsements are signed by the data owner against
tampering with by the SP. Given a query, the SP returns
both the query results and a proof, called verification ob-
ject (VO). In the verification phase, the querying client uses
this VO, together with the query results, to reconstruct the
endorsements and thus verify the correctness of the results.

However, one key limitation of all these works is that dur-
ing the verification phase, the client is assumed to be com-
pletely trusted and entitled to receive any data values, even
if they are not part of the results. Unfortunately, this as-
sumption is flawed in LBSs whose data is often sensitive lo-
cations and should remain confidential against the client [12,
5, 23, 9]. For example, in online real-estate sites, the address
of a property is often suppressed as business confidentiality.
As another more recent example, due to tremendous con-
cerns about privacy [24], Facebook reportedly pulled back
the newly-launched “Find Friends Nearby” feature, which
sends the user a list of recommended users according to
their proximity. All these call for privacy-preserving query
authentication techniques in LBSs that ensure the confiden-
tiality of location data against the client.

In [7], we proposed privacy-preserving authentication for
location-based range queries. Being the first work to address
location privacy in authentication, the techniques cannot be
applied to other queries. As location-based advertisement
and recommendation are often recognized as one of the most
profitable LBS businesses and thus provoke the greatest con-
troversy with their ranking results [29], in this paper we
study privacy-preserving authentication for location-based
top-k queries, where the rank value of an object is a lin-
ear combination of distance penalty and non-spatial score
(e.g., user average rating). This query definition is similar
to [14] and is a generalization of various location-based top-
k queries defined in [11, 29] and even the k-nearest neighbor
(kNN) queries (by setting all non-spatial scores to 0).

The first challenge of privacy-preserving location-based
top-k queries is its security model. Unlike a range query,
the results of a top-k query imply the relative ranking of
various objects. To address this, we introduce a formal secu-
rity model based on the computational indistinguishability
of relative rank values. Second, the major cryptographic
challenge of this problem is comparing the rank values of
two objects without disclosing their locations or scores, or
in its primitive form, the distances of two private points
from a query point. To this end, we design two new cryp-
tographic building blocks, one with optimized online com-
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putation (the private-Paillier based method, or PPB) and
the other with optimized offline computation (the pre-signed
line based method, or PLB). Third, to address the perfor-
mance challenge from a database perspective, we propose
two authentication schemes for the R-tree and Power Dia-
gram (a weighted form of Voronoi Diagram) based indexes,
respectively. Each scheme consists of a complete set of au-
thentication data structures, VO construction and client ver-
ification algorithms. In addition, we design strategies to op-
timize the offline computation and storage overhead for the
PLB method. To summarize, our main contributions made
in this paper are as follows:
• To the best of our knowledge, this is the first work that

addresses privacy-preserving top-k query authentica-
tion. Our query definition encompasses most existing
location-based top-k and kNN queries.
• We introduce a formal security model and design two

cryptographic building blocks (namely PPB and PLB)
that can prove to the client the relation of rank values
of two objects w.r.t. a query point without disclosing
the locations and non-spatial scores.
• We develop a complete set of authentication schemes

for both the R-tree and Power Diagram based indexes.
• We propose strategies for both the data owner and the

SP to optimize the storage cost of the PLB method.
• We conduct extensive experiments and security analy-

sis to evaluate the performance and robustness of the
proposed authentication schemes.

The rest of this paper is organized as follows. Section 2 in-
troduces the research background and related works in query
authentication. Section 3 formally defines the problem and
security model. Section 4 presents the two private rank-
ing comparison methods, namely PPB and PLB. Section 5
presents the two authentication schemes based on the R-tree
and Power Diagram indexes, followed by Section 6 where
their security is analyzed. Section 7 studies the optimiza-
tion strategies for the PLB comparison method. Section 8
shows the experimental results, followed by a conclusion.

2. BACKGROUND AND RELATED WORKS
There is a large body of research works on query authen-

tication for indexed data. These works originate from either
digital signature chaining or Merkle hash tree.

Based on asymmetric cryptography, digital signature is
produced by the message owner using encryption with its
own private key. Then the verifier can verify the authen-
ticity of a received message by the owner’s public key and
the signature. Based on this scheme, early works on query
authentication impose a signature for every data value. The
VB-tree [22] augments a conventional B+-tree with a sig-
nature in each leaf entry. By verifying the signatures of all
returned values, the client can guarantee the soundness of
these results. However, the simple signature-based approach
cannot guarantee the completeness, as the server can delib-
erately miss some results without being noticed. In [21],
Pang et al. further proposed signature chaining, which con-
nects a signature with adjacent data values to guarantee
no result can be left out. Figure. 1(a) illustrates signature
chaining for four sorted values d1, d2, d3, d4. The signature
of each value depends not only on its own value but also on
the immediate left and right values. Consider a range query
which covers d2 and d3. When the server returns d2 and
d3 to the client, it will also send a verification object (VO)
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(b) Merkle Hash Tree

Figure 1: Basic Authentication Tools

that contains: (1) the signatures of d2 and d3, and (2) the
boundary values d1 and d4. Given the VO, the client can
verify the query results through the facts that: (1) the two
boundary values fall outside the query range, and (2) all sig-
natures are valid. The first condition ensures no results are
missing and the second guarantees no values are tampered
with. Signature aggregation and chaining were adapted to
multi-dimensional R-tree indexes by Cheng and Tan [3].

The Merkle hash tree (MHT) was introduced to authen-
ticate a large set of data values [18]. Figure 1(b) shows an
MHT for the same data values in Figure 1(a). It is a binary
tree. Each leaf node with data value di is assigned a digest
h(di), where h() is a one-way hash function. Each internal
node Ni is assigned a digest which is derived from its child
nodes, e.g., N1 = h(N11|N12), where “|” denotes concatena-
tion. In MHT, only the digest value of the root is signed by
the data owner, and therefore it is more efficient than signa-
ture chaining schemes. An MHT can be used to authenti-
cate any subset of data values. For example in Figure 1(b),
the server sends d1 and d2 to the client; and to prove their
authenticity, the server also sends the client a VO, which
includes the digest of N2 and the signed root digest N . The
client computes h(d1) and h(d2), then N1 = h(h(d1)|h(d2)),
and finally N = h(N1|N2). This computed root digest is
then compared with the signed root digest in the VO. If
they are the same, the client can verify that d1 and d2 are
not tampered with by the server and no results are omitted.

The notion of MHT has been generalized to an f -way tree
and widely adapted to various index structures. Typical
examples include Merkle B-tree and its variant Embedded
Merkle B-tree (EMB-tree) [15]. The latter reduces the VO
size by embedding a tiny EMB-tree in each node. For multi-
dimensional datasets and queries, similar techniques were
proposed by Yang et al., who integrated an R-tree with the
MHT (which is called Merkle R-tree orMR-tree) for authen-
ticating multi-dimensional range queries [25, 26]. Besides
selection and range queries, recent studies focus on the au-
thentication of more complex query types, including top-k
queries [4], kNN queries [28, 10], shortest paths [27], skyline
queries [17], join queries [26], and aggregation queries [16].

Our work differs from all these works by preserving the
data privacy against the verifier while accomplishing the
same authentication task. In [7], we presented a solution
for range queries, which is based on a cryptographic con-
struct that can prove to the client that a private number is
larger than a public number. However, this construct works
for range queries only, and cannot be applied to any query
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type that requires the comparison of two private numbers.
Therefore, the design of new cryptographic constructs to
prove the relation of two private numbers is a prerequisite
for this work.

3. PROBLEM FORMULATION
Without loss of generality, we model a d-dimensional dataset

D in an integer -domain space. For ease of presentation, we
assume each object pi ∈ D is a pair 〈λ, ω〉, where λ is pi’s
location vector and ω is its non-spatial score. The results
of a top-k query Q = 〈q, k〉 (where q is the query point) are
R = {r1, r2, · · · , rk},1 where ri is the id of the ith ranked
object in D with respect to the following ranking function
(known as Euclidean scoring function [1]):

rank(ri, q) = ‖ri.λ− q.λ||2 + ri.ω
2,

where ‖ri.λ− q.λ‖ is the Euclidean distance between ri and
q, and an object with a lower value is ranked higher.2 For
ease of presentation, we omit explicit weights of the spatial
distance and non-spatial score in the above linear combina-
tion. Nonetheless, the non-spatial score ω can be normalized
in preprocessing to reflect its relative weighting. Figure 2 il-
lustrates a top-3 query, whose results are R = {p1, p3, p4}.
The query Q is executed by the service provider (SP) on
the dataset D, which is authorized and signed by the data
owner (DO). The authentication problem is for the querying
client to verify that the SP executes Q faithfully in terms of
two authenticity conditions: (1) soundness condition: the
returned objects are all genuine top-k results and no re-
turned ids are tampered with; (2) completeness condition:
no genuine top-k results are missing. It is noteworthy that
due to the nature of top-k queries, the completeness is im-
plied by the soundness. The privacy-preserving authentica-
tion problem in this paper is to authenticate the top-k query
results while guarding objects’ location and score informa-
tion against the client. That is, the client cannot infer any
more information about the rank value of any object, be-
yond what is implied from the results.

If privacy were not a concern, authenticating a top-k query
would follow the following procedures. The SP returns a
verification object (VO) to the client, along with the query
results R. As a bottomline solution, the VO may include
the location points and scores of all objects in the dataset
D and a signature of D. The querying client uses the VO
to verify the soundness (and completeness) of the results by
testing the following four conditions:
• None of the locations, scores, and ids of the result

objects in R are tampered with;
• No locations and scores of the objects in D − R are

missing and none of them are tampered with;
• All result objects are ranked no lower than rk, i.e.,
∀ri ∈ R, rank(ri, q) ≤ rank(rk, q);

3

1In a real location-based service, Q may return specific con-
tents to the querying client, such as the users’ names or their
Facebook pages. We assume these contents can be retrieved
faithfully using the returned ids.
2This definition slightly differs from a sum ranking function:
rank(ri, q) = ||ri.λ − q.λ|| + ri.ω. Nonetheless, we show
in [2] that the top-k results of such a ranking function can
be derived from top-k′ results of our ranking function.
3According to our security model, the client cannot learn
the order of top-k results.

(a) Objects with ω2

object ω2 ranking value
p1 4 8
p2 9 35
p3 5 18
p4 2 18
p5 12 20
p6 16 48
p7 8 49
p8 6 19
p9 6 19
p10 1 41
p11 2 54

(b) Ranking Table

Figure 2: Top-k Query Example

• All non-result objects are ranked no higher than rk,
i.e., ∀ri ∈ D−R, rank(ri, q) ≥ rank(rk, q).

Verifying the latter two conditions without disclosing object
locations or scores requires a private ranking comparison of
two objects, which will be studied in Section 4. Furthermore,
to avoid enumerating all objects in D − R when verifying
the second and fourth conditions and thus minimize the VO
size, we will propose authentication schemes on two common
spatial indexes in Section 5.

3.1 Security Model
As with the previous works [7, 15, 25], we assume that: (1)

the DO is trusted by (but not colluding with) the querying
client or SP; (2) the SP has read-only access to the object
locations, scores, and the query point; (3) all parties follow
a semi-honest model [13]. The security model to achieve
in this problem is two-folded: (1) the location and score
information of every object is semantic secure against the
client; and (2) the results of a query are both complete and
sound. The former can be derived from the semantic security
of rank value as follows [13]:

Definition 3.1. Semantic Security of Rank Values.
Given a query Q = 〈q, k〉, a scheme is semantic secure for
rank values against a probabilistic polynomial-time client,
if given any two result objects (resp. non-result objects)
s, t 6= rk, where rank(s, q)≤rank(t, q)≤rank(rk, q) (resp.
rank(rk, q)≤ rank(s, q)≤rank(t, q)), the client can succeed
in deriving rank(s , q) ≤ rank(t, q) with probability at most
negligibly greater than 1/2.

For a single query, the semantic security of rank values
immediately lends us that of their ingredients — the loca-
tions and non-spatial scores. However, when the client is-
sues queries continuously, this no longer holds, as the query
points that dominate the change of a rank value are known.
The semantic security model for continuous queries will be
introduced in Section 6.

4. PRIVATE RANKING COMPARISON
In this section, we propose two primitive methods for the

client to privately compare rank(s, q) and rank(t, q) without
knowing the locations and scores of objects s, t. These two
methods form the basic cryptographic constructs of privacy-
preserving top-k query authentication schemes in Section 5.

4.1 Private-Paillier based (PPB) Method
The main idea of this method is to apply encryption on

objects. To enable the ranking function on cipher-texts, we
adopt the Paillier homomorphic cryptosystem [20].
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4.1.1 Introduction to Paillier Cryptosystem
Paillier is a public-key homomorphic cryptosystem that

satisfies additive homomorphism, which means that one can
compute a cipher-text of m1 +m2 by only having the public
key and cipher-texts of m1 and m2.

Paillier has the following properties [20]:

∀m1,m2 ∈ Zn,∀z1, z2 ∈ Z∗n,

E(m1, z1) · E(m2, z2) ≡ E(m1 +m2, z1 · z2) mod n2 (1)

E(m1, z1)m2 ≡ E(m1 ·m2, z
m2
1 ) mod n2 (2)

E(m1, z1) ≡ E(m1 + k · φ(n2), z1) mod n2, k = 1, · · · (3)

where Z∗n is the subset of Zn (i.e., 0, 1, · · · , n − 1) whose
elements have multiplicative inverses (modulo n), z1, z2 are
random values, E() is the encryption function of the Paillier
cryptosystem, and φ() is the Euler totient function. Eqn. 3
implies that it is hard to find a collision for any plain-text
m, due to the difficulty of computing φ(n2).

4.1.2 Private Ranking Comparison with PPB Method
Proving rank(s, q) ≥ rank(t, q) is equivalent to proving

rank(s, q)− rank(t, q) = δ, where δ ≥ 0. (4)

Let xp, yp, ωp denote the x, y coordinate and score of an ob-
ject p, respectively. By expanding rank(s, q) and rank(t, q),
we rewrite Eqn. 4 as follows:

2xtxq+2ytyq+x2s+y2s +ω2
s = 2xsxq+2ysyq+x2t +y2t +ω2

t +δ.

If both sides of this equation are encrypted by Paillier, ac-
cording to Eqn. 1 and 2, it is equivalent to proving the fol-
lowing equation instead:4

E(2xt)
xqE(2yt)

yqE(x2s)E(y2s)E(ω2
s) =

E(2xs)xqE(2ys)yqE(x2t )E(y2t )E(ω2
t )E(δ) mod n2. (5)

In Eqn. 5, except for xq, yq, E(δ) (which is computed by
the SP as shown below), all items can be precomputed and
signed by the DO offline. And since only the DO possesses
the private key of Paillier, these items cannot be decrypted
by the client. Thus, the client can verify Eqn. 5 without
knowing the coordinates or scores of s, t.

Verifying Eqn. 5 only proves that E(δ) is the true en-
crypted difference of rank values, and the client is yet to
verify (without knowing δ itself) that δ ≥ 0. We propose a
novel method called encrypted seeds decomposition. The key
observation is that proving δ ≥ 0 is equivalent to showing
that δ has a canonical decomposition of base B:5

δ =

m∑
i=1

δi ·Bi, (6)

where δi ∈ [0, 1, ..., B − 1], m = logB(U), U is the upper
bound of δ. Applying Eqn. 1 to Eqn. 6, we get:

E(δ) =

m∏
i=1

E(δi ·Bi) mod n2. (7)

4By the definition of Paillier encryption, Eqn. 5 holds when
the following two conditions are satisfied. First, the random
values of z for xs and ys (resp. xt and yt) are the same.
Second, the client knows the random value of z for δ and
can thus multiply some constants to balance Eqn. 5.
5If δ < 0, according to Eqn. 3, the server cannot find another
δ′ ≥ 0 such that E(δ′) = E(δ).

We call these E(δi · Bi) “encrypted seeds” and let the DO
pre-sign them. Once the client receives the corresponding
encrypted seeds for δ from the SP, it can verify that δ ≥ 0
by assembling a verified E(δ) using Eqn. 7.

The following is the whole Private-Paillier based ranking
comparison procedure. During the service initialization, the
DO sends the following to the SP: (1) all signed encrypted
seeds E(δi · Bi) (i = 1, 2, · · · ,m, δi ∈ [0, B − 1]), and (2)
E(2x), E(2y), E(x2), E(y2), and E(ω2) for every object.
Upon a comparison request rank(s, q) ≥ rank(t, q), besides
sending E(2x), E(2y), E(x2), E(y2) and E(ω2) of s and
t, the SP also sends E(δi · Bi) with their signatures to the
client. By assembling E(δ) using Eqn. 7 and testing if Eqn. 5
holds, the client can verify that rank(s, q) ≥ rank(t, q). A
rigorous proof of its security is given in Section 6.1.

As for cost analysis, the communication cost MPPB and
the total client CPU cost CPPB are:

MPPB = (10 +m) ·Menc +Msign,

CPPB = (3m+ 9) · Cmul + Csign,

where Menc and Msign are the lengths of a Paillier cipher-
text and a signature, respectively, Cmul and Csign are the
CPU costs of a modular multiplication and a signature ver-
ification, respectively (see [2] for detailed analysis).

4.2 Pre-signed Lines based (PLB) Method
While the PPB method can compare the ranking privately

for any arbitrary pair of objects, the extensive use of ho-
momorphic functions results in costly computation. In this
subsection, we propose an alternative method where the DO
pre-computes and pre-signs the ranking comparison result
for a selected pair of objects.

4.2.1 Preliminary — 1D Case
Here we assume s, t and q are all 1D points. As shown in

Figure 3(a), rank(s, q) ≥ rank(t, q) if and only if q is to the

right side of
t2−s2+ω2

t−ω2
s

2(t−s)
. In other words, the ranking value

comparison is reduced to comparing q with a private value
t2−s2+ω2

t−ω2
s

2(t−s)
, or in the integer form q ≥ d t

2−s2+ω2
t−ω2

s
2(t−s)

e.
To verify q ≥ α without the client knowing the value of
α, we adopt the method in [21]. The idea is to let the
client and SP jointly compute the digest g of value U − α,
where U is the upper bound of the domain of α. The SP
first computes g(q − α) and sends it to the client, who then
computes g(U − α) = g(U − q) ⊗ g(q − α), where ⊗ is a
well-defined operation on the digest. Note this equation
is guaranteed by the homomorphic property of the digest
function g(), which accepts only non-negative numbers. As
such, by sending g(q−α), the server claims q ≥ α. The client
verifies q ≥ α by comparing the jointly computed g(U − α)
value with the g(U − α) value signed by the DO.

4.2.2 Private Ranking Comparison with PLB method
When s, t, and q are 2D points, we propose a geometric

approach that can reduce the 2D ranking comparison to a
1D value comparison as outlined above. First, we introduce
the notion of score-shifted half-plane.

Definition 4.1. Score-Shifted Half-Plane. Given ob-
jects s and t, the score-shifted half-plane ⊥(t, s) (the shaded
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(b) 2 Dimensions

Figure 3: Ranking Comparison in Different Dimensions
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Figure 4: Pre-signed Line Based Method

part in Figure 3(b)) is defined as the set of points that have
a lower rank value to t than to s:

⊥(t, s) = {p ∈ R2 | rank(t, p) ≤ rank(s, p)}.

The line to which s and t have equal rank values is called
the score-shifted line of s and t, denoted as SL(s, t). As
its name suggests, we can find it by shifting the 2D perpen-
dicular bisector of s and t by their score difference:

SL(s, t) = {p | (t− s)T p =
1

2
(‖t‖2 − ‖s‖2 + ω2

t − ω2
s)}.

From Figure 3(b), verifying rank(s, q) ≥ rank(t, q) is
equivalent to verifying q ∈ ⊥(s, t). And from Figure 4, veri-
fying the latter is equivalent to verifying the “directed” area
of 4qo2o1 is non-negative, where o1, o2 are two arbitrary
points on SL(s, t). However, sending o1 and o2 to the client
will disclose SL(s, t) and thus the coordinates of s and t.
To avoid this, the SP takes the following approach. First,
it finds another line l(o′1, o

′
2) parallel to l(o1, o2) and so far

away that it does not intersect with the data region. Fur-
ther, let ‖o′1o′2‖ = ‖o1o2‖. Let A1 denote the directed area
of 4qo2o1, A2 the directed area of 4qo′1o′2, and A3 the di-
rected area of 4o′2o2o1, we have

A3 = 1
2
‖o1o2‖ · h3 = 1

2
‖o1o2‖ · (h1 + h2)

= 1
2
‖o1o2‖ · h1 + 1

2
‖o′1o′2‖ · h2 = A1 +A2.

(8)

The above equation resembles the 1D case where the di-
gest value g(U − α) is jointly computed by the SP (for di-
gest g(q − α)) and the client (for digest g(U − q)). Here
by analogy, g(A1) is computed by the SP (because it in-
volves private points o1 and o2), g(A2) is computed by the
client based on o′1, o′2 and q,6 and g(A3) does not involve q
and can thus be pre-computed and signed by the DO. The
client verifies A1 ≥ 0 (and thus rank(s, q) ≥ rank(t, q)) by
comparing the jointly computed g(A3) value with the g(A3)
value signed by the DO. If they are the same, the client can

6In order not to disclose o′1 and o′2 to the client, A2 is fur-
ther encrypted. More details about this and the selection of
points (o1, o2) and (o′1, o

′
2) are in the full technical report [2].

verify A1 ≥ 0. More rigorous security analysis is given in
Section 6.1.

As for cost analysis, the communication cost MPLB and
the total client CPU cost CPLB are:

MPLB = m/2 + (m+ 4 + dlog2me) ·Mdigest +Msign,

CPLB = (B(m+ 1) + dlog2me+ 2) · Chash + Csign,

where Msign, and Mdigest are the lengths of a signature and
a digest, respectively, Csign and Chash are the CPU costs of
a signature verification and a hash operation, respectively
(see [2] for detailed analysis).

5. AUTHENTICATING TOP-K QUERIES WITH-
OUT COMPROMISING PRIVACY

Equipped with the PPB and PLB methods on private
ranking comparison, in this section we study privacy-preserving
authentication of top-k queries on a dataset D. Recall that
R = {r1, r2, · · · , rk} are the results, and the authentication
verifies the following conditions: (1) ∀ri ∈ R, rank(ri, q) ≤
rank(rk, q), and (2) ∀ri ∈ D− R, rank(ri, q) ≥ rank(rk, q).
As with all existing authentication techniques, we assume
that the authentication is carried out on a spatial index. In
this paper, we focus on R-tree and Power Weighted Voronoi
Diagram based authentication schemes. Each scheme con-
sists of the offline construction of the authenticated data
structure (ADS), the online construction of the VO for a
query, and the client verification procedure.

5.1 Authentication on MR-tree
If we upscale a 2D object p(λ, ω) into a 3D point p′(xp,

yp, ω) and the query point q into q′(xq, yq, 0), the rank value
of p w.r.t. q is the (squared) Euclidean distance of p′, q′:

‖p′ − q′‖2 = (xp − xq)2 + (yp − yq)2 + (ω − 0)2 = rank(p, q).

Let these 3D points be indexed by an R-tree, and the origi-
nal top-k query on objects pi’s with scores is reduced
to a kNN query on all p′i points. For ease of presenta-
tion, we omit the upscale sign ′ when the context is clear.
In the rest of this subsection, we first introduce the gen-
eral framework on Merkle R-tree based kNN authentication
without privacy-preserving requirements, and then present
our privacy-preserving scheme.

5.1.1 Preliminary — Merkle R-tree and kNN Query
Authentication in 3D

Merkle R-tree (MR-tree) is an integration of R*-tree and
Merkle Hash tree (MHT) [25, 26]. Figure 6(a) shows an
MR-tree for the data objects in Figure 5. Every entry Ni

in a non-leaf node has a minimum bounding box (MBB)
(denoted by Ni.mbb) and a digest for its child entries (de-
noted by Hi), while every leaf entry pi has a corresponding
data object (denoted by pi.p) and a digest of its id (denoted
by hi). Inspired by MHT, the digest of a non-leaf entry
is the hash value of the concatenation of all its child en-
tries’ MBBs (or objects) and their digests, and the digest of
a leaf entry is simply the hash value of its object id. For
example, in Figure 6(a), for non-leaf entry N1, its digest
H1 = h(p1.p|h1|p2.p|h2|p3.p|h3); for leaf entry p1, its digest
h1 = h(p1.id). The digests of all entries in the MR-tree are
recursively computed in a bottom-up fashion, and the digest
of the root entry is signed by the DO using its private key.

The kNN query processing can be conducted by existing
algorithms such as the best-first search [9]. This algorithm
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Figure 5: Nodes, Objects, and Query
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(a) MR-tree Index and VO (without privacy-preserving requirement)
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(b) MR-tree Index and VO (applying PPB method only)
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(c) MR-tree Index and VO (accelerated with PLB method)

Figure 6: Query Authentication on MR-tree

maintains a priority queue H of to-be-explored nodes, sorted
by their minimum rank value w.r.t. q, and repeatedly pops
up the top entry e in H, accesses e for its child entries, and
enqueues them into H. This procedure terminates when k
leaf entries (i.e., result data objects r1, r2, · · · , rk) have been
popped up from H. We denote the remaining entries in the
heap H as Hrm.

To authenticate the query results, the client needs to ver-
ify: (1) ∀ri ∈ R, rank(ri, q) ≤ rank(rk, q); (2) ∀ri ∈ Hrm,
rank(ri, q) ≥ rank(rk, q); and (3) no ri is omitted or tam-
pered with. (1) can be verified directly from the result ob-
jects, and (2) can be verified ifHrm is included in the VO. (3)
can be verified by restoring the root digest of the MR-tree,
because any missing or wrong ri will result in an incorrect
restoration of the root digest. Therefore, without privacy re-
quirements, the VO should include: (1) the result objects in
R and the MBBs (or objects) of the entries in Hrm; (2) the
signed root digest; and (3) the digest components necessary
for the client to restore the root digest.

Consider a 3NN query example in Figure 5, whereN1, N2, · · ·
are non-leaf entries and p1, p2, · · · are leaf entries. The query
results are R = {p1, p3, p4} and Hrm = {p5, p2, p6, N3, N4}.

Figure 6(a) shows the VO for this example, which includes:
• the objects and MBBs in R ∪Hrm, including: (1) p1,
p2, p3, p4, p5, p6 and (2) the MBBs of N3, N4;
• the signed digest of the root node;
• all the digest components, necessary for the client to

compute the root digest, including (1) the digests h2,
h5, h6 for leaf entries p2, p5, p6; and (2) the digests
H3, H4 for non-leaf entries N3, N4.

In Figure 6(a), all items returned by the SP are shown in
light-grey color (e.g., h2, H3), and all the digests, computed
by the client itself after receiving the VO (e.g., h1, H1), are
shown in white color.

5.1.2 Private Ranking Comparison between an MBB
and an Object

As outlined above, the authentication of kNN queries in-
volves ranking comparisons not only between objects but
also between objects in an MBB and an individual object.
Specifically, if the minimum rank value of objects in an MBB
w.r.t. the query point q is larger than the rank value of the
top-kth object rk, the corresponding MR-tree node can be
verified as a whole, without accessing its child entries. Since
the PPB or PLB method only compares between objects,
we present the following private ranking comparing method
between an MBB and an object.

Since q is always 0 in the z-axis and any object has a
positive ω value, the minimum projected rank value of an
MBB on z-axis is simply ω2

min, the minimum ω2 in this
MBB. In what follows, we only need to obtain the minimum
projected rank value on x- and y-axis. Let p1, p2, p3, p4
denote the four corner points, and l1, l2, l3, l4 the four
boundary lines of the projected MBB M . Obviously, if q
locates inside M , the minimum projected rank value on x-
and y-axis is 0. If q locates outside of M , there will be two
cases. The first case is when q locates in Partitions I, III,
VII, and IX (see Case A in Figure 7), and the minimum rank
value w.r.t. q occurs on one of the corner points p. In this
figure, p = p4. So the proof of rank(M, q) ≥ rank(rk, q) can
be reduced to proofs of: (1) xq ≥ xp4 and yq ≤ yp4 using
the 1D private comparison method [21], and (2) rank(p, q) ≥
rank(rk, q) using the PPB method.

The second case is when q locates in Partitions II, IV, VI,
and VIII (see Case B in Figure 7), and the minimum rank
value w.r.t. q occurs on one of the boundary lines. In this
figure, the minimum rank value w.r.t. q occurs on line l4
(in between lines l1 and l2). Let p denote this closest point;
then the proof of rank(M, q) ≥ rank(rk, q) can be reduced
to proofs of: (1) xq ≥ xp4 and yp4 ≤ yq ≤ yp2 using the
1D private comparison method [21], and (2) rank(p, q) ≥
rank(rk, q) using the PPB method.7

5.1.3 Authenticated Data Structure
Now we present the privacy-preserving authentication scheme

on the MR-tree, starting with the authenticated data struc-
ture. First, we define the digest for a leaf entry pi, as
hi = h(pi.id). Since we cannot disclose any coordinates
or scores of pi.p to the client, we define its digest dig(pi.p)
based on the PPB method as follows:

dig(pi.p) = h(E(2xpi)|E(2ypi)|E(x2pi)|E(y2pi)|E(ω2
pi)). (9)

7In this case, the y coordinate of p equals that of q, whose
digest can be computed by the client locally.
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The digest of a non-leaf entry Ni follows the same definition
as in [7] as:

Hi = h2(dig(Nc1 .mbb)) · h
2(dig(Nc1)) · · ·

· h2(dig(Ncm .mbb)) · h
2(dig(Ncm)) mod n, (10)

where Ncj is Ni’s j
th child entry, n = uv and u, v are two

large primes. The digest of an MBB is defined as:

dig(mbb) = h2(dig(mbb.l)) · h2(digg(mbb.l))

· h2(dig(mbb.u)) · h2(digg(mbb.u)) mod n, (11)

where mbb.l and mbb.u are bottom-left and top-right corner
points and digg() is the digest of a corner point’s g() values:

digg(p) = h(g(xp−L)|g(U −xp)|g(yp−L)|g(U −yp)), (12)

which is used for boundary verification during ranking value
comparison between an MBB and an object. Since q always
locates under the MBBs, the z-axis value (i.e., ω) is not
included in the digest digg().

5.1.4 VO Construction and Verification
Recall that R denotes the set of query results and Hrm de-

notes the remaining entries in the priority queue H. Similar
to Section 5.1.1, to authenticate the results, the client needs
to verify: (1) ∀ri ∈ R, rank(ri, q) ≤ rank(rk, q); (2) ∀ri ∈
Hrm, rank(ri, q) ≥ rank(rk, q); and (3) no ri ∈ R ∪Hrm is
omitted or tampered with. While (3) can still be verified by
restoring the root digest of the MR-tree as in Section 5.1.1,
since neither the points nor their rank values can be dis-
closed to the client, verifying (1) and (2) is no longer trivial
and requires the PPB comparison on two objects or on an
MBB and an object. Therefore, the VO includes: (1) the
digest or digest components of each ri ∈ R to privately com-
pare with rank(rk, q); (2) the digest or digest components
of each ri ∈ Hrm to privately compare with rank(rk, q); (3)
the signed root digest; and (4) all the digest components
necessary for the client to restore the root digest.

Figure 6(b) shows the VO of the same 3NN query as in
Figure 5, which includes:
• the digest components for each ri ∈ R to privately

compare with rank(rk, q), including: E() values for
objects p1, p3, p4;8

• the digest components for each ri ∈ Hrm to privately
compare with rank(rk, q), including: (1) E() values
for objects p2, p5, p6; (2) E() values, g() values and
components for the corner points of MBBs N3, N4;
• the signed digest of the root node;
• the digest components, necessary for the client to com-

pute the root digest, including: (1) the digests h2,
h5, h6 for leaf entries p2, p5, p6; (2) the digests H3,
H4 for non-leaf entries N3, N4; and (3) the digests
dig(N1.mbb), dig(N2.mbb).

In Figure 6(b), the light-grey and white colors mean the
same in Figure 6(a), and the dark-grey color represents those
digest components that are jointly computed by the SP and
the client. For example, dig(p1.p) is computed by the client
based on the E() values of p1.p returned from the SP.

8E() values consist of E(2x), E(2y), E(x2), E(y2), E(ω2)
and {S(E(δi ·Bi))}.
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5.1.5 Acceleration using PLB Method
If the DO pre-signs some pairs of objects in advance, the

SP can replace some PPB calls with PLB calls to accelerate
the authentication. In the example of Figure 5, we assume
that SL(p3, p4) and SL(p4, p5) are pre-signed by the DO,
comparisons of rank(p4, q) ≥ rank(p3, q) and rank(p5, q)
≥ rank(p4, q) can then be verified using the PLB method.
Specifically, the SP no longer returns E() values for p3 and
p5. Instead, it returns digest components of o′1, o′2, g(bA1c)
and signatures of those pre-signed lines. Figure 6(c) shows
the updated VO with this PLB acceleration, where the di-
gests of entries p3 and p5, jointly computed by the SP and
the client in Figure 6(b), are now returned directly.

5.2 Authentication on the Power Diagram
In the MR-tree based scheme, since only the root digest

is signed, the verification of any query must go all the way
up to the root. This incurs a significant number of nec-
essary digests or digest components to be included in the
VO, particularly unfavorable to queries of small k. As an
extreme example, when k = 1, even though the result com-
prises only one data object, the VO still includes the digests
of all neighbor objects in the same leaf node, of all neighbor
entries in the parent node, and so on. In this subsection, we
propose an alternative scheme that is based on the Power
Diagram [19], a weighted form of Voronoi Diagram.

5.2.1 Properties of Power Diagram
As shown in Figure 8, given the set of objects {p1, p2, · · · }

in D, the Power Diagram of D, denoted by PD(D), partitions
the Euclidean space R2 into disjoint Power Voronoi Cells.
Each cell corresponds to one object pi, denoted by VC(pi).
If a query point q locates in this cell, pi is its top-1 result.
Similar to Voronoi Diagram, a 2D Power Diagram can be
constructed in O(n logn) time [19]. The difference, however,
is that pi itself may not locate in its own cell, and some
objects even have no corresponding cells.

To get the remaining top-k results, we augment the non-
spatial score ω to a third dimension and get a 3D Voronoi
Diagram. If pi and pj share a common face in it, we say
pj is a Voronoi neighbor of pi, denoted as VN (pi). Voronoi
Diagram has the following property on finding the top-kth

object based on the top-(k − 1) objects [19]:

Property 5.1. If P = {r1, r2, · · · , rk−1} ⊂ D are the
top-(k − 1) objects of a query point q, the top-kth object
(i.e., rk) must be in the set

⋃
VN (ri ∈ P ).

5.2.2 Authenticated Data Structure
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Figure 9: VO and Authentication on Power Diagram

In the Power Diagram based scheme, the DO signs the
digest of each data object pi, which is defined as:

dig(pi) = dig(pi.p) · h2(pi.id) · h2(pi.neigh1)

h2(pi.neigh2) · · · mod n, (13)

where pi.neighj is the id of pi’s j
th neighbor, and dig(pi.p)

is the digest of 〈λpi , ωpi〉, which shares the same definition
as in Eqn. 9 in the MR-tree based scheme.

5.2.3 Top-k Query Processing, VO Construction, and
Verification

We assume the Power Diagram, together with its authen-
ticated data structure, has been materialized on external
storage. Any data object, including its Power Voronoi cell,
digest and signature, can be efficiently accessed using the
corresponding id. As such, a top-k query can be incremen-
tally processed according to Property 5.1 as follows. First,
the SP finds r1 as the object whose cell corresponds to the
query point q. Next, the SP finds r2 from the Voronoi neigh-
bors of r1 (i.e., VN (r1)). In general, the SP finds the rk from
the Voronoi neighbors of all k − 1 objects found so far.

Let Pneigh denote the set of objects in
⋃
VN (ri ∈ R)−R,

which are all the Voronoi neighbors of results R (except
the objects already in R). To authenticate the query re-
sults, the client needs to verify: (1) q ∈ VC(r1); (2) ∀ri ∈
R, rank(ri, q) ≤ rank(rk, q); (3) ∀ri ∈ Pneigh, rank(ri, q) ≥
rank(rk, q); and (4) no ri ∈ R ∪ Pneigh is omitted or tam-
pered with. While (4) can be verified by restoring the digests
of all objects in R ∪ Pneigh, (1)(2)(3) can be verified in the
same manner by the PPB method or PLB method (if the
DO has pre-signed the lines to be compared). In particular,
(1) is equivalent to verifying ∀ri ∈ VN (r1), rank(ri, q) ≥
rank(r1, q). Therefore, the VO includes: (1) the digest or
digest components of each ri ∈ VN (r1) to privately compare
with rank(r1, q); (2) the digest or digest components of each
ri ∈ R to privately compare with rank(rk, q); (3) the digest
or digest components of each ri ∈ Pneigh to privately com-
pare with rank(rk, q); (4) the signed digests for all objects
in R ∪ Pneigh; and (5) the digest components necessary for
the client to compute the digests of objects in R ∪ Pneigh.

Figure 8 illustrates the same top-3 example as in the
MR-tree based scheme. In this figure, p1, p2, · · · are data
objects, the top-3 result R = {p1, p3, p4} and Pneigh =
{p2, p5, p8, p9}. Figure 9(a) shows the VO, which includes:
• the digest components of each ri ∈ VN (r1) to privately

compare with rank(r1, q), including: E() values for
objects p2, p3, p4, p5, p8, p9;

• the digest components of each ri ∈ R to privately com-
pare with rank(rk, q), including: E() values of objects
p1, p3, p4 (some in duplicate);
• the digest components of each ri ∈ Pneigh to privately

compare with rank(rk, q), including: E() values for
objects p2, p5, p8;
• the signed digests of all objects in R∪Pneigh, including

signatures for p1, p2, p3, p4, p5, p8, p9;
• the digest components necessary for the client to com-

pute the digests of objects in R∪Pneigh, including: the
digest components h2, h5, h6, h7, h8, h9, h10, h11.

As with the MR-tree based scheme, the Power Diagram
based scheme can be accelerated using the PLB method.
Figure 9(b) illustrates the VO when SL(p3, p4) and SL(p4, p5)
are pre-signed. Since these pairs of objects are pre-compared,
ranking comparisons on them no longer go through the PPB
method. As such, in the figure the SP returns light-grey
parts instead of dark-grey parts for p3 and p5. That is, in-
stead of E() values of p3 and p5, the SP only returns digest
components o′1, o′2, g(bA1c) and the corresponding signa-
tures.

6. SECURITY ANALYSIS
In this section, we analyze how the proposed PPB/PLB

methods and the authentication schemes achieve our secu-
rity model. Since the completeness and soundness of the
result, which is the second objective in this model, has been
solved by the authentication schemes, this section focuses
on the first objective, i.e., the semantic security of object
location and score information. We will prove this for sin-
gle/snapshot top-k queries based on Definition 3.1, and then
elaborate the security model for continuous top-k queries.

6.1 Security of PPB and PLB methods

Theorem 6.1. PPB satisfies semantic security of object
location and score information in the presence of an eaves-
dropper.

Proof Sketch. In PPB, the adversary (eavesdropper)
receives E(δi ·Bi) of all i’s. According to Diffie-Hellman as-
sumption, it is hard to distinguish δi from a random group
member in [0, B − 1]. On the other hand, δi · Bi is pro-
tected by the Paillier encryption E, which is semantic secure
against chosen-plaintext attacks [20].

Theorem 6.2. PLB satisfies semantic security of object
location and score information in the presence of an eaves-
dropper (adversary).

Proof Sketch. In PLB, the adversary receives: (1) g(A1)
and g(A3), and (2) o′1 and o′2. (1) is created by the one-way
function g, and thus the adversary cannot distinguish A1 or
A3 from a random A ∈ Zn. On the other hand, given any
random o′1, there exists o′2 that satisfies A1 +A2 = A3, and
vice versa. As such, the adversary cannot distinguish o′1 or
o′2 from any other random point.

6.2 MR-tree Based Authentication Scheme
To prove an authentication scheme (especially its VO)

achieves semantic security of object location and score in-
formation, we adopt security proof by simulation [6]. By
“simulating the view” of the client, we prove that if the
client has a-priori knowledge of object u of score b being at
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position a with probability P (u = a, ω = b), after receiv-
ing the VO, its posterior probability P (u = a, ω = b | V O)
remains the same. For ease of presentation, we adopt the
PPB method when private ranking comparisons are used.

According to Section 5.1.4, depending on whether u is a
result, the information disclosed by the VO to the client
is in one of three cases: (1) if u = rk, i.e., u is the top-
kth object, then the client knows rank(u, q) ≤ rank(A, q),
where A is any MBB in the heap Hrm; (2) if u ∈ R and
u 6= rk, then the client knows rank(u, q) ≤ rank(rk, q); (3)
if u 6∈ R, then the client knows rank(u, q) ≥ rank(rk, q).
In the following lemmas, we show all these cases have the
posterior probability equal to the a-priori probability.

Lemma 6.3. Let u = rk, ∀A ∈ Hrm, P (u = a, ω = b) =
P (u = a, ω = b | rank(u, q) ≤ rank(A, q)).

Proof.

P (u = a, ω = b | rank(u, q) ≤ rank(A, q))

=
P (rank(u, q) ≤ rank(A, q) | u = a, ω = b) · P (u = a, ω = b)

P (rank(u, q) ≤ rank(A, q))

=
P (rank(u, q) ≤ rank(A, q)

∧
u = a

∧
ω = b)

P (rank(u, q) ≤ rank(A, q))

= P (u = a, ω = b)

The first equality is due to Bayes’ Theorem and the third
equality is due to the fact that rank(u, q) ≤ rank(A, q) is
independent of u = a and ω = b as the rank value of A
is unknown to the client. In fact, knowing rank(u, q) ≤
rank(A, q) does not limit the placement and score of u.

Similarly, we can obtain the following lemmas:

Lemma 6.4. Let u ∈ R and u 6= rk, P (u = a, ω = b) =
P (u = a, ω = b | rank(u, q) ≤ rank(rk, q)).

Lemma 6.5. Let u 6∈ R, P (u = a, ω = b) = P (u = a, ω =
b | rank(u, q) ≥ rank(rk, q)).

Based on these lemmas, we present the following theorem
on the security of the scheme.

Theorem 6.6. The MR-tree based scheme does not leak
the location or score of any object u to the client, given any
VO.

Proof. Equivalently, we show there is a polynomial-time
simulator SIM that can simulate the view of the client with-
out knowing the data of SP. Specifically, it reproduces the
VO of the client with the same probability distribution as if
it were sent from the real SP.

According to Lemmas 6.3, 6.4 and 6.5, without changing
the distribution P (u = a, ω = b), SIM is allowed to know
(1) if A ⊆ Q and (2) if A

⋂
Q 6= ∅, for any MBB A. As such,

SIM can reproduce the VO from the heap Hrm according
to Section 5.1.4 as follows. For leaf entry u (whether u ∈ R
or 6∈ R), SIM adds to the VO u’s digest components for
the private ranking comparisons on objects; if u ∈ R, SIM
further adds its digest component for id authentication; else
for MBB A, SIM adds to the VO the digest components for
the private ranking comparisons on an MBB and an object.
This VO has the same probability distribution as generated
by the real SP. Also SIM runs in polynomial time.

6.3 Power Diagram based Scheme
According to Section 5.2.3, the information disclosed by

the VO to the client is in one of three cases: (1) if u = rk,
then the client knows ∀ri ∈ Pneigh, rank(ri, q) ≥ rank(rk, q);
(2) if u ∈ R and u 6= rk, then the client knows rank(u, q) ≤
rank(rk, q); (3) if u 6∈ R, then the client knows rank(u, q) ≥
rank(rk, q) and u ∈ Pneigh, that is, u is a Voronoi neighbor
of some ri. While the first two cases are the same as in
the MR-tree based scheme, we show in the following lemma
that the third case also has the posterior probability equal
to the a-priori probability.

Lemma 6.7. Let u 6∈ R, P (u = a, ω = b) = P (u = a, ω =
b | rank(u, q) ≥ rank(rk, q)

∧
u ∈ VN (ri)).

Proof. Proof is similar to that of Lemma 6.3, and more
details are given in the full technical report [2].

Now we reach the following theorem on the security of Power
Diagram based scheme.

Theorem 6.8. The Power Diagram based scheme does
not leak the location or score of any object u to the client,
given any VO.

Proof. Proof follows that of Theorem 6.6.

6.4 Security Model for Continuous Top-k Queries
So far we have shown that our authentication scheme is

semantic secure against a single top-k query, which offers
sound privacy protection for snapshot queries. Neverthe-
less, when the client issues queries continuously, the moving
query point causes the change of query results (i.e., the rel-
ative rank values), which are known to the client. As such,
the client may gradually learn an object is more probable to
be in one location than in another, which undermines the
semantic security of object location and score information.
To remedy this, we propose the following security model for
continuous top-k queries, by restraining the scope of seman-
tic security.

Definition 6.9. Continuous Semantic Security with
γ Radius. Given a continuous set of queries Q = {〈qi, ki〉 |
i = 1, 2, · · · }, an authentication scheme is semantic secure
against the probabilistic polynomial-time client, if the lat-
ter cannot distinguish an object p from a pseudo object in a
sphere with a radius of γ.

This sphere is thus called “privacy sphere”. Initially, each
object is assigned with a large enough privacy sphere that at
least covers one other object beyond distance γ. To achieve
continuous semantic security, the server monitors and main-
tains the current privacy sphere of each object. Upon receiv-
ing a new query, it checks whether this incoming query will
cause some spheres to shrink, as the client gets to know the
rank comparison results between each object and rk w.r.t the
new query point. If the radius of some privacy sphere drops
below threshold γ, the server will reject this query. Figure 10
illustrates this procedure for a top-3 query q, where for sim-
plicity we assume the non-spatial score ω = 0 and thus each
object has a privacy circle (instead of a sphere) before and
after accepting q, shown by dashed and solid circles, respec-
tively. The new privacy circle of a result object (except rk),
e.g., p2, is the inscribed circle of its old circle and Cint(q),
the interior of all query results (i.e., the circumscribed circle
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Figure 10: Privacy Circles before and after Query q

of rk’s (p3’s) circle centered at q, inside which any object
must be a result). On the other hand, the new privacy cir-
cle of a non-result object, e.g., p4, is the inscribed circle of
its old circle that circumscribes Cext(q), the exterior of all
query results (i.e, the inscribed circle of rk’s circle centered
at q, outside which any object cannot be a result).

7. OFFLINE AND ONLINE STRATEGY ON
PRE-SIGNED LINES

As shown in Sections 5.1.5 and 5.2.3, pre-signed lines can
accelerate the authentication on both MR-tree and Power
Diagram based schemes. Ideally the authentication cost is
minimum if all pairs of MBB corner points (for the MR-tree)
or data points (for the Power Diagram) are pre-signed and
thus the costly PPB method can be replaced by the PLB
method in all comparisons. However, this requires a pro-
hibitively huge amount of DO computation time and storage
cost at the SP. In this section, we assume that the DO has
a limited budget of pre-signing a number of pairs of objects.
The problem is two-fold: (1) to decide offline which objects
to be pre-signed by the DO; and (2) to decide online for the
SP which pre-signed lines to choose for the construction of
VO, so that the number of PPB calls is minimum.

7.1 DO Offline Strategy on Pre-signed Lines
Without a-priori knowledge of the queries, the DO should

pre-sign those pairs with the highest probabilities of com-
parisons. In the Power Diagram based scheme, a private
ranking comparison is between two objects close in the di-
agram. As such, the DO’s strategy can be as follows. For
every object pi, the DO first signs it with all its Voronoi
neighbors. If budget allowed, the DO continues to sign all
2-hop, 3-hop, · · · neighbors in the Power Diagram.

In the MR-tree based scheme, a private ranking compari-
son is often between the top-kth object rk and an MBB M .
To improve the utility of pre-signed pairs, we choose points
from close-by MBB pairs to pre-sign, in the hope that if for
two MBBsM1,M2, the pre-signed pairs proveDist(M2, q) ≥
Dist(M1, q), then proving Dist(M1, q) ≥ Dist(rk, q) will
also prove Dist(M2, q) ≥ Dist(rk, q). To this end, each
MBB chooses four sibling MBBs in the same R-tree node
which are the closest to each of its corner points, and signs
these corner pairs. If budget allowed, the DO continues to
sign every corner point with the second, third closest corner
points, and so on. We call them 2-hop, 3-hop points for
consistency with the Power Diagram based scheme.

7.2 SP Online Strategy on Pre-signed Lines
Figure 11(a) illustrates some pre-signed lines (plotted by

dashed lines) in the top-3 query running example, where
the results R = {p1, p3, p4}. When constructing the VO
for a specific query, the SP should form the two ranking
comparison chains for the objects in R and D − R, respec-
tively, with the maximum use of the above pre-signed lines.

Pre-signed Line

p6p4

p5
p3

p2
p1

p9

p11p10

p8
p7

q

(a) Pre-signed Lines

p4

p1p3

p4

p1

p3

opt opt

p4

p8
p9

p5 p2 p10 p6
p7
p11

p4

p5
p8

p9
p11

p10
p6

p2

Basic Strategy

Opt. Strategy

p7

(b) Comparison Chains and
Spanning Trees

Figure 11: Online Strategy on Pre-signed Lines. (a) the pre-
signed lines in the top-3 query running example. (b) the spanning
trees and comparison chains for both strategies.

We show two strategies for the SP in Figure 11(b), where
the creation of the comparison chain follows the creation of
a spanning tree. The basic one applies the PLB method
(shown in dashed arrowed lines) only if a pre-signed line
with the top-kth object (i.e., p4) exists, and applies the PPB
method otherwise (shown in solid arrowed lines). Using this
strategy, only 2 pre-signed lines are used. By contrast, an
optimized strategy uses 8 pre-signed lines. The idea is to re-
place the comparison on the top-kth object with some other
pivot objects which are pre-signed.9 Starting from the top-
kth object (i.e., p4), the SP visits the objects in D − R in
ascending order of rank values. When pj is visited, the SP
checks whether some pi in the existing tree has a pre-signed
line with pj . If such pi (e.g., p8) exists, the SP spans pj
(e.g., p9) from pi and uses this pre-signed line; otherwise,
the SP spans pj (e.g., p2) from the root and uses the PPB
method. A similar spanning tree (and thus the comparison
chain) is created for the objects in R.

8. PERFORMANCE EVALUATION
In this section, we evaluate the performance of the MR-

tree (MR) and Power Diagram (PD) based privacy-preserving
authentication schemes on location-based top-k queries. We
also implement EMR, an enhanced MR scheme with an
embedded kd-tree in each internal MR-tree node [15]. The
experiments use the Gowalla dataset in Stanford Large Net-
work Dataset Collection, which records 6, 442, 890 user check-
ins at 1, 280, 969 unique locations. These locations serve as
the objects in the experiments and their non-spatial scores
are the deviations of their check-in counts from the maxi-
mum count of all objects, designating the unpopularity or
“distance penalty” as in [14]. To balance the distance and
non-spatial score in the ranking function, we normalize the
latter so that its average score (ω) equals the average Eu-
clidean distance between neighboring objects, which is ap-
proximately 5,000 m. All location coordinates and scores
are rounded to their closest integers. We simulate a moving
client using the random waypoint mobility model [8], with
an average speed of 10 m/s. The client issues a top-k query
every 10 seconds, with k randomly selected from 1 to 128.
We adopt the continuous semantic security model and test
with a variety of radius γ of the privacy sphere. Table 1
shows the query acceptance rates after the system becomes

9This also changes the relative rank value to be disclosed,
from rk to the pivot objects.
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γ (m) 500 1000 2000 5000
Acceptance Rate 100% 98.7% 71.0% 38.0%

Table 1: Query Acceptance Rate v.s. Privacy Sphere Radius γ
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Figure 12: Basic Query Authentication Performance

stable (after 1,000 queries). We observe that γ does not sig-
nificantly affect the acceptance rate until it approaches 5,000
m (when an average privacy sphere contains neighboring ob-
jects). This verifies the effectiveness of the proposed security
model for continuous top-k queries. We use γ = 1,000 m in
the subsequent experiments.

For performance evaluation, the client side is set up on
a laptop computer, with entry-level Intel Core i3 processor
and 4GB RAM, running Windows XP x64 SP3. The SP is
set up on a HP Proliant DL360 G7, with Dual 6-Core In-
tel Xeon X5650 2.66GHz CPU and 32GB RAM, running
GNU/Linux. The code is written in Java and executed
in 64-bit OpenJDK 1.6. The hash function used in digest
computation is 160-bit SHA-1; the homomorphic encryption
function is 1024-bit Paillier; and the signature function is
2048-bit condensed RSA. We use the same optimized digest
function g() as in [21] with the base of canonical represen-
tation set to 16. The performance metrics are: the SP CPU
time (for query processing and VO construction), the client
CPU time (for verification), the communication overhead
(in terms of the size of VO), and the overall query response
time (as the total CPU time plus the communication time
over a typical 3G network at 2Mbps download rate).

8.1 Basic Query Authentication Performance
In this subsection, we evaluate the authentication per-

formance of the three schemes without DO pre-signing any
lines. In other words, the results here apply the PPB method
only. We vary k from 1 to 128 and plot the performance in
Figure 12. We observe that EMR consistently outperforms
MR, thanks to its small fanout during VO construction and
verification. The performance gap further enlarges as k in-
creases. On the other hand, although EMR is comparable
to PD, the latter outperforms EMR in small and medium-
sized queries (k ≤ 32). This can be explained by the fact
that MR-tree clusters objects effectively and its efficiency
is better exploited when querying for more results. We also
evaluate the overhead of confidential top-k authentication by
showing the multiples of each cost against non-confidential
authentication in Table 2 for the EMR and PD schemes.

Server CPU Client CPU VO Size Server Memory
k EMR PD EMR PD EMR PD EMR PD
1 44.4 1928 7.20 320 33.2 37.4 5.12 1.26
64 39.5 890.3 14.3 97.6 63.1 59.5 4.99 1.22
128 38.3 754.6 16.7 82.1 67.7 63.0 4.93 1.18

Table 2: Cost Increase as Multiples of Non-Confidential Authen-
tication (base)
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Figure 13: Performance with Pre-signed Lines (k = 1 or 128)

8.2 Performance with Pre-signed Line Opti-
mization

EMR PD
CPU Time (mins)

0-hop 23.6 25.3
1-hop 50.5 38.0
2-hop 108.8 69.0

Pre-signed Storage
(GB)

0-hop 6.7 6.8
1-hop 13.2 9.8
2-hop 28.6 17.4

Table 3: Construction Cost
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Figure 14: Impact of Scores

In this subsection, we evaluate the performance of DO and
SP’s optimization strategies on PLB method (Section 7).
We focus only on the EMR and PD schemes because they are
more comparable while the MR scheme has heavy overhead
in all metrics. In the experiment, we vary the number of
pre-signed lines, by letting the DO sign 0-hop (i.e., the basic
PPB method), 1-hop, and 2-hop, respectively. The results
are shown in Figure 13. We observe that by introducing
the PLB method, both of the schemes have reduced cost
in terms of all performance metrics. It is also noteworthy
that PD is most sensitive to pre-signed lines, which gains
significant performance boost by introducing 1-hop PLB.

While it is clear that the more lines the DO pre-signs, the
more efficient the authentication will be, the pre-signing cost
can be prohibitively high when the hops increase. For ex-
ample, pre-signing 2-hop for EMR takes about 2 hours and
requires more than 25GB storage at the SP. Table 3 sum-
marizes the construction time and storage cost for different
schemes and pre-sign settings. Based on these results, we
can find a balanced scheme between the pre-sign cost and
query response time for different k settings as follows. When
k is as large as 128 or even larger, EMR with 0-hop and
1-hop are the best schemes for no pre-signing and with pre-
signing budget, respectively. When k is small or medium
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sized, PD with 0-hop and 1-hop are the best schemes for no
pre-signing and with pre-signing budget, respectively.

8.3 Impact of Non-spatial Scores
In this subsection, we evaluate the impact of non-spatial

scores on the overall query response time in Figure 14. We
vary the average score ω, from 1,000 m to 25,000 m. It is
observed that as the non-spatial score has a higher weight
in the ranking function, the response time of EMR becomes
poorer due to a less effective clustering of objects in a 3D
MR-tree with both spatial and non-spatial attributes. Nonethe-
less, the performance of PD remains good and robust for
various score weights, as the construction of PD is less vul-
nerable to them. This shows that PD is a suitable scheme
for location-based top-k queries where location is not always
the dominating factor in the ranking function.

9. CONCLUSIONS
In this paper, we studied the problem of privacy-preserving

authentication for top-k queries in LBSs. By designing cryp-
tographic building blocks of private ranking-value compar-
isons, we have presented two authentication schemes based
on multi-dimensional R-tree and Power Diagram indexes.
The performance and security of our proposed schemes have
been verified and analyzed under various system settings.

As for future work, we plan to extend the proposed au-
thentication schemes to a general framework for the queries
based on private value comparisons. This covers classic
queries such as skylines and distance joins. Furthermore, as
location-based services usually adopt distance metrics other
than Euclidean distance, a more general version of private
value comparisons in metric space is yet to be designed.
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