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ABSTRACT

Event Log Exchange (ELE) is a common programming pattern
based on immutable state and messaging. ELE sidesteps traditional
challenges in distributed consistency, at the expense of introducing
new challenges in designing space reclamation protocols to avoid
consuming unbounded storage.

We introduce Edelweiss, a sublanguage of Bloom that provides an
ELE programming model, yet automatically reclaims space without
programmer assistance. We describe techniques to analyze Edel-
weiss programs and automatically generate application-specific dis-
tributed space reclamation logic. We show how Edelweiss can be
used to elegantly implement a variety of communication and dis-
tributed storage protocols; the storage reclamation code generated
by Edelweiss effectively garbage-collects state and often matches
hand-written protocols from the literature.

1. INTRODUCTION

“Blossom of snow may you bloom and grow,
bloom and grow forever.”
—Oscar Hammerstein, “Edelweiss”

Distributed and parallel systems are increasingly commonplace,
but writing reliable programs for these environments remains stub-
bornly difficult. Both developers and academics have identified
shared mutable state as a common source of problems: code that
mutates shared state is hard to reason about and often requires expen-
sive, fine-grained synchronization and careful coordination between
processes to achieve consistent state and correct behavior.

To avoid these problems, both practitioners and academics have
proposed writing systems by using immutable state whenever possi-
ble [16, 20, 29]. Rather than directly modifying shared state, pro-
cesses instead accumulate and exchange immutable logs of messages
or events, a model we call Event Log Exchange (ELE). Previously
learned information is never replaced or deleted, but can simply
be masked by recording new facts that indicate that the previous
information is no longer useful.
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By using event logs, ELE designs achieve a variety of familiar
benefits from database research. For example, rather than determin-
ing a conservative order for modifications to shared state, ELE can
allow operations to be applied in different orders at different replicas
and reconciled later, reducing the need for coordination and increas-
ing concurrency and availability. ELE allows simple mechanisms for
fault tolerance and recovery via log replay, and provides a natural
basis for system debugging and failure analysis.

ELE is an attractive approach to simplifying distributed program-
ming, but it introduces its own complexities. If each process accumu-
lates knowledge over time, the required storage will grow without
bound. To avoid this, ELE designs typically include a background
“garbage collection” or “checkpointing” protocol that reclaims in-
formation that is no longer useful. This pattern of logging and back-
ground reclamation is widespread in the distributed storage and data
management literature, having been applied to many core techniques
including reliable broadcast and update propagation [13, 14, 19, 22,
28, 34, 38, 45], group communication [17], key-value storage [3, 15,
45], distributed file systems [18, 26, 35], causal consistency [7, 23,
27], quorum consensus [21], transaction management [2, 11], and
multi-version concurrency control [36, 39, 44].

Despite the similarity of these example systems, each design typi-
cally includes a storage reclamation scheme that has been developed
from scratch and implemented by hand. Such schemes can be sub-
tle and hard to get right: reclaiming garbage too eagerly is unsafe
(because live data is incorrectly discarded), whereas an overly con-
servative scheme can result in hard-to-find resource leaks. Moreover,
the conditions under which stored values can be reclaimed depends
on program semantics; hence, a hand-crafted garbage collection pro-
cedure must be updated as the program is evolved, making software
maintenance more difficult.

It would seem that ELE simply trades the difficulties of consis-
tency for a different set of difficulties in space reclamation. In this
paper, we make ELE significantly more attractive by removing the
burden of space reclamation from the programmer. We present a
collection of program analyses that allow background storage recla-
mation to be automatically generated from program source code.

We introduce Edelweiss, a sublanguage of Bloom [4, 10] that
omits primitives for mutating or deleting data. Instead, Edelweiss
programs describe how local knowledge contributes to the dis-
tributed computation. The system computes the complementary
garbage collection logic: that is, it automatically and safely discards
data that will never be useful in the future.

We validate our work by demonstrating a wide variety of commu-
nication and storage protocols implemented as Edelweiss programs
with efficient, automatically generated reclamation. Our demon-
strations in the paper include reliable unicast, reliable broadcast, a
replicated key-value store, causal consistency, and atomic read/write



Name Behavior

table Persistent storage.

scratch Transient storage.

channel Asynchronous communication. A fact inserted

into a channel is delivered to a remote Bloom
node at a non-deterministic future time.

Table 2: Bloom collection types.

registers. The garbage collection schemes generated by Edelweiss
are often similar to hand-written schemes proposed in the litera-
ture for each design. Moreover, removing the need for hand-crafted
garbage collection schemes simplifies program design—the result-
ing programs are more declarative, and the programmer can focus
on solving their domain problem rather than worrying about storage.

2. BLOOM AND EDELWEISS

We begin by reviewing Bloom, a declarative language for dis-
tributed programming [4, 10]. We then present Edelweiss, a sublan-
guage of Bloom that disallows data mutation and deletion.

A Bloom cluster consists of a set of nodes. Each node has col-
lections and rules. The collections define node state; nodes perform
computation and communication by evaluating the rules over their
local collections. There is no shared state; rather, nodes commu-
nicate via message passing. Each node executes a simple event
handling loop: first, it accepts inbound messages and adds them to
its local collections. Then the program’s rules are evaluated over
those collections. This produces new values; some of those values
denote outbound messages (as described below), which are sent.
Finally, the node returns to listening for new inbound messages. An
iteration of this loop is called a timestep. We assume every node has
the same set of collections and rules.

The initial implementation of Bloom, called Bud, allows Bloom
logic to be embedded inside Ruby programs. Hence, Bloom col-
lections and rules are defined inside a stylized Ruby class. At each
node, a small amount of Ruby code is used to instantiate the Bloom
program and cause it to begin executing; more details are available
on the Bloom website [10].

2.1 Data Model

A collection is a set of facts (tuples), akin to a relation in Datalog.
Each collection has a schema, which defines the structure of the
facts in the collection. The schema declares a set of column names;
a subset of those columns forms the collection’s key. As in the
relational model, the keys functionally determine the rest of the
columns. That is, at any given node, a collection will not contain two
different facts with the same values for their key columns. In line 6
of Figure 1, id is the key column, which functionally determines
addr and val. The schema method (line 7) allows the schema of
one collection to be reused for another, reducing redundancy.

Bloom provides several collection types with different semantics
(Table 2). A table is a persistent collection: once a fact appears in a
table, it remains until it is explicitly deleted. A scratch collection
is akin to a view in SQL: semantically, scratches are recomputed at
the start of every timestep.1 Hence, a fact remains in a scratch only
as long as it can be derived from the persistent collections. Lastly,
channel collections allow asynchronous communication. When a
fact is inserted into a channel, the fact is delivered to a remote node
at a non-deterministic future time. The network address to which the

I'The runtime may choose to materialize scratch collections to avoid
the cost of repeated recomputation.
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Op Name Meaning

<= merge lhs includes the content of rhs in
the current timestep.

<+ deferred merge lhs will include the content of rhs
in the next timestep.

<-  deferred delete  lhs will not include the content of
rhs in the next timestep.

<~ async merge (Remote) lhs will include the con-

tent of rhs at a non-deterministic
future timestep.

Table 3: Bloom temporal operators.

fact is sent is given by the channel’s location specifier column, which
is prefixed with “@” in the schema. For example, line 5 in Figure 1
means that each fact in chn will be sent to the network address given
by the fact’s second column (e.g., “example.org:1234”).

2.2 Rules

A rule has one or more input collections and a single output
collection; the rule defines how the input collections are transformed
before being included (via set union) in the output collection. A rule
has the form:

<collection-identifier> <op> <collection-expression>
The left-hand side (lhs) is the name of the output collection and
the right-hand side (rhs) is an expression that produces a collection.
The rhs expression can include the usual relational operators (e.g.,
selection, projection, join, grouping, and negation), although Bloom
adopts a syntax intended to be familiar to imperative programmers.

Bloom provides several operators that determine when the rhs
will be included in the lhs (Table 3). The <= operator performs
standard logical deduction: that is, the lhs and rhs are true at the
same timestep. The <+ and <- operators indicate that facts will be
added to or removed from the lhs collection at the beginning of the
next timestep. The <~ operator specifies that the rhs will be merged
into the lhs collection at some non-deterministic future time. The lhs
of a rule that uses <~ must be a channel. The <~ operator captures
unreliable, asynchronous communication: channel messages might
be delayed, reordered, or dropped.

2.2.1 Monotonicity and Persistence

An important property of a Bloom rule is whether it is monotonic:
as new facts are added to the rule’s input collections, does the output
collection strictly grow? As in Datalog, projection, selection, and
join are monotonic, while aggregation and negation are not. As
we will explain shortly, the behavior of negation is particularly
important in Edelweiss. Given X.notin(Y) (the set difference of X
with Y), observe that notin is monotone with respect to X but anti-
monotone with respect to Y: that is, when new Y tuples appear, the
output of the notin operator shrinks. We call X and Y the positive
and negative inputs to the notin, respectively.

A persistent collection strictly grows over time, including from
one timestep to the next. A table is persistent unless it appears
on the lhs of a deletion rule (<-). A scratch is persistent if it is
defined via monotone rules over persistent collections.

2.3 Edelweiss

Edelweiss is a sublanguage of Bloom that imposes the following
restrictions on programs:
1. Deletion rules cannot be used (<- operator).
2. Channel messages are stored persistently. That is, the lhs of a
rule that reads messages from a channel must be persistent.



Technique Goal Requirements Mechanism Description
Avoidance of Redundant Messages (ARM)  Avoid sending Receiver logic ignores duplicates ~ Add logic to send acks; §3.1

duplicate messages avoid sending ack’ed mes-

sages

Positive Difference Reclamation (DR+) Reclaim storage for X X, Y are persistent; logic down- Reclaim from X upon match ~ §3.2

in X.notin(Y) stream of X is reclaim-safe inY
Negative Difference Reclamation (DR—)  Reclaim storage for X X, Y are persistent; logic down- Create range collection for ~ §5.2

and YinX.notin(Y) stream of X and Y are reclaim-safe; X’s keys; reclaim from X

notin quals cover X’s keys and Y upon match

Range Compression Efficient storage of Column values contain one or range collection type §3.3,84.1.2

gap-free sequences

more gap-free sequences; no non-

key columns

Punctuations [43] Bounded storage for

join input collections

Join appears as input to notin;
punctuation matches join predicate

sealed collection type, §4.1.3,§4.2,§6.2
supplied by user, or inferred

from rule semantics

Table 1: Summary of mechanisms and analysis techniques in this paper.

3. Channels are derived from persistent collections. That is, if a
channel appears on the lhs of a rule, the rule’s rhs must consist
of monotone operators over persistent collections.

These conditions ensure that nodes accumulate knowledge over time.
Furthermore, once a node decides to send message m to node n, it
never “retracts” that decision. Finally, once a node n has received
message m, n remembers that message in every subsequent timestep.

These restrictions are natural when building ELE systems that ac-
cumulate and exchange immutable values. Nevertheless, Edelweiss
would seem to preclude efficient evaluation because nodes only accu-
mulate facts over time. In the remainder of this paper, we introduce a
collection of mechanisms (Table 1) that enable Edelweiss programs
to be automatically and safely rewritten into equivalent Bloom pro-
grams that use storage efficiently. An open source implementation of
Edelweiss, as well as the generated code for all example programs,
can be found at http://boom.cs.berkeley.edu/vldb14.

3. RELIABLE UNICAST

As described in Section 2, channels provide asynchronous mes-
saging. Although asynchronous communication matches the capa-
bilities of the physical network, many applications find it convenient
to use reliable unicast, in which a sender repeatedly transmits a
message until it has been acknowledged by the recipient.

Figure 1 shows a naive reliable unicast program. Each message
contains a unique ID, destination address, and payload. The sbuf
collection is the sender-side buffer; communication is expressed by
copying sbuf into the chn channel (line 11); the recipient persists
delivered messages in rbuf (line 12). Note that because sbuf is
persistent (as declared on line 6), Bloom’s semantics [5] dictate that
a new chn message will be sent for every timestep at the sender.

Although it is concise and declarative, the naive reliable unicast
program has two obvious shortcomings. First, an unbounded number
of chn messages are derived. Although inefficient, this is not in-
correct: Bloom collections have set semantics and the receiver-side
logic is idempotent, which means that delivering the same message
more than once has no effect. Second, the sender-side buffer sbuf
grows without bound. This is unnecessary in practice: once a mes-
sage has been successfully delivered to the recipient, it need not be
retained by the sender.

We could address both problems by making the program more
complex—for example, by arranging for receivers to emit acks and
for senders to delete acknowledged messages. However, these modi-
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1 | class Unicast

2 include Bud

4 state do

5 channel :chn, [:id] => [:@addr, :val]
6 table :sbuf, [:id] => [:addr, :val]
7 table :rbuf, sbuf.schema

8 end

10 bloom do

11 chn <~ sbuf

12 rbuf <= chn

13 end

14 | end

Figure 1: Naive reliable unicast in Edelweiss.

fications would not change the user-visible behavior of the program!
Acks and storage reclamation are not necessary for correctness—
rather, they are only needed to help ensure that resources are used
efficiently. We would like the best of both worlds: a concise, declar-
ative program that has an efficient implementation. In the remainder
of this section, we introduce a series of techniques that achieve this
goal by allowing acks and storage reclamation to be introduced
by safe, automatic program transformations from Edelweiss to an
equivalent Bloom program.

3.1 Avoidance of Redundant Messages (ARM)

We begin by detailing ARM, an automatic program rewrite that
avoids redundant communication between nodes. This requires iden-
tifying when delivering a message multiple times is redundant, and
then rewriting the program to avoid duplicate transmissions.

In Edelweiss, detecting when duplicate channel deliveries are
redundant is simple: the restrictions in Section 2.3 imply that once
any message has been delivered, the receiver will persist it and
subsequent attempts to send that message can safely be suppressed.
Therefore, we can rewrite every Edelweiss rule that inserts messages
into a channel to avoid inserting duplicates. For the program in
Figure 1, avoiding duplicates would be easy if the sender could
directly access the receiver’s buffer:

chn <~ sbuf.notin(rbuf)

This approach is not possible because Edelweiss nodes can only
communicate via message passing. However, a simple variant is
possible: receivers can inform senders about messages that have
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1 | class UnicastAckRewrite

2 include Bud

4 state do

5 channel :chn, [:id] => [:@addr, :val]

6 table :sbuf, chn.schema

7 table :rbuf, chn.schema

8 table :chn_approx, [:id]

9 channel :chn_ack, [:@sender, :id]

10 end

12 bloom do

13 chn <~ sbuf.notin(chn_approx, :id => :id)
14 rbuf <= chn

15 chn_ack <~ chn {/c| [c.source_addr, c.id]}
16 chn_approx <= chn_ack.payloads

17 end

18 | end

Figure 2: Unicast with acks; ARM-generated code is italicized.

been successfully delivered. Because such communication is asyn-
chronous, the sender will only have a lower bound on the receiver’s
state—but since the receiver ignores duplicate messages anyway,
this does not harm correctness.

There are many ways in which senders can learn a conservative
estimate of the receiver’s state, such as cumulative, timer-based acks
(as in TCP) or “piggybacking” acks onto normal message traffic.
For programs involving multiple senders and receivers, even more
strategies are possible, such as epidemic gossip [13] or tree-based
multicast. Any of these schemes could be used by ARM, since they
all accomplish the same purpose of allowing senders to lower-bound
the receiver’s state. For unicast delivery, a simple scheme suffices: a
receiver sends an ack whenever they receive a message.

The result of applying ARM to the naive unicast program is shown
in Figure 2. ARM automatically introduces a new channel (line 9),
which is used to send acks upon successful receipt of a chn message
(line 15). Senders persist acks (line 16). Finally, ARM rewrites
the rule that sends chn messages to avoid sending acknowledged
messages (line 13). Note that ARM automatically infers that acks
only need to contain message IDs (line 15), not the entire message.
This is possible because id is the key of chn (line 5), which means
that a given ID is associated with exactly one message.

3.2 Positive Difference Reclamation (DR+)

The ARM rewrite allows the simple unicast program in Figure 1 to
avoid sending an unbounded number of messages, but the rewritten
program in Figure 2 still does not reclaim acknowledged messages
from sbuf. In fact, the program’s storage consumption has grown
because the sender also persists the chn_approx collection. In this
section, we introduce DR+, a program rewrite that automatically
and safely reclaims storage, and show how it can be applied to sbuf;
we address chn_approx in the following section.

DR+ exploits the semantics of set difference, which is expressed
in Bloom using the notin operator. Consider X.notin(Y), where
X and Y are persistent. Recall that X and Y are the “positive” and
“negative” inputs to the notin, respectively: as new tuples arrive
in Y, any matching tuples in X will no longer appear in the output
of the notin. Moreover, because Y is persistent, any X tuple that
has a match in Y will never appear in the output of the notin again.
For the purposes of this rule, X tuples with matches in Y will never
contribute to program outcomes and no longer need to be stored.

To reclaim from X, Edelweiss needs to prove that doing so will not
change the output of any other rule that references X. In many cases,
this is easy to do: for example, if X appears on the rhs of a projection
or selection rule with a persistent collection on its lhs, we can
reclaim from X (intuitively, the rule makes a persistent “copy” of the
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X tuple). When X appears in more than one set difference rule, we can
reclaim X tuples when the conjunction of the reclamation conditions
of the rules are satisfied; we give an example in Section 5.1. Finally,
reclaiming from collections that appear in joins is more complicated;
we discuss this scenario in Section 6.2.

Returning to the reliable unicast example, we observe that sbuf is
only referenced by a single rule, where it is used as the positive input
to a notin operator (line 13 in Figure 2). Because chn_approx
is persistent, DR+ will reclaim sbuf tuples that have matches in
chn_approx. This is done by adding this rule to the program:

sbuf <- (sbuf * chn_approx).lefts(:id => :id)
The rhs computes the equijoin of sbuf and chn_approx on id
and returns the left join input (tuples from sbuf); the <- operator
removes the resulting sbuf tuples. This rule corresponds to our in-
tuition that once the recipient has acknowledged successful delivery
of a message, the message can safely be discarded by the sender.
Note that ARM and DR+ are independent program rewrites, but
they work together profitably: ARM introduces set difference opera-
tions and DR+ exploits the semantics of set difference to safely and
automatically reclaim storage.

3.3 Range Compression

Lastly, we need to address the storage used by the chn_approx
collection. Unfortunately, DR+ is not useful because chn_approx
does not appear as the positive input to a notin operator. Moreover,
reclaiming tuples from chn_approx is problematic in principle: if
we deleted such tuples, we would have no information at the sender
to prevent redelivering acknowledged sbuf messages in the future.

Rather than reclaiming from chn_approx, can we instead repre-
sent the entire collection using a small amount of storage? Fortu-
nately, this is feasible: recall that chn_approx only contains a single
column, the message ID. Since IDs are assigned by a single sender,
the sender can choose IDs from a gap-free, totally ordered sequence
such as the natural numbers starting at some constant k. Because we
expect all messages to eventually be delivered, chn_approx will
eventually contain all the IDs from k to n. Hence, our task is much
easier: we need to represent {k,...,n}, which we can do by storing
the smallest and largest elements of the set.

However, some elements of the set {k,...,n} might be missing
from chn_approx at any given time. Hence, rather than a single
pair [k,n], we use a set of pairs {[ko,k1],...,[km,k,]}; each pair
efficiently represents a gap-free range of numbers, while missing
IDs are represented by gaps between the “high” element of one
pair and the “low” element of the next. This data structure is a 1-
dimensional range tree [8]; we call the compression technique it
allows range compression.

Range compression can be viewed as a generalization of the “low
water mark” used by reliable delivery schemes such as TCP, in which
senders assign sequence numbers to packets and receivers send acks
to indicate the prefix of the sequence they have received. Rather
than requiring programmers to manipulate sequence numbers and
use integer inequality, range compression achieves a similar degree
of efficiency while allowing the program to deal with an unordered
set of events. This has two benefits: first, range compression auto-
matically handles situations in which IDs are omitted or delivered
out-of-order, without requiring the programmer to explicitly track a
“low water mark.” Second, set-oriented programs are convenient to
develop, particularly in set-oriented languages such as Bloom.

In the current Edelweiss prototype, developers explicitly enable
range compression by using a new collection type, range. For
example, “range :chn_approx, [:id]” would replace line 8 in
Figure 2. In addition, the Edelweiss runtime automatically applies



1 | class Broadcast

2 include Bud

4 state do

5 sealed :node, [:addr]

6 table :log, [:id] => [:val]

7 channel :chn, [:@addr, :id] => [:vall]
8 end

10 bloom do

11 chn <~ (node * log).pairs {|n,1| n + 1}
12 log <= chn.payloads

13 end

14 |end

Figure 3: Reliable broadcast to a fixed set of nodes.

range compression to outbound channel messages when profitable—
this allows a single acknowledgment to describe the successful
delivery of many chn messages. It would be possible to apply range
compression to all collections by default, but we haven’t found the
need to implement this yet.

4. RELIABLE BROADCAST

In the previous section, we showed how a declarative Edelweiss
program for reliable unicast can be implemented efficiently. In the
following sections, we show how the same techniques can be applied
to a series of more complicated Edelweiss programs. We begin
by generalizing reliable unicast to reliable broadcast and then in
Section 5 we use reliable broadcast to build a replicated key-value
store. In Section 6, we then extend the key-value store to provide
causal consistency guarantees. Finally, Section 7 discusses how
to implement atomic read/write registers. Importantly, all of these
programs can be written in Edelweiss and implemented efficiently
via extended versions of the techniques introduced in Section 3.

4.1 Fixed Membership

Figure 3 shows a naive reliable broadcast program. Any node can
send a message by inserting into the 1og collection. The messages
in the log are sent to every node in the group (line 11).2 When a
node receives a message, it adds the message to its log (line 12); that
node will re-broadcast the message in the future. Each message has
a unique ID. To assign unique IDs without global coordination, a
common technique is to use (nodeid, seqnum) pairs, where seqnum
is a node-local sequence number.> We assume the broadcast group
contains a fixed set of nodes; we relax this assumption in Section 4.2.

The program in Figure 3 is simple—indeed, it closely resembles
the pseudocode for the textbook reliable broadcast algorithm [32]—
but as with naive reliable unicast (Figure 1), it suffers from un-
bounded messaging and storage.

4.1.1 Bounded Messaging

As with reliable unicast (Section 3.1), the ARM rewrite automati-
cally avoids unbounded messaging by inserting an acknowledgment
protocol. We omit the rewritten program for space reasons, but the
same acking scheme can be used. To avoid sending acknowledged
messages, line 11 is rewritten to:

chn <~ (node * log).pairs {|n,1| n + 1}
.notin(chn_approx, 0 => :addr, 1 = :id)

2Note that + concatenates tuples. Broadcast is expressed as Cartesian
product—i.e., a join between node and 1og with no join predicate.
3We implemented (nodeid, seqnum) pairs as a single 64-bit integer
consisting of a 32-bit node ID prepended to a 32-bit sequence num-
ber. This is compatible with range compression, since multiple IDs
generated by the same node will form a gap-free sequence.
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The notin predicate checks for an equality match between the first
two columns of the join result against the addr and id fields of
chn_approx. Note that unlike with reliable unicast, acks include
node addresses as well as message IDs. This is necessary because
a message might be delivered successfully to some nodes but not
others; moreover, ARM deduces this automatically because the key
of chn contains both fields (line 7).

4.1.2  Acknowledgments and Logical Clocks

After applying ARM, each node persists two collections that grow
over time: log, the set of messages, and chn_approx, which holds
each node’s knowledge about the messages that have been received
by the other nodes. The storage required for chn_approx can be
reduced via range compression, as described in Section 3.3. Re-
call that for reliable unicast, chn_approx will eventually be range-
compressed to a single value, effectively yielding a logical clock.
With broadcast, chn_approx will contain a single “clock™ value
for each node in the broadcast group and hence behaves similarly
to a vector clock [30]. That is, the combination of ARM and range
compression essentially “discovers” the relationship between event
histories [40] and logical clocks! Edelweiss allows programmers to
simply manipulate sets of immutable events; it then automatically
produces the corresponding “clock’” management code.

4.1.3 Punctuations

To reclaim messages from 1log, we can use the DR+ rewrite in-
troduced in Section 3.2. However, reclaiming broadcast messages is
more complicated than reclaiming unicast messages—intuitively, a
unicast message can be reclaimed as soon as it has been successfully
delivered to the recipient, whereas a broadcast message can only
be reclaimed once it has been delivered to every node in the group.
This difference is manifest in the program:

chn <~ (node * log).pairs {|n,1| n + 1}
.notin(chn_approx, 0 => :addr, 1 = :id)

As chn_approx grows, it matches tuples in the output of the join
between node and log; our goal is to use tuples in chn_approx to
reclaim from the join’s input collections. To do so, Edelweiss must
reason about how the join’s inputs can grow over time. For example,
to reclaim a tuple ¢ from log, Edelweiss must ensure that all future
join outputs that depend on ¢ have already been produced and that
all such output tuples have a match in chn_approx.

This can be done by adapting the concept of punctuations, which
were first introduced for processing queries over unbounded data
streams [43]. A punctuation is a guarantee that no more tuples match-
ing a predicate will appear in a collection. For now, we consider a
simple class of punctuations: the assertion that no more tuples will
ever appear in a collection. Given (X * Y).notin(Z), suppose we
want to reclaim a tuple y € Y. A punctuation asserting that no more
X tuples will arrive implies that we know about all the X tuples that
will ever match y. Hence, once we have seen a match in Z for all
the current join results that depend on y, y can safely be reclaimed.
Of course, the symmetry of the join operator means that a similar
argument allows reclamation from X given a punctuation on Y.

Returning to reliable broadcast, Edelweiss can reclaim tuples from
log given a punctuation that no new node tuples will appear. At the
beginning of this section, we assumed that the broadcast group is
fixed—hence, the necessary punctuation can safely be produced. As
a syntactic convenience, Edelweiss defines a new collection type
called sealed to hold a collection whose contents are fixed after
the system has been initialized. Declaring that node is sealed (line 5
in Figure 3) allows the Edelweiss runtime to automatically emit
a punctuation for the collection. We omit the complete compiler
output for space reasons but give the main idea: punctuations are



represented by tuples in “seal tables” that are defined automatically
by Edelweiss. The rules generated by DR+ join against the seal
table for node and thereby wait for a punctuation on node before
reclaiming any tuples from log. Hence, by exploiting the fact that
node is sealed, DR+ confirms our intuition that messages can safely
be reclaimed once they have been successfully delivered to all nodes.

4.2 Dynamic Membership

Assuming a fixed broadcast group simplifies deciding when a log
entry can be reclaimed. If we relax this assumption (by declaring
that node is a table in line 5 of Figure 3), DR+ can no longer
reclaim tuples from log. Indeed, reclaiming from log would be
unsafe: if a new tuple appeared in node, the join between node and
log (line 11) implies that all 1og messages should be delivered to
the newly joined node. Hence, reclaiming from 1og would change
user-visible program behavior.

To allow both dynamic membership and safe reclamation from
the log table, we need to change the program to identify situations
in which log messages should not be delivered to new nodes; such
messages can then be reclaimed. We can achieve this using epochs:
each epoch has a fixed set of members and each message identifies
the epoch to which it belongs. To change the membership of the
broadcast group, the system moves to a new epoch with a different
set of members. Hence, once the membership of an epoch has been
fixed and a message has been delivered to all the members of that
epoch, that message can safely be reclaimed.

Figure 4 contains an Edelweiss program implementing this design.
Note that this program is nearly identical to reliable broadcast with
fixed membership, except that the Cartesian product between node
and log (line 11 in Figure 3) has been replaced with an equijoin
on epoch (line 11 in Figure 4). DR+ automatically exploits the
equijoin predicate to enable reclamation using finer-grained punc-
tuations: given (X * Y).pairs(:kl => :k2).notin(Z) and a
punctuation that asserts that no more Y tuples will arrive with k2 = c,
all X tuples with k1 = ¢ are now eligible for reclamation. In general,
DR+ can exploit punctuations that match the join predicate; since a
Cartesian product is essentially a join with no predicate, DR+ can
only use whole-relation punctuations for such operators.

Applying DR+ to the epoch-based broadcast program produces
the expected results: given a punctuation asserting that no more
node facts will be observed for epoch £, the rules produced by DR+
automatically reclaim any message in epoch k that has been deliv-
ered to all the members of that epoch. The procedure for deciding
to move to a new epoch is orthogonal to this program; a common
approach is to use a separate (and more expensive) protocol based on
distributed consensus [9, 33]. After a new epoch has been decided
on, the consensus mechanism would then broadcast a corresponding
punctuation, allowing Edelweiss to reclaim messages.

DR+ also allows reclamation from node using punctuations on
log: if we can guarantee that no more log facts will arrive for
a given epoch, then once every log fact in that epoch has been
delivered to some node n, n can be reclaimed from node. This
follows from the symmetry of the join predicate on line 11.

5. KEY-VALUE STORE

In this section, we use reliable broadcast to build a replicated key-
value store (KVS). We show that Edelweiss automatically produces
a safe, effective storage reclamation scheme for this program.

Using reliable broadcast to build a KVS is a well-known tech-
nique [15, 22, 45]. The store contains a set of keys and associated
values. Clients submit insert and delete operations; replicas apply
these operations to maintain their local view. Each insert operation
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1 | class BroadcastEpoch

2 include Bud

4 state do

5 table :node, [:addr, :epoch]

6 table :log, [:id] => [:epoch, :val]

7 channel :chn, [:@addr, :id] => [:epoch, :val]
8 end

10 bloom do

11 chn <~ (node * log).pairs(:epoch => :epoch) {|n,1| [n.addr] + 1}
12 log <= chn.payloads

13 end

14 | end

Figure 4: Reliable broadcast with epoch-based membership.

1 | class KvsReplica
include Bud

[¥]

4 state do

5 sealed :node, [:addr]

6 channel :ins_chn, [:@addr, :id] => [:key, :val]
7 channel :del_chn, [:@addr, :id] => [:del_id]

8 table :ins_log, [:id] => [:key, :val]

9 table :del_log, [:id] => [:del_id]

10 scratch :view, ins_log.schema

11 end

13 bloom do

14 ins_chn <~ (node * ins_log).pairs {|n,1| n + 1}
15 del_chn <~ (node * del_log).pairs {|n,1| n + 1}
16 ins_log <= ins_chn.payloads

17 del_log <= del_chn.payloads

18 view <= ins_log.notin(del_log, :id => :del_id)
19 end

20 | end

Figure 5: Key-value store based on reliable broadcast.

has a unique ID and a delete operation contains the ID of its corre-
sponding insertion. Following prior work [45], we allow multiple
insertions of the same key with different IDs; all such key-value
pairs are included in the view. Hence, if a key appears multiple times,
a given deletion applies to only one of the IDs associated with that
key. The KVS is fully replicated. Building this design using reliable
broadcast is straightforward: a log of insert and delete operations is
broadcast to all nodes, and the set of live keys at any given replica
consists of every insertion that has no matching deletion. Figure 5
contains a simple Edelweiss program that implements this scheme.

A natural question is how to bound the storage required for op-
eration logs. In prior work [15, 19, 28, 45], researchers proposed
hand-crafted protocols that allow safe reclamation by tracking each
node’s knowledge of the state of the other nodes. We show how a
similar scheme can safely and automatically be produced by Edel-
weiss from the simple, declarative program in Figure 5.

5.1 Reclaiming Insertions

Because insert and delete operations are used differently, we need
to employ two different reclamation strategies. Inserts are used in
two places: the broadcast rule (line 14) and the rule to compute the
current view (line 18). Applying ARM to the broadcast rule, we get:

ins_chn <~ (node * ins_log).pairs {|n,1| n + 1}
.notin(ins_chn_approx, 0=>:addr, 1=>:id)

Observe that ins_log only appears as the positive input to two
notin operators, which makes it a candidate for the DR+ rewrite.
As discussed in Section 3.2, we can reclaim from a collection
when the absence of a tuple from the collection would not change
user-visible program behavior. In this case, an ins_log tuple can
be discarded when it has a match in both ins_chn_approx and



del_log—since both of those collections are persistent, we know
that such an ins_log tuple will never contribute to the results of
either notin ever again. Hence, Edelweiss will safely and automat-
ically reclaim an insertion once (a) it has been delivered to every
node, and (b) it has been deleted.

5.2 Reclaiming Deletions

DR+ cannot reclaim tuples from del_log because it appears as
the negative input to a notin operator (line 18). We encountered a
similar situation with the chn_approx collection in reliable unicast
(Section 3.3). In that case, range compression was used to store
chn_approx efficiently, because chn_approx will eventually con-
tain the complete set of message IDs and senders can choose IDs
from a gap-free, ordered sequence. Unfortunately, the set of deleted
IDs is likely to contain many gaps, rendering range compression
ineffective. Hence, a new program transformation is needed to re-
claim from del_log. We first consider the conditions that must be
satisfied to allow deletions to be reclaimed, and then generalize this
reasoning into an automatic program rewrite.

In the program in Figure 5, Edelweiss can determine that each
deletion matches at most one insert operation; this is implied because
the notin matches ins_log.id with del_log.del_id (line 18)
and id is a key of ins_log (line 8). Hence, once a del_log entry d
has been matched to an insertion i, we know that no other insertion
will ever match d. Hence, we might be tempted to conclude that
both d and i can be discarded, but that would be mistaken: if another
copy of i appears in ins_log (e.g., because the network delivers a
duplicate message), d will have been reclaimed from del_log and
hence i will incorrectly be included in the replica’s view.

Thus, when a replica observes an insertion i that matches a dele-
tion d, both i and d can be reclaimed if we can guarantee that i
will never appear in ins_log again. Fortunately, this can be done
relatively cheaply: id is a key of ins_log and we have already
explained how range compression can be used to represent the set
of all message IDs efficiently (Section 3.3). Edelweiss exploits this
fact to store the set of all insertion IDs witnessed by a replica sepa-
rately, and then only add new insertions to ins_log if the insert’s
ID has not been observed before. In effect, Edelweiss automatically
rewrites the program to split ins_log into two pieces: the set of
insert IDs, which is range-compressed, and the rest of the data as-
sociated with each insertion, which is reclaimed when a matching
deletion is observed.

Edelweiss extends these ideas into an automatic program rewrite
called Negative Difference Reclamation (DR—). The rewrite can
be applied to expressions of the form X.notin(Y, :A => :B),
where X and Y are persistent and A is a key of X. The program is
rewritten as follows:

1. A new range collection is added, X_keys; this stores all the
key values that have ever been observed for X.
2. A rule is added to update X_keys as new tuples appear in X.
3. Every rule that adds new tuples to X is rewritten to include a
negation against X_keys; that is, prospective X tuples whose
keys are found in X_keys are ignored.
4. Rules are added to reclaim matching tuples from X and Y.
Note that we do not reclaim from X_keys.
DR+ and DR- are complementary, in that DR+ is effective when
the negative input to the notin can be range compressed, whereas
DR- requires that the keys of the positive input be suitable for
range compression. As a heuristic, we use the collection type of the
negative notin input to decide whether to apply DR+ or DR— (that
is, DR~ is not applied if the inner input is a range collection).
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6. CAUSAL CONSISTENCY

The key-value store presented in Section 5 ensures replica con-
vergence but does not provide any guarantees about the consistency
of the view presented by a replica at any time. Many consistency
guarantees have been proposed; recently, several researchers have
argued that causal consistency is a good fit for scalable distributed
storage [6, 7, 23, 27, 34]. In this section, we use Edelweiss to imple-
ment a causally consistent KVS and show how the metadata required
for causal consistency is automatically and safely reclaimed.

6.1 Background

A causally consistent system respects the causal relationships
between operations. Causality is represented as a partial order over
operations: a “happens before” b (written a ~» b) if operation a
could have “caused” or influenced operation b [24]. For example, if
a client reads a version of key x that was produced by write w and
then submits write wy to key y, wy ~» w). In a causally consistent
system, a replica’s view will only include w) if it also includes wy.

A common approach to implementing causal consistency is to
annotate each operation with the operations upon which it depends
(e.g., wy depends on wy in the example above). Before a write can
be applied to a replica’s view, the replica must first have applied all
of the write’s dependencies; similarly, a replica can only respond
to a read operation when the replica’s view reflects all of the read’s
dependencies. In some systems, dependencies between operations
are tracked automatically (e.g., by a client-side library) [27], whereas
in other designs, users specify dependencies explicitly [6, 23]. We
assume each operation is provided along with its dependencies,
which is compatible with either scheme.

An operation is safe at a replica if the replica contains all of the
operation’s (transitive) dependencies. A write operation w to key k
is dominated if there is a safe write operation w’ for key k such that
w~>w’. That is, w is dominated if there is another write w’ to the
same key that has w as a dependency, either directly or transitively.
Each replica’s view should reflect all the safe, undominated writes
it has observed. If there are two writes to the same key and neither
dominates the other, the writes are concurrent. Some systems handle
this situation by invoking a commutative merge function [27, 34].
We include both versions of the key in the view; a client can then
read both versions and resolve the conflict by issuing a new write
that dominates both previous versions of the key.

6.2 Write Operations

To extend the key-value store presented in Section 5 to support
causal consistency, we begin by considering how to support write
operations. As in the simple KVS, each replica broadcasts its log
of write operations to the other replicas. However, replicas may
need to buffer writes they receive until the dependencies of those
writes have been satisfied. Figure 6 shows an Edelweiss program
fragment that implements this scheme in lines 14-19. Each log entry
has a set of dependencies (represented as a nested array in the deps
column), and log entries are moved from log to safe when their
dependencies are met. The flat_map method (line 15) is used to
“unnest” the array in the deps column.

A replica’s view should contain all the safe, undominated writes
it has observed, so next we need to determine which writes in safe
have been dominated. Our initial implementation looked for paths in
the transitive closure of the dependency graph—that is, w dominates
w’ if w.key = w’.key and there is a “path” of transitive dependencies
from w that eventually reaches w’. While this design was correct,
it prevented dominated writes from being reclaimed by Edelweiss.
On closer examination, we realized that in this scheme, reclaiming
dominated writes is not permissible because a dominated write to



1 | state do

2 table :log, [:id] => [:key, :val, :deps]

3 table :safe, [:id] => [:key, :val]

4 table :dep, [:id, :target]

5 range :safe_keys, [:id]

6 table :safe_dep, [:target, :src_key]

7 table :dom, [:id]

8 scratch :pending, log.schema

9 scratch :missing_dep, dep.schema

10 scratch :view, safe.schema

11 | end

13 | bloom do

14 pending <= log.notin(safe_keys, :id => :id)

15 dep <= log.flat_map {|1| 1.deps.map {|d| [1.id, d]}}

16 missing_dep <= dep.notin(safe_keys, :target => :id)

17 safe <+ pending.notin(missing_dep, 0 => :id)

18 .map {|p| [p.id, p.key, p.vall}

19 safe_keys <= safe {|s| [s.id]}

21 safe_dep <= (dep * safe).pairs(:id => :id) {|d,s| [d.target, s.key]}
22 dom <+ (safe_dep * safe).lefts(:target => :id, :src_key => :key)
23 {|d| [d.target]}.notin(dom, ® => :id)
24 view <= safe.notin(dom, :id => :id)

25 | end

Figure 6: Causal consistency for write operations.

key k might be needed to compute the transitive dependencies of
another write k' on a different key. Hence, Edelweiss taught us
something surprising about our own program!

In recent work [27], Lloyd et al. avoid the need to retain the
complete dependency graph by requiring that a write to key k£ must
include a dependency on a previous write to k (if any exists). We
make the same assumption in Figure 6; hence, we can identify
dominated writes by looking for another write to the same key that
includes the dominated write as a direct dependency (lines 21-23).

Edelweiss generates an effective reclamation scheme for this
program. As expected, 1og entries are reclaimed once they have
been delivered to all replicas and their dependencies have been
met at the local replica. Tuples in dep can be reclaimed once their
associated log entry is safe. Interestingly, safe_dep and dom facts
can be reclaimed as soon as they are produced: while logically the
set of dominated writes grows over time, Edelweiss observes that a
dominated write is only needed to remove tuples from safe. Hence
dom and safe_dep facts can be immediately reclaimed.

Facts in safe can be reclaimed once they have been dominated.
Note that safe appears in two joins (lines 21 and 22); Edelweiss
must determine that reclaiming from safe will not change the
results of either join. In general, this might require punctuations on
the other join input, but Edelweiss supports several special cases that
avoid the need for user-supplied punctuations for this program. On
line 21, dep is produced by a flat_map operation involving the key
of 1og; hence, Edelweiss can infer punctuations on the first column
of dep. This matches our intuition that no new dependencies will
be observed for a given write. Similarly, the join on line 22 matches
the key column of safe with the key columns of safe_dep; hence,
once a safe tuple s has a match in safe_dep, Edelweiss knows
that no other join results will depend on s.

6.3 Read Operations

The KVS in Section 5 does not explicitly support read operations:
each replica uses the operation log to compute the view collection,
and clients read by (implicitly) examining the replica’s current view.
To implement causal consistency for reads, we first need to repre-
sent read operations explicitly. In Figure 7, a client initiates a read
request by sending a message over the req_chn channel; when the
read’s dependencies have been satisfied, the replica responds via the
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1 | state do

2 table :read_buf, [:id] => [:key, :deps, :src_addr]

3 scratch :read_pending, read_buf.schema

4 scratch :read_dep, [:id, :target]

5 scratch :missing_read_dep, read_dep.schema

6 scratch :safe_read, read_buf.schema

7 table :read_resp, resp_chn.schema

8 | end

10 |bloom do

11 read_buf <= req_chn {|r| [r.id, r.key, r.deps, r.source_addr]}
12 read_pending <= read_buf.notin(read_resp, :id => :id)

13 read_dep <= read_pending.flat_map {|r| r.deps.map {|d| [r.id, d]}}
14 missing_read_dep <= read_dep.notin(safe_keys, :target => :id)
15 safe_read <+ read_pending.notin(missing_read_dep, 0 => :id)

16 read_resp <= (safe_read * view).pairs(:key => :key) do |r,v|
17 [r.src_addr, r.id, r.key, v.val]

18 end

19 resp_chn <~ read_resp

20 | end

Figure 7: Causal consistency for read operations.

resp_chn channel. If a read request is unsafe (i.e., if it specifies
dependencies that are not satisfied by the local replica), the replica
buffers the request until its dependencies have been met.

Edelweiss provides several features that simplify this program.
First, ARM prevents unbounded resp_chn messages by insert-
ing client-side acknowledgment logic (we omit the client code
for brevity). Second, DR+ reclaims read_buf messages when the
read’s dependencies have been satisfied. Finally, DR— reclaims
read_resp tuples when the client’s acknowledgment is received.
Perhaps more importantly, Edelweiss automatically handles the in-
teractions between the reclamation conditions of all these rules and
the safety and dominance rules in Figure 6, allowing the developer
to focus on implementing correct application-level behavior.

7. READ/WRITE REGISTERS

In this section, we use Edelweiss to implement atomic readjwrite
registers [25], a common building block for distributed algorithms.
An atomic register allows a single writer to interact with multiple
concurrent reader processes and guarantees that the values returned
by reads are consistent with a serial ordering of operations. Reading
an atomic register reflects the latest value written (in contrast to the
KVS presented in Section 5, in which each insertion for a given key
adds to its list of values).

While traditional designs utilize mutable storage, we show how
a mutable register interface can be implemented via an Edelweiss
program that accumulates an immutable event log. We then extend
the program to support atomic writes to multiple registers and multi-
register reads that reflect a consistent snapshot. For all of these
programs, Edelweiss enables automatic and safe garbage collection,
generating space-efficient implementations that are semantically
equivalent to the original programs.

7.1 Single-register Writes

Figure 8 contains an implementation of atomic registers in Edel-
weiss. As in the KVS program (Section 5), the current register values
are computed as a view over an append-only event log.

The collection write_log records the history of writes to a set of
registers. The atomic register model assumes a single writer per reg-
ister [25], so each entry in write_log for a particular register has
exactly one predecessor—the previously written value—which it su-
persedes. The dom table contains those write IDs that are dominated
by a “more recent” entry in write_log (line 17)—i.e., those IDs
that are the predecessor (or prev_wid) of another record. Line 18
defines the view live as the subset of records in write_log that



1 | class AtomicRegister
2 include Bud
4 state do
5 table :write, [:wid] => [:name, :val]
6 table :write_log, [:wid] => [:name, :val, :prev_wid]
7 table :dom, [:wid]
8 scratch :write_event, write.schema
9 scratch :live, write_log.schema
10 end
12 bloom do
13 write_event <= write.notin(write_log, :wid => :wid)
14 write_log <+ (write_event * live).outer(:name => :name) do |e,l|
15 e + [l.wid.nil? ? @ : l.wid]
16 end
17 dom <= write_log {|1| [1.prev_wid]l}
18 live <= write_log.notin(dom, :wid => :wid)
19 end
20 | end
Figure 8: Atomic read/write registers.
1 | class AtomicBatchiirites
2 include Bud
4 state do
5 table :write, [:wid] => [:batch, :name, :val]
6 table :write_log, [:wid] => [:batch, :name, :val, :prev_wid]
7 table :commit, [:batch]
8 table :dom, [:wid]
9 scratch :live, write_log.schema
10 scratch :commit_event, write.schema
11 end
13 bloom do
14 commit_event <= (write * commit).lefts(:batch => :batch)
15 .notin(write_log, ® => :wid)
16 write_log <+ (commit_event * live).outer(:name => :name) do |e,l|
17 e + [l.wid.nil? ? 0 : 1l.wid]
18 end
19 dom <= write_log {|1| [1.prev_wid]}
20 live <= write_log.notin(dom, :wid => :wid)
21 end
22 | end

Figure 9: Atomic registers supporting multi-register writes.

are not dominated by a more recent record. The single writer as-
sumption implies that 1ive contains exactly one record at any time
for a given register.

To write to a register, a client inserts into the write collection.
If the write has not yet been applied to the write log, this gener-
ates a write_event (line 13). We then insert a new record into
write_log containing the new value along with the ID of the previ-
ous write to that register, or 0 if this is the first write (lines 14-16).

The program has three persistent collections: write, write_log,
and dom. Edelweiss uses DR+ to reclaim records from write as
soon as they are reflected in write_log. DR- can be used to re-
claim from both write_log and dom. As discussed in Section 5.2,
DR- exploits the fact that the notin predicate on line 18 only uses
the key column of write_log. Hence, Edelweiss knows that once
awrite_log entry has been dominated, both the write_log and
dom facts can be reclaimed—as long as we can prevent any duplicate
write_log tuples from appearing. To enable this, Edelweiss auto-
matically creates a range collection that stores all the write IDs ever
observed—fortunately, this set can be effectively range compressed.

7.2 Multi-register Writes

Next, we show how to support atomic updates to multiple keys
(Figure 9). That is, we allow writes to be supplied for multiple keys
and then eventually committed, at which point all the associated
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1 | class AtomicReads

2 include Bud

4 state do

5 table :read, [:batch]

6 range :read_commit, [:batch]

7 table :snapshot,

8 [:effective, :wid, :batch, :name, :val, :prev_wid]

9 range :snapshot_exists, [:batch]

10 scratch :read_begin, read.schema

11 scratch :read_view, snapshot.schema

12 end

14 bloom do

15 snapshot_exists <= snapshot {|r| [r.effective]}

16 read_begin <= read.notin(snapshot_exists, :batch => :batch)
17 snapshot <+ (read_begin * live).pairs {|r,1| r + 1}

18 read_view <= snapshot.notin(read_commit, :effective => :batch)
19 end

20 | end

Figure 10: Atomic registers supporting snapshot reads.

writes are applied atomically.

Clients insert values into write as before, but these values are
not applied to write_log until a commit record exists for their
batch (lines 14-15). As in the atomic register program, we assume
that at most one value for every register exists in commit_event at
any time. For each such register, a fact is inserted into write_log
reflecting the last effective write for that register (1ive.wid) as its
prev_wid (lines 16-18).

Edelweiss utilizes the DR+ rewrite and client-supplied punc-
tuations to synthesize garbage collection logic for this program.
Lines 14-15 join write with commit, but the lefts operator pre-
serves only records from write into the notin operator. Hence,
DR+ recognizes that it can “push up” the notin operator into the
join and reclaim redundant records from write as soon as they are
reflected in write_log. In order to reclaim records from commit,
however, we need to rule out the possibility of a write record ap-
pearing after its corresponding commit record has been deleted. If
the client seals write.batch as part of batch commit—a promise
to produce no future writes within that batch—DR+ uses this addi-
tional information to generate rules that safely reclaim from commit.

7.3 Snapshot Reads

Ensuring that all writes within a batch become visible atomically
is not sufficient to guarantee consistent reads of multiple registers.
Consider the following history in which batch 72 commits after 7'1:

Tl @ W
T2 : W(x

D
2)

1, Wy
2), Wy

Without any synchronization, a multi-register read (R1) could view
a state not produced by a serial ordering of write batches:

Rl: R(x = 1), R(y = 2)

We could rule out this anomaly by forcing multi-register reads to
participate in a concurrency control scheme with write batches and
commit according to a serializable ordering. In a workload in which
reads are common or long-running, however, such a scheme can
have undesirable effects, interfering with write batches by causing
them to wait or abort. An alternative approach is to use a multiver-
sioning scheme in which read batches do not interact with writes,
but nevertheless perceive a snapshot of the store consistent with a
serial ordering of writes [36, 39, 44]. This requirement implies that
it is not necessarily safe to reclaim entries in the log as soon as they
are dominated by a more recent write—these entries must persist
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Figure 11: Storage consumed by a causal KVS replica for dif-
ferent update percentages.

in some form until we are certain that no active multi-register reads
will reference them.

Figure 10 shows a simple extension of the implementation shown
in Figure 9 that supports snapshot reads. Clients initiate a read
transaction by inserting a unique batch identifier into read, and
retrieve register values for that batch via the view read_view. When
the read-only batch is complete, clients insert into read_commit.

To simplify the presentation, we provide an intuitive but ineffi-
cient snapshotting algorithm. When a read occurs for a batch for
which no corresponding snapshot exists (line 16), a copy of 1live
(the view containing the current value for each register) is copied
into snapshot (line 17). Subsequent reads within the batch are
then served from this snapshot, allowing concurrent writes to pro-
ceed without interference. At any time, the output view read_view
contains the active set of snapshots: those referenced by read-only
batches that have not yet committed.

Edelweiss needs to determine when facts from read and snapshot
can safely be reclaimed. In both cases, a straightforward application
of DR+ automatically generates deletion logic. Records in read can
be reclaimed as soon as their batch is reflected in the range relation
snapshot_exists. A record in snapshot is only necessary to de-
rive a record in read_view while its read batch is active; as soon as
its batch appears in read_commit, it too can be reclaimed.

8. EVALUATION

In this section, we evaluate two aspects of Edelweiss. First, we
verify that the storage reclamation logic produced by Edelweiss
works effectively. Second, we evaluate the quantitative and qualita-
tive benefits of programming in Edelweiss. We show that Edelweiss
enables significant reductions in code size and complexity.

8.1 Storage Reclamation

To validate that Edelweiss is effective at safely and automatically
reclaiming storage, we study how the causal KVS (Section 6) be-
haves in two scenarios. First, we show that Edelweiss automatically
discards dominated writes. Second, we report the behavior of the
causal KVS during a network partition, confirming the expected
behavior that partitions prevent storage from being reclaimed [27].

8.1.1 Dominated Writes

As discussed in Section 6, Edelweiss automatically infers that a
write operation in the causal KVS can be discarded when (a) the
write has been replicated to all nodes, and (b) the write has been
dominated by another write, because dominated writes no longer
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Figure 12: Storage consumed by a causal KVS replica. Network
partitions are simulated at 30 and 140 seconds.

contribute to the replica’s current view. To verify this behavior, we
created a single-site KVS and measured the storage requirements of
the system over time. We submitted write operations at a constant
rate (50 writes per second), but varied the percentage of writes
that updated a previously written key. As the fraction of updates
increases, the number of undominated writes in the replica’s view
decreases, and hence we expect the program to require less storage.

Figure 11 reports the results of this experiment for several update
percentages. As the fraction of updates in the workload increases,
more dominated writes are observed and hence Edelweiss automati-
cally reclaims more stored tuples.

8.1.2 Network Partitions

Next, we consider how the reclamation protocol generated by
Edelweiss behaves during network partitions. When the network
is partitioned, write operations cannot be replicated to all replicas;
hence, those operations must be retained until the partition heals,
temporarily increasing storage requirements.

To study this behavior, we created a simple causal KVS cluster
with two replicas, A and B. A single client continuously submits
writes to replica A. Every write is a dominating update, so when
the network is connected we expect the storage required at each
replica to remain constant over time. We then simulated two network
partitions by dropping all channel messages sent between A and B.

Figure 12 reports the storage required by replica A for this ex-
periment. The network is connected for the first 30 seconds of the
experiment; as expected, the replica’s storage requirements do not in-
crease. Starting at 30 seconds and continuing for the next 50 seconds,
we simulated a network partition. The reclamation logic generated
by Edelweiss does not allow write operations to be discarded until
they have been successfully replicated, and hence the number of
tuples retained by replica A grows.

After 80 seconds, the partition is healed. Replica A promptly
sends its backlog of write operations to B, and the ARM-generated
acknowledgment logic at B informs A that the writes have been
delivered successfully. Edelweiss can then safely discard those write
operations, leading to an immediate drop in storage. As the ex-
periment continues, a similar pattern of behavior can be observed:
storage remains stable as new writes arrive while the network is con-
nected, then grows during the partition that begins at 140 seconds,
and finally shrinks again once the partition is healed.

8.2 Program Size and Complexity

Next, we consider the code size and qualitative complexity for sev-
eral common distributed algorithms implemented using Edelweiss.



# of Rules

Description Input Rewritten
Reliable unicast (§3) 2 5
Reliable broadcast, fixed (§4.1) 2 8
Reliable broadcast, epoch-based (§4.2) 2 12
Causal broadcast (N/A) 6 14
Request-response pattern (N/A) 7 16
Key-value store (§5) 5 23
Key-value store with causal consistency (§6) 19 62
Atomic registers (§7.1) 4 11
Atomic registers, multi-key writes (§7.2) 4 17
Atomic registers, snapshot reads (§7.3) 8 23

Table 4: Code size comparison.

In Table 4, the “Input” column shows the number of rules in each
Edelweiss program, while the “Rewritten” column shows the num-
ber of rules in the corresponding Bloom program that is produced
automatically by the Edelweiss compiler. That is, the rewritten pro-
grams include mechanisms for knowledge propagation and storage
reclamation that are inferred automatically by Edelweiss. In some
cases, the rewritten programs contain a small number of redundant
rules that could be avoided by a careful Bloom developer. Simi-
larly, a developer might choose to ignore reclamation conditions
that are supported by our rewrites—for example, if punctuations for
a certain collection will never be supplied, reclamation rules that
depend on those punctuations can be omitted. Nevertheless, when
examining the rewritten programs by hand, we found they had a
similar structure to hand-crafted acknowledgment and reclamation
mechanisms we have written in the past.

All of the programs in Table 4 are concise, particularly in com-
parison to implementations using traditional imperative languages:
for example, a recent causally consistent key-value store prototype
required about 13,000 lines of C++ code [27]. Nevertheless, the
Edelweiss programs are smaller than their Bloom counterparts by a
factor of two or more. Perhaps more importantly, Edelweiss relieves
programmers of the need to reason about when storage can safely
be deallocated. Instead, the programmer specifies when informa-
tion remains useful to their application and Edelweiss produces a
reclamation scheme that is consistent with those requirements. For
example, in the KVS (Section 5), the Edelweiss program specifies
when (logically) deleted keys should be omitted from the view—the
programmer does not need to consider when the associated insert
and delete operations should be physically reclaimed.

This also means that if the program’s semantics do not allow
safe reclamation, the result is a storage leak rather than data loss.
We observed this first-hand: in the initial version of the key-value
store, we arranged for delete operations to specify a key to be
removed, rather than an insertion ID. As a result, Edelweiss was
unable to reclaim delete operations. While we were initially puzzled,
we eventually realized that reclaiming deletions in this program
would be unsafe in principle: the program allows multiple insertions
with the same key (and different IDs), so reclaiming deletions would
change the behavior of the program. As described in Section 6.2,
Edelweiss helped us identify a similar logic error in our initial
implementation of dominated writes in the causal KVS.

9. RELATED AND FUTURE WORK

Our work on Edelweiss is related to prior work by several research
communities. As noted in Section 1, the pattern of operation logging
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with periodic background reclamation appears frequently in dis-
tributed storage and data management. Proposed designs typically
differ along a few dimensions, such as how “common knowledge”
about the state of other nodes is represented, how this knowledge is
communicated (e.g., bundled with log messages [15, 45] or sent via
a separate mechanism [7, 28]), and the criteria for determining that
an operation is “stable” and can be discarded (e.g., some systems
use wall-clock time, waiting a period of time in which replica syn-
chronization is likely to have occurred [13]; in others, the system
explicitly tracks the logical clocks of all nodes, which requires all
nodes to be available to allow log entries to be reclaimed [45]).

Garbage collection has been extensively studied by the program-
ming language community for both single-site and distributed [1]
programs. Traditional garbage collection is applied to a reference
graph: subgraphs that are not reachable from one or more “root” ver-
tices can safely be reclaimed. This relies on the property that such
objects will never be reachable in the future, which is a special-case
of the kind of “henceforth no longer useful” properties exploited by
Edelweiss. It would be interesting to see how naturally Edelweiss
could be enhanced to synthesize traditional GC schemes.

This paper focuses on systems in which knowledge can eventually
be discarded; there is a related design pattern in which nodes accu-
mulate knowledge and then periodically summarize or reorganize it,
e.g., in the form of a “checkpoint.” Examples include write-ahead
logging in database systems [31], log-structured file systems [37],
and rollback-based recovery in distributed systems [42]. We are
working to extend our analysis to support checkpointing.

This paper also relates to efforts to provide principled foundations
for eventually consistent systems. In prior work, we proposed the
CALM Theorem, which shows that monotonic logic programs are
deterministic (“confluent”) and hence eventually consistent [4]. This
shares similarities to Edelweiss and the way in which the ELE model
sidesteps consistency concerns. However, most of the programs in
this paper use non-monotonic operators (particularly negation) and
are not confluent. We are currently exploring how to harmonize the
notion of CALM consistency with ELE and provide consistency
analysis for Edelweiss programs.

In this paper, we assume that nodes accumulate knowledge as a
set of facts that grows over time, but this can be generalized from
sets to join semilattices to represent other kinds of growth, e.g.,
integers that increase numerically or Boolean values that move from
false to true [12]. Lattices often require a form of periodic garbage
collection to restore efficiency [41]; extending Edelweiss to lattices
is a natural direction for future work.

Our development of reclamation techniques for Edelweiss has
been somewhat ad hoc and driven by the practical programs we have
studied. Given a program for which the current Edelweiss prototype
does not reclaim storage, it is often unclear whether the problem
lies in the program or in the Edelweiss implementation—that is,
could a more sophisticated analysis successfully reclaim storage
for the program or is the program “un-reclaimable” in principle?
Both theoretical and practical developments would be useful here.
First, we would like to formally characterize the class of Edelweiss
programs that can be evaluated with bounded storage. Second, we
could enhance Edelweiss to provide feedback to developers about
how program semantics influence storage requirements. For ex-
ample, Edelweiss could describe the circumstances under which a
given fact can be reclaimed, or generate an execution trace in which
prematurely reclaiming a fact leads to incorrect program behavior.

10. CONCLUSION

Edelweiss demonstrates for the first time that the benefits of the
ELE pattern for distributed programming do not require custom



state reclamation code. The fact that this result arose from a basis
in Bloom is not coincidental. Rewrites like Difference Reclamation
were inspired directly from the use of a declarative, set-oriented
language. Moreover, the clear data dependencies in a declarative
language made our analysis code easy to write. It is an open question
whether our techniques can be transferred to (immutable versions
of) more popular imperative languages, which could be quite useful
in practice. Meanwhile, it is our experience that distributed program-
ming design patterns like ELE are quite well-served by declarative
distributed languages, and we believe that the design and analysis
of such languages is a fruitful direction for further exploration.
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