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ABSTRACT
Regret minimizing sets are a recent approach to representing a dataset
D by a small subsetR of sizer of representative data points. The
setR is chosen such that executing any top-1 query onR rather
thanD is minimally perceptible to any user. However, such a sub-
setR may not exist, even for modest sizes,r. In this paper, we in-
troduce the relaxation tok-regret minimizing sets, whereby a top-1
query onR returns a result imperceptibly close to the top-k onD.

We show that, in general, with or without the relaxation, this
problem is NP-hard. For the specific case of two dimensions, we
give an efficient dynamic programming, plane sweep algorithm
based on geometric duality to find an optimal solution. For ar-
bitrary dimension, we give an empirically effective, greedy, ran-
domized algorithm based on linear programming. With these al-
gorithms, we can find subsetsR of much smaller size that better
summarizeD, using small values ofk larger than1.

1. INTRODUCTION
For a user navigating a large dataset, the availability of a succinct

representative subset of the data points is crucial. For example,
consider Table 1,Dnba, a toy, but real, dataset consisting of the
top eight scoring NBA players from the2009 basketball season. A
user viewing this data would typically be curious which of these
eight players were “top of the class” that season. That is, heis
curious which few points best represent the entire dataset,without
his having to peruse it in entirety.

A well-established approach to representing a dataset is with the
skylineoperator [2] which returns all pareto-optimal points.1 The
intention of the skyline operator is to reduce the dataset down to
only those points that are guaranteed to best suit the preferences or
interests ofsomebody. If the toy dataset in Table 1 consisted only of
the attributespointsandrebounds, then the skyline would consist
only of the players Kevin Durant, Amare Stoudemire, and Zach
Randolph. So, these three players would represent well whatare
the most impressive combinations of point-scoring and rebounding
statistics. However, the skyline is a powerful summary operator

1Pareto-optimal points are those for which no other point is higher
ranked with respect to every attribute.
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id player name points rebs steals fouls

1 Kevin Durant 2472 623 112 171
2 LeBron James 2258 554 125 119
3 Dwyane Wade 2045 373 142 181
4 Dirk Nowitzki 2027 520 70 208
5 Kobe Bryant 1970 391 113 187
6 Carmelo Anthony 1943 454 88 225
7 Amare Stoudemire 1896 732 52 281
8 Zach Randolph 1681 950 80 226

Table 1:Dnba. Statistics for the top NBA point scorers from the
2009 regular season, courtesydatabasebasketball.com.
The top score in each statistic is bolded.

only on low dimensional datasets. Even for this toy example,ev-
erybodyis in the skyline if we consider all four attributes. In gen-
eral, there is no guarantee that the skyline is an especiallysuccinct
representation of a dataset.

1.1 Regret minimizing sets
A promising new alternative is theregret minimizing set, intro-

duced by Nanongkai et al. [18], which hybridizes the skylineopera-
tor with top-k queries. A top-k query takes as input a weight vector
w and scores each point by inner product withw, reporting thek
points with highest scores. For example, on weights〈.5, .5, 0, 0〉,
Randolph earns the highest normalized score (1681/2472 ∗ .5 +
950/950 ∗ .5 = 0.840), compared to Kevin Durant next (0.828)
and then Amare Stoudemire (0.769). So the top-2 query returns
Randolph and Durant.

To evaluate whether a subset effectively represents the entire
dataset well, Nanongkai et al. introduceregret ratio as the ratio
of how far from the best score in the dataset is the best score in
that subset. ForS = {Stoudemire,Durant}, the regret ratio on a
top-1 query〈.5, .5, 0, 0〉 is:

(0.840 − 0.828)/0.840 = 0.0143,

since the score for Randolph is the best in the dataset at0.840, and
the score for Durant is the best in the subset at0.828. Hence, a user
would be98.57% happy if executing that top-1 query onS rather
than all ofDnba.

Motivated to derive a succinct representation of a dataset,one
with fixed cardinality, Nanongkai et al. introduceregret minimizing
sets[18],2 posing the question, “Does there exist one set ofr points

2In [18], Nanongkai et al. call this ak-regret minimizing set, but we
instead refer to their concept as a1-regret minimizing set of sizer.
We explain this choice at the end of Section 2, when the rationale
will be clearer.
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normalized points scores for given weight vectors
id x y w0 = 〈1.00, 0.00〉 w1 = 〈0.72, 0.28〉 w2 = 〈0.52, 0.48〉 w3 = 〈0.32, 0.68〉 w4 = 〈0.00, 1.00〉

Durant 1.00 0.66 1.00 0.90 0.84 0.77 0.66
Stoudemire 0.77 0.77 0.77 0.77 0.77 0.77 0.77
Randolph 0.68 1.00 0.68 0.77 0.83 0.90 1.00
James 0.91 0.58 0.91 0.82 0.75 0.69 0.58

(a) The scores for the normalized Durant, Stoudemire, Randolph, and James points on five different weight vectors, each given in a separate column.

1-regret ratio 2-regret ratio
Set w0 w1 w2 w3 w4 max w0 w1 w2 w3 w4 max

{Durant} .00 max(0,0.90−0.90)
0.90

= .00 .00 .14 .34 .34 max(0,0.91−1.00)
0.91

= .00 .00 .00 .00 .14 .14

{Stoudemire} .23 max(0,0.90−0.77)
0.90

= .14 .08 .14 .23 .23 max(0,0.91−0.77)
0.91

= .15 .06 .07 .00 .00 .15

{Randolph} .32 max(0,0.90−0.77)
0.90

= .14 .00 .00 .00 .32 max(0,0.91−0.68)
0.91

= .25 .06 .00 .00 .00 .25

{Durant,Stou.} .00 max(0,0.90−0.90)
0.90

= .00 .00 .14 .23 .23

{Durant,Rand.} .00 max(0,0.90−0.90)
0.90

= .00 .00 .00 .00 .00

{Stou.,Rand.} .23 max(0,0.90−0.77)
0.90

= .14 .00 .00 .00 .23

(b) The1-regret and2-regret ratios computed on each of the five vectors in (a) for the size1 and size2 subsets with Durant, Stoudemire and/or Randolph.

Table 2: A small example of thekRMS problem. In (a), we show scores for five vectors on a few points from Table 1 that have been
normalized and, to simplify the example, projected on the first two attributes. In (b), we calculate the1-regret ratio and2-regret ratio for
some subsets of data points. The calculation from Definition2.2 is shown forw1 for 1RMS andw0 for 2RMS. (2RMS sets of size2 are not
shown because the example is small.) The size 12RMS solution,{Durant}, and1RMS solution,{Stoudemire}, differ.

that makes every user at leastx% happy (i.e., returns withinx% of
correct on any top-1 query)?”

As an example, takingr = 1 and projecting on just the at-
tributespointsandrebounds, Amare Stoudemire is the player clos-
est to the top-ranked choice on a worst case user weight vector (as
will be clear in the example of Table 2 that we go through in Sec-
tion 2). Still, however, he scores23% below Durant on the query
〈1.00, 0.00〉. This exposes a weakness of regret minimizing sets:
they are forced to fit a very rigid criterion for user satisfaction, that
a “happy” user is one who obtains his absolute top choice. How-
ever, for an analyst curious to know who is a high point-scoring
basketball player, is he really dissatisfied with the secondchoice,
LeBron James, as a query response rather than Durant?

In practice, one often does not get the theoretical top choice,
anyway. To change the scenario a bit, consider a dataset of hotels
and a user searching for one that suits his preferences. The absolute
top theoretical choice may not suit him especially well at all. It
could be fully booked. Or, he may have been dissatisfied when he
stayed there previously. For a user like him, the regret minimizing
set is rigidly constructed on an intangibly poor choice, even if that
choice was theoretically far superior.

To alleviate these problems, we soften the happiness criterion
to a second or third or fourth “best” point, smoothening out the
outliers in the dataset. As a result, on this small example, we can
select another player (Durant) and come within14% of everyone’s
second choice. More impressively, with just eight data points (from
the entire basketball dataset and six dimensions, not just the eight
players in Table 1 and two dimensions in this example), we can
be within 10% of everyone’s third choice, but only within30%
of everyone’s top choice. Thisk-regret minimizing setcan more
succinctly represent the entire dataset than just1-regret can.

1.2 Contributions
After introducingk-regret minimizing sets, we focus on two broad

questions: (how) can one compute ak-regret minimizing set? We

use a diverse toolkit to resolve these questions, includinggeometric
duality, plane sweep, dynamic programming, linear programming,
randomization, and reduction. In particular, we:

• generalizeregret ratio, a top-1 concept, tok-regret ratio, a
top-k concept, for quantifying how well a subset of a dataset
appeals to users (Section 2);

• resolve a conjecture by Nanongkai et al. [18], that finding
1-regret minimizing sets is an NP-hard problem, and extend
the result fork-regret minimizing sets (Section 3);

• introduce anO(n2r) plane sweep, dynamic programming
algorithm to compute the size-r k-regret minimizing subset
S of a two-dimensional datasetD for anyk (Section 4); and

• introduce a randomized greedy linear programming algorithm
for the NP-hard case of arbitrary dimension (Section 5) that
we show performs very well on experiments (Section 6).

2. K-REGRET MINIMIZING SETS
In this section, we give the definitions needed for this paper. The

definitions build towards our introduction ofk-regret ratio, a gen-
eralisation ofregret ratio[18], which measures how far from ak’th
“best” tuple is the “best” tuple in a subset. We conclude the section
with the statement of our problem,kRMS. Throughout, we use the
example in Table 2 to demonstrate application of these definitions.

To begin, we describe the basic notation, which is summarized
in Table 3. We assume a datasetD of n points ind dimensions,
with each dimension scaled to the range[0, 1]. We denote thei’th
point bypi and thej’th coordinate ofpi by pij . We are particularly
interested in evaluating a subsetR ⊆ D as an approximation toD.
We consider “linear scoring semantics” wherein a user specifies a
vector of real-valued attribute weights,w = 〈w0, . . . ,wd−1〉 and
a pointp ∈ D has a score onw: score(p,w) =

∑d−1
i=0 piwi. If

one breaks ties arbitrarily,D can be sorted with respect tow in
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symbol definition

D An input dataset
n |D|, the number of input points
d The number of dimensions
k The rank of a point on a given query
pi Thei’th point inD
pij Thej’th coordinate ofpi

R A subset ofD
r |R|, the number of elements inR
w A user weight vector
wi Thei’th weight vector in a set
wi Thei’th component of vectorw

D(k,w) Thek’th ranked point inD onw
R(k,w) Thek’th ranked point inR on w

Table 3: Notation commonly used throughout this paper

descending order of score, producing a list(D(1,w), . . . , D(n,w)).
That is to say, we denote byD(k,w) (or byR(k,w)) the pointp ∈ D
(or p ∈ R) with the k’th highest score, and refer to it as thek-
ranked point onw. From the example in Table 2,D(1,w1) is Durant,
since he has the highest score onw1 (.90) andD(2,w1) is James,
since he has the second highest score.

We now introduce the terms specific tok-regret minimizing sets.
First, for each vector of user weights,w, we define thekgain of a
subsetR ⊆ D, denotedkgain(R,w) as an alias forthe score of
thek-ranked point amongR:

DEFINITION 2.1 (kgain).

kgain(R,w) = score(R(k,w),w).

Returning to Table 2,2gain({Randolph, Stoudemire},w0) =
0.68, because Stoudemire is the second-ranked point in the set, and
2gain({James,Randolph, Stoudemire},w0) = 0.77, since the
score for James onw0 demotes Stoudemire to second-ranked.

We compare subsets ofD based on their1gain, relative to the
kgain of the original dataset. Givenw and a subsetR ⊆ D, we
define our distance metric for subsets, thek-regret ratioas follows:

DEFINITION 2.2 (k-REGRET RATIO). Given a subsetR ⊆ D
and a vector of weights,w, thek-regret ratio is:

k-regratio(R,w) =
max(0, kgain(D,w)− 1gain(R,w))

kgain(D,w)
.

Note that the ratio must fall in the range[0, 1]. The bottom part
of Table 2 shows the calculation ofk-regret ratios for different sub-
sets. As an example, the1-regret ratio of{Randolph,Stoudemire}
onw1 is 0.14 because the highest score in the dataset onw1 is 0.90
and the highest score among Randolph and Stoudemire is0.77. So
{Randolph,Stoudemire} is within (0.90−0.77)/0.90 of thek = 1-
ranked response tow1.

Our objective in this problem is to minimize the worst case; so,
we measure themaximumk-regret ratio for a subset, considering
all possible weight vectors,w ∈ [0, 1]d.

DEFINITION 2.3 (MAXIMUM k-REGRET RATIO). LetL denote
all vectors in[0, 1]d. Then themaximumk-regret ratiofor a subset
R ⊆ D is:

k-regratio(R) = supw∈Lk-regratio(R,w).

To finish the example in Table 2, we determine the maximumk-
regret ratio for each of the subsets by looking for the highest value

Figure 1: An example of the set cover problem. Choose at mostr
of the grocery bags above such that the union of allr grocery bags
contains everything in the five-item grocery list below.

among the five vectors. (We know that checking just these five
vectors is sufficient based on ideas we present in Section 4.)So,
the maximum1-regret ratio for the three singleton sets,{Durant},
{Stoudemire}, and{Randolph} is 0.34, 0.23, and0.32, respec-
tively, of which the value for{Stoudemire} is the smallest.

This brings us to the primary objective in this paper, to produce a
fixed-sizek-regret minimizing set. Given an integerr and a dataset
D, discover a subsetR ⊆ D of sizer that achieves the minimum
possible maximumk-regret ratio, as{Stoudemire} did above.

DEFINITION 2.4 (k-REGRET MINIMIZING SET). Ak-regret min-
imizing setof orderr on a datasetD is:

Rr,D = argminR⊆D,|R|=rk-regratio(R).

Problem Definition 1. [kRMS] Given a setD of n points ind
dimensions and an integerr, return ak-regret minimizing set of
sizer onD.

As a couple of final remarks, first note thatkRMS is a class of
problems, and each value ofk is a distinct problem. Ifk = 1, all
these definitions, including1RMS, reduce to analogous ones intro-
duced by Nanongkai et al. [18]. Finally, we merge two ideas, top-k
queries andk-regret minimizing sets, each of which usesk with
different meaning. Because top-k queries are the more established
and familiar field, we preserve their notation, replacing the use of
k in Nanongkai et al. [18] with the variabler.

3. REGRET MINIMIZATION IS HARD
We begin by resolving a conjecture by Nanongkai et al. [18] that

1RMS is hard.

THEOREM 1. 1RMS is NP-Hard.

We prove Theorem 1 by means of a reduction from the SET-
COVER decision problem. The SET-COVER decision problem is,
from a finite collection of subsetsT of a finite universeU , to de-
termine if one can selectr subsets fromT so that every element
of U is included. SET-COVER was shown to be NP-Complete by
Karp [11]. Note that in the following definition,P(U) denotes the
power set ofU .

Problem Definition 2. [SET-COVER] Given three inputs, a finite
universeU , a setT ⊆ P(U), and an integerr, is there a sizer
subsetS = {S0, . . . , Sr−1} of T such that

⋃
Si∈S

Si = U?
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id a b c d e

d0 1 0 0 0 0
d1 0 1 0 0 0
d2 0 0 1 0 0
d3 0 0 0 1 0
d4 0 0 0 0 1
p0 .2 0 0 0 0
p1 .2 .2 0 0 0
p2 .2 0 .2 .2 0
p3 0 .2 .2 0 0
p4 0 0 0 .2 .2
p5 0 0 0 0 .2

Table 4: An instance of 1RMS corresponding to the set cover prob-
lem in Figure 1. Each axis pointd0 to d4 corresponds to an el-
ement ofU and each mapped pointp0 to p5 corresponds to an
element ofT . Any subset ofr points with a maximum regret of
1 − 1/|U| = 0.8 is a solution to the original set cover problem. If
no such subset exists, no solution exists in Figure 1.

At a high level, we reduce an instance of SET-COVER=(U , T, r)
to an instance of 1RMS=(D, r) as follows. We constructD with
n = |U| + |T | points ind = |U| dimensions. The first|U| “axis”
points correspond to elements ofU and the last|T | “mapped” points
of D correspond to elements ofT . The coordinate values are cho-
sen appropriately, higher for axis points than for mapped points,
so that a 1RMS solution onD then maps back to a solution of the
SET-COVER problem.

The formal details follow shortly, but first we illustrate the reduc-
tion with an example of SET-COVER in Figure 1 and a correspond-
ing |U|-dimensional 1RMS instance in Table 4. For each element
of U , one creates a unique axis point (d0 to d4 in Table 4). For
example, “banana” becomesd1 = (0, 1, 0, 0, 0) and “eggplant”
becomesd4 = (0, 0, 0, 0, 1). For each subsetSi in T , one creates
an additional point (p0 to p5 in Table 4). Each coordinatepji is 0
if the j’th element is not inSi and is|U|−1 if it is. For example,
{banana, carrot} becomesp3 = (0, .2, .2, 0, 0). This forms the
dataset for 1RMS.

To be more precise, we build a reduction from the decision SET-
COVER problem defined in Problem Definition 2. Given an in-
stanceISC = (U , T, r) of SET-COVER, we produce an instance
IRMS = (D, r) of regret minimization as follows. For every el-
ementei ∈ U , construct anaxis pointdi = (d0i , . . . , d

|U|−1
i ),

wheredji = 1 if i = j anddji = 0 otherwise. For every element
Si ∈ T , construct amapped pointpi = (p0i , . . . , p

|U|−1
i ), where

pji = |U|−1 if the j’th element ofU is in Si andpji = 0 if it is not.
Let D be the set of all axis and mapped points so constructed. Let
IRMS be the instance of regret minimization produced withD and
the same value ofr as inISC. This completes the reduction, which
runs in polynomial time (Proposition 3.1).

PROPOSITION 3.1. The reduction from SET-COVER to 1RMS
takesO(|U|+ |T |) time for the construction ofIRMS.

PROOF OFTHEOREM1. We now use the reduction described
above to prove Theorem 1. We show that there are only three pos-
sible maximum regret ratios that can be produced by an instance
or 1RMS constructed with this reduction (Lemma 3.2), and a yes
or no decision forISC each corresponds exactly to those cases
(Lemma 3.3).

LEMMA 3.2. GivenIRMS = (D, r), any subsetR ⊆ D has
1-regratio(R) ∈ {0, 1, 1− d−1}.

PROOF. First, note that∀w, the top-ranked point is an axis point.
Precisely, ifj is the largest coordinate ofw, thenD(1,w) = dj ,
because∀pi ∈ D,

∑d−1
h=0 whp

h
i ≤ wj . (The coordinate values of

eachpi were chosen specifically to guarantee this condition.)
Second, note that for any subsetR ⊆ D, either 1) all axis points

are inR; or 2) ∃dj 6∈ R, wheredj is somej’th axis point. This
second case refines further: 2a)∃dj 6∈ R,∀pi ∈ R, pji = 0; and
2b) ∀dj 6∈ R,∃pi ∈ R with pji = d−1. We analyse each of the
three cases in order.

In case 1),1-regratio(R) = 0, because every top-ranked point
is an axis point, and every axis point is inR. In case 2a), letdj be an
axis point fulfilling the case condition. The weight vectorw formed
by setting thej’th coordinate to1 and every other coordinate to0,
establishes1-regratio(R,w) = 1, the maximum possible value
for a 1-regret ratio, so1-regratio(R) = 1. In the final case, 2b),
consider a weight vectorw that maximizes the expression1− w·pi

w·dj
,

for somedj 6∈ R. Clearly, thej’th coordinate ofw must have some
non-zero value,c, or elsew · dj = 0. But any non-zero value on
any other coordinate ofw can only increase the numerator without
increasing the denominator, since the denominator,w ·dj , has only
the one non-zero coordinate. So,w must be constructed as in case

2a). Then,1-regratio(R,w) = 1 −
cp

j
i

c
= 1 − d−1. So, in

conclusion, the maximum regret ratio must take on one of the three
values:{0, 1, 1− d−1}.

LEMMA 3.3. An instanceISC has a set cover of sizer if and
only if the corresponding instanceIRMS has a1-regret minimizing
set of sizer with 1-regret ratio< 1.

PROOF. Without loss of generality, assume that we do not have
a trivial case of set cover where eitherr ≥ |U| or ∃u ∈ U : ∀Si ∈
S, u 6∈ Si, since both cases are easily resolved in polynomial time.
Then:
If : Let R be a solution toIRMS with a 1-regret ratio of1 − d−1.
ThenISC has a set cover, namely the one containing the setSi for
every mapped pointpi and a setSh ∈ S containingj for each axis
pointdj ∈ R.
Only if : Assume that there is a set coverS of sizer onISC. Every
subsetSh ∈ S has a corresponding mapped pointpi ∈ D with
pji = d−1 for all j ∈ Sh. So, sinceS covers everyu ∈ U , then
for every dimensionj, somepi has a non-zeropji . The regret ratio
is maximized on the axes; so, the maximum regret ratio is at most
1 − d−1. But from Lemma 3.2, the only other possible value is0,
which corresponds to one of the trivial cases.

Therefore, we have built a correct polynomial-time reduction
from SET-COVER to 1RMS. This completes the proof of Theo-
rem 1.

To see an example of the case correspondence in Lemma 3.3,
take any two pointsp andp′ in Table 4. There will be somej’th
dimension not “covered” byp nor p′ and settingw identical todj
will produce a regret ratio of1. For p = p2 and p′ = p5, for
example,d1 is one such axis point. Notice, too, that there are no
two grocery bags in Fig. 1 that cover the grocery list. On the other
hand,R = p1, p3, p4 has a regret ratio of1 − d−1 = 0.8 and the
set{s1, s3, s4} in Fig. 1 covers the complete grocery list.

COROLLARY 3.4. kRMS is NP-Hard.

PROOFSKETCH. The reduction proceeds analogously to that of
Theorem 1, except that we createk axis points for every element of
U rather than just one. Then, the rank of every mapped point isk,
there is no benefit in selecting multiple copies of axis points, and
the other details of the proof remain the same.

392



4. A CONTOUR VIEW OF REGRET

Figure 2: An illustration of1RMS is dual space. Of the three dual
lines, (i, c), (h, b), and (g, a), it is (h, b) that has the minimum
maximum distance ratio with respect to the dotted, top-1 contour,
(i, e, a). Therefore, it is the best solution of size1. The maximum
ratio for (h, b) occurs on the positivey-axis, where it is given by
the length of(a, b) divided by the length of(O, b).

The previous section showed that it is NP-Hard to compute ak-
regret minimizing set in arbitrary dimension. Now, we focuson
the specific case of two dimensions, and offer an efficient, exact
algorithm, consequently implying thatkRMS∈P for the cased =
2. Figure 2 illustrates the main insight of this section, thatsolving
kRMS is equivalent to adual-spacegeometric problem of finding
a “convex chain,” like the black line in the figure, that is “closest”
to the “top-k rank contour,” the dotted line in the figure.

This section has two parts. In Section 4.1, we formally define
dual space, convex chains, top-k rank contours, and our meaning
of the term “closest.” In Section 4.2, we present the algorithm.

4.1 Convex chains and contours
Throughout Section 4, we will work in thedual spaceof [6].

That is to say, all points inD are transformed into lines in a set
L(D),3 as in Figure 3. For a pointpi ∈ D construct the lineli ∈
L(D) asp0ix + p1i y = 1, (or, in slope-intercept form,y = (1 −
p0ix)/p

1
i ).

For example, theStoudemirepoint (0.77, 0.77) in Figure 3, is
transformed into thedual line, y = 1.30 − x. Equivalently, this
transformation can be viewed as finding the line that is orthog-
onal to the vector〈0.77, 0.77〉 and passes through they-axis at
1/0.77 and through thex-axis at1/0.77. The three pointsDu-
rant, Stoudemire, andRandolphare all depicted in dual space in
Figure 2 as the lines(i, c), (h, b), and(g, a), respectively.4

An important property of this transform is that if two pointspi
andpj have the same score on a weight vectorw = 〈x, y〉, then
li andlj will intersect at the point(x, y). For example, in Table 2
it was shown thatStoudemireandRandolphhave the same score,
0.77, on weight vectorw1 = 〈0.72, 0.28〉. In Figure 2, the two
corresponding dual lines intersect at the pointf = (0.72, 0.28).

3WhenD is clear from the context we will useL to denoteL(D)
for notational convenience.
4Technically, these lines stretch infinitely in both directions, but
algorithmically we are only interested in the positive quadrant.

Figure 3: An illustration of the duality transform. TheStoudemire
point at (0.77, 0.77) is transformed into an orthogonal line with
equation0.77x + 0.77y = 1.0.

In dual space, the analog of a set of points is aconvex chainthat
begins on the positivex-axis and ends on the postivey-axis:

DEFINITION 4.1 (CONVEX CHAIN). A convex chainof sizer
is a sequence of line segments,(s0, . . . , sr−1), where the slope of
any segmentsi is negative and less than that ofsi+1, and any two
consecutive line segments have a common endpoint. We call the
endpoints of the line segments thejointsof the convex chain.

For example, in Figure 2,((h, f), (f, e)) and((i, d), (d, b)) are
both convex chains, although we are only interested in the second
example because the first does not end on they-axis. In contrast,
((g, e), (e, d), (d, b)) and((h, f), (e, a)) are not convex chains be-
cause the first isnot convexand the second isnot a chain.

The other important concept for this section, borrowed from[6],
is thetop-k rank contour, which models thek’th best score for any
weight vector:

DEFINITION 4.2 (TOP-k RANK CONTOUR [6]). Given a set
of linesL, the top-k rank contour, denotedCk, is the set of points
from eachli ∈ L such that for any pointp ∈ Ck, exactlyk−1 lines
in L cross the segment[O, p] (ties withstanding).

A top-k rank contour is a chain, but is not necessarily convex.
For example the top-1 contour in Figure 2 is the dotted chain,
((i, e), (e, a)). The second best scores, instead, are given by the
top-2 contour, the non-convex chain((h, f), (f, e), (e, d), (d, b)).
The top-k rank contour ofn lines can be found inO(n lgn) time [6].

We assess how “close” a convex chain is to the top-k rank con-
tour, because this is the same as asking how well the corresponding
set of points approximates the top-k choices inD. We explain
this by the example of Figure 2. First, consider the weight vector,
w0 = 〈1.0, 0.0〉. In this direction, theStoudemireline, (h, b), has a
promixity to the contour of|(i, h)|/|(O, h)| = 0.23. On the other
hand, theDurant line, (i, c), has a proximity of|(i, i)|/|(O, i)| =
0.00.

The proximity of the convex chain to the contour is the maximum
such ratio, considering all directions. Although theDurant line had
a distance ratio of0.00 in the direction ofw0 = 〈1.0, 0.0〉, it has a
maximumdistance ratio of|(a, c)|/|(O, c)| = 0.34 in the direction
of w4 = 〈0.0, 1.0〉; so, this is thedistanceof the chain((i, c)) from
the top-1 rank contour.

For contrast, the distance of theStoudemireline was already
maximized atw0 = 〈1.0, 0.0〉; so, the chain((h, b)) is closer to
the top-1 rank contour than((i, c)) and represents a better (in fact,
optimal)1RMS solution of size1.
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4.2 An algorithm for two dimensions
In this section, we present Algorithm 1 to find a convex chain of

sizer within L(D) whose maximum distance ratio from the top-k
rank contour is minimized. This gives thekRMS solution in primal
space. The algorithm is illustrated in Figure 4, continuingthe ex-
ample from Figure 2. We begin with a high-level description of the
algorithm in Section 4.2.1, then give more detail in Section4.2.2
by describing the data structure transitions.

4.2.1 Algorithm Description

Algorithm 1 Two-dimensionalkRMS algorithm

1: Input : D; r
2: Output : R ⊆ D, with |R| = r and minimumk-regret ratio
3: ComputeCk.
4: Transform set of pointsD into set of linesL.
5: SortL by ascendingx-intercept.
6: InitializeQ with intersection points of allli, li+1 ∈ L, sorted

by angle from positivex-axis.
7: Initialize P asn × r matrix, cell (i, j) has path (li) and cost

equal to the regret ratio ofli onw = 〈1.0, 0.0〉.
8: while Q is not emptydo
9: Pop top elementq off Q.

10: Update data structuresL,Q,P as per Section 4.2.2.
11: end while
12: Update each cell(i, r − 1) of P with cost at positivey-axis.
13: Find cell(i, r − 1) in P with lowest cost.
14: Init empty setR.
15: for all j on convex chain in cell(i, r − 1) do
16: Addpj toR
17: end for
18: RETURNR

At a high level, the algorithm is a radial plane sweep and dy-
namic programming algorithm, which traces out and evaluates the
possible convex chains inL. A sweep lineL rotates from the posi-
tivex-axis to the positivey-axis, stopping at any intersection points
(as seen left to right in the five subsequent columns of sub-figures
in Figure 4). WhileL rotates, we maintain a list of the best seen
solutions so far. At each intersection point, we check whether to
update our list of best seen solutions, then continue on. When L

reaches the positivey-axis (the far right in Figure 4), the best of the
best seen solutions is the final answer.

The plane sweep is achieved with two data structures: a sorted
list of L and a priority queueQ containingsomeof the unprocessed
joints of someof the convex chains. Meanwhile, of all convex
chains encountered up toL, the best seen solutions are maintained
in ann× r matrixP , the dynamic programming data structure.

The set of linesL is always sorted with respect to the distance
from the origin in the direction ofL. As L rotates,L needs to be
updated because the sort order changes. For example, just prior to
L in Figure 4k, the order of lines isDurant, Stoudemire, Randolph,
but just afterwards, the order ofStoudemireandRandolphflips.

The priority queueQ contains, sorted by increasing angle, inter-
section points that have been ‘discovered.’ An intersection point
of lines li, lj is discovered exactly whenli and lj are immediate
neighbours inL and their intersection point lies betweenL and the
positivey-axis. At the moment in Figure 4k, the second intersec-
tion point is discovered, because that is the first time that theRan-
dolphandDurant lines become neighbours. This discovery process
keeps the size ofQ smaller and avoids exhaustively searching all
n(n− 1)/2 intersection points.

Finally, the matrixP contains a cell(i, j) for the best convex
chain found up toL that ends in a segment ofli and contains no
more thanj joints. Stored in each cell is the convex chain itself
andthe maximum distance ratio of that convex chain from the top-
k rank contour,Ck. In Figure 4, the bottom row corresponds to
whereli is Randolph. In Figure 4k, cell(i, 0) will contain the cost
value0.32 and the chain((g, f)); cell (i, 1) will contain the cost
value0.23 and the chain((h, f), (f, f)).

4.2.2 Data structure transitions
The primary processing in the algorithm is in the data structure

transitions, which we describe now. LetL be at an arbitrary in-
tersection point of linesli and lj , denotedpi,j . For simplicity of
discussion, assume that only two lines intersect at any given point;
it is straight-forward to handle lines not in general position.

L

Because the lines are intersecting, we know they are immediately
adjacent inL. We swapli andlj in L to reflect the fact that imme-
diately afterpi,j , they will have opposite order as beforehand. In
Figure 4, this happens once for each column.

Q

Immediately afterpi,j , linesli andlj have been swapped inL. So,
potentially, two new intersection points are discovered: viz., li and
its new neighbour (should one exist) andlj and its new neighbour
(again, should one exist). Both these intersection points are added
to the appropriate place inQ, provided that they are betweenL and
the positivey-axis. The pointpi,j is removedQ. In the second
column of Figure 4, pointe is discovered and inserted. The other
intersection points,d andf , had been discovered at initialisation
(the first column).

P

Of the four paths,(li, li), (li, lj), (lj , li), (lj , lj), throughpi,j , only
three are valid. For example, consider pointd in Figure 4h. The
turn fromStoudemireontoDurant is concave, so the resultant chain
is invalid. However, the paths straight throughd, as well as the path
turning fromDurantontoStoudemireproduce valid convex chains.

To update the cost, it depends on the path chosen throughpi,j .
For a line transitting throughpi,j , such as(li, li), the convex chain
does not change, but the cost is updated to the larger of what the
value was before and the distance ratio ofpi,j relative toCk in the
direction ofL. For the convex chain that turns,(li, lj), the cost in
cell (j, h) depends on the best route to get topi,j . Specifically, the
best convex chain of sizeh to pi,j is either: 1) the chain incoming
on lj if the cost in cell(j, h) is smaller; or 2) the chain incoming
on li if the cost in cell(i, h − 1) is smaller. Call the smaller cost
mc. The cost for cell(j, h) then becomes the larger ofmc and the
distance ratio ofpi,j in the direction ofL.

For rowsi andj, each of the2r cells is updated in this manner.
If pi,j happens to be a vertex ofCk (such as in the middle column
of Figure 4), then every cell of every row is updated in this manner,
not just those of linesli andlj (as in the second and fourth columns
of Figure 4).

As a last quick note, we now show Lemma 4.1, which bounds
the running time and space requirements for Algorithm 1.

LEMMA 4.1. Algorithm 1 finds ak-regret minimizing set of size
r for d = 2 in O(rn2) time andO(n2) space.

PROOF SKETCH. The space comes from storing the dynamic
programming matrix,P , which is the largest of the three data struc-
tures. The running time is dominated either by updatingO(r) cells
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(a) Durant:.00, .00 (b) Durant:.00, .00 (c) Durant:.14, .14 (d) Durant:.34, .34

(e) Stoudemire:.23, .23 (f) Stoudemire:.23, .23 (g) Stoudemire:.23, .23 (h) Stoudemire:.23, .14 (i) Stoudemire:.23, .23

(j) Randolph:.32, .32 (k) Randolph:.32, .23 (l) Randolph:.32, .00 (m) Randolph:.32, .00

−−−−−−−−−−−−−−−→

Progression of algorithm

−−−−−−−−−−−−−−−→

Figure 4: An illustration of Algorithm 1 on the lines in Figure 2. There are fiveeventsin this example, the initialisation, three intersection
points, and termination, each depicted in a column and progressing chronologically towards the right. Each row from topto bottom shows
depicts chains ending on theDurant, Stoudemire, andRandolphlines, respectively. For each figure, the best interim solutions, one with0
joints and one with1 joint, are shown in bold (although in some cases, like (f), these are identical). Below each figure is shown thecostfor,
first, the0-joint solution and, second, the1-joint solution. In the final column (at termination), the best costs are underlined.

of P for each of the (up to)n(n − 1)/2 intersection points or by
updating allnr cells ofP for the up ton− 1 vertices ofCk.

5. A RANDOMIZED ALGORITHM FOR GEN-
ERAL DIMENSION

Having shown the hardness of regret minimization in Section3,
we know that one cannot aspire towards a fast, optimal algorithm
for kRMS in arbitrary dimension. However, we can still aim for a
fast algorithm to find sets withlow k-regret ratio; in this section,
we describe a randomized, greedykRMS algorithm that achieves
this goal.

After first recalling the1RMS algorithm of Nanongkai et al. [18],
we extend it for2RMS in Section 5.1. Then, we show how by in-
troducing random partitioning with repeated trials, we canproduce
an effectivekRMS algorithm for arbitraryk (Section 5.2).

Algorithm 2 is a simple yet effective greedy algorithm that ex-
pands an interim solutionR point-by-point with the local optimum.
For each interim solutionR, Linear Program 1 below is run on ev-
ery pointp ∈ D to find the one that is responsible for the current

maximum regret ratio. In the terminology of the previous section,
each iteration from1 < |R| ≤ r finds the point onC1 farthest from
R and adds that to the interim solution.

Linear Program 1 below finds, given an interim solutionR ⊆ D
and a pointp ∈ D, the weight vectorw that maximizes the1-regret
ratio ofR relative toR

⋃
{p}. The1-regret ratio is proportional to

x, which is upper-bounded in constraint (2).

L INEAR PROGRAM 1.

maximize x s.t. (1)

p · w − p′ · w ≥ x ∀p′ ∈ R (2)

wi ≥ 0 ∀0 ≤ i < d (3)

p · w = 1 (4)

x ≥ 0 (5)

To understand the algorithm, consider an example using the points
in Table 2. Initally,R is set to{Durant}, since he maximizes the
first attribute. We first execute Linear Program 1 with respect to
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Algorithm 2 Greedy algorithm to compute1RMS [18]

1: Input : D; r
2: Output : R ⊆ D, with |R| = r and low1-regret ratio
3: LetR = {pi ∈ D}, wherepi is a point inD with highestp0i .
4: while |R| < r do
5: Letq be firstp ∈ D.
6: for all p ∈ D \R do
7: Let maxregret(p) be result of Linear Program 1 with in-

putp,R.
8: if max regret(p)>max regret(q) then
9: Letq bep.

10: end if
11: end for
12: LetR = R

⋃
{q}.

13: end while
14: RETURNR

Stoudemire and find the positive, unit weight vectorw̃ that max-
imizes (0.77 − 1.00)w0 + (0.77 − 0.66)w1: it is at 〈0, 1〉 and
produces a difference in scores ofx = 0.11. The expression for
Randolph,(0.68−1.00)w0 +(1.00−0.66)w1 , is also maximized
at 〈0, 1〉, but withx = 0.34. For James, on the other hand, there is
no feasible region, because he is dominated by Durant. So, the it-
eration of the algorithm concludes by greedily adding Randolph to
R = {Durant}, since he produced the highest score ofx = 0.34.

5.1 Extending1RMS to 2RMS
To go from1RMS to 2RMS, one needs to find points not top-

ranked but2-ranked and measure regret ratio with respect to them.
Our 2RMS algorithm is largely unchanged from Algorithm 2 ex-
cept for invoking Linear Program 2 instead. Linear Program 2finds
a weight vectorw to maximizex, the regret ratio, and also deter-
mines withy in constraint (8) the amount by which the best point
in D \ R \ {p} outscoresp on w. So, if y > 0, thenp is at best
2-ranked and an eligible candidate to add toR. On Line (8) of Al-
gorithm 2, we specify an additional clause, thaty ≥ 0, to rule out
1-ranked points.

L INEAR PROGRAM 2.

maximize x− εy s.t. (6)

p · w − p′ · w ≥ x ∀p′ ∈ R (7)

p′′ · w − p · w ≤ y ∀p′′ ∈ D \R \ {p} (8)

wi ≥ 0 ∀0 ≤ i < d (9)

p · w = 1 (10)

x ≥ 0 (11)

y ≥ −ε (12)

Constraint (8) is of an existential nature; so, there may be more
than one point that outscoresp in the direction ofw, indicating that
p is not 2-ranked. But if some other pointp′′′ also outscoresp on
w, then eitherp′′ or p′′′ will better maximizex than doesp and be
chosen instead. Note that we includey in the objective function to
ensure it takes the minimum valid value, making the1-ranked case
distinctive. The really small, positive real,ε, dampens the effect of
y—we foremost wantx to be maximized, even when it is paired
with a largey.

To return to the example from before, consider again whenR =
{Durant} and we evaluatep = Stoudemire. As before, we max-
imize (0.77 − 1.00)w0 + (0.77 − 0.66)w1, the “distance” from
Stoudemire to the current regret minimizing set,R. But now, also,

w̃ must have a non-negative solution to(0.68−0.77)w0 +(1.00−
0.77)w1 or to (0.91 − 0.77)w0 + (0.58 − 0.77)w1; otherwise,
Stoudemire is the top-ranked point on the given query direction and
we are computing the regret ofR

⋃
{p} relative to the top-ranked

rather than second-ranked point. Stoudemire maximizesx = 0.11
at 〈0, 1〉, this time also minimzingy = 0. The feasible region of
Randolph, however, does not include〈0, 1〉, because both(0.77 −
0.68)w0+(0.77−1.00)w1 and(0.91−0.68)w0+(0.58−1.00)w1

are negative at〈0, 1〉. In fact, the feasible region is empty, because
Randolph is never simultaneously at best2nd-ranked and higher
ranked than Durant. Instead, Stoudemire is selected to augmentR.

5.2 Extending2RMS to kRMS

Algorithm 3 Greedy algorithm to computekRMS

1: Input : D; r; k; T
2: Output : R ⊆ D, with |R| = r and lowk-regret ratio
3: LetR = {pi ∈ D}, wherepi is point inD with highestp0i .
4: while |R| < r do
5: Letq be firstp ∈ D andw̃ = 〈0, . . . , 0〉.
6: for all p ∈ D \R do
7: for all i from 1 toT do
8: Randomly partitionD \R \ {p} intoD0, . . . , Dk−2

9: Let maxregret(p) be result of Linear Program 3 with
input p,R,D0, . . . , Dk−2.

10: if max regret(p) has allxj > 0 then
11: if max regret(p)>max regret(q) then
12: Letq bep andw̃ bew from Linear Program 3.
13: end if
14: Break inner loop and go to next point.
15: end if
16: end for
17: end for
18: LetS = {q} andw
19: for all p ∈ D \ R do
20: if p · w̃ ≥ q · w̃ then
21: LetS = S

⋃
{p}.

22: end if
23: end for
24: Lets be ‘best’ member ofS with heuristic of choice.
25: LetR = R

⋃
{s}.

26: end while
27: RETURNR

To solve the more generalkRMS problem, we make use of Propo-
sition 5.1 and randomness. The idea is that we decompose each
iteration of thekRMS problem into a set of2RMS problems and
optimize for a common solution.

PROPOSITION 5.1. If p = D(k,w), then there exists a partition-
ing ofD intoD0, . . . , Dk−2 such that∀Di, p = D

(2,w)
i .

To rephrase Proposition 5.1, ifp is k-ranked onD with respect
to w, then we can splitD into k − 1 partitions such thatp will be
2-ranked on every one with respect to the same weight vector,w.
The key is that the partitions must each contain exactly one of the
points higher ranked thanp.

Without knowing apriori the weights ofw, it is challenging (and,
we posit, an interesting open research direction) to construct such
a partitioning. A random partitioning, however, may successfully
separate the higher-ranked points into disjoint partitions and allow
us to findw with Linear Program 3. Of course, a random partition-
ing may very wellnot produce such a separation, but then Linear
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ID Name Source n d |Sky|

AI All-inclusives yvrdeals.com 425 2 10
BB Basketball databasebasketball.com 21961 5 200
EN El Nino archive.ics.uci.edu/ml/datasets/El+Nino 178080 5 1183
WE Weather cru.uea.ac.uk/cru/data/hrg/tmc/ 566262 13 16433
HH Household usa.ipums.org/usa/ 862967 6 69
AT Air Traffic kt.ijs.si/elena_ikonomovska/data 115069017 4 87

Table 5: Statistics for the six datasets used in these experiments.

Program 3 will report thatp is notk-ranked and we can keep trying
new random partitionings.

L INEAR PROGRAM 3.

maximize x− ε
∑

xj s.t. (13)

p · w − p′ · w ≥ x ∀p′ ∈ R (14)

p′′ · w − p · w ≤ xj ∀p′′ ∈ Dj , 0 ≤ j ≤ k − 2 (15)

wi ≥ 0 0 ≤ i < d (16)

p · w = 1 (17)

x ≥ 0 (18)

xj ≥ −ε 0 ≤ j ≤ k − 2 (19)

So, we have Algorithm 3 to solve thekRMS problem. It is sim-
ilar to Algorithm 2, except Linear Program 3 is executed several
times for each point, each after randomly partitioningD \R \ {p}.
If Linear Program 3 sets allxj > 0, its solution is optimal; if it
does not, either the partitioning was unlucky,R is still quite poor,
or p cannot contribute to improving the interimR. So, we try an-
other hopefully luckier partitioning until after a maximumnumber
of trials that is dependent onk. There is a probability of.1 that8
trials atk = 3 are all unlucky, for example. With Proposition 5.2,
we can bound the number of partitioning trials with high probabil-
ity; although, as will be evidenced in Section 6, ‘unluckiness’ is not
necessarily so costly, anyway.

PROPOSITION 5.2. If one repeatedly partitions intom parts a
datasetD with at leastm points of interest, the probability of not
obtaining a repetition in which each partition contains a point of
interest after3.16m

2m

m!m!
− 2.16mm

m!
trials is ≤ .1.

PROOF SKETCH. The probability comes from the Chebyshev
Inequality, given that the repeated partitioning is a Bernoulli Pro-
cess with chance of success≥ m!

mm .

To finish the running example, we use all the points in Table 1
(but normalized as before and now in all four dimensions). Let
R = {Durant} andk = 3 and consider the computation for the
point p = James. First, we partition the remaining points, say into
{{Anthony, James,Nowitzki},{Wade,Randolph,Bryant}}.
Next, we find the vector̃w that simultaneously solves2RMS on
each partition. This particular partitioning has no such vector, be-
cause James is not≥ 2nd-ranked on the first partition for any
vector on which he outranks Durant. So, the points are randomly
re-partitioned. Eventually, some random partitioning will separate
Wade andBryant, at which point James will be ranked third on the
weight vector〈0, 0, 0.75, 0.25〉, the vector for which he maximally
outranks Durant while still being ranked at best third. However,
ultimately, James will not be added toR on this iteration, because
Anthony produces a larger jump in solution quality on the weight
vector〈0, 0, 0, 1〉, one for which he is exactly third ranked.

Heuristics forkRMS. On a final note, once a maximal̃w is
discovered, there arek points inD that could be selected, for each
hask-regratio(p, w̃) = 0. Of these, we choose the point with the
largest sum of coordinates (line 24 of Algorithm 3). So, it can be
that distinct points produce the same final solution.

6. EXPERIMENTAL EVALUATION
In this section, we empirically compare1-regret ratio tok-regret

ratio for values ofk ≤ 4. To do this, we implement the algorithms
of Section 5 in C, using the MOSEK linear program (LP) solver,5

and then look at performance over six real datasets with respect to
solution qualityandexecution time. We also conduct an exploration
of the impact of randomization on the solution quality.

6.1 Datasets
We run experiments against six real datasets, summarized inTa-

ble 5, which range up to roughly100, 000, 000 points and up to13
dimensions. The all-inclusives (AI) dataset is the archetypal sky-
line dataset, trading off ratings and prices of hotels. The basketball
(BB) dataset contains points for each player/team/season combina-
tion for rebounds, assists, blocks, fouls, andpoints scored. The El
Nino (EN) dataset consists of oceanographic readings likesurface
temperatureandwind speed, taken at buoys placed in the Pacific
Ocean. And the household (HH) dataset contains US census data
for expenses such aselectricityandmortgage.

The two largest datasets are the Weather (WE) dataset, which
consists of average monthly precipitation totals and elevation at
over half a million sensor locations, and the Air Traffic (AT)dataset,
which gives distances and arrival delays for over one hundred mil-
lion American flights from 1987 to 2008.

For all six datasets, the attributes have been normalized tothe
range [0,1] by subtracting the smallest value and then dividing by
the range. Missing values have been replaced with the lowestvalue
found in the dataset. Non-skyline points have been pruned, because
they will never form part of any solution.

6.2 Experiment descriptions
Our experiments compare performance in terms of quality of so-

lution and execution time. Towards the former, we measure the
maximumk-regret ratio after1 ≤ r ≤ 50 tuples have been re-
ported. The purpose of this question is to determine how much
better a subset of sizer can approximate thek’th best tuples of an
entire dataset than it can the top-1 tuples. We evaluate execution
time by the average wall time (in milliseconds) of the LP subrou-
tine, which is the primary algorithmic difference for distinct values
of k. This is a more meaningful metric than the overall wall time,
because the difference between the cost of running the LPn times
and of running the entire algorithm depends primarily onT , the
number of partitioning trials, which is highly tunable.

5http://www.mosek.com
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(a)k-Regret Ratio vs.r, BB dataset.
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(b) k-Regret Ratio vs.r, EN dataset.
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(c) k-Regret Ratio vs.r, WE dataset.
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(d) k-Regret Ratio vs.r, AT dataset.

Figure 5:k-Regret ratio vs.r. A point on the plot shows thek-regret ratio (y-axis) achieved by ak-regret minimizing set of size|R| (x-axis).
Each series gives a value ofk.

We also run experiments to assess the effect of using random-
ness. Under a perfect partitioning, the LP will find a weight vector
w with maximalk-regret ratiox. However, due to the use of ran-
domness, it is is possible thatT repeated ‘unlucky’ trials leads to
missing this ideal solution, or even thatmT repeated ‘unlucky’ tri-
als leads to missing them best LP solutions. We ask what percent-
age of the dataset must be missed by ‘unlucky’ randomness before
losing 2.5% of the value ofx. This is a measure of how costly
unluckiness can be on the quality of the solution.

We run all these experiments on a machine with two 800MHz
cores and 1GB RAM, running Ubuntu 13.04. We set the number of
random trials,T , as per Proposition 5.2 (i.e., high enough to expect
a 90% success rate). Thus fork = 2, T = 1; for k = 3, T = 8;
and fork = 4, T = 54.

6.3 Discussion
We first discuss the results of the solution quality experiments in

Figure 5. On the AI dataset (not shown), for which we can compute
optimal solutions, we find the following sets returned for manual
comparison. Atk = 1, R = {(4.7,$1367/pp),(3.4,$847/pp),(4.6,
$1270/pp)}; atk = 2, the third element is instead (3.9, $1005/pp);
and atk ≥ 3, it requires only two resorts to satisfy every user. So,
the sets atk > 1 appear more diverse at constrained sizes.

That observation is mirrored in the plots of 5a, 5b, and 5d, which
plot k-regret ratio as a function of output size. We set thex-axis
range up to50 which is≥ 25% of the skyline of three datasets and
is sufficient to reduce thek-regret ratio to less than half a percent.
The exception is 5d, where thek-regret ratio can be reduced to0
with 10 to 24 points, depending on the value ofk. Also, we do not
showk-regret ratios on they-axis above10%, because90% is a
reasonable minimum expectation for accuracy. On the WE dataset

(5c), relative to the others, we see that even atk = 1, a low k-
regret ratio is achievable with onlyd output points, indicating that
there are fewer interesting query weights for this dataset.Across
the other three datasets (and the two not shown), we see a big jump
from k = 1 to k = 2, sometimes another jump fromk = 2 to
k = 3 (5a and 5d), and comparability betweenk = 3 andk = 4.

The initial differences can be quite substantial. On the BB dataset,
atk = 3 andk = 4, we achieve ak-regret ratio of.02 with a setR
about half the size as is required fork = 1. In contrast, on the WE
dataset, the performance is equal, on account ofk = 1 performing
much stronger than it does on other datasets. The conclusionis that
one can consistently achieve excellent dataset approximations by
increasingk > 1, often substantially better than atk = 1, and that
k = 2 andk = 3 produce the greatest relative dividends.

The plots in Fig. 6 show, as a function of output size, the average
execution time for a single run of the pertinent linear program (LP).
We vary they-axis, time, to the range of the specific plot so that
each series is easier to read. Thex-axis is again bounded byr ≤
50, except for 6d. We observe an anticipated jump in execution
time fromk = 1 to k = 2, given the additional constraints added
to Linear Program 2. However, upwards ofk = 2, the cost does
not increase much and the shape of the curves remains consistent.

Finally, the results on randomness are in Figure 7.The plotsshow,
as a function of output size, what percentage of the top100 sub-
optimal points produce a score close to optimal—characterizing
the cost of selecting a sub-optimal point. They-axis runs to its
maximal possible value,100%, in all plots and starts at the highest
value that still clearly shows all series for the specific plot. The
x-axis runs to50, except on the HH dataset (7c), where ak-regret
ratio of 0 is obtained byr = 20 for k = 1, and even earlier for the
other three values ofk. In all plots, we observe percentages that
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(a) Execution time vs.r, BB dataset.
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(b) Execution time vs.r, EN dataset.
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(c) Execution time vs.r, WE dataset.
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(d) Execution time vs.r, AT dataset.

Figure 6:Execution time vs.r. The wall time to run one instance of Linear Program 1 (in the case of1RMS) or Linear Program 3 (in the
case ofkRMS,k > 1), averaged over 1000 trials. Thex-axis gives|R| and they-axis gives milliseconds. Each series gives a value ofk.

are consistently high fork > 2. For example, atk = 3, for all
valuesr, over70% of the top100 points produce a score within
2.5% of optimal. Therefore, there is a very strong resilience to
“bad luck”: 70T trials must all fail in order to lose2.5%. The con-
clusion that we draw is that one can confidently lowerT (and thus
decrease running time) without incurring much loss in the quality
of the solution.

7. RELATED WORK
The idea to represent an entire dataset by a few representative

points for multi-criteria decision making has drawn much attention
in the past decade, since the introduce of the Skyline operator by
Börzsönyi et al. [2]. However, the susceptibility of the skyline op-
erator to the curse of dimensionality is well-known. Chan etal. [4]
made a compelling case for this, demonstrating that on the NBA
basketball dataset (as it was at the time), more than1 in 20 tuples
appear in the skyline in high dimensions. Consequently, there have
been numerous efforts to derive a representative subset of smaller
size (e.g., [3, 13, 23, 24]), especially one that presents very distinct
tuples (e.g., [8, 19]) or has a fixed size (e.g., [14,15,21]).

Regret minimizing sets are relatively new in the lineage of these
efforts. When introduced by Nanongkai et al. [18], the emphasis
was on proving that the maximum regret ratio is bounded by:

d− 1

(c− d+ 1)d−1 + d− 1
.

Naturally, this bound holds for the generalisation introduced in
this paper, sincek-regratio(R,w) ≤ (k − 1)-regratio(R,w). As
far as we know, this paper is the first to address computational ques-
tions aroundk-regret minimizing sets, certainly fork > 1.

Regret minimizing sets presuppose that linear top-k queries are
of interest, a class of queries that has been well studied andhas
been surveyed quite thoroughly by Ilyas et al. [10]. The use here
of duality is fairly common (e.g., [7, 12, 20]) as is the emphasis
on (layers of) lower envelopes (e.g., [5, 25]). Transforming points
into dual space in two dimensions often leads to the employment
of plane sweep algorithms [9] and the availability of many results
on arrangements of lines. For example, Agarwal et al. [1] give
bounds on the the number of edges and vertices that can exist in a
chain (such asCk) through an arrangement. The dual-space top-k
rank contours of Chester et al. [6], which were proposed to answer
monochromatic reverse top-k queries [22], are central to our two
dimensional algorithm. It is an interesting question whether dual-
ity can help in higher dimensions and also whether there exists a
strong connection between reverse top-k queries andk-regret min-
imization as the application of these results may imply.

Lastly, anytimeskyline algorithms can be halted mid-execution
and output a non-optimal solution [16]. Regret minimizing sets are
well suited to these interactive scenarios [17]; so, it is reasonable to
believe thatk-regret minimizing sets may be suitable as well.

8. CONCLUSIONS
The1-regret minimizing set is a nice alternative to the skyline as

a succinct representation of a dataset, but suffers from rigidly fitting
the top-1 for every query. We generalised the concept to that of
thek-regret minimizing set, which represents a dataset not by how
closely it approximates every users’ top-1 choice, but their top-
k choice. Doing so permits simultaneously achieving a lowerk-
regret ratio while making the representative subsets much smaller.

In the special case ofd = 2, we give an efficient, exact algorithm
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Figure 7: Q4)Score loss. For each valuer (thex-axis), they-axis gives the percentage of tuples producing scores on their own maximal
weight vector within2.5% of thek’th best score on the optimal maximal weight vector.

based on the dual space insight that thek-regret minimizing set cor-
responds to the convex chain closest to the top-k rank contour. The
algorithm uses dynamic programming and plane sweep to search
the space of convex chains. For general dimension, we first resolve
a conjecture that computing a1-regret minimizing set is NP-Hard
and extend the result tok-regret minimizing sets. Then, we give
a randomized, greedy algorithm based on linear programmingto
find a subset withlow k-regret ratio. In comparison to computing
subsets with low1-regret ratio, we show that its solution quality is
much stronger.
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