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ABSTRACT
To mitigate the impact of the widening gap between the mem-
ory needs of CPUs and what standard memory technology can de-
liver, system architects have introduced a new class of memory
technology termed persistent memory. Persistent memory is byte-
addressable, but exhibits asymmetric I/O: writes are typically one
order of magnitude more expensive than reads. Byte addressabil-
ity combined with I/O asymmetry render the performance profile
of persistent memory unique. Thus, it becomes imperative to find
new ways to seamlessly incorporate it into database systems. We
do so in the context of query processing. We focus on the funda-
mental operations of sort and join processing. We introduce the
notion of write-limited algorithms that effectively minimize the I/O
cost. We give a high-level API that enables the system to dynam-
ically optimize the workflow of the algorithms; or, alternatively,
allows the developer to tune the write profile of the algorithms. We
present four different techniques to incorporate persistent memory
into the database processing stack in light of this API. We have im-
plemented and extensively evaluated all our proposals. Our results
show that the algorithms deliver on their promise of I/O-minimality
and tunable performance. We showcase the merits and deficiencies
of each implementation technique, thus taking a solid first step to-
wards incorporating persistent memory into query processing.

1. INTRODUCTION
Persistent memory is a new class of memory technology that has

the potential to deliver on the promise of a universal storage de-
vice. That is, a storage device with capacity comparable to that of
hard disk drives; and access latency comparable to that of random
access memory (DRAM). Database systems, as one of the prime
consumers of this technology, must be prepared for this transition
if they are to sustain the high performance users have come to ex-
pect. Therefore, database developers need to optimize query pro-
cessing operations for persistent memory. Likewise, it is necessary
to introduce abstractions that will incorporate this technology in an
informed way into the processing stack of database systems. As
this technology rapidly evolves, the abstractions should be resilient
to future trends and be system- and user-tunable.
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Figure 1: Typical access latency in processor cycles on a 4GHz
processor (figure adapted from [22])

The need for persistent memory is practical. The increase of the
number of cores per CPU dictates that the memory system primarily
scale in terms of capacity as it must cater for the working sets of all
concurrently executing processes across all cores; and secondarily
in terms of data transfer rate to keep up with the increased demand.
The growth rate of the number of cores per CPU is higher than the
growth rate of DRAM capacity, and that gap only widens [13]. Sys-
tem architects have thus worked on memory technologies that de-
liver performance comparable to DRAM but at much higher capaci-
ties. Persistent memory (also referred to as non-volatile memory) is
an umbrella term encompassing all such efforts (e.g., phase-change
memory). In terms of access latency, persistent memory sits be-
tween DRAM and block-based flash memory, as shown in Figure 1.
Thus, persistent memory is a new level in the memory hierarchy,
the design space of which is only now starting to be explored.

There are various technical reasons why persistent memory war-
rants a study of its own. Foremost, persistent memory is byte-
addressable. This is in stark contrast to block-addressable flash
memory. The block-oriented techniques that have been proposed
for leveraging flash memory are inapplicable (see, e.g., [17] for a
review of such techniques). Then, persistent memory latencies are
closer to DRAM than flash memory. The read latency is only 2-4
times slower than DRAM compared to the 32 times slower-than-
DRAM latency of flash [22]. At the same time persistent memory
exhibits the write performance problems of flash memory: writes
are more than one order of magnitude slower than DRAM, and thus
more expensive than reads [17]. Persistent memory cells also have
limited endurance, which dictates wear-leveling data moves across
the device to increase its lifetime, thereby further amplifying write
degradation. Thus, persistent memory should be treated neither
as byte-addressable DRAM nor as block-addressable flash memory;
while it exhibits some of the merits and deficiencies of both.

The properties of persistent memory require revisiting existing
work and optimizing it for the new medium. It is imperative that
new algorithms and techniques are developed if database systems
are to make the best possible use of this new technology; other-
wise, they are doomed to the suboptimal performance that stems
from false assumptions. Our key objective is to optimize writes as
they manifest the performance problems due to both byte address-
ability and write/read asymmetry. The byte addressability of persis-
tent memory renders flash-centric, block-based techniques inappli-
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cable; while main-memory techniques do not differentiate between
write and read cost asymmetry. To address these issues we will
present a host of techniques that we term write-limited, which aim
to seamlessly incorporate persistent memory in the data manage-
ment stack. We will focus on key processing operations, namely
sorts and joins, that are necessary for high-performing query eval-
uation. At the same time, we will present abstractions to introduce
persistent memory into the system in ways that allow both the sys-
tem and the developer to optimize performance.
Contributions and organization. Our contributions and the struc-
ture of the rest of this paper are as follows:
• We devise sort and join algorithms that minimize I/O by trad-

ing expensive writes for cheaper reads (Section 2). Addition-
ally, the algorithms allow the developer to tune their write
intensity for a small hit on performance.
• We provide ways to implement these algorithms by propos-

ing a flexible API (Section 3.1). Our API records a blueprint
of each algorithm’s computation and enables the system to
dynamically decide whether to trade writes for reads.
• We present four alternative implementations to incorporate

persistent memory into the processing stack of a query pro-
cessor (Section 3.2). The implementations conform to our
proposed API and adhere to a common abstraction. They
have been selected to showcase the duality of persistent mem-
ory as a non-volatile storage medium with performance char-
acteristics close to volatile memory.
• We experimentally evaluate our algorithms and implementa-

tion alternatives in a variety of scenarios (Section 4). Our
results show that it is indeed possible to have efficient sort
and join algorithms that minimize the number of write oper-
ations without compromising performance. Our results also
quantify the impact of implementations on performance and
point out the subtleties in incorporating persistent memory in
the data processing stack.

Finally, we present related work in Section 5 and conclude and
identify future work directions in Section 6.

2. ALGORITHMIC FRAMEWORK
Our algorithms are based on trading writes for reads. There are

two classes of algorithms. In the first class the computation is split
into two parts: (a) a write-incurring part; and (b) a write-limited
part that performs minimal writes. Such algorithms allocate differ-
ent portions of the input to the write-incurring and the write-limited
parts. The portion allocation can be either informed, through a cost
model that minimizes the total I/O cost; or user-driven, allowing the
user to set the write intensity of the algorithm. The second class of
algorithms is based on lazy processing. Lazy algorithms keep track
of the penalty being paid by performing extra reads and the man-
ifested savings. Once the penalty plus the cost of generating an
intermediate result exceed the savings, the algorithms generate the
intermediate result and revert to being lazy.

Throughout the presentation we assume that persistent memory
I/O takes place in units we term buffers. Though persistent memory
is byte-addressable, most systems will perform I/O in larger chunks
to amortize costs. These chunks are not as big as standard database
pages (i.e., four or eight kilobytes) but are equal to some small mul-
tiple of the word size. Typically, they will be equal to the cacheline
size (i.e., 64 or 128 bytes). Reading a chunk costs r cost units,
while writing it costs w units; λ = w/r is the write/read cost ratio;
λ > 1. We will also be doing away with ceiling and floor functions.
Doing so, though not strictly correct mathematically, simplifies the
analysis: as the buffer size is small, the error margin in omitting

floor and ceiling functions is quite small too. We will start with
sorting before expanding to join processing.

2.1 Sorting algorithms

2.1.1 Segment sort
The starting point is traditional external mergesort. External

mergesort proceeds by splitting the input into chunks that fit in
main memory, using an in-memory algorithm to sort the values in
the chunk, and then writing the sorted chunks to disk as a run. Runs
are then merged in passes to produce the sorted output. The number
of merging passes is dictated by the amount of available memory.
Assume there are M buffers available for sorting; for a relation T of
|T | buffers, the size of each run will be M for a total number of |T |/M

runs. During the merging phase we can have at most M runs open;
the number of merging passes will be equal to logM |T |. In each
merging pass the input will be fully read and written; the cost of
each pass will be r+w = r(1+λ ). The total cost of the algorithm
is then |T |r(1+λ )+ logM |T |r(1+λ )= |T |r(1+λ )(logM |T |+1).

Consider now a generalization of selection sort which, at a cost
of extra reads, writes each element of the input once at its final lo-
cation. For a memory budget of M buffers, this algorithm works
in multiple passes, generating a run during each pass. During the
first pass it scans the input to identify the M minimum values. This
can be achieved by maintaining a heap of values, e.g., a max-heap
when sorting in ascending order. For each value t ∈ T either: (a) t
is less than the current maximum, so the value belongs to the cur-
rent run; or (b) t is greater than or equal to the maximum, so the
value belongs to the next run. This is reminiscent of run generation
during external mergesort with replacement selection. When the
input is exhausted the contents of the heap are sorted and written.
When writing we keep track of the maximum element and its po-
sition in the input (which is recorded whenever the maximum heap
element is updated). During the next scan two more conditions
are added for an element to be inserted into the heap: (a) its value
must be greater than or equal to the maximum of the previous run;
and (b) its position must be greater than the position of the maxi-
mum element of the previous run. These conditions ensure there is
no overlap between runs. All subsequent iterations check all four
conditions before adding an element to a run. For an input T the
algorithm will perform |T ||T |/M read passes over the input and |T |
writes for a total cost of |T ||T |/Mr+ |T |w = r|T |(|T |/M+λ ).

Let us now combine the two algorithms into a new one, which
we term segment sort. Let x∈ (0,1) be the fraction of the input that
will be sorted using external mergesort; the remaining (1− x)% of
the input will be turned into a longer run using selection sort. We
call x the write intensity of the algorithm. The input is split into
two segments, each processed by a different algorithm. Runs will
be merged using the standard merging phase of external merge-
sort. We assume external mergesort will execute first though this
restriction can be easily lifted. Let us further assume that we will
materialize the output (though it may well not need be materialized
if it is to be pipelined to subsequent operators). The total cost Sh of
this algorithm will be dependent on x and will be given by Eq. 1.

Sh(x) =x|T |r(1+λ )+(1− x)|T |r ((1− x)|T |/M+λ )

+ |T |r(1+λ ) logM (x|T |/2M+1)
(1)

The first factor of the sum is the cost of generating the runs through
replacement selection in external mergesort; the second factor is the
cost of generating the longer run through selection sort; the third
factor is the cost of merging all runs assuming that external merge-
sort generates runs that are, on average, twice the amount of main
memory. To simplify the analysis assume that logM (x|T |/2M+1)≈
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logM (x|T |/2M), which is true for large values of |T |. After factoring
common terms the cost of the algorithm is given by Eq. 2.

Sh(x) =|T |r(x+λ )+ |T |2r/M(x2−2x+1)
+ |T |r(λ +1) logM (x|T |/2M)

(2)

Our aim is to minimize Sh(x); that is, Sh
x(x) = 0, or: |T |r+(2x−

2)|T |2r/M +
(λ+1)
lnM

1
x |T |r = 0; Factoring out |T |r and since |T |r 6= 0

we need to solve Eq. 3 for x.

2(x−1)
|T |
M

+
(λ +1)

lnM
1
x
= 0 (3)

The resulting quadratic equation has the two solutions given by
Eq. 4. The second solution is clearly negative, so the plus-sign
solution is the only admissible value for x.

x =
− lnM|T |±

√
lnM (lnM|T |2 +2|T |M lnM−λM2)

M lnM
(4)

Sanity checking. Apart from the second derivative Sh
xx(x) being

positive making this a minimum value, a few other constraints must
hold. Firstly, the square root in Eq. 4 must be positive, which, after
factorization, results in λ <

lnM|T |(|T |+2M)
M2 . Assume that |T |= βM

for some value β > 1. The inequality is rewritten as λ < β (β +
2) lnM which holds for all realistic values of λ . Secondly, x∈ (0,1)
must hold. For x > 0 to hold the numerator must be positive, so:

lnM|T |<
√

lnM
(
lnM|T |2 +2|T |M lnM−λM2

)
must hold. Both sides are positive so we square them:

ln2 M|T |< lnM
(

lnM|T |2 +2|T |M lnM−λM2
)

and, after simplification, the inequality holds if λ <
2lnM|T |

M . As-
suming again that |T |= βM we obtain that λ < 2β lnM must hold.
This is again true for most realistic values of λ , though it is a tighter
bound than before. Finally x < 1 must hold, which means that:√

lnM
(
lnM|T |2 +2|T |M lnM−λM2

)
< lnM(M+ |T |)

must be true. After squaring both sides and simplifying the result
is that λ >− lnM must hold, which is always true. From the above
we conclude that for the algorithm to be applicable λ < 2|T |/M lnM
must hold (obtained by substituting β with |T |/M).
Choosing segment algorithms and generalizing. We have so
far assumed that the first segment of the file is sorted using exter-
nal mergesort and the second using selection sort; this may well be
inversed. In terms of the chosen percentage it is likely that x will
be greater than 0.5; otherwise the quadratic contribution of the se-
lection sort scans will quickly surpass the savings due to avoiding
writes. One can devise a second version of segment sort that does
not minimize response time; rather, it does not surpass a specified
number of writes. If we set x to zero then external mergesort is not
executed at all and the algorithm performs the minimum number of
writes: as many as there are buffers in T . We can relax this mini-
mality requirement and allow a variable number of extra writes by
manually setting x. Roughly, each percentile of the input allocated
to external mergesort will result in corresponding extra writes: it
will need to be sorted using external mergesort, while the results of
the two sorted segments will need to be merged for the final output.

2.1.2 Hybrid sort
We introduce a variant of segment sort, shown in Algorithm 1,

that is reminiscent of hybrid hash join. The memory M is split

Algorithm 1: hybridSort(T,M)

input : Relation T to be sorted; memory M for the two regions; x
percentage of M to be allocated to the selection region

output: T ′, the sorted version of T

1 |Rs|= bxMc; |Rr |= M−|Rs|;
2 read |Rs |/|t| records into Rs and turn them into a max heap;
3 while t 6= null do
4 if t < Rs.max then
5 m = Rs.pop(); insert t into Rs; t = m;

6 if Rr .current.size()+Rr .next.size()< |Rr | then
7 insert t into Rs.current;
8 if Rr .current.size() = |Rr | then heapify(Rr .current) ;
9 else

10 n = Rr .current.pop(); write n to current run;
11 if t ≥ n then Rr .current.push(t) ;
12 else insert t into Rr .next ;
13 if Rr .current is empty then
14 close current run and start new run;
15 Rr .current = Rr .next; Rr .next = /0;
16 heapify(Rr .current);

17 sort Rs and write to output;
18 sort Rr .current and write to current run;
19 sort Rr .next and write to a new run;
20 merge all remaining runs;

into the selection region Rs and the replacement selection region
Rr. The selection region Rs is first filled up with input records and
turned into a max-heap, which will contain the smallest records of
the input. Once the selection region is full the rest of the input is
scanned. Each new record t ∈ T is inserted either into the selection
region or in the replacement selection region. Let m be the maxi-
mum in the Rs heap. If t ≤ m, then t is one of the smallest values
encountered so far. So we extract m from the Rs region and replace
it with t. We then insert m into the replacement selection region Rr.
If t > m it is inserted into the replacement selection region.

The replacement selection region Rr is organized as the two-heap
structure of external mergesort with replacement selection. Rr is
split into two parts: Rr.current for the current run and Rr.next for
the next run. Initially, the whole of the Rr region is allocated to
Rr.current and it is organized as a min-heap. New records to be in-
serted into the region go into Rr.current until the heap is full (i.e., it
occupies all its allotted space). From then on, for each new record t
to be inserted into Rr we pop the minimum value n from Rr.current
and place it in the current run. If t ≥ n it belongs to the current run
so we push it into Rr.current. If t < n then it belongs to the next
run, so we reduce the current run’s heap size by one element, in-
crease the space allocated to the next run by one element, and insert
t there. At some point Rr.current will be empty. We then: (a) close
the current run, (b) open a new run, (c) heapify the space allocated
to the next run, (d) turn that heap into the current heap, (e) set the
space allocated to the next run to zero, and (f) continue as before.

2.1.3 Lazy sort
The lazy sort algorithm is based on the second phase of seg-

ment sort. The optimal algorithm for write minimization is cycle
sort [10], which performs exactly one write for each element of the
input. However, it does not constrain the number of reads. Our
write-limited sort algorithms, given a budget of M buffers, contin-
uously scan the input to extract the next set of minimum values to
be appended to the output; each scan processes the entire input. An
alternative would be to extract not only the set of minimum values
from the input, but also the set of values that are necessary to pro-
duce the next set of minimum values. This is possible to achieve by
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Algorithm 2: lazySort(T,M)

input : Relation T to be sorted; memory M for the heap
output: T ′, the sorted version of T ; Ti is a potential intermediate result

1 n = 1; maxKey =>; maxPos =⊥;
2 while t 6= null do
3 clear M; t = first record of T ;
4 if n≥ b|T |λ/M(λ +1)c then materialize = true ;
5 p = 0;
6 while t 6= null do
7 if maxKey≤ t ≤M.max.val and p > maxPos then
8 top = M.pop(); insert (t, p) into M;
9 if materialize then append top.val to Ti ;

10 advance t; p++;

11 maxKey = M.max.val; maxKey = M.max.pos;
12 sort M and append to T ′;
13 if materialize then T = Ti; n = 0;
14 n++;

the lazySort() algorithm of Algorithm 2. The algorithm tracks the
current iteration (i.e., the number of full scans it has performed so
far), the benefit of not materializing the input for the next scan, and
the penalty it has paid by rescanning the input. In each iteration
the algorithm compares the cost of materializing the next input to
the cost of rescanning the current input. If the rescanning cost ex-
ceeds the materialization cost, then the algorithm materializes the
next input; else it proceeds as before. Let n be the current iteration;
up to this iteration, (n−1)M buffers have been extracted from the
input; during this iteration M further buffers from input T will be
extracted; thus, the remaining input is equal to |T | − nM buffers.
The cost of writing that is (|T |− nM)λ r. If it is not written, then
during the next iteration nM extra buffers will be read. Therefore,
the algorithm should materialize the input when Eq. 5 holds.

(|T |−nM)λ r ≤ nMr⇒ n = b|T |λ/M(λ +1)c (5)

This process is progressive: after materialization, n is recomputed
as |T | has changed; the algorithm then reverts to being lazy.

2.2 Join processing

2.2.1 Hybrid Grace-nested-loops join
Grace join and standard nested loops join can be straightfor-

wardly combined for equi-join processing. The computation is split
into two phases: a write-inducing phase based on Grace join and a
read-only phase based on nested loops. Given inputs T and V with
|T | ≤ |V |, let x be the percentage of T and y the percentage of V
that will be processed using Grace join. We are given a memory
budget of M buffers for the computation and assume that Grace
join is applicable, i.e., M >

√
f |T | where f is the increase in the

sizes of partitions due to building a hash table for them during the
second phase of Grace join. The number of partitions is |T |/M; λ is
the write to read ratio of the medium. The algorithm progresses as
follows. First, x|T | records are scanned and partitioned; let Tx ⊂ T
be that part, and T1−x = T − Tx be what remains. Similarly, y|V |
records are scanned and partitioned, where Vy corresponds to that
part of V and V1−y =V −Vy is what remains. The partitioned parts
of the inputs will be processed using Grace join, which means that
they will be scanned one more time, for a total of two reads and
one write per part of each input. Thus, the total cost of this phase is
2(rx|T |+ y|V |)+λ r(x|T |+ y|V |) = r(2+λ )(x|T |+ y|V |). In the
second phase we need to compute three partial join results for the
complete result: Tx ./V1−y, T1−x ./Vy, and T1−x ./V1−y. The first
partial join result can be piggybacked onto the Grace join compu-
tation. When processing partition p of T , we also scan V1−y. The
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Figure 2: Representation of the hybrid Grace-nested-loops join
cost function; a lighter shade denotes better performance

cost will be (rx|T |/M)(1− y)|V | since we iterate over the number
of partitions and each partition has size approximately equal to M.
The remaining two partial results are the equivalent of T1−x ./ V
for a cost of r(1− x)|T |+ r(1− x)|T |/M|V |, i.e., scanning T1−x and
performing block nested loops between T1−x and V with a block
size of M. The total cost Jh of the computation after factorization
and simplification is given by Eq. 6.

Jh(x,y) = r
(
(2+λ )(x|T |+ y|V |)
+(1− x)|T |+ |T ||V |/M(1− xy)

) (6)

Eq. 6 is parametrized on x and y; we want to minimize Jh(x,y)
under the constraints that x,y ∈ (0,1) and λ > 1. We compute the
first partial derivatives Jh

x (x,y) and Jh
y (x,y) and solve:

Jh
x (x,y) = 0⇒ r(2+λ )|T |− r|T |− r|T ||V |

M
y = 0

⇒ y = M/|V |(λ +1) = yh (7)

Jh
y (x,y) = 0⇒ r(2+λ )|V |− r|T ||V |

M
x

⇒ x = M/|T |(λ +2) = xh (8)

We now need the second derivatives to test the critical point. We
compute Jh

xx(x,y)= Jh
yy(x,y)= 0 and Jh

xy(x,y)= Jh
yx(x,y)= − r|T ||V |/M.

The result of the second derivative test yields Jh
xx(xh,yh)Jh

yy(xh,yh)−[
Jh

xy(xh,yh)
]2

=−(r|T ||V |/M)2 < 0, which means that the point (xh,yh)
is a saddle point and not an extremum. However, plotting the func-
tion is enough to indicate what happens around the saddle point and
thereby guide the choice of x and y. In Figure 2 we plot the cost
function as we vary x and y, and as the cardinality ratio between the
two inputs (|T |/|V |) and the write inefficiency of the medium scale.
We assume that |T | ≤ |V | and that M >

√
1.2|T |, i.e., Grace join is

applicable and a hash table for a partition is 20% larger than the par-
tition itself. The results are represented as heatmaps with a lighter
shade denoting a lower cost and thus better performance. We do not
show the actual value as it is irrelevant: we are more interested in
trends. The plots indicate certain heuristics for choosing x and y. If
the inputs are similarly sized and the medium is not too inefficient,
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Standard hash join Lazy hash join
iteration reads writes reads writes savings penalty

1 m(M+MT ) (m−1)(M+MT ) m(M+MT ) 0 (m−1)(M+MT )λ r 0
2 (m−1)(M+MT ) (m−2)(M+MT ) m(M+MT ) 0 (m−2)(M+MT )λ r (M+MT )r
3 (m−2)(M+MT ) (m−3)(M+MT ) m(M+MT ) 0 (m−3)(M+MT )λ r 2(M+MT )r

. . . . . . . . . . . . . . . . . . . . .
i (m− i+1)(M+MT ) (m− i)(M+MT ) m(M+MT ) 0 (m− i)(M+MT )λ r (i−1)(M+MT )r

Table 1: The progress of standard hash join compared to lazy hash join

then we are better off using large values for x and y, i.e., employ-
ing Grace join; this is intuitive as Grace join is more efficient than
nested loops. If the inputs have similar sizes then the decisive factor
is λ , the write to read ratio of the medium. As λ grows the advan-
tage shifts to nested loops. On the other hand, as the ratio between
input sizes changes, we can start gradually employing nested loops
as the evaluation algorithm. This can be proportional, e.g., moving
along the diagonal of each individual plot, i.e., x ≈ y, as shown in
the middle row of plots of Figure 2; alternatively, choosing values
in the bottom right triangular region of each plot, e.g., x+y = 1 and
x≥ y is a good rule of thumb.

2.2.2 Segmented Grace join
Let us now assume that we do not account for each input inde-

pendently, but instead operate at a partition level. Given a number
of partitions k we choose to materialize only some number x of
them and continuously iterate over the rest of the inputs to pro-
cess the remaining k− x partitions. The algorithm first scans both
inputs and offloads k partitions. Assuming inputs T and V with
|T | ≤ |V | and also assuming that our memory budget M is greater
then

√
f |T |, i.e., Grace join is applicable, then k = d|T |/Me. The

total cost Js of the algorithm is given by Eq. 9. The first two factors
account for Grace join. We scan the input to extract the x partitions;
we offload these partitions; and then read them back to process their
partial join. We therefore fully scan T and V and then write and
read x(|T |+ |V |)/k buffers, where |T |/k (resp. |V |/k) is the size of each
partition of T (resp. V ). The last factor is the cost of iterating over
both inputs k− x times to process the remaining partitions.

Js(x) = r(|T |+ |V |)+ rx(1+λ )

(
|T |+ |V |

k

)
+ r(k− x)(|T |+ |V |)

(9)

The cost is parametrized on x: the number of partitions that will be
written. After factoring common terms, Eq. 9 can be rewritten as:

Js(x) = r(|T |+ |V |)(1+ (λ +1)x/k+ k(1− x))

The cost of Grace join is r(|T |+ |V |)(λ + 2); this algorithm per-
forms better if 1+ (λ +1)x/k+ k(1− x)< λ +2 holds, or:

x <
(λ +1− k)k
λ +1− k2 (10)

Eq. 10 ensures that Segmented Grace join outperforms Grace join.
Regardless of outperforming Grace join, the choice of x is a knob
by which we alter the write intensity of the algorithm.

2.2.3 Lazy hash join
Given M memory buffers and two inputs T and V with |T |< |V |,

standard hash join computes the join in k= d|T |/Me iterations by par-
titioning the inputs in m partitions. During iteration i the algorithm
scans T and hashes each t ∈ T to identify its partition. If t belongs
to partition i, the algorithm puts it in an in-memory hash table. If t
belongs to any other partition it offloads it to the backing store. The

algorithm then scans V and hashes each v ∈ V to identify its par-
tition. If v belongs to partition i it is used to probe the in-memory
hash table; any matches are propagated to the output. If t does
not belong to partition i, it is offloaded to the backing store. The
algorithm iterates as above until both inputs are exhausted. Thus,
M buffers from T and MV = d|V |/ke buffers from V are eliminated
in each iteration. Assume now that the algorithm is lazy: when
it comes across a record that does not belong to the partition cur-
rently being processed, it does not write it back. Instead, it pays the
penalty of rescanning the input during the next iteration.

In Table 1 we show the progression of the lazy algorithm com-
pared to standard hash join. In each iteration the algorithm earns
savings; but doing so incurs a penalty during the next iteration. The
savings in each iteration are equal to the portion of the input that is
not written (hence the multiplication with λ r). The penalty is equal
to the portion of the input that would not have been read in com-
parison to standard hash join. The algorithm is better off as long as
the savings surpass the penalty. When the savings are less than the
penalty plus the cost of materializing the part of the input that will
be processed in the remaining iterations, the algorithm should ma-
terialize an intermediate input. Therefore, the iteration n at which
the penalty surpasses the savings is computed through Eq. 11.

nr > (k−n)λ r⇒ n > k/(λ +1)⇒ n = bk/(λ +1)c (11)

The process is progressive. The algorithm periodically materializes
intermediate inputs and then reverts to being lazy.

3. IMPLEMENTATION
Our implementation, shown in Figure 3, treats DRAM and per-

sistent memory as distinct levels of the memory hierarchy. Our
algorithms operate at the DRAM level and offload data to persis-
tent memory for later processing; thus, DRAM is the equivalent of
a bufferpool in a database system. Data is exchanged in cachelines
(termed buffers in the algorithmic framework) between the two lev-
els of memory. Our algorithms have a limited number of DRAM
cachelines for their operation. A thin abstract persistence layer
sits between DRAM and persistent memory to implement persistent
collections: sources and/or intermediate results that the algorithms
operate on. Persistent collections are organized in blocks that are
larger than cachelines to further amortize the persistent memory I/O
cost. However, the block size may well be equal to the cacheline
size if so desired. In what follows, we present the library support
needed for implementing our algorithms. We then focus on the
persistence layer and give four methods to instantiate it.

3.1 Library support
Abstract API definition. The premise of write-limited algorithms
is that some intermediate results need not be materialized but can
be reconstructed from primary inputs. Therefore, we define an API
to expose such opportunities to the runtime. Our only assumption
is that every collection within a computation has a unique identi-
fier. This can be enforced by the thin persistence layer of Figure 3.
The materialization of any collection is by default deferrable unless
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bufferpool
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persistent memory

cachelines
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Figure 3: Implementation overview: a thin persistence layer
sits between a traditional two-level hierarchy. The runtime al-
gorithms issue calls to the persistence layer, which in turn ap-
plies them on collections hosted in persistent memory.

specified otherwise by the programmer. Collections that must be
materialized are tagged as such when they are declared. We have a
special type of collection that is purely in-memory; such collections
are also tagged as such at declaration time. Our API has the follow-
ing calls: (a) split(T,n,Tl ,Th): split collection T at position n
into Tl and Th; (b) partition(T,h(),k,〈Ti〉,〈si〉= |T |/k): partition
collection T into k partitions T1 to Tk using h() as the partitioning
function; the size of each partition is expected to be s1 to sk respec-
tively; the last argument is optional and if omitted each partition is
expected to be of size |T |/k; (c) filter(T, p(), f ,Tp): filter collec-
tion T into Tp using predicate p() and expect the output to be of size
f |T | where f ∈ [0,1]; (d) merge(Tl ,Tr,m(),T ): merge collections
Tl and Tr into T using m() as the merging function. These primi-
tives are enough to implement write-limited algorithms and enable
the runtime to perform the optimizations we have described. This
is achieved by tracking collection sizes and read/write operations;
and dependencies across primary and deferred collections.

T partition
hash(x) mod 3

T0

T1

T2

V partition
hash(x) mod 3

V0

V1

V2

merge
T0⋈V0

merge
T1⋈V1

merge
T2⋈V2

S

Figure 4: Example control flow graph

Runtime support. To
track dependencies be-
tween collections we
employ a control flow
graph. The nodes of
the graph are either
collections or one of
the API calls. Edges
from collections to API
call nodes mean the
collection is the call’s
input; outgoing edges
from API call nodes to
collections mean the collection is an output. Each API call node
is annotated with call-specific parameters. When the collection is
accessed the runtime decides whether the collection should be ma-
terialized or not. Simply declaring a collection and how it is con-
structed does not materialize it; only access to a collection triggers
its potential materialization. Upon access, the runtime estimates the
number of reads and writes to construct the collection and decides
whether deferring materialization is cost-effective. To materialize
a collection we start from its oldest materialized ancestor and ap-
ply all the computations that construct it. The runtime enforces the
constraint that no input is fully scanned twice to materialize its out-
puts. For instance, consider a partition() operation where the
materialization of the first few output partitions is deferred. If upon
access to a subsequent partition the runtime decides to materialize

it, then it must decide to materialize or defer all remaining parti-
tions and materialize the selected ones while it scans the input.

An example control graph is shown in Figure 4. The graph cor-
responds to the segmented Grace join algorithm of Section 2.2.1.
Oval nodes are collections, while rectangular nodes are API calls.
If a collection node’s oval is filled, then this collection is tagged as
materialized. Empty collection nodes are deferred. In Figure 4 the
inputs T and V are materialized, as is S, the final output of the com-
putation. Inputs T and V pass through a partition() operation to
produce T0 − T2 and V0 −V2. Corresponding partitions are then
merged through partial joins, with each partial result appended to
S for the final output. Consider reconstructing V0: the runtime can
do so by walking the graph. V0 depends on V so it can be recon-
structed by partitioning V using function hash(x) mod 3, where
x ∈V . The estimated cost of the computation as it results from the
graph is r(|T |+ |V |)+ (w+ r)∑

2
i=0 (|Ti|+ |Vi|)+ |S|w. Factoring

out the output materialization cost, and assuming a ratio λ = w/r,
the decision of deferring materialization comes down to choosing
the number x of partitions to materialize. If we make the appropri-
ate substitutions then the expression is rewritten as Eq. 9.
Implementation and use of the API. The API calls and the con-
trol flow graph act as a blueprint of an algorithm. Each algorithm
manifests as a physical operator and is assigned an operator con-
text: an encapsulation of the information necessary to dynamically
optimize the operator. Collections accept an operator context as a
construction parameter. The C++ fragment in Listing 1 showcases
these properties. OpCtx is the operator context type. The API calls
are members of the operator context, which has two more methods:
assess() and produce(). Both methods accept as parameter the
identifier of a collection. The first method assesses the collection to
decide whether it should be materialized; the second method pro-
duces the collection. It does so by walking the control flow graph of
the operator, as we will shortly see. Collections can be queried on
their state (in-memory, materialized, or deferred). When a collec-
tion is opened the operator context assesses if the collection should
be materialized. If so, the context produces the collection.

enum c s t a t u s t { MEMORY, MATERIALIZED , DEFERRED } ;
c l a s s C o l l e c t i o n {
p r i v a t e :

s t d : : s t r i n g m name ; / / c o l l e c t i o n name
OpCtx* m ctx ; / / o p e r a t o r c o n t e x t
c s t a t u s t m s t a t u s ; / / c o l l e c t i o n s t a t u s

p u b l i c :
C o l l e c t i o n ( c o n s t s t d : : s t r i n g& name , OpCtx* c t x = 0 ,

c s t a t u s t s = DEFERRED ) ;
. . . } ;

void C o l l e c t i o n : : open ( ) {
i f ( m s t a t u s == DEFERRED && m ctx ) { m ctx−>a s s e s s ( name ) ; }
i f ( i s m a t e r i a l i z e d ( ) ) { m ctx−>produce ( name ) ; } }

Listing 1: Collection definition and access

Operators accept their context as a parameter when constructed.
They provide a standard iterator interface, as well as an evaluate()
method that records the control flow graph. This method is called
at construction time. The implementation of the method uses the
API calls presented earlier, with the additional argument of the op-
erator context. For example, the fragment of Listing 2 records the
graph of Figure 4. The SGJ class implements the algorithm as a
physical operator. Its evaluate() method sets up the workflow by
declaring the appropriate collections for the partitions; the opera-
tor’s context create name() method generates a unique identifier.
After declaring collections, evaluate() makes an API call to the
partition() primitive passing the hashing function (a reference
to the hash of() functor) and the rest of the required parameters.
Partitions are pairwise joined afterwards; this is done through an it-
eration and successive merge() calls. One of the parameters to the
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merge() call is the merging function. A functor implementing this
function is shown at the end of Listing 2. It overloads the C++ func-
tion symbol and expects the two input and one output collections as
parameters. The participating collections are opened so they can be
assessed by the operator context and produced if necessary. Then,
a hash table is built for the left collection and the right collection is
used to probe the hash table for matches (omitted in the code).
c l a s s O p e r a t o r {
p r o t e c t e d :

OpCtx* m ctx ; . . .
p u b l i c :

O p e r a t o r ( OpCtx* c tx , . . . ) : m ctx ( c t x ) , . . . {}
v i r t u a l vo id e v a l u a t e ( ) = 0 ;

} ;
c l a s s SGJ : p u b l i c O p e r a t o r { . . . } ;
void SGJ : : e v a l u a t e ( ) {

/ / a s s u m p t i o n : m l e f t and m r i g h t are t h e two i n p u t s ;
/ / m o u t p u t i s t h e o u t p u t c o l l e c t i o n
s t d : : v e c t o r<C o l l e c t i o n*> l p ; s t d : : v e c t o r<C o l l e c t i o n*> rp ;
f o r ( i n t i = 0 ; i < m p a r t i t i o n s ; i ++) {

l p . p u s h b a c k ( new C o l l e c t i o n ( m ctx−>c r e a t e n a m e ( ) ,
m ctx , DEFERRED ) ) ;

rp . p u s h b a c k ( new C o l l e c t i o n ( m ctx−>c r e a t e n a m e ( ) ,
m ctx , DEFERRED ) ) ; }

m ctx−>p a r t i t i o n ( m l e f t , h a s h o f ( m p a r t s ) , m pa r t s , l p ) ;
m ctx−>p a r t i t i o n ( m r i g h t , h a s h o f ( m p a r t s ) , m pa r t s , rp ) ;
f o r ( i n t i = 0 ; i < m p a r t i t i o n s ; i ++) {

m ctx−>merge (* l p [ i ] , * rp [ i ] , p a r t i t i o n j o i n ( ) , m ou tpu t ) ;
} }

c l a s s p a r t i t i o n j o i n {
void operator ( ) ( C o l l e c t i o n& l , C o l l e c t i o n& r , C o l l e c t i o n& s ) {

l . open ( ) ; r . open ( ) ; s . open ( ) ; / / a s s e s s and produce
/ / b u i l d a hash t a b l e f o r l
whi le ( r . n e x t ( ) ) {

/ / probe f o r matches and o u t p u t i n t o s
} } } ;

Listing 2: Example definition of an operator

Optimization. We track the accumulated numbers of reads and
writes per materialized collection during execution; and trigger ma-
terialization by using rules. For each materialized collection, the
system maintains a running sum of the number of read cachelines
for that collection. The sum is used to decide if it is cheaper to keep
a collection deferred and construct it on demand by (re)applying
operations; or it is cheaper to materialize it. Rules rely on detecting
patterns stemming from the write optimizations of the algorithms.
The rules are symbolically named and explained below:
(a) multi-process: if a collection is processed multiple times then

it is materialized only if the number of times it is processed
is greater than the write-to-read ratio; this rule applies to the
segmented and hybrid sort and join algorithms.

(b) eager-partition: if the system decides to materialize one of the
outputs of a partition() operation, then to amortize the write
time, all remaining results are materialized; this rule applies to
the segmented and hybrid join algorithms.

(c) process-to-append: intermediate results immediately appended
to another collection are always deferred.

(d) read-over-write: for a deferred collection, compare the cost,
Cm, of materializing it to the so-far accumulated read cost, Cr,
of its input, plus the read cost, Cc, for constructing it. If Cm ≤
Cr +Cc then the collection is materialized and deferred in any
other case; this rule applies to the lazy sort and join algorithms.

Consider assessing T0 in Figure 4. Deferring it saves |T |/3 writes at
the cost of |T | reads; if |T |< λ |T |/3 where λ is the write/read ratio,
T0 is deferred. When computing the partial join between T0 and V0
the runtime knows, through the reference from a collection to its
operator context, that T will be used to produce T0 by reapplying
the partitioning function. Moving on to T1, the runtime compares
2|T | to λ |T |/3 since we use the accumulated read cost for any mate-
rialized source. If 2|T |> λ |T |/3, then T1 is materialized. If so, then
under the eager-partition rule, the runtime materializes T2 as well.

Extensions. We presented the optimization of single operators.
However, it is possible to generalize the method to entire evaluation
plans, assuming that the operators are connected through interme-
diate result collections. We have not tested this here as we focus on
individual algorithms rather than on entire queries. Incorporating
such functionality is straightforward but left for future work.

3.2 Incorporating persistent memory
A salient decision to make when incorporating persistent mem-

ory into the programming stack is whether to treat it as part of the
filesystem, or as part of the memory subsystem. The first option
fully addresses the persistence aspects, but implies the traditional
boundary between main memory and secondary storage. The sec-
ond option makes persistent memory part of the memory hierarchy
treated as volatile; thus the system itself must guarantee persis-
tence. Our goal is not to answer the question of which option is
better. Rather, it is to showcase the performance of our algorithms
under each option. We tested our algorithms over four implemen-
tation techniques, each driven by one of these options.
RAM disk. The first approach is to employ a memory-mounted
filesystem. RAM disks are complete lightweight filesystems by-
passing disk-related overheads. A RAM disk does not provide per-
sistence between reboots, so it never incurs disk I/O; though it im-
plements persistence semantics as long as the filesystem is mounted
in main memory. A RAM disk bypasses the filesystem cache: writes
and reads are synchronous to the portion of main memory allocated
to the RAM disk. Persistent collections in this case are standard files
and they are manipulated using filesystem calls. In typical filesys-
tem fashion, files are organized in 512-byte records, which map to
the block abstraction of Figure 3. We can increase the block size in
the same way an operating system can increase the page size. This
is a middle-of-the-road approach to bridging the mismatch between
traditional block devices and byte-addressable persistent memory.
The utility of this implementation is in identifying the pros and
cons of using filesystem practices to access persistent memory.
Byte-addressable filesystem. The second implementation we
tested was a filesystem optimized for persistent memory. We used
Intel’s PMFS, the kernel-level filesystem extension available for the
GNU Linux kernel version 3.9 onwards.1 Another option would be
a filesystem like BPFS [5]. We decided to go for PMFS as it is a
kernel-level filesystem; BPFS is implemented in user space and that
carries additional overhead. Kernel-level filesystems are tightly in-
tegrated with the kernel and thus reduce the overhead of system
calls, while, at the same time, allow the filesystem to access kernel-
specific functionality. PMFS provides low-level fine-grained per-
sistence primitives and implements file-level access through CPU
load/store instructions, thereby minimizing overhead. Thus, PMFS
pushes the file abstraction to its limits; doing away not only with
operating system caching, but also with the block-level interface.
Dynamic arrays. The third option for a persistence layer is to
substitute the runtime’s memory allocator (e.g., malloc()) with
one that uses the non-volatile memory for allocations, as opposed
to the system’s heap (see e.g., [4] for an approach). This affects
the memory allocator, but not the way by which data structures al-
locate memory. The typical data structure to represent an expand-
able random-access collection of records is a dynamic array, or, in
C++ terms, a vector. C++ vectors have an initial capacity; when
that capacity is reached they allocate a memory chunk twice as big
as their current capacity; copy the elements over; and release the
memory they had previously occupied. The doubling of allocated
memory and, more importantly, the copying of elements over are

1Available at https://github.com/linux-pmfs.
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characteristic value
processor Intel Xeon E5420 (four cores)

clock speed 2.5GHz per core
I1 cache 32kB per core

D1 cache 32kB per core
L2 cache 2×6MB
memory 12GB DDR2, fully buffered

Table 2: Hardware performance characteristics

far from ideal for persistent memory as they incur a large number
of writes. This is, however, how dynamic arrays work in most run-
times (e.g., Java Vectors and ArrayLists operate similarly).
Blocked memory. Finally, we implemented the persistence layer
as a mix of the previous options. We kept the interface of a dynamic
array, but changed the memory profile of the array to a linked list of
memory blocks. Accessor methods over the list of blocks provide
byte addressability. Memory is allocated one block at a time with
no copying upon expansion. This is effectively an in-memory file
representation without the overhead of persistence, whether that is
provided by the memory allocator or a filesystem substrate. The
only overhead is reading from and writing to persistent memory.

4. EXPERIMENTAL STUDY
Implementation and hardware. We developed our algorithms
in C++ and used the language’s template mechanisms to eliminate
any artificial bloat associated with type genericity. This means that
for any data field access we do not perform function calls to re-
trieve values; we simply dereference a pointer, which aids the com-
piler and the runtime to better optimize the code and its execu-
tion. The code was compiled using g++ version 4.7.3 with the -O3
optimization flag for maximum code efficiency. We used the 3.9
GNU/Linux kernel, as the public version of PMFS is available for
that kernel source tree. Our hardware had the performance charac-
teristics summarized in Table 2. Even though we used a quad-core
CPU our implementation was single-threaded and did not make any
use of parallelism. Our tests did not perform any disk I/O apart
from the necessary for loading the data before processing (which
we have factored out in our reported timings). We tested block sizes
ranging from 512 bytes (the disk record size) to 8192 bytes. We
found an improvement in response time of 10% on average when
moving from 512 to 1024 bytes and insignificant improvements be-
yond that. We therefore report measurements for 1024-byte blocks.
Datasets and metrics. We developed a custom microbenchmark
of sort and join operations, as we wanted to test our techniques in
a controlled environment and not in the context of a full database
server with the intricacies and complexity it introduces. We used
a schema of ten eight-byte integer attributes for a total record size
of 80 bytes. The key attribute followed the key value permutation
of the Wisconsin benchmark [6]. The values of the remaining at-
tributes were computed based on the key attribute through integer
division and modulo computations. We instrumented the code to
report the response time, and the numbers of cacheline reads and
writes. For response time, we ran each operation ten times. We
report the average; variance was less than 0.1%.
Methodology. To simulate the read and write latencies of persis-
tent memory we followed the lead of the hardware community [24]
and injected artificial delays after read and write operations. We
did so at a cacheline granularity. To enforce the delay we used the
hardware counters to invoke an idle loop of as many clock ticks as
necessary for the desired latency. We used a 10ns read latency and
a 150ns write latency [22, 24]; we further experiment with different
latencies in the sensitivity analysis of Section 4.2.
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Figure 5: Sorting performance for varying memory sizes;
writes and reads in millions of cachelines
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Figure 6: Performance comparison of sorting algorithms under
the four different implementation alternatives

4.1 Performance analysis
We first compare the raw performance of the algorithms before

analyzing their sensitivity to parameter values. We will be doing so
for all four implementations and in a variety of settings.

4.1.1 Sorting
We start with an analysis of our sorting algorithms over a ten-

million-record input. The algorithms are summarized as follows:
(a) ExMS: standard external mergesort using replacement selec-
tion; (b) SegS: segment sort (Section 2.1.1); (c) HybS: hybrid sort
(Section 2.1.2); and (d) LaS: lazy sort (Section 2.1.3) We first tested
the impact of available main memory, as this affects the reduction
in the number of writes. We varied the amount of available memory
from 1% to 15% of the total input size. SegS is parametrized on
the percentage of the input that will be sorted using external merge-
sort; likewise, HybS is parametrized on the percentage of the main
memory that is used as the selection region. We call these percent-
ages the write intensity of each algorithm; the more write-intensive
the algorithm the better the performance, at the cost of extra writes.
Performance comparison. In Figure 5 we report the response
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time for each algorithm and in the bottom table we give the min-
imum and maximum number of writes for each algorithm, along
with the corresponding number of reads in parentheses. We fo-
cus on the blocked memory implementation as it had the minimal
overhead (though we will return to this point shortly). We plot the
response times of ExMS and LaS; and HybS and SegS for write
intensities of 20% and 80%; we will further analyze the impact of
write intensity in Section 4.2. We present the overall performance
of all algorithms and a zoomed in picture of the four best perform-
ing algorithms as LaS and HybS for a 20% write intensity are dis-
proportionately slow and make the performance differences of the
remaining algorithms harder to see. Naturally, performance im-
proves as more memory becomes available. Note that even though
ExMS is optimized for symmetric I/O, its write-limited competi-
tion outperforms it from the beginning. For a small write intensity
HybS and SegS incur about 35% fewer writes. As the write inten-
sity grows the algorithms perform at most 15% fewer writes. HybS
has comparable performance to ExMS; SegS outperforms HybS
by about 30% on average. LaS has the worst response time. It has,
however, the best write profile overall by performing about 50%
fewer writes than ExMS and up to 30% fewer writes than the best
version of SegS. Note also how the write-limited algorithms trade
writes for reads: as the number of writes decreases, the number of
reads increases. The exception is LaS which always performs ap-
proximately the same (and minimal) number of writes; the reduc-
tion in the number of reads is due to more memory being available
(and hence longer sorted chunks being generated).
Implementation comparison. In Figure 6 we show the overhead
of each implementation; each layer in the stack graph represents
additional overhead. The blocked memory approach bears the min-
imal overhead. Its only penalties are the write and read costs of per-
sistent memory. The PMFS implementation approximates the mini-
mal overhead. Exposing byte addressability to the filesystem seems
like a viable approach to introduce persistent memory functionality
in the processing stack. The next best performing implementation
is the RAM disk one. Even though it bypasses the caching overhead
of a filesystem, the remaining filesystem overheads and primarily
block-level access, suggest that introducing byte addressability at
the filesystem level is crucial in order to use filesystem abstrac-
tions for manipulating persistent collections. The worst-performing
implementation is the dynamic memory one. The reason is the
write/read asymmetry of the medium is not exposed. Even though
this implementation is still a main-memory based one, i.e., it ex-
hibits the same access overheads as blocked memory, its realloca-
tion and data copying to improve memory access patterns result in
excessive writes; this in turn hurts performance. Even for a not as
write-intensive an algorithm as SegS with a 20% write intensity,
the overhead of the dynamic array implementation may be up to
50% for low memory budgets; or go up to a factor of two for larger
memory sizes. While the order of the implementations by perfor-
mance merit is generally the same, there is one outlier: LaS. There,
the memory-based approaches are better than the ones based on a
filesystem. LaS bears the minimal number of writes. Thus, the
number of expansion operations of the dynamic array is minimal,
which in turn means that the write penalty is more-or-less amor-
tized as it is not paid as frequently.

4.1.2 Join processing
We computed the join between a one-million-record (left) input

and a ten-million-record (right) one. Each left input record joined
with ten right input records. The algorithms are abbreviated as:
(a) GJ: standard Grace join; (b) HJ: simple hash join; (c) NLJ:
nested loops join; (d) HybJ: hybrid Grace-nested-loops join (Sec-

tion 2.2.1); (e) SegJ: segmented Grace join (Section 2.2.2); and
(f) LaJ: lazy join (Section 2.2.3). HybJ and SegJ are annotated
with their write intensity. For HybJ this is the percentage of the
left and right inputs handled using Grace join; for SegJ this is the
percentage of the number of partitions materialized. For instance,
HybJ, 50% - 80% means that 50% of the left input and 80% of
the right input are handled using Grace join. The response time is
on the y-axis and it is plotted against the available memory on the
x-axis, which ranged from 1% to 15% of the left (smaller) input.
Performance comparison. We first compare the performance of
the two versions of HybJ and SegJ for a 50% write intensity across
the board; and the performance of LaJ; to NLJ, GJ and HJ in Fig-
ure 7(a). The write-limited algorithms quickly catch-up to GJ, the
best performing I/O-optimized solution, and outperform it as avail-
able memory grows. In Figure 7(b) we compare the performance
of HybJ to GJ. The performance of HybJ improves for different
combinations of write intensity for its left and write inputs. The
write intensity over the right input dictates performance: the more
write-intensive the processing of the right input, the quicker the al-
gorithm catches up with GJ for a given amount of memory. At the
same time, one can have reasonable performance at a low write in-
tensity over the right input. SegJ usually outperforms GJ and is
only suboptimal for a low write intensity or a low available mem-
ory size, as shown in Figure 7(c). Note the tradeoff between write
intensity and memory: we can obtain good performance at a low
write intensity provided we are willing to use more memory. Fi-
nally, we focus on LaJ, effectively a variant of HJ. As shown in
Figure 7(d) LaJ always outperforms HJ by up to a factor of three
for small memory sizes. Also, it converges much sooner to the
performance of GJ and surpasses it as available memory grows.

In the bottom table of Figure 7 we show the minimum and maxi-
mum cacheline writes of the algorithms, along with the correspond-
ing number of reads in parentheses. It is evident that the write-
limited algorithms perform fewer writes than the competition. At
the same time, there is a tradeoff between writes and reads. Con-
sider, for instance, an aggressive algorithm like SegJ at a low write
intensity like 20%: the number of reads for the maximum num-
ber of writes is about one order of magnitude higher than the cor-
responding figure for GJ. By reducing the number of writes by a
factor of two, however, the algorithm exhibits better performance
overall. This motif is evident for all write-limited algorithms: they
perform fewer writes than the competition, at times approximating
the minimal number of writes that a read-intensive algorithm like
NLJ guarantees. At the same time, however, they exhibit an in-
flated number of reads. But because of the write/read asymmetry
of the medium this discrepancy does not compromise performance.
Implementation comparison. The results for the algorithms of
Figure 7(a) and the four reference implementations are shown in
Figure 8. The blocked memory implementation again has the small-
est overhead, with the PMFS implementation closely following it.
The dynamic memory implementation exhibits the highest over-
head in the majority of cases, reaching up to a factor of two for
an algorithm optimized for symmetric I/O like GJ. In general, the
overheads of the alternative implementations over the blocked mem-
ory one are not always as high as was the case for sorting. For in-
stance, the overhead is minimal for the SegJ algorithm with a 50%
write intensity, or the LaJ algorithm as memory grows. This is not
true for HybJ and a 50% write intensity over each input where the
overhead rises to 50% for the dynamic array implementation.

4.2 Sensitivity analysis
We now analyze the sensitivity of the algorithms to their parame-

ters. We begin with the write intensity, which is effectively a ‘knob’
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(d) LaJ compared to HJ, GJ

HJ
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LaJ

GJ HJ NLJ HybJ, 20% - 80% HybJ, 50% - 50% HybJ, 80% - 20% SegJ, 20% SegJ, 50% SegJ, 80% LaJ

min writes (reads) 11.23 (11.31) 24.57 (25.14) 5.71 (97.71) 9.43 (39.54) 8.86 (21.78) 7.31 (68.46) 6.50 (44.90) 7.41 (34.86) 8.20 (29.03) 8.86 (42.14)
max writes (reads) 14.00 (14.57) 173.43 (174.00) 5.71 (677.71) 10.40 (62.54) 9.66 (29.71) 8.46 (217.89) 7.88 (158.40) 8.10 (95.38) 9.21 (33.57) 12.48 (149.89)

Figure 7: Performance of the join algorithms; writes and reads in millions of cachelines

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 1  2  3  4  5  6  7  8  9  10

re
s
p
o
n
s
e
 t
im

e
 (

s
)

memory size (MB)

GJ

dyn. array

RAM disk

PMFS

blocked memory

 0

 20

 40

 60

 80

 100

 120

 140

 160

 1  2  3  4  5  6  7  8  9  10

re
s
p
o
n
s
e
 t
im

e
 (

s
)

memory size (MB)

HJ

 20

 40

 60

 80

 100

 120

 140

 1  2  3  4  5  6  7  8  9  10

re
s
p
o
n
s
e
 t
im

e
 (

s
)

memory size (MB)

NLJ

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 1  2  3  4  5  6  7  8  9  10

re
s
p
o
n
s
e
 t
im

e
 (

s
)

memory size (MB)

HybJ, 50% - 50%

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1  2  3  4  5  6  7  8  9  10

re
s
p
o
n
s
e
 t
im

e
 (

s
)

memory size (MB)

SegJ, 50%

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 1  2  3  4  5  6  7  8  9  10

re
s
p
o
n
s
e
 t
im

e
 (

s
)

memory size (MB)

LaJ

dyn. array

RAM disk

PMFS

blocked memory

Figure 8: Performance comparison of join algorithms under
the four different implementation alternatives
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Figure 9: Impact of write-intensity on sorting algorithms

for specific algorithms. We then present the impact of the system-
wide write/read asymmetry and the effectiveness of our cost model.

4.2.1 Impact of write intensity
For some algorithms, write intensity is tunable: it can either be

chosen so that the algorithm is cost-optimal; or to bound the num-
ber of writes each algorithm performs with respect to its symmetric-
I/O counterpart. In Figure 9 we report the impact of write intensity
on the two sorting algorithms affected by this choice, i.e., SegS and
HybS. We report this impact on the four persistent memory imple-
mentations. The first conclusion is that the impact of write intensity
is not as high on SegS as it is on HybS. The write intensity of SegS
affects only the percentage of the input sorted using external merge-
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Figure 10: Impact of write-intensity on join algorithms

sort, with selection sort used for the rest of the input. This reduces
the number of writes overall, but does not result in larger gains as
intensity increases; SegS quickly reaches good performance at a
lower intensity. Write intensity has a more pronounced effect on
HybS. As write intensity grows, the performance of the algorithm
improves substantially by up to 45%; SegS is only improved by up
to 18%. Note the substantial overlap between the different algo-
rithms, their write intensity, and the choice of implementation. For
instance, for a low write intensity, even the worst implementation
of SegS beats HybS on performance.

Switching to join evaluation, in Figure 10 we show the impact
of write intensity on SegJ and HybJ, which are affected by this
choice. HybJ is parameterized on the write intensity over each in-
put individually. To aid presentation we keep the write intensity
over one input constant and scale write intensity over the other;
e.g., HybJ, 50% - x denotes a 50% write intensity over the left
input as we scale the write intensity over the right input. We report
only for the blocked memory implementation as it carries the low-
est overhead and to avoid cluttering the plots. The impact of write
intensity on SegJ is gradual, with each increment improving per-
formance up to about 20% in the end. For HybJ the determining
factor is the write intensity over the left input. The performance
for a fixed write intensity over the left input as write intensity over
the right input varies is relatively stable. But as the write inten-
sity of the left input grows, performance improves substantially to
a maximum gain of up to 50%. This is due to the write intensity of
the left input dictating the portion of the computation that will be
performed with nested loops, or, more specifically, the number of
full passes over the larger right input. The higher the intensity, the
smaller the number of passes; and the better the performance. Note
that a large write intensity is not necessary: a 50% write intensity
over the left input is enough to give good performance. As the left
input is the smaller one, this results in substantial write savings.

4.2.2 Impact of write/read ratio
Write-limited algorithms are designed for asymmetric write/read

costs. We measured the performance of the algorithms by varying
the write latency from 50ns to 200ns. We chose not to test different
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Figure 11: Impact of write latency on selected sorting (left) and
join (right) algorithms

read latencies as read performance of persistent memory is gener-
ally good and does not vary as widely—nor is it the major point we
address in this work. The performance of selected runs are shown
in Figure 11 for sorting and join algorithms (left and right plots
respectively). We report only for the blocked memory implementa-
tion as it carries the minimal overhead. We focus on no more than
a 50% write intensity to avoid further penalizing the write profile
of the algorithms. The write-limited algorithms are not adversely
affected by higher write latencies. Even though write latency in-
creases by up to 100% between successive points, the hit on per-
formance is no more than 5%. The results confirm the resilience of
our algorithms to write/read asymmetry.

4.2.3 Cost model validation
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We have so far focused
on the performance of write-
limited algorithms. For these
algorithms to be useful, how-
ever, they must be accompa-
nied by a cost model captur-
ing their performance. We
will now validate in a lim-
ited setting the cost expres-
sions of the write-limited al-
gorithms. We used the ten-
million-record sorting input and the one-million by ten-million-
record join computation as we varied memory for a fixed 150ns
write latency. We excluded the lazy algorithms, LaS and LaJ, from
this study as their decisions are dynamic rather than static. That is,
they monitor writes and reads and decide to materialize temporary
results during run-time; in contrast to an optimizer deciding the best
choice of algorithm at query compilation time. For each remaining
algorithm, for each sort and join benchmark, and for each mem-
ory increment we estimated the cost of the algorithm using the cost
expressions of Section 2, and ranked the algorithms according to
their estimated performance. We then executed the algorithms and
ranked them according to their true performance. We compared the
two rank orders using Kendall’s τ correlation coefficient [12]. The
latter captures the agreement between two different orderings of a
list of elements by looking at the concordant and discordant pairs
of ranks for the same element. The correlation coefficient is a num-
ber in [−1,1] with 1 denoting complete agreement; −1 denoting
complete disagreement; and 0 implying independence.

We report the correlation coefficient in Figure 12 as we scale the
amount of available memory as a percentage of the total input size
(for sorting) or the left input size (for join processing). We show
concordance for two cases per class of algorithm: if all algorithms
are included (i.e., algorithms optimized for symmetric I/O are used
too) or if we focus only on write-limited algorithms. There is al-
ways high concordance between the estimated rank and the true
rank. Concordance diverges as available memory grows since most
algorithms then have comparable performance, thereby increasing

the likelihood of a mistake. Concordance is higher for join pro-
cessing than sorting as there is greater variation in performance
and the cost expressions manage to differentiate between choices
more effectively. Focusing only on the write-limited algorithms
improves concordance for both sorting and join processing algo-
rithms. This is due to: (a) fewer rank combinations being possible,
and (b) the excluded algorithms always participating in groups of
similarly performing algorithms; both factors result in higher con-
cordance. Concordance is always above the 0.94 mark indicating
that the cost estimates truly capture the relative performance of the
algorithms and can be used as a solid basis for decision making.

4.3 Discussion
The results affirm that choosing algorithms or implementations

when incorporating persistent memory into the I/O stack is not
straightforward. It is a combination of various parameters and it
comes down to what we want to optimize for. The algorithms
do well in introducing write intensity and giving the developer, or
the runtime, a knob by which they can select whether to minimize
writes; or minimize response time; or both. It is also important that
the majority of algorithms converges to I/O-minimal behavior at a
low write intensity; e.g., SegS and SegJ approximate or outperform
their counterparts optimized for symmetric I/O from a 20% write
intensity onwards. This confirms that one can have write-limited
algorithms without compromising performance.

The cost models of the algorithms are necessary to choose an
algorithm in an informed way. But it is not only the cost models
that are important. The API of Section 3.1 is also conducive, as
it allows the developer to defer decision making at compile-time;
rather, decisions can be made at run-time. Perhaps even by opti-
mizing for different objectives at different times, making it possible
to autotune performance according to system-wide and potentially
evolving policies; in addition to boosting performance during de-
velopment if objectives are known a priori.

The results also suggest that one is better off using a memory
representation for collections that borrows aspects of blocked stor-
age and is not only optimized for main memory use. Consider
the dynamic array representation of collections, which is optimized
for main memory use by increasing spatial locality; and leveraging
temporal locality to maximize performance. While array expansion
in a main memory setting bears a one-off cost that is dwarfed by the
benefits of improved locality, this is no longer the case for persistent
memory and its asymmetric write/read costs. Thus, an implemen-
tation optimized for main memory is not the best choice for per-
sistent memory. Treating persistent memory as block-addressable
storage albeit mounted in main memory is not the best option ei-
ther as it introduces significant overhead. A persistent collection
implementation based on blocked memory shows the true potential
of the hardware and the algorithms as it effectively bears zero over-
head apart from the unavoidable penalties due to the write/read cost
asymmetry. Whereas an implementation over a byte-addressable
filesystem like PMFS gives the best of both worlds: true file-like
persistence over a byte-addressable substrate at a low overhead in
the majority of cases. It therefore makes sense to strive to optimize
such implementations and further reduce their overheads. This can
be achieved perhaps by additional hardware support, or better im-
plementations of primitives. The goal should be to reach the ideal
performance of blocked memory.

Finally, note that we studied asymmetry in terms of I/O response
time. Asymmetry, however, also manifests in terms of power con-
sumption [2]; or device degradation. Our algorithms are applicable
then as well and the relative gains may be higher as the asymmetry
is more pronounced under such metrics.
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5. RELATED WORK
With persistent memory only now starting to emerge as a stor-

age medium, related work in the area is rather limited. The clos-
est area of research is flash memory, which has received consider-
able attention. There has been a host of techniques on improving
the performance of the flash translation layer (FTL), which is the
part of the flash controller that provides logical-to-physical address
mapping, power-off recovery, and wear-leveling. Researchers have
studied the FTL algorithms [3] and proposed various improvements
on their performance based on block-level associativity [15], on-
chip caching [1], page-level lazy updates [18], or wear-leveling [11].
On the software side, research has focused on flash-specific buffer-
pool management schemes [14, 16, 20, 21], query evaluation tech-
niques [7, 19, 23], and logging [8]. This work, while relevant, does
not cater for byte addressability. The differences in block- vs. byte-
level access suggest that considerable effort will be necessary to
port these approaches to persistent memory.

In a database context, Chen et al. [2] explored how database al-
gorithms need to be changed in the presence of persistent memory.
They argued for a radical reimplementation of algorithms by elim-
inating data copying and using pointers to data in order to reduce
memory stores. Our stance is different: we argue that we are bet-
ter off limiting writes at a higher level. To that end we give ways
to limit writes at the system and developer levels by exposing the
workings of the algorithm through our API. The techniques of [2]
then become orthogonal and may further improve performance.

The systems community has also addressed the persistence as-
pects of persistent memory. Coburn et al. [4] look to support heap-
based allocation operations on non-volatile media; our abstraction
of persistent collections may certainly benefit from such allocation
primitives. Volos et al. [24] deal with the efficiency issues of sup-
porting persistence and argue for a lightweight approach; this is a
complementary issue to what we address here as it targets the per-
sistent memory controller rather than the software side of the sys-
tem. Finally, Condit et al. [5] discuss the intricacies of designing
a persistent byte-addressable filesystem; we have used similar con-
cepts in our implementation of persistent collections over PMFS.

6. CONCLUSIONS AND OUTLOOK
Persistent memory has the potential to become a universal stor-

age device. We addressed some of the issues involved in incorpo-
rating persistent memory into database query engine design. We
focused on two fundamental query evaluation operations, namely
sorting and join processing. We adapted these operations for per-
sistent memory and presented a family of write-limited algorithms
that either minimize I/O; or are tunable by the developer and/or
the system during run-time. We presented API and implementation
primitives that enable the seamless integration of persistent mem-
ory into the processing stack of database systems. We extensively
studied the performance of our proposals. Our results showed that
write-limited algorithms deliver on their promise and outperform
or, at worst, match the performance of traditional solutions.

One might extend this work to generalized algorithms (e.g., [9]);
or data structures (e.g., indexes); or operations (e.g., aggregation).
Alternatively, one might focus on persistent-memory-specific solu-
tions to support other aspects of database systems like transaction
processing and recovery. In this work, we have studied an inclusive
memory hierarchy where data is moved from persistent memory to
DRAM to be processed. It would be interesting to see the trade-
offs involved in using only persistent memory and doing away with
DRAM altogether. This becomes especially important if the latency
of persistent memory matches that of DRAM.
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