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ABSTRACT
A data-dependent process (DDP) models an application who-
se control flow is guided by a finite state machine, as well
as by the state of an underlying database. DDPs are com-
monly found e.g., in e-commerce. In this paper we develop a
framework supporting the use of provenance in static (tem-
poral) analysis of possible DDP executions. Using prove-
nance support, analysts can interactively test and explore
the effect of hypothetical modifications to a DDP’s state
machine and/or to the underlying database. They can also
extend the analysis to incorporate the propagation of anno-
tations from meta-domains of interest, e.g., cost or access
privileges.

Toward this goal we note that the framework of semiring-
based provenance was proven highly effective in fulfilling
similar needs in the context of database queries. In this
paper we consider novel constructions that generalize the
semiring approach to the context of DDP analysis. These
constructions address two interacting new challenges: (1) to
combine provenance annotations for both information that
resides in the database and information about external in-
puts (e.g., user choices), and (2) to finitely capture infinite
process executions. We analyze our solution from theoretical
and experimental perspectives, proving its effectiveness.

1. INTRODUCTION
Complex software applications whose control flow is de-

pendent on an underlying database as well as on external
input are commonly found in a wide range of domains. For
example, E-commerce applications rely on a database for
management of products, orders etc., affecting the possible
execution of the application and thus its interaction with
potential users. We model such applications through data-
dependent processes (DDPs) which are finite state machines
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(FSM) whose transitions are guided by both external in-
put and by the result of internal database queries. Due to
the complexity and importance of such applications, it is a
common practice to perform an automatic (static) analysis
of properties related to anticipated application executions,
using formulas in temporal logic languages.

As a simple example, consider a typical E-commerce appli-
cation where users can navigate through a selection of prod-
ucts (classified through categories and sub-categories), and
proposed discount deals. The underlying process semantics
can be captured via an FSM whose states are associated
with web-pages and/or properties defined by the applica-
tions’ business logic. The transitions between states can be
governed both by user clicks or text input and by queries on
the product database. In assessing such an application an
analyst may be interested in questions such as “can a user
view a particular category without being a club member?”,
or “what is the minimum number of clicks allowing a user
to view the daily deals being offered?”.

To obtain a better understanding of the application, an
analyst may want to do more than pose static analysis ques-
tions with respect to its current specification. Indeed, she
may also want to test and explore the effect on analysis re-
sults of hypothetical scenarios. Such scenarios may involve
different modifications to the business logic (e.g., the appli-
cation’s link structure) or to the underlying product data.
In realistic cases, there may be many possible scenarios and
their combination that are of interest. An analyst would
like to interactively explore the different combinations, re-
fining them according to the analysis results (e.g., gradually
removing links and observing the effect). In the context of
SQL query answers it was shown in [12] that provenance an-
notations enable such interactive exploration under combi-
nations of hypothetical scenarios, a technique that we refer
to as provisioning. This technique changes the queries so
they compute an answer (a provisioned autonomous repre-
sentation) that incorporates compactly provenance annota-
tions corresponding to the hypothetical scenarios.

In addition, we consider analysis tasks that involve the
propagation of annotations from meta-domains such as cost
(e.g., number of clicks), trust (e.g., confidence scores), or
security (e.g., access control/clearance levels). Here we are
interested in starting with annotations that capture assump-
tions about the underlying database tuples or external in-
puts. We then propagate them to annotations of analysis
results. In other contexts (various query languages) it was
shown that it suffices to compute provenance and then eval-
uate it (specialize it) in specific meta-domains [23, 17, 4].
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Given these important applications, the goal of this paper
is to study provenance management for the analysis of data-
dependent processes. We start from the generic framework
of semiring-based provenance introduced in [23] and extend
it to DDPs and temporal logic analysis.

While analysis of Data-Centric Processes was studied in
e.g., [9, 14, 18], the focus on provenance and its appli-
cations (provisioned temporal analysis and specialization)
distinguish the present work from that research.

Several conceptual and technical challenges need to be
addressed in such a study. We review here these challenges
and our contributions in addressing them.

Process model and analysis formalism (Section 2). Our
first step is to define the DDP model. A DDP is spec-
ified by an FSM whose transitions are either guarded by
a yes/no query on a static underlying database, or oth-
erwise considered as non-deterministic. Intuitively, non-
deterministic transitions correspond to external effects such
as user choices, interacting applications, etc. For boolean
query guards we allow queries in positive relational algebra
with aggregates. For analysis we follow common practice
and use Linear Temporal Logic (LTL) [29]. An analysis task
may be represented by an LTL formula, which consists of
(1) “atomic” predicates that may be evaluated with respect
to process states (e.g. state names), (2) standard logical
connectives (and,or,not) and (3) “temporal operators” that
allow to express required relationships between truth val-
ues of predicates throughout an execution (e.g. a state S1

must appear before S2). We focus here on analysis of finite
possible DDP executions, following the perspective used in
workflow provenance; there may still be infinitely many such
executions if the process logic involves loops.

Provenance Model (Section 3). We further develop a
provenance model for the result of LTL formulas with re-
spect to a DDP. The development of the provenance model
must account in particular for the different kinds of transi-
tion choices (depending on queries on the data or on exter-
nal effects) and for the possibly infinitely many executions.
Thus, the semiring-based model [23] cannot be used as is,
and a novel construction is required. We start by allowing
the separate annotation of data tuples and external choices,
using two different semirings. This separation allows us e.g.
to simultaneously do provisioning for data tuples and prove-
nance specialization for external choices. For example “what
is the minimum number of clicks to view the daily deals, if
the database is modified in a particular way”.

Then, we propose a novel construction that allows cap-
turing pairs of provenance annotations. The paired compo-
nents correspond to external choices and to query answers
on the underlying database. A novel construction is needed
because completely separating the two kinds of provenance
is not a good idea. In semiring provenance alternatives are
modeled by addition and joint use is modeled by multiplica-
tion [23]. The semantics of DDPs involves alternative paths.
If we accumulate the database provenance separately from
the external effects provenance we lose track of when both
happen along the same path. Therefore instead of taking
the cartesian product of the two semirings, we need to fac-
tor by some algebraic congruences on pairs. We also need to
accommodate the tracking of provenance over possibly in-
finitely many different executions. To this end we construct

a tensor product of two semirings that manipulates infinite
bags of pairs before factoring through the desired algebraic
congruences. This allows us to support provenance for in-
finitely many paths, to greatly simplify the resulting expres-
sions and to use the provenance expression through semiring
homomorphisms (see [23]).

Finally, we show with examples that multiplication and
addition in the resulting structure can be interpreted as joint
and alternative use (resp.). This interpretation justifies our
definition of provenance for LTL formulas, namely, as the
(possibly infinite) sum over all the paths that realize the
formula; along each path we compute provenance as a mul-
tiplication of provenance of the individual transitions.

Provenance Computation and Usage (Section 4). Given
the DDP and provenance models we address the computa-
tion of provenance of an LTL formula with respect to a given
DDP. We show how to generate a (finitely described) expres-
sion in the tensor product structure that captures the prove-
nance. We further analyze the complexity of computing such
expressions as well as their possible sizes. Then we con-
sider the commutation with homomorphism property, which
was proven for various database query languages in [23, 17,
4]. The property is essential for the soundness of applying
provenance to provisioning and to specialization in meta-
domains of interest. This is because the provenance ex-
pressions can be built using indeterminate parameters (vari-
ables) as input annotations and then both hypothetical sce-
narios and meta-domain assumptions correspond to valua-
tions of these parameters in specific semirings. These valu-
ation determine homomorphisms through which the evalu-
ation of provenance expressions is done and the correctness
of our method relies on commutation with homomorphisms.
We prove this property indeed holds for our construction.

Prototype Implementation (Section 5). We have imple-
mented our model and algorithms in the context of a system
prototype called PROPOLIS (PROvisioned data-dependent
PrOcess anaLysIS) [13]. PROPOLIS allows analysts to de-
fine, in addition to an LTL formula, annotations (from e.g.
cost, trust, and access-control meta-domains) on the process
model. This captures hypothetical scenarios by parameter-
izing the process specification (its logical flow and/or its
underlying database) at points of interest. Then, PROPOLIS
computes (offline) provenance expression for the given LTL
formula with respect to the process specification. This ex-
pression is the compact result of evaluating the LTL for-
mula with respect to applying all possible combinations of
specified scenarios (parameter values) to the process speci-
fication. The provenance expression is passed to a module
which allows for rapid exploration of scenarios as well as
provenance specialization, using the provisioned expression
while avoiding further costly access to the database or costly
reevaluation of the LTL formula.

Experiments (Section 6). Finally, we have conducted an
experimental study designed to examine the performance of
the approach with respect to several measures. First, we
have measured provenance generation time and size of the
obtained expression, as a function of both the database size
and the size of the FSM capturing the specification logi-
cal flow. We have studied these for various DDPs, both
synthetic and based on real workflows. We show that the
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(offline) expression generation time scales well with growing
input size, and that the obtained expression size also grows
in a reasonably moderate way. We further demonstrate that,
once the expression is computed, using it for exploring sce-
nario combinations can be done very efficiently. We have
compared the time it takes to use the expression, with a sim-
ple baseline alternative approach. The alternative approach
applies the hypothetical scenarios directly to the process
specification and performs the analysis on the modified ap-
plication. We have observed that the provenance-based ap-
proach significantly outperforms this alternative approach.

We review related work in Section 7 and conclude with
directions for future work in Section 8.

2. DATA-DEPENDENT PROCESSES
AND THEIR ANALYSIS

We next define our model for data-dependent processes
(DDPs) and the temporal formalism used in its analysis.
Provenance will be introduced in Section 3.

2.1 Data-dependent Processes
We consider a simple model for DDP specifications. The

logical flow is specified by a state machine in which some
transitions are governed by queries in a class Q over an un-
derlying Database of schema D. We will later explain how
analysts are able to examine the effects of changes to the
specification or database. We focus on guarding queries in
the positive relational algebra with (possibly nested) aggre-
gates and use SQL syntax for them.

Definition 2.1. A Data-Dependent Process (DDP) spec-
ification is a tuple (V,E, Vq, Ve, vinit, Fq, D) such that (V,E)
is a directed graph referred to as the DDP state machine,
Vq, Ve ⊆ V are subsets of nodes referred to as query nodes
and external effect nodes respectively, such that Vq

⋂
Ve = ∅

and Vq

⋃
Ve = V . There is a distinguished “initial” node

vinit ∈ Vq

⋃
Ve. Every node vq ∈ Vq has exactly two out-

going edges, and the end nodes of these edges are denoted
true(vq) and false(vq). Fq : Vq 7→ Q maps query nodes to
queries deciding their transitioning. Finally, D is a database
over the schema D.

The DDP model is based on the abstract FSM flow model;
there are no restrictions on the nodes, or on the FSM topol-
ogy, which in particular may include cycles. The intuition is
that the DDP captures the logical application flow, as well
as its data-dependency.

Example 2.2. Consider the (partial) process logic in Fig-
ure 1. Each node intuitively stands for a web page, and
edges model links. The initial node is HomePage. Some
transitioning is based on the user decision, such as the one
from “Shopping Cart”, depending on the user navigation
choice (ignore for now the numbers annotating some tran-
sitions). Other transition choices depend on the underlying
database: for instance the transition from ”Cat.” (standing
for a page where the user chooses a category) to a “SubCat.”
page (where the user is presented a set of sub-categories) or
to a “Product” page (listing relevant products) depends on
availability of sub-categories, modeled as the truth value for
the boolean query “Q1 = 0” (checking for inexistence of a
sub-category of available categories). Q1 is given in Fig. 3,
with respect to the underlying database whose fragment is
given in Fig. 2 (ignore for now the Prov. column).

A valid execution of a DDP follows query results for tran-
sitioning out of query nodes, while performing arbitrary
choices for other nodes. We limit our attention to finite
executions. To simplify definitions, we also assume that an
execution terminates in a node from which there is no out-
going edge (Exit and PayExit in the running example).

Home
page

New
products

Cat.

Sub
Cat.

Product

Shopping
Cart

Daily
Deals

Payment

Exit

Pay
Exit

5

2

5

3

2

if Q1 = 0

if Q1 6= 0 2
2

3

2 2

2

if Q2 = 0

if Q2 6= 0

Figure 1: Data-Driven Process

Definition 2.3 (Executions). An execution of a
DDP (V,E, Vq, Ve, vinit, Fq, D) is a finite path [v1, v2, ..., vn]
in (V,E) s.t. v1 = vinit, vn has no outgoing edges, and for
every vi ∈ Vq, if the query Fq(vi) is satisfied by the database
D then vi+1 = true(vi) and otherwise vi+1 = false(vi).

AvailableCat

Cat. Prov.

· · · · · ·
Cell Phones d1
Computers d2
Fashion d3
· · · · · ·

PaySys

Cat. Prov.

· · · · · ·
PayPal d5
· · · · · ·

CategoryHierarchy

Cat SubCat. Prov.

· · · · · · · · ·
Cell Phones Smartphones d4
· · · · · · · · ·

Figure 2: Underlying Database

Example 2.4. Reconsider the DDP specification in Ex-
ample 2.2. Consider the path P = [Homepage, Cat, SubCat,
Exit], intuitively corresponding to a user making a choice of
a category, then of a sub-category, then exiting without com-
pleting a purchase. Cat. is the only query node (i.e. Cat.
∈ Vq) in this execution, associated with the query Q1 = 0.
Since the current state of D does not satisfy Q1 = 0, the
node that follows Cat must be SubCat, so P is an execution
but e.g. P ′ = [HomePage, Cat, Product, ...] is not.

Q1 :
SELECT COUNT(*)
FROM CategoryHierarcy CH,

AvailableCat AC
WHERE CH.Cat = AC.Cat

Q2 :

SELECT COUNT (*)
FROM PaySys PS

Figure 3: SQL Queries
Note that a DDP may admit infinitely many (finite) ex-

ecutions, if its FSM includes cycles. We next consider LTL
as a formalism that allows to specify properties of interest
with respect to such executions.

2.2 Analysis formalism
We revisit the syntax of LTL formulas [29], as well as their

semantics with respect to finite process executions [20] 1. We

1The semantics of LTL is more commonly defined with re-
spect to infinite executions; for provenance we are only in-
terested in finite prefixes, as is also the case in [20].
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follow common practice [20] of considering for finite runs
only the next-free fragment of LTL (we may also account
for the next operator with particular choice of semantics for
the last state). Formulas are built up from a finite set of
propositional variables P , the connectives ¬ and ∨, and the
modal operator U (until). I.e. if p ∈ P then p is an LTL
formula, and for every two LTL formulas f1,f2, it holds that
f1
∨
f2, ¬f1, and f1Uf2 are LTL formulas.

The semantics of LTL formulas defines their satisfaction
w.r.t. an execution with the assumption that each state can
be tested for satisfaction of a variable in P . In our examples
P corresponds to states names, and a state only satisfies the
variable corresponding to its name.

Definition 2.5. [20] Let φ be an LTL formula over a
set of propositional variables P . Let e = v0, v1, ..., vn be an
execution and for 0 ≤ i ≤ n let ei = vi, vi+1, ...vn. We say
that e |= φ if

• φ is a propositional variable p and v0 satisfies p.

• φ = ¬φ1 for some LTL formula φ1 and e 6|= φ1.

• φ = φ1 ∨ φ2 for some LTL formulas φ1 and φ2 such
that e |= φ1 or e |= φ2.

• φ = φ1Uφ2 and there exists some 0 ≤ i ≤ n such that
ei |= φ2, and for all 0 ≤ k < i, ek |= φ1.

The basic modal operator U allows the definition of many
derived operators such as “Finally” (Fφ), and “Before”
(φ1Bφ2). Fφ states that φ holds eventually, and it can be
written as true Uφ. The formula φ1Bφ2 state that φ1 holds
before φ2 and can be written as ¬φ2Uφ1.

Example 2.6. An analyst of our running example DDP
may be interested in various execution properties, such as
whether the execution involves “A user exiting without view-
ing the daily deals”. This is captured by the LTL formula
(Exit ∨ PayExit) B DailyDeals. Other properties that may
be of interest to the analyst are “A user views product sub-
categories for some category” or “A user views proposed
daily deals, and later proceeds to the payment page”. These
properties can be captured by the LTL formulas F SubCat.,
and F (DailyDeals ∧ F Payment) respectively.

Note that an LTL formula expresses a property of a given
execution, while in general we are interested in evaluating
the formula with respect to the (possibly infinitely many)
possible executions of a given DDP. We next define the
(boolean) semantics of such evaluation.

Definition 2.7. Given a DDP s and a LTL formula φ,
we say that s |= φ if there exists an execution e of s such
that e |= φ 2.

The above definition is essentially restricted to asking for
the existence of a path satisfying the formula, and does not
account for neither data in meta-domains nor hypothetical
reasoning. To this end we present a provenance model. The
boolean semantics will serve as a yardstick in our develop-
ment: we will generalize it.

2A different common semantics asks that every execution
satisfies φ; since LTL is closed under negation, moving be-
tween the two semantics is straightforward and we find this
one more natural for the provenance settings.

3. PROVENANCE MODEL
We present in this section a semiring-based provenance

model for the LTL-based analysis of DDPs. The section
is organized as follows. We start by recalling the notion of
semirings and use them to introduce the notion of annotated
DDPs (Section 3.1). We then recall the way in which prove-
nance propagates through database queries (Section 3.2).
We then explain the need for a novel structure that allows
capturing provenance for DDP executions. We introduce the
structure as well as the provenance definitions (Section 3.3).
Finally we show (Section 3.4) how to refine the structure
by introducing a congruence relation that allows simplifying
the obtained expressions.

3.1 Semiring and Annotated DDPs
We start by recalling the notion of a semiring and related

notions (see [23] for more details), then explain how to use
semirings to annotate DDPs.

A commutative monoid is an algebraic structure
(M,+M , 0M ) where +M is an associative and commutative
binary operation and 0M is an identity for +M . A monoid
homomorphism is a mapping h : M →M ′ where M,M ′ are
monoids, and h(0M ) = 0

M′ ,h(a+M b) = h(a) +M′ h(b). We
will consider database operations on relations whose tuples
are annotated with elements from commutative semirings.
These are structures (K,+K , ·K , 0K , 1K ) where (K,+K , 0K )
and (K, ·K , 1K ) are commutative monoids, ·K is distributive
over +K , and a ·K 0K = 0 ·K a = 0K . A semiring homomor-
phism is a mapping h : K → K′ where K,K′ are semirings,
and h(0K ) = 0

K′ , h(1K ) = 1
K′ ,h(a +K b) = h(a) +K′ h(b),

h(a·Kb) = h(a)·K′h(b). Examples of particular interest to us
include the boolean semiring ({true, false},∨,∧, false, true)
and the tropical semiring (N∞,min,+,∞, 0) (also termed a
cost semiring) where N∞ includes all natural numbers as
well as ∞. Given a set X of provenance tokens which corre-
spond to “atomic” provenance information, e.g., tuple iden-
tifiers, the semiring of polynomials with natural coefficients
(N[X],+, ·, 0, 1) was shown in [23] to most generally capture
provenance for positive relational queries.

We are now ready to define the notion of a Provenance-
Aware DDP (PADDP for short). We propose to use two
semirings for annotations, accounting for the inherently dif-
ferent types of transitioning. A first semiring will be used
to annotate the database tuples, following [23]; a second
semiring will be used for annotation of external effects.

Definition 3.1. A Provenance-Aware DDP (PADDP) is
a tuple (S,Kext,Kdata, Aext, Adata) where S is a DDP, Kext,
Kdata are commutative semirings, Aext maps transitions out
of external effects nodes of S to elements of Kext, and Adata

maps tuples of the underlying database of S to elements of
Kdata.

For any two commutative semirings K,K′ we will use the
term (K,K’)-PADDP for a PADDP whose annotations for
external effect are elements of K and annotations for data
are elements of K′.

We have not defined yet how these annotations propagate
through executions, but we can already exemplify their use
based on the correspondence of the semiring + and · opera-
tions with alternative and joint use (of data / transitions).

Example 3.2. Re-consider the running example and sup-
pose that the analyst is interested in questions of the fla-
vor “What is the minimum user effort (quantities associated
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with e.g. following a link, filling in a text box etc.) required
for a user to view the daily deals and later proceed to the
Payment page. We have already shown how this constraint
on executions can be expressed in LTL, but we need to also
capture user effort. This can be done by choosing Kext to
be the tropical semiring (identifying “cost” here with user
effort), and using Aext to map transitions to natural num-
bers corresponding to user effort associated with them (see
weights next to transitions in Figure 1). Since multiplication
in the tropical semiring corresponds to natural numbers addi-
tion, weights of joint choices along an execution are summed
up; and since addition corresponds to min, provenance for
multiple executions (e.g. all those satisfying the constraint
that daily deals are viewed) captures their smallest weight.
We will show concrete examples for the propagation of such
weights in Examples 3.7 and 3.11.

Furthermore, the analyst may be interested in performing
the analysis assuming the database will change, e.g. some
products or categories are no longer available. This can be
captured by associating provenance with the database tuples.
Specifically, we can use Kdata = N[D], the semiring of poly-
nomials over the set of provenance tokens D = {d1, ..., d5}.
The annotation function Adata is given as the Prov. column
in Figure 2. Intuitively, D may be considered as indetermi-
nates, and hypothetical scenarios will be modeled via truth
assignments (see Example 4.5).

3.2 Provenance for Database Queries
We briefly recap the provenance model established in [23,

4], and refer the reader to these references for further details.

Positive Relational Algebra onK-Databases. Intuitively,
a K-database is a database whose tuples are associated with
annotations taken from the semiring K. Then, the (posi-
tive) K-relational algebra defined in [23] corresponds to a
semantics on K-databases for the usual operations of the
relational algebra, based on the intuitive correspondence be-
tween + operation and alternative use of data (such as in
union and projection), and the · operation as the joint use
of data (as in cartesian product and join), the use of 1 for
annotation of data that is always available (we do not track
its provenance), and 0 standing for data that is absent.

Queries involving aggregates. In [4] we have observed
that the semiring framework of [23] cannot adequately cap-
ture aggregate queries. To solve the problem we have fur-
ther generalized K-relations by extending their data domain
with aggregated values. In this extended framework, rela-
tions have provenance also as part of their values, rather
than just in the tuple annotations. Such a value is a formal
sum

∑
i ti ⊗ vi, where vi is the value of the aggregated at-

tribute in the ith tuple, while ti is the provenance of that
tuple. We can think of ⊗ as an operation that “pairs” val-
ues (from a monoid M) with provenance annotations. In [4]
the framework was also used to define provenance for nested
aggregates and negation by introducing equation elements.
Intuitively an equation such as [(d1 · d2) ⊗ m = 0] is kept
as an abstract “token” and can be used in conjunction with
other semiring elements. Given concrete values for d1, d2
and m one may test the truth value of the equality and “re-
place” the equation by the truth value 3. A precise algebraic

3The obtained semiring is denoted in [4] by KM . For sim-
plicity we will abuse notation here and just use K

treatment of aggregated values and the equivalence laws that
govern them is based on semimodules and is described in [4].

Now that we have defined provenance for database queries,
we can associate provenance with individual transitions of
the DDP. We have already mentioned that transitioning for
external effect nodes is associated with elements ofKext; and
we can now associate transitioning out of query nodes with
the query provenance (in Kdata). Our next goal is to define
provenance for a possibly infinite set of execution paths.

3.3 Provenance for PADDP Executions
We next introduce a provenance structure that can ac-

commodate provenance for PADDP executions. We start
by presenting the construction in a fairly general way and
will then show how to use it in our context. Let K and L
be two semirings. We start our construction with a simple
step, introducing the set of pairs over items of K and L,
denoted K × L. Following common practice we denote its
elements k ⊗ l as well as 〈k, l〉 invariably. The intuition is
that a single pair k ⊗ l will capture the provenance of an
entire execution: k will capture the “external provenance”
of the execution and l will capture its “data provenance”. A
significant difficulty that is addressed lies in correctly man-
aging provenance for possibly infinitely many alternatively
executions, accounting for operations on these pairs.

Next, we consider the set Bag(K × L) of possibly infinite
bags of such pairs. There are two useful ways of working
with bags. One is to consider them as N∞-valued functions.
The other is to observe that bags, with bag union and the
empty bag, form a commutative monoid whose elements are
uniquely representable as infinite sums of singleton bags. In
this second perspective, if we abuse notation and denote
singleton bags by the unique element they contain we can
write each bag of pairs from K × L as∑

i∈I

ki ⊗ li

where i ranges over an infinite set of indices I. Moreover,
we can always rename the indices without loss of generality
such that when we work with several bags, the sets of indices
used in their sum representations are pairwise disjoint.

It will be convenient to already denote bag union by +K⊗L
and the empty bag by 0K⊗L . That is,

(
∑
I

ki ⊗ li) +K⊗L (
∑
J

kj ⊗ lj) =
∑
I∪J

kh ⊗ lh

0K⊗L =
∑
∅

ki ⊗ li

Recalling the intuitive correspondence between summa-
tion and alternative use, a bag (sum) of pairs corresponds
to alternative paths. Now we define

(
∑
I

ki ⊗ li) ·K⊗L (
∑
J

kj ⊗ lj) =
∑
I×J

(ki ·K kj)⊗ (li ·L lj)

This is again consistent with the intuition of multiplica-
tion as joint use and summation as alternatives: following
one of the alternatives of the first bag combined with one
of the alternatives of the second bag, corresponds exactly to
all alternatives obtained by such combinations
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We have defined a mathematical structure to capture bags
of pairs. For this structure to be consistent with our intu-
ition of summation capturing alternatives and product cap-
turing joint use, they should follow the axioms of commuta-
tive semiring (e.g. associativity, distributivity etc.). Indeed,
we may show that this is the case.

Proposition 3.3. (Bag(K×L),+K⊗L , ·K⊗L , 0K⊗L , 1K⊗1L)
is a commutative semiring.

Overloading notation we will use Bag(K × L) to denote
(Bag(K×L),+K⊗L , ·K⊗L , 0K⊗L , 1K⊗1L). The following propo-
sition shows that the obtained structure is closed (see [36]
for a definition). Intuitively, infinite sums in the structure
interact in the “expected” way with semiring operations. In
particular, this means that they preserve the intuition of
correspondence with joint and alternative use in executions.

Proposition 3.4. Bag(K × L) is a closed semiring.

We are now ready to define provenance for executions of
PADDPs. Provenance for a transition outgoing an external
choice node is annotated with a singleton bag {〈k, 1Kdata〉}
where k ∈ Kext is the provenance associated with this tran-
sition according to the PADDP specification; and 1Kdata

is the neutral value with respect to multiplication in Kdata.
Intuitively since there is no effect with respect to data prove-
nance. Similarly provenance for a transition out of a query
node is defined as {〈1Kext , k

′〉} where k′ ∈ Kdata is the an-
notation obtained for the corresponding query with respect
to the underlying annotated database.

Given a transition t of a PADDP we use Prov(t) to de-
note the transition provenance according to the above. The
provenance of an execution is then the multiplication of
provenance expressions associated with its transitions.

Definition 3.5. Given a PADDP and an execution e =
(v0, v1, ..., vn), the provenance of e, denoted Prov(e) ∈
Bag(Kext×Kdata), is defined as

∏
(vi,vi+1)∈e Prov((vi, vi+1)).

Note that the provenance of an execution involves multi-
plication of bags in Bag(Kext×Kdata). This allows to “mix”
annotations of Kdata and annotations in Kext in the same
expression. To simplify notations, we will identify 〈k, k′〉
with the singleton bag {〈k, k′〉}.

Example 3.6. Reconsider the PADDP of Example 3.2,
the provenance of [Home page, Cat., Sub Cat., Exit] is
〈5, 1〉 · 〈0, [d1 · d4 6= 0]〉 · 〈2, 1〉

Each pair element in this multiplication corresponds to a
single transition, and they are multiplied since they are used
together in an execution.

For example, the item 〈5, 1〉 stems from the (external ef-
fect) transition from HomePage to Cat and is shorthand to
the singleton bag containing of a pair whose first element
is the natural number 5 in the tropical semiring (signaling
user cost of 5), and its second element 1 is the neutral with
respect to multiplication in N[D].

The item 〈0, [d1 ·d4 6= 0]〉 originates in the transition from
Cat. to Sub Cat. depending on the underlying database;
note that the natural number 0 is the neutral with respect to
multiplication of the tropical semiring. [d1 ·d4 6= 0] is in fact
shorthand to [[(d1 · d4) ⊗ 1 = 0] = 0] which is the negation
of the provenance for Q1 = 0, itself computed through the

framework for database queries described in Section 3.2. In-
tuitively, it means that both tuples annotated with d1 and d4
need to be present for the query to be satisfied.

Finally, we can use the definition of bag multiplication
above to simplify the expression by performing “point-wise
multiplication”, to obtain (·T and ·N[D] stand for multiplica-
tions in the tropical and N[D] semirings, resp.; for brevity
the subscript of operation is omitted in the sequel where clear
from context).
〈5 ·T 0 ·T 2, 1 ·N[D] [d1 · d4 6= 0] ·N[D] 1〉 ≡ 〈7, [d1 · d4 6= 0]〉
Note that multiplication in the tropical semiring corre-

sponding to natural number additions. The accumulated cost
(“user effort”) for this path is 7 and the accumulated condi-
tion with respect to the database is [d1 · d4 6= 0].

We next define provenance for an LTL formula with re-
spect to a PADDP, as the (possibly infinite) sum of prove-
nances of executions conforming to the formula. Let exec(S)
denote the (possibly infinite) set of (finite) executions of a
PADDP S. We define:

Definition 3.7. Given a PADDP S and an LTL formula
f , we define the result of evaluating f on S (denoted f(S))
as
∑
{e∈Paths(S)|e|=f} prov(e).

Definition 3.7 does not give an explicit way of representing
the infinite sums. To this end, we introduce the Kleene star
operation a∗ = 1+a+a2+..., and note that it is well-defined
in closed semirings.

Example 3.8. In the tropical semiring we get a∗ = 0
(the tropical 1, i.e. the natural number 0). For the Boolean
semiring, we will get a∗ = true ∨ a ∨ a... = true.

We then say that a starred expression is an expression in-
volving the star operation. The following proposition indi-
cates that the proposed structure may facilitate provenance
for analysis results.

Proposition 3.9. For any PADDP S and LTL formula
f , f(S) may be represented as a finite starred expression.

We will give an algorithm to compute this starred ex-
pression in Section 4, but we already note that intuitively,
the obtained starred expression corresponds to a regular ex-
pression over the annotation pairs, capturing exactly those
paths that satisfy the LTL formula. Based on this intuition
we exemplify the obtained expressions.

Example 3.10. Reconsider the LTL formula F (Daily-
Deals ∧ F Payment) and the running example PADDP. In-
tuitively, to represent alternative paths (alternative ways of
“realizing” the LTL property) we use sum of pairs where
each pair captures the provenance of a single path. Also,
using the introduced axioms, we may in fact generate sub-
expressions for multiple partial executions, and then combine
them. For instance, the two simple partial executions reach-
ing Cat yield a joint provenance which is the sum 〈5, 1〉 +
〈7, 1〉. We may then continue constructing expressions for
sub-executions, and eventually we can obtain:((
〈5, 1〉 + 〈7, 1〉

)
·
(
〈2, 1〉 · 〈0, [d1 · d4 6= 0]〉 + 〈0, [d1 · d4 =

0]〉
)
· 〈3, 1〉 · 〈2, 1〉

)∗
·
(
〈5, 1〉 + 〈7, 1〉

)
·
(
〈2, 1〉 · 〈0, [d1 · d4 6=

0]〉 + 〈0, [d1 · d4 = 0]〉
)
· 〈3, 1〉 · 〈2, 1〉 · 〈3, 1〉 ·

(
〈0, [d5 6=
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0]〉+ 〈0, [d5 = 0]〉
)

The obtained expression is quite long but we can already sim-
plify it using the axioms of our structure. In particular, we
have seen before that we can simplify multiplication expres-
sion, to get e.g. 〈3, 1〉 · 〈2, 1〉 · 〈3, 1〉 = 〈8, 1〉. Further simpli-
fications lead to:((
〈5, 1〉 + 〈7, 1〉

)
·
(
〈7, [d1 · d4 6= 0]〉 + 〈5, [d1 · d4 = 0]〉

))∗
·(

〈5, 1〉+ 〈7, 1〉
)
·
(
〈10, [d1 · d4 6= 0]〉+ 〈8, [d1 · d4 = 0]〉

)
·(

〈0, [d5 6= 0]〉+ 〈0, [d5 = 0]〉
)

In this expression, every pair represents “joint” prove-
nance terms in the two domains (tropical and N[D]). For
instance, 〈5, 1〉 intuitively means a cost of 5 and no depen-
dency on data (“1” is the neutral element of N[D]). A sum of
such pairs reflects alternative paths, e.g. the sub-expression
(〈5, 1〉 + 〈7, 1〉) corresponds to the two options of following
a sub-path with cost 5 or following one with cost 7 (with no
dependency on the data). A product of such sub-terms cor-
responds to joint use (i.e. in conjunction with taking either
of these transitions, we also continue the execution). Kleene
star is applied to provenance of sub-executions appearing in
a loop. The expression that we get is still quite complex
but we will show later (Example 3.11), that by introducing
congruence axioms, we can further simplify it.

3.4 Introducing a Congruence
We have defined provenance for LTL formula evaluated

over PADDPs, but observed that their representation may
become quite complex. There are certain equivalence ax-
ioms that are “natural” in this setting. For instance if the
same data provenance is used repeatedly in multiple execu-
tion paths, one expects to be able to write an equivalent
expression where it appears only once.

To allow for simplifications, we need to identify elements
of Bag(K×L) with other, “simpler” elements. This is done
via the introduction of a congruence relation. Since we are
dealing with possibly infinite bags, we need to consider in-
ifinitary congruences, namely one that is preserved also by
(in addition to multiplication and finite summation) infinite
summation. Next, let ∼ be the smallest inifinitary congru-
ence on Bag(K × L) with respect to +K⊗L and ·K⊗L that
contains (for all k, k′, l, l′):

(k +K k′)⊗ l ∼ k ⊗ l +K⊗L k
′ ⊗ l

0K ⊗ l ∼ 0K⊗L

k ⊗ (l +L l
′) ∼ k ⊗ l +K⊗L k ⊗ l

′

k ⊗ 0L ∼ 0K⊗L

We denote by K ⊗ L the set of congruence classes of bags
of pairs modulo ∼ and by 1K⊗L the congruence class of
1K⊗1L . As usual when we take the quotient by a congruence
the result, (K⊗L,+K⊗L , ·K⊗L , 0K⊗L , 1K⊗L), which we will also
denote K ⊗ L, is a commutative semiring.

When we define provenance for LTL queries in K ⊗ L all
constructions and results go through, and in addition we can
perform significant expression simplifications.

Example 3.11. Reconsider the provenance expression ob-
tained in Example 3.10. Note that the introduced equivalence
axioms allow for simplifications that were not possible so
far. For instance, we have the sub-expression 〈5, 1〉+ 〈7, 1〉,
intuitively corresponding to two sub-executions that involve
the same dependency on data (in this case, no dependency)

with different costs. Using the congruence relation, this ex-
pression is equivalent to 〈5 + 7, 1〉 = 〈5, 1〉. Intuitively we
have “factored out” the common dependency on data. Via
repeated applications of the congruence relation we may per-
form further partial computations, and obtain:(
〈5 + 7, 1〉 ·

(
〈7, [d1 ·d4 6= 0]〉+ 〈5, [d1 ·d4 = 0]〉

))∗
· 〈5 + 7, 1〉 ·(

〈10, [d1 · d4 6= 0]〉+ 〈8, [d1 · d4 = 0]〉
)
·
(
〈0, [d5 6= 0]〉+

〈0, [d5 = 0]〉
)

=
(
〈12, [d1 · d4 6= 0]〉 + 〈10, [d1 · d4 = 0]〉

)∗ · (〈15, [d1 · d4 6=
0]〉+ 〈13, [d1 · d4 = 0]〉

)
·
(
〈0, [d5 6= 0] + [d5 = 0]〉

)
In Section 4 we show further simplifications are possible

after concrete truth values are assigned to the d’s.
An important property of the construction thus far was

that the obtained semiring was closed, which allowed the
definition of infinite sums. This still holds:

Proposition 3.12. For every two semirings K,L, it holds
that K ⊗ L is a closed semiring.

We next note that the additional identities that we have
forced by taking the congruence provide a key “universality”
property of this semiring. Define ιK : K → K ⊗ L where
ιK (k) is the congruence class of k ⊗ 1L and ιL : L→ K ⊗ L
where ιL(l) is the congruence class of 1K ⊗ l.

Proposition 3.13. ιK and ιL are semiring homomorphis-
ms; for any other commutative semiring H and any two
semiring homomorphisms f : K → H and g : L → H
there exists a unique semiring homomorphism denoted f⊗g :
K ⊗L→ H such that f = (f ⊗ g) ◦ ιK and g = (f ⊗ g) ◦ ιL .

This universality property fits well with the intuition be-
hind tracking annotations. We use K ⊗ L to track both
K-annotations and L-annotations while at the same time
each of K and L are “embedded” into K ⊗ L by the ι’s so
in K ⊗ L we can track K-annotations while L-annotations
are kept neutral, and vice-versa.

Finally, a sanity check is that the definition is consis-
tent with the LTL semantics for DDPs without annotation,
namely that it in fact faithfully extends it.

Proposition 3.14. For any LTL formula f and (B,B)-
PADDP S, it holds that f(S) ≡ {(true, true)} if and only if
S′ |= f where S′ is a DDP obtained from S by deleting all
tuples and transitions annotated by false, and keeping the
rest with no annotation.

4. COMPUTING AND USING
PROVENANCE

We have defined in the previous section a model for prove-
nance for DDPs and for LTL queries on its execution. Given
the model, the two main challenges that remain are (1) com-
putation of a finite provenance representation and (2) es-
tablishing means for using the obtained expression. In this
section we consider these two challenges.

4.1 Computing Provenance for LTL
We start by proposing an algorithm for computing the

provenance of an LTL expression with respect to a PADDP.

Proposition 4.1. For any LTL formula φ and a PADDP
S we can compute a description of φ(S) in time polynomial
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in the size of the underlying database and exponential in the
size of the state machine of S 4.

Proof. (sketch) The high-level flow of an algorithm that
generates provenance for an LTL formula with respect to a
PADDP is given in Algorithm 1. The first step is to compute
provenance expressions for the queries associated with query
nodes, as described in Section 3.2, and the obtained anno-
tated structure is named S′. The LTL formula is compiled
(Line 2) into an FSM consistent with its finite semantics (see
[20]), and intersected with S′ (Line 3). The intersection is
performed in the standard way, while maintaining annota-
tions of S′′ consistent with those of S′: namely, a transition
in the intersection automata S′′ that has origin (u, ψ) and
destination (v, ψ′) will be annotated by the annotation in
S′ of (u, v). Note that S′′ is a PADDP with some states
designated as accepting. The last step (line 4) is to trans-
form S′′ into a starred expression, which is an element of the
tensor product semiring. This is done by applying Kleene’s
algorithm (see e.g. [36]) (which is a generalization of the
standard translation of FSMs to regular expressions), inter-
preting the addition, multiplication and Kleene star opera-
tion as their counterparts in the tensor product. Following
the correctness of Kleene’s algorithm [36], the computed ex-
pression is equivalent to φ(S), capturing exactly provenance
of all executions of S satisfying φ.

Complexity and Output size. The generation of prove-
nance expressions for database queries was shown to be in
polynomial time with respect to the database size. The
translation to starred expression (step 4), however, may in
the worst case incur an (unavoidable [24]) exponential blow
up (both of the expression size, and execution time of the
algorithm) in the size of the state machine.

Algorithm 1 Algorithm for Expression Genretaion

Input PADDP specification S; LTL formula φ
Output Provenance expression φ(S)
1: S′ := QueriesToProvenance(S)
2: QueryAutomaton := TransformToFSM(φ)
3: S′′ := Intersect(S′, QueryAutomaton)
4: exp := TranslateToStarredExpression(S′′)
5: return exp

Discussion. In the worst case, the provenance size may
be exponential in the state machine size (but not in the
database size). This is unavoidable in general due to lower
bounds on translating FSMs to regular expressions [24]. How-
ever, we note that in many practical cases both the gen-
eration time and the size of obtained expressions may be
feasibly small, as follows.

First, with regards to dependency on the database size,
we note that the size is polynomial in the number of tu-
ple annotations (which is bounded by the database size but
in practice may be much smaller, since tuples may be an-
notated by neutral semiring values). Furthermore some in-
put tuples may contribute nothing to the result of guarding
queries (as is e.g. the case with high query selectivity): this
will further reduce the size of the expression. This was ob-
served in the context of database querying in previous work
(see e.g. [22]) and is further validated in our experiments.

4We follow common practice of analyzing data complexity:
φ and guarding queries are considered of constant size.

Second, the part of the algorithm leading to the exponen-
tial blow-up w.r.t. FSM size is line 4, which involves the
translation of the (intersected) DDP to a starred expres-
sion. In the worst case this blow-up is unavoidable, as a
corollary of a similar bound on translating FSMs to regular
expressions [24]. However, this may be addressed as follows.
First, for restricted yet useful FSM structures, the transla-
tion algorithm yields in practice small-size expressions (see
for example the experiments in section 6). We also note
that the time complexity of the algorithm is polynomial in
the size of expression that it generates. Moreover, for many
restricted, yet expressive, classes of FSMs we may obtain
polynomial (and even linear) complexity bounds by lever-
aging and adapting dedicated algorithms, and “plugging”
them in as implementation of line 4 of the algorithm. Such
classes include e.g. SP-Automata [34], UDR-Automata [33]
and Thompson graphs [19]. Even when the workflow in hand
follows a more complex structure, there are strong practical
optimizations that may be effectively adapted and employed
(see e.g. [25]). Last, we note that we expect that in real-
life DDPs the FSM (which reflects the logical application
flow and is often created manually) size will be of small size
comparing to the underlying database size.

4.2 Using Provenance
An important principle underlying the semiring-based

provenance framework is that one can compute an “ab-
stract” provenance representation and then “specialize” it
in any domain. This “specialization” is formalized through
the use of semiring homomorphism. To allow for a similar
use of provenance in our setting, we extend the notion of
homomorphism to the tensor product structure, and study
properties of the construction. A fundamental new challenge
lies in the mapping from elements of the tensor (which are
essentially bags of pairs), to single semiring elements. We
first show how to “shift” between meta-domains. The idea
is that two mappings from the individual semirings may be
combined in a single homomorphism over the tensor.

Proposition 4.2. Let K1,K2,K3,K4 be 4 semirings, and
let h1 : K1 7→ K3, h2 : K2 7→ K4 be semiring homomor-
phisms. Let h({k1 ⊗ k2}) = {h1(k1)⊗ h2(k2)} and extend h
to a full mapping by defining h(s1 + s2) = h(s1) +h(s2) and
h(s1 · s2) = h(s1) · h(s2). Then h : K1 ⊗K2 7→ K3 ⊗K4 is
a semiring homomorphism.

We use h1 | h2 to denote the homomorphism h obtained,
according to the above construction, from h1, h2.

We can now extend the notion of semiring homomorphism
to homomorphisms on PADDPs in a natural way:

Definition 4.3. Let K1,K2,K3,K4 be 4 semirings, let
h1 : K1 7→ K3, h2 : K2 7→ K4 be semiring homomorphisms
and let S be a (K1,K2)-PADDP. We use (h1 | h2)(S) to
denote the (K3,K4)-PADDP S′ obtained from S by replacing
every annotation k1 ∈ K1 by h1(k1) and every annotation
k2 ∈ K2 by h2(k2).

Crucially, we may show that provenance propagation com-
mutes with homomorphisms. This will allow to support ap-
plications such as deletion propagation, as exemplified next.

Proposition 4.4. For every LTL formula φ, a (K1,K2)-
PADDP S and semiring homomorphisms h1 : K1 7→ K3,
h2 : K2 7→ K4, it holds that (h1 | h2)(φ(s)) ≡ φ((h1 | h2)s).
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Figure 4: System Architecture

Example 4.5. We next show how to find the minimal
cost of realizing the LTL query, but this time under the as-
sumption that the Cell Phone category is no longer avail-
able. This corresponds to deleting the tuple annotated by d1
(while other tuples are kept), and re-performing the analysis.
But Proposition 4.4 suggests a much more efficient alterna-
tive: given the computed provenance expression of Example
3.11, we can use the homomorphism h2 : N[D] 7→ B, where
h2(d1) = false, h2(d4) = true and h2(d5) = true. We use
the identity function as h1 (assuming the user effort quan-
tification stays intact), and obtain:

(h1 | h2)
((
〈12, [d1 · d4 6= 0]〉+ 〈10, [d1 · d4 = 0]〉

)∗ · (〈15, [d1 ·

d4 6= 0]〉+ 〈13, [d1 · d4 = 0]〉
)
·
(
〈0, [d5 6= 0] + [d5 = 0]〉

))
=(

〈12, false〉+〈10, true〉
)∗ ·(〈15, false〉+〈13, true〉

)
·〈0, true〉

and via more simplifications we obtain: 〈13, true〉
Indeed, the minimal effort required to reach the goal given

the deletions is 13.

Finally, it may be desirable that the provenance result
reflects a single value (e.g. a cost, or a truth value) rather
than a bag of pairs. This requires one last step, as follows.

Proposition 4.6. Let K be a positive semiring and let
h : K⊗K 7→ K be the mapping defined by h(k1⊗k2) = k1·k2,
and extended to a full mapping by defining h(s1 + s2) =
h(s1) + h(s2) and h(s1 · s2) = h(s1) · h(s2). Then h is a
semiring homomorphism.

Now provenance computation can be done in K⊗L for ar-
bitrary positive K and L; then, to get an item (not a pair) in
K (symmetrically L) we can first apply the homomorphism
h : K ⊗ L 7→ K ⊗K that combines (via prop. 4.2) the two
mappings h1 : K 7→ K defined by h1(k) = k and h2 : L 7→ K
defined by h2(l) = 0K if l = 0 and h2(l) = 1K otherwise. By
Prop. 4.4 we get a correct provenance expression in K ⊗K.
This last expression can then be mapped to an expression
in K using the homomorphism in Prop. 4.6.

Example 4.7. Reconsider the obtained provenance expres-
sion 〈13, true〉. We use the identity homomorphism h1 and
the homomorphism h2 from boolean to tropical mapping true
to the tropical 1 element and false to the tropical 0 element.
Composing the mapping in Prop. 4.6 with h1 | h2, and ap-
plying the result to 〈13, true〉, we finally get 13 as final an-
swer under the particular hypothetical scenario.

5. PROTOTYPE IMPLEMENTATION
We have implemented our provenance framework in the

context of PROPOLIS (PROvisioned Process Analysis) [13].
The system architecture is shown in Fig. 4 and we next
describe its main components.

Provenance Generator. Interacting with the Provenance
Generator module, analysts can design (through a dedicated
GUI) a PADDP and an LTL query. The annotations may be
taken from a variety of semirings (for trust, cost, probabili-
ties, access control etc.). One use case involves the analyst
deciding on a set of state machine transitions and database
tuples that she wishes to parameterize, i.e. identify with
abstract variables and defer the assignment of concrete val-
ues. This corresponds to using N[X] and N[D] as semirings
for annotation, where X and D are indeterminates (“pa-
rameters”) associated by the analyst with transitions and
tuples. The output is a single memory-resident provenance
expression, computed (offline) based on Algorithm 1.

Dashboard. Once the provenance expression has been com-
puted, the analyst can interactively explore the effect of hy-
pothetical scenarios on the LTL analysis result. The scenar-
ios are expressed through the assignment of different values,
from semirings of the analyst’s choice (e.g. boolean, costs
etc.) to the different parameters. This defines a homomor-
phism of the analyst choice to a chosen structure. A simple
example involves deciding on a subset of tuples / transitions
that are (hypothetically) deleted (see Examples 4.5 and 4.7).
The analyst is presented with the query result for the spec-
ified scenario, and can repeatedly and interactively change
the scenarios to explore the effect on analysis results.

6. EXPERIMENTAL EVALUATION
We have conducted experiments whose main goals were

examining (1) the scalability of the approach in terms of
the generated provenance size and generation time, and (2)
the extent of usefulness of the approach, namely the time it
takes to specialize the provenance expression for applications
such as those described in this paper.

All experiments were executed on Windows 7, 64-bit, with
4GB of RAM and Intel Core Duo i5 3.10 GHz processor.

6.1 Evaluation Benchmark
We have developed a dedicated benchmark that involves

both synthetic and real data as follows.

E-commerce (Synthetic dataset). We used two different
DDPs for E-commerce process specifications to examine the
performance (provenance size, and generation and usage
time) as a function of the underlying database size. The first
dataset uses the fixed topology of the state machine used in
our running example (Figure 1), which demonstrates all fea-
tures of the model, including an FSM with cycles, queries
on a database and external choices. The second DDP is
partially based on the proposed benchmark for e-commerce
applications, described in [21]. The underlying database in
both cases was populated with synthetically and randomly
generated data, of growing size, up to 5M tuples (to examine
scalability w.r.t the database size).

Arctic Stations (Real dataset). The second dataset is based
on the “Arctic stations” data, used as a benchmark also in
[3] (albeit in a different context, of tracking provenance of
actual running executions). This benchmark includes a va-
riety of processes that model the operation of meteorological
stations in the Arctic. Their flows are based on three kinds
of topologies, serial, parallel, and dense as shown in Figure
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Figure 7: Arctic Station Finite State Machines

7. The process specifications include queries with aggre-
gates, and we have synthetically introduced external effect
choices. The underlying real data consists of 25000 tuples
and includes monthly meteorological observations, collected
in 1961-2000. The number of nodes in the different pro-
cess specifications (corresponding to stations) is at most 25.
But to examine scalability with respect to the FSM size, we
have also considered varying FSM sizes of up to 5000 nodes,
following the topologies. For the dense structure we have
varied both the fan-out and number of levels, and report
results fan-out value of 10 and increasing number of levels.

6.2 Provenance Size
The first set of experiments aims at studying the size of

obtained provenance expressions, as a function of the DDP
size (state machine and underlying database sizes). In Fig-
ure 5a we present the expression size obtained using our two
E-commerce datasets and varying the database size from 0
to 5M tuples. We observe a moderate growth of the prove-
nance size with respect to growth of the database size, in-
dicating the scalability of the approach (expression size of
about 140MB and 180MB for database of 5M tuples, and for
the two workflows). We note that the provenance size also
depends (in an expected way) on factors such as the size of
join results for guarding queries. For this dataset the join
result size was proportional to the input DB size. We have

also tried varying the join result size and observed the ex-
pected approximately linear dependency of provenance size
with respect to it.

In Figure 6a, we have examined the effect of the state ma-
chine size on the provenance expression size. For that we
have used the Arctic Stations dataset. The figure shows the
results of the three topologies, for number of nodes that is
increased up to 5000 (i.e. up to 200 times the real size). The
expressions are compactly represented (this is made possi-
ble based on the congruence axioms) allowing for scalability
even for the dense structure. Recall that the theoretical
bound guarantees only exponential bound in this respect.
Our experiments indicate that for relatively simple struc-
tures commonly found in workflows, the exponential bound
is not met and feasibly small expressions are obtained.

6.3 Provenance Generation Time
The second set of experiments aims at assessing the time

it takes to generate the provenance expression, again as a
function of the DDP size. Figures 5b and 6b present the
time it takes to generate the expression with respect to in-
creased database and FSM sizes (respectively). Figure 5b
presents the generation time of the provenance expression,
on the two E-commerce DDPs, with database of increasing
size from 0 to 5M tuples. Observe that the generation time
is just under 35 and 25 seconds for DB size of 5M tuples
(for the two DDPs). Recall that the provenance generation
is done offline, rendering this computation time very rea-
sonable. Figure 6b shows provenance generation time as a
function of FSM size. For the “serial” and “parallel” struc-
tures, generation time is very fast even for very large FSMs.
For the complex “dense” structure, the generation time is
significantly slower due to the complex graph structure and
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the needs for simplification, but is still under 1.5 minutes
for a very large FSM with 5000 states.

6.4 Using Provenance Information
The last set of experiments aims at assessing the useful-

ness of the approach: it studies the time it takes to use
the expression for observing results under hypothetical sce-
narios. In particular we have considered deletion propaga-
tion, and compared the observed times with those obtained
through a simple baseline approach (the “competitor”) of
applying the deletions directly to the DDP and performing
optimized temporal analysis of the obtained specification.

The results are reported in Figures 5c and 6c for growing
DB size and FSM size respectively. Fig. 5c shows that
using the provenance expression significantly outperforms
the baseline approach. For DB of 5M tuples, the gain is
about 65% for the benchmark DDP that follows [21], and
53% for our running example DDP. The results also indicate
scalability of the approach, allowing to use the expression
in about 2.5 and 3.5 seconds for the benchmark DDP and
our running example (resp.), for DB size of 5M tuples (and
much faster for smaller databases). We note that for our
examples, all input tuples are reflected in the provenance.
Our approach performance, in all measures and specifically
usage time and gain with respect to the competitor, improves
significantly as the percentage of such tuples drops (e.g. in
a database with higher join selectivity).

The results in Fig. 6c indicate that for FSM structures
commonly found in context of workflows, application of ho-
momorphism to the computed expression is very fast. It
was instantaneous for all structures of the Arctic Stations
dataset (with their actual sizes). Even when extending the
FSM size to up to 5000 nodes, it required less than 2.8 sec-
onds for the dense structure, 1 second for the parallel struc-
ture and 0.8 seconds for the serial one. With respect to the
competitor, a very significant gain was achieved for the dense
and parallel structure (about 96% and 58% improvement for
5000 nodes). For the simple serial structure, there was no
significant gain; this is due to the extreme simplicity of the
FSM structure where the pre-processing effect diminishes.

7. RELATED WORK
Data Provenance. Provenance for data transformations
(see e.g. [15, 7, 5, 23, 6, 8]) was shown useful in a variety of
applications, including access control for data management,
provisioning for database queries [12], and automatic opti-
mization based on hypothetical reasoning for such queries
[31, 30]. Unique technical challenges in our settings include
accounting for the workflow in addition to data (including
treatment of possibly infinitely many executions) in con-
junction with the combination of different kinds of choices
(external and data-dependent). The work of [28] has studied
combination of annotations, but especially in the context of
dependency between them and only for the relational alge-
bra; in particular the issues that led us to consider tensor
products are not addressed.

W3C Prov. W3C PROV-family [37] is a specification of
standard for modeling and querying provenance for the web.
Applications include explanations, assessments of quality,
reliability or trustworthiness of data item, etc. The stan-
dard describes a range of transformations for data on the

web, such as data generation, use and revision by multiple
agents. We note that provenance for the analysis of possi-
ble executions of a data-dependent process, is studied here
for the first time (through a precise algebraic notion). It is
interesting to explore what aspects described in the W3C
standard may be modeled through the semiring framework.
The aspects that “fit” the framework, may possibly also be
incorporated as part of the PADDP model, and perhaps ac-
counted for in the analysis. For instance, trustworthiness
may be captured by elements of the tropical semiring (see
[22]); joint or alternative use of data by different agents may
be represented by the semiring · or + operations. Incorpo-
rating into the semiring framework other concepts of the
W3C standard, for example specialization /inheritance and
multiple agents, requires further work.

Workflow Provenance. Different approaches for captur-
ing workflow provenance appear in the literature (e.g. [10,
9, 2, 26, 16, 35, 32]), but none of these models capture
semiring-based provenance for temporal analysis results of
workflow executions, and thus does not allow for the appli-
cations exemplified here such as provisioned temporal anal-
ysis. Semiring-based provenance for executions of data-
centric workflows was studied in [3], however the develop-
ment there (1) tracks provenance along with the execution
rather than supporting analysis over all possible executions,
(2) assumes a DAG-based control flow (no cycles), and (3)
does not capture provenance for external effects.

Process Analysis. Temporal (and specifically LTL) anal-
ysis of (non-data-dependent) processes was studied exten-
sively (see e.g. [29] for an overview), and several works
have laid foundations for parameterization of such analysis
(e.g. [27, 11]). However in contrast to our work, the process
models in these works do not involve SQL-like queries to
an underlying database. Analysis of data-centric processes
was also studied in e.g. [9, 14, 18, 1], but no provenance
model was proposed there, since the focus was on analyzing
a concrete given process, rather than accounting for differ-
ent weighting and for hypothetical changes as in our work.
The process model in some of these works is richer than that
of DDPs, mainly due to support of dynamic data updates
and parallelism. Developing provenance support for these
two features is an intriguing direction for future work.

8. CONCLUSION
We have presented in this paper a semiring based prove-

nance framework for temporal analysis of data-dependent
processes. We have studied properties of the framework and
have demonstrated its usefulness.

As usual, there is a tradeoff between process model ex-
pressivity and complexity of process analysis (and prove-
nance modeling). The DDP model is quite expressive, as
it is based on an abstract control flow model (FSMs), with
no restriction on the FSM states or topology. The expres-
sive positive relational algebra with aggregates is used for
capturing data dependency. We believe that our modeling
choice constitutes a reasonable tradeoff between expressiv-
ity and analysis tractability. This is indicated by our imple-
mentation and experiments: we have shown that the model
allows description of realistic and useful processes, as well as
their efficient provenance support and provisioned analysis.
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We note that the framework is “compositional”: any query
language for which one can compute semiring-based prove-
nance can be “plugged-in” to the model instead of the one
currently used. This may allow extensions, to capture an
even larger class of data dependent process specifications.

Still, there are additional aspects of data-dependent pro-
cesses, for which provenance modeling requires further work.
We believe that the foundations laid in this paper will serve
as sound grounds for the incorporation of provenance sup-
port for such features. In particular, an important feature
in data-dependent process models is that of dynamic data
updates. A sound support of (semiring-based) provenance
for data updates, even when restricted to the context of
relational algebra, is still the subject of ongoing research.
As future work, we intend to study such modeling and its
incorporation within our framework.

Another intriguing and important issue is that of parallel
process executions. Our model for execution is a sequential
one (an execution is essentially a path in the DDP). Still,
one may capture some form of parallelism, for instance by
designing FSM states that jointly capture the states of par-
allel threads. Once such an FSM simulating the behavior of
a parallel process is designed, we may also capture proper-
ties related to e.g. scheduling in LTL (See e.g. [29]). Then,
to simulate different scenarios, one may parameterize transi-
tions and/or data items in a manner similar to that we have
exemplified, to obtain a PADDP. Then, our evaluation algo-
rithm may be executed to compute a provenance expression
which in turn will allow the exploration of these scenarios,
again in a manner similar to that exemplified. This ap-
proach captures essentially what is known in concurrency
as interleaving semantics and it would be interesting to in-
vestigate other models of concurrency, e.g. Petri Nets, or
ones involving fairness constraints. Building on the model
and results in this paper, we intend to pursue this challenge
in future work. Additional challenges for future work in-
clude the support of richer temporal logic formalisms (e.g,
µ-calculus), and further optimizations.
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