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ABSTRACT

Regret minimizing sets are a recent approach to repregemtiataset
D by a small subseR of sizer of representative data points. The
set R is chosen such that executing any tbtuery onR rather
than D is minimally perceptible to any user. However, such a sub-
set R may not exist, even for modest sizes,In this paper, we in-
troduce the relaxation te-regret minimizing sets, whereby a tap-
query onR returns a result imperceptibly close to the topn D.

We show that, in general, with or without the relaxationsthi
problem is NP-hard. For the specific case of two dimensioms, w
give an efficient dynamic programming, plane sweep algarith
based on geometric duality to find an optimal solution. Fer ar
bitrary dimension, we give an empirically effective, grgechn-
domized algorithm based on linear programming. With thése a
gorithms, we can find subsef$ of much smaller size that better
summarizeD, using small values of larger thant.

1. INTRODUCTION

For a user navigating a large dataset, the availability ofcaisct
representative subset of the data points is crucial. Fompla
consider Tabl€l1D..., a toy, but real, dataset consisting of the
top eight scoring NBA players from ti#09 basketball season. A
user viewing this data would typically be curious which oégk
eight players were “top of the class” that season. That isishe
curious which few points best represent the entire datasttout
his having to peruse it in entirety.

A well-established approach to representing a datasetlistie
skylineoperator [[2] which returns all pareto-optimal poiﬂté’.he
intention of the skyline operator is to reduce the datasemndim
only those points that are guaranteed to best suit the prefes or
interests osomebodylf the toy dataset in Tab[d 1 consisted only of
the attributegointsandrebounds then the skyline would consist
only of the players Kevin Durant, Amare Stoudemire, and Zach
Randolph. So, these three players would represent well areat
the most impressive combinations of point-scoring andweding
statistics. However, the skyline is a powerful summary afmr

!pareto-optimal points are those for which no other pointdsér
ranked with respect to every attribute.
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id player name | points rebs steals fouls
1 Kevin Durant 2472 623 112 171
2 LeBron James 2258 554 125 119
3 Dwyane Wade 2045 373 142 181

4 Dirk Nowitzki 2027 520 70 208
5 Kobe Bryant 1970 391 113 187
6 Carmelo Anthony | 1943 454 88 225
7 Amare Stoudemire 1896 732 52 281

8 Zach Randolph 1681 950 80 226

Table 1: D,.. Statistics for the top NBA point scorers from the
2009 regular season, courtegiat abasebasketball. com
The top score in each statistic is bolded.

only on low dimensional datasets. Even for this toy examgle,
erybodyis in the skyline if we consider all four attributes. In gen-
eral, there is no guarantee that the skyline is an espesiadlginct
representation of a dataset.

1.1 Regret minimizing sets

A promising new alternative is thegret minimizing setintro-
duced by Nanongkai et al. [1L8], which hybridizes the skybpera-
tor with top+ queries. A topk query takes as input a weight vector
w and scores each point by inner product withreporting thek
points with highest scores. For example, on weigHfis.5, 0, 0),
Randolph earns the highest normalized scaf81/2472 * .5 +
950/950 * .5 = 0.840), compared to Kevin Durant nexd.828)
and then Amare Stoudemir6.769). So the top2 query returns
Randolph and Durant.

To evaluate whether a subset effectively represents thesent
dataset well, Nanongkai et al. introducegret ratio as the ratio
of how far from the best score in the dataset is the best soore i
that subset. Faf = {Stoudemire, Durant}, the regret ratio on a
top-1 query(.5, .5,0,0) is:

(0.840 — 0.828)/0.840 = 0.0143,

since the score for Randolph is the best in the datage84®, and
the score for Durant is the best in the subsét&28. Hence, a user
would be98.57% happy if executing that top-query onsS rather
than all of Dypa.

Motivated to derive a succinct representation of a dataset,
with fixed cardinality, Nanongkai et al. introdugggret minimizing
sets[18][ posing the question, “Does there exist one setpdints

2In [[18], Nanongkai et al. call this k-regret minimizing sebut we
instead refer to their concept ag-@egret minimizing set of size.
We explain this choice at the end of Sectidn 2, when the raléon
will be clearer.


databasebasketball.com

normalized points scores for given weight vectors
id x y | wo = (1.00,0.00) | wi =(0.72,0.28) | wp = (0.52,0.48) | ws = (0.32,0.68) | ws = (0.00, 1.00)
Durant 1.00 0.66 1.00 0.90 0.84 0.77 0.66
Stoudemire 0.77 0.77 0.77 0.77 0.77 0.77 0.77
Randolph  0.68 1.00 0.68 0.77 0.83 0.90 1.00
James 091 0.58 0.91 0.82 0.75 0.69 0.58

(a) The scores for the normalized Durant, Stoudemire, Rphdand James points on five different weight vectors, ea@ngn a separate column.

1-regret ratio 2-regret ratio

Wo W1 Wy W3 Wy max ‘ Wo W1 Wy W3 Wy max

Set ‘

{Durang | .00 20090099 — o9 .00 .14 .34 .34 | 2=OI9L00 — o9 00 .00 .00 .14 .14
{Stoudemirg | .23 2000070 _ q4 08 .14 .23 .23 | 2x@O90T) _ 45 06 .07 .00 .00 .15
{Randolpy | .32 22009007 _ 14 00 .00 .00 .32 | 20917068 _ 95 06 .00 .00 .00 .25
{Durant,Stou} | .00 22090090 _ 69 00 .14 .23 .23 |

{Durant,Rand; | .00 220090090 — 6o .00 .00 .00 .00 |

{Stou.,Rang. | .23 220007 _ 14 00 .00 .00 .23 |

(b) Thel-regret and2-regret ratios computed on each of the five vectors in (a)feisizel and size2 subsets with Durant, Stoudemire and/or Randolph.

Table 2: A small example of theRMS problem. In (a), we show scores for five vectors on a femtsdirom Tabld 1L that have been
normalized and, to simplify the example, projected on the& fiwo attributes. In (b), we calculate theregret ratio an®-regret ratio for
some subsets of data points. The calculation from Defirf#i@ris shown fow; for IRMS andw, for 2RMS. 2RMS sets of siz& are not
shown because the example is small.) The si2RMS solution {Durant}, and1RMS solution,{ Stoudemir¢, differ.

that makes every user at least happy (i.e., returns within% of use a diverse toolkit to resolve these questions, inclug@unetric
correct on any tog-query)?” duality, plane sweep, dynamic programming, linear prognamg,

As an example, taking = 1 and projecting on just the at- randomization, and reduction. In particular, we:
tributespointsandrebounds Amare Stoudemire is the player clos-

est to the top-ranked choice on a worst case user weightrn@sto e generalizeregret ratiq a topd concept, tok-regret ratia a
will be clear in the example of Tablé 2 that we go through in-Sec top-k concept, for quantifying how well a subset of a dataset
tion[2). Still, however, he scoreé3% below Durant on the query appeals to users (Sectigh 2);

(1.00, 0.00). This exposes a weakness of regret minimizing sets:
they are forced to fit a very rigid criterion for user satisiac, that

a “happy” user is one who obtains his absolute top choice. -How
ever, for an analyst curious to know who is a high point-stpri

e resolve a conjecture by Nanongkai et al.|[18], that finding
1-regret minimizing sets is an NP-hard problem, and extend
the result fork-regret minimizing sets (Sectigh 3);

basketball player, is he really dissatisfied with the seadmuice, e introduce anO(n’r) plane sweep, dynamic programming
LeBron James, as a query response rather than Durant? algorithm to compute the size%-regret minimizing subset

In practice, one often does not get the theoretical top ehoic S of a two-dimensional datasé for any k (Sectiori%); and
anyway. To change the scenario a bit, consider a datasetesho
and a user searching for one that suits his preferences.iEotute e introduce a randomized greedy linear programming algarith
top theoretical choice may not suit him especially well &t &t for the NP-hard case of arbitrary dimension (Sedfibn 5) that
could be fully booked. Or, he may have been dissatisfied wieen h we show performs very well on experiments (Sedfibn 6).

stayed there previously. For a user like him, the regretmmiizing

set is rigidly constructed on an intangibly poor choice reifehat 2. K-REGRET MINIMIZING SETS

choice was theoretically far superior. . - In this section, we give the definitions needed for this papke
To alleviate these problems, we soften the happiness ioriter L . . . .
; ' N . definitions build towards our introduction éfregret ratio a gen-
to a second or third or fourth “best” point, smoothening d t o ) )
OV ' eralisation ofeegret ratio[[18], which measures how far fromkéth
outliers in the dataset. As a result, on this small exampkecan “pest” tuple is the “best” tuple in a subset. We conclude ttisn
select another player (Durant) and come wi  of everyone’s with the statement of our problerhRMS. Throughout, we use the

second_ choice. More impressively, \.N'th.JUSt e_|ght datat_m@fn_om example in Tablg]2 to demonstrate application of these diefisi.
the entire basketball dataset and six dimensions, nothesgight . . . ; L .
To begin, we describe the basic notation, which is summerize

players in Tablé1l and two dimensions in this example), we can in Table[3. We assume a datag@tof n points ind dimensions,

be within 10% of everyone’s third choice, but only withig0% . . - .,
of everyone’s top choice. Thik-regret minimizing setan more with each dimension scaled to the rarigel]. We denote the'th

. : ) point by p® and thej’th coordinate ofp’ by p;. We are particularly
succinctly represent the entire dataset thanfjegigret can. interested in evaluating a subseiC D as an approximation t.

. . We consider “linear scoring semantics” wherein a user fipsca

1.2 Contributions vector of real-valued attribute weights, = (Wo, ...,w,_1) and
After introducingk-regret minimizing setsve focus ontwo broad  a pointp € D has a score ow: score(p, W) = Zf;ol piW;. If
questions: (how) can one computé:-@egret minimizing set? We one breaks ties arbitrarilyp) can be sorted with respect  in
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symbol | definition

D An input dataset

n | D|, the number of input points

d The number of dimensions

k The rank of a point on a given query

Pt Thei'th pointin D

P! Thej'th coordinate ofp’

R A subset ofD

r |R|, the number of elements iR

w A user weight vector

w; Thei'th weight vector in a set

w; Thes’'th component of vectow
D¥W) | Thek'th ranked point inD onw
R¥W | Thek'th ranked point inR onw

Table 3: Notation commonly used throughout this paper

descending order of score, producing a (iBt*"), ..., D),

That is to say, we denote By (or by R***")) the pointp € D

(or p € R) with the k'th highest score, and refer to it as tke
ranked point orw. From the example in Tab[é 2(*'*1) is Durant,
since he has the highest scorewn (.90) and D) is James,
since he has the second highest score.

We now introduce the terms specifickeregret minimizing sets.
First, for each vector of user weights, we define thé:gain of a
subsetkR C D, denotedkgain(R,w) as an alias fothe score of
the k-ranked point amongR:

DEFINITION 2.1  (kgain).

(k;w)

kgain(R,w) = score(R""™" w).

Returning to TablEI2gain ({ Randolph, Stoudemire}, wy) =
0.68, because Stoudemire is the second-ranked point in themgkt, a
2gain({James, Randolph, Stoudemire},wo) = 0.77, since the
score for James om, demotes Stoudemire to second-ranked.

We compare subsets @ based on theit gain, relative to the
kgain of the original dataset. Givew and a subseR C D, we
define our distance metric for subsets, kheegret ratioas follows:

DEFINITION 2.2  (k-REGRET RATIO). Givenasubsek C D
and a vector of weightsy, the k-regret ratio is:
max(0, kgain(D, w) — 1gain(R,w))
kgain(D, w) '

k-regratio(R,w) =

Note that the ratio must fall in the ranf@ 1]. The bottom part
of Tablg2 shows the calculation bfregret ratios for different sub-
sets. As an example, theregret ratio of{ Randolph,Stoudemite
onw; is 0.14 because the highest score in the dataset0is 0.90
and the highest score among Randolph and Stoudentir@is So
{Randolph,Stoudemigds within (0.90—0.77) /0.90 of thek = 1-
ranked response ;.

Our objective in this problem is to minimize the worst casg; s
we measure thenaximumk-regret ratio for a subset, considering
all possible weight vectorsy € [0, 1]%.

DEFINITION 2.3
all vectors in[0, 1]*
RC Dis:

(MAXIMUM k-REGRET RATIO). Let[ denote
. Then themaximumk-regret ratidfor a subset
k-regratio(R) = sup,¢ s k-regratio( R, w).

To finish the example in Tablé 2, we determine the maxinkium
regret ratio for each of the subsets by looking for the highakie
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Figure 1: An example of the set cover problem. Choose at most
of the grocery bags above such that the union of gitocery bags
contains everything in the five-item grocery list below.

.

among the five vectors. (We know that checking just these five
vectors is sufficient based on ideas we present in Seltiolsd,)
the maximuml-regret ratio for the three singleton sef{Burant,
{Stoudemiré, and {Randolph} is 0.34, 0.23, and0.32, respec-
tively, of which the value fof Stoudemirg is the smallest.

This brings us to the primary objective in this paper, to picma
fixed-sizek-regret minimizing setGiven an integer and a dataset
D, discover a subse® C D of sizer that achieves the minimum
possible maximuni-regret ratio, ag Stoudemir¢ did above.

DEFINITION 2.4  (k-REGRET MINIMIZING SET). Ak-regret min-
imizing setof orderr on a datase is:

Rr.p = argmingc p | g, k-regratio(R).

Problem Definition 1. [kRMS] Given a setD of n points ind
dimensions and an integer return ak-regret minimizing set of
sizer on D.

As a couple of final remarks, first note tHeRMS is a class of
problems, and each value bfis a distinct problem. It = 1, all
these definitions, includingRMS, reduce to analogous ones intro-
duced by Nanongkai et al. [18]. Finally, we merge two ideaj;it
queries andc-regret minimizing sets, each of which usesvith
different meaning. Because tdpgueries are the more established
and familiar field, we preserve their notation, replacing tise of
k in Nanongkai et al[T18] with the variabte

3. REGRET MINIMIZATION IS HARD

We begin by resolving a conjecture by Nanongkai ef all. [181 th
1RMS is hard.

THEOREM 1. 1RMS is NP-Hard.

We prove Theorerh]1 by means of a reduction from the SET-
COVER decision problem. The SET-COVER decision problem is,
from a finite collection of subsetg of a finite universé/, to de-
termine if one can seleet subsets froni” so that every element
of U is included. SET-COVER was shown to be NP-Complete by
Karp [11]. Note that in the following definitior?(1/) denotes the
power set of/.

Problem Definition 2. [SET-COVER] Given three inputs, a finite
universel{, a setl’ C P(U), and an integer, is there a size:
subsetS = {So, ..., Sr—1} of T'such that g, . 5 Si = U?
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Table 4: An instance of 1IRMS corresponding to the set cowvas-pr
lem in Figure[l. Each axis poinl, to d4 corresponds to an el-
ement ofi/ and each mapped poipt to ps corresponds to an
element of7". Any subset ofr points with a maximum regret of
1—1/|U| = 0.8 is a solution to the original set cover problem. If
no such subset exists, no solution exists in Fiflire 1.

At a high level, we reduce an instance of SET-COVER:T, r)
to an instance of IRMS®, r) as follows. We construcb with
n = |U| + |T| points ind = |U| dimensions. The firgi{| “axis”
points correspond to elementdofind the lasfl’| “mapped” points
of D correspond to elements @f. The coordinate values are cho-
sen appropriately, higher for axis points than for mappeidtpp
so that a 1RMS solution o then maps back to a solution of the
SET-COVER problem.

The formal details follow shortly, but first we illustratestheduc-
tion with an example of SET-COVER in Figurk 1 and a correspond
ing [U|-dimensional 1RMS instance in Talile 4. For each element
of U, one creates a unique axis poiat (to d4 in Table[4). For
example, “banana” becomes = (0,1,0,0,0) and “eggplant”
becomesiy = (0,0,0,0,1). For each subsef; in T, one creates
an additional pointy to ps in Table[4). Each coordinate is 0
if the j'th element is not inS; and is|/|~" if it is. For example,
{banana, carrot} becomegps = (0,.2,.2,0,0). This forms the
dataset for IRMS.

To be more precise, we build a reduction from the decision-SET
COVER problem defined in Problem Definition 2. Given an in-
stanceZsc = (U, T,r) of SET-COVER, we produce an instance
Irms = (D, r) of regret minimization as follows. For every el-
emente; € U, construct amaxis pointd; = (d?,...,d"™"),
whered! = 1if i = j andd? = 0 otherwise. For every element
S; € T, construct anapped poinp; = (p?,...,p"!™"), where
pl = |U|~ " ifthe j'th element of/ is in S; andp! = 0 if it is not.

Let D be the set of all axis and mapped points so constructed. Let

Zrwms be the instance of regret minimization produced witland
the same value of as inZsc. This completes the reduction, which
runs in polynomial time (Propositidn 3.1).

PROPOSITION 3.1. The reduction from SET-COVER to 1IRMS
takesO(|U| + |7T'|) time for the construction dfrwus.

PrRoOF oFTHEOREM[. We now use the reduction described

above to prove Theoreld 1. We show that there are only three pos

sible maximum regret ratios that can be produced by an iostan
or 1RMS constructed with this reduction (Lemmal3.2), ands ye
or no decision forZsc each corresponds exactly to those cases

(Lemmd3.3).

LEMMA 3.2. GivenZrms = (D, r), any subseR C D has
l-regratio(R) € {0,1,1 —d ™ '}.
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PROOF First, note that'w, the top-ranked point is an axis point.
Precisely, if; is the largest coordinate of, then D" = 4,
becauseérp; € Dj:i;é wpp? < wj. (The coordinate values of
eachp; were chosen specifically to guarantee this condition.)

Second, note that for any subgetC D, either 1) all axis points
are inR; or 2)3d; ¢ R, whered; is somej’'th axis point. This
second case refines further: Z&); ¢ R,Vp; € R,p! = 0; and
2b)Vd; ¢ R,3p; € R with p{ = d~'. We analyse each of the
three cases in order.

In case 1)l-regratio(R) = 0, because every top-ranked point
is an axis point, and every axis pointisin In case 2a), lei; be an
axis point fulfilling the case condition. The weight vectoformed
by setting thej’th coordinate tol and every other coordinate €
established-regratio(R,w) = 1, the maximum possible value
for a 1-regret ratio, sd-regratio(R) = 1. In the final case, 2b),
consider a weight vectar that maximizes the expressian- XVVS; ,

for somed; ¢ R. Clearly, thej’th coordinate ofw must have some
non-zero valueg, or elsew - d; = 0. But any non-zero value on
any other coordinate aff can only increase the numerator without
increasing the denominator, since the denominatet];, has only
the one non-zero coordinate. Somust be constructed as in case

2a). Then,l-regratio( R, w) 1%L 1 _ g So, in
conclusion, the maximum regret ratio must take on one ofttreset
values:{0,1,1 —d™'}. O

LEMMA 3.3. An instanceZsc has a set cover of sizeif and
only if the corresponding instan@ s has al-regret minimizing
set of size with 1-regret ratio< 1.

PrROOF Without loss of generality, assume that we do not have
a trivial case of set cover where either> |U/| orJu € U : VS, €
S,u ¢ S;, since both cases are easily resolved in polynomial time.
Then:
If: Let R be a solution t&Zrys with a 1-regret ratio ofl — d—*.
ThenZsc has a set cover, namely the one containing the&Ssér
every mapped point; and a sef5;, € S containingj for each axis
pointd; € R.
Only if: Assume that there is a set covepf sizer onZsc. Every
subsetS;, € S has a corresponding mapped paite D with
pl = d~!forallj € S),. So, sinceS covers every € U, then
for every dimensiory, somep; has a non-zerp{. The regret ratio
is maximized on the axes; so, the maximum regret ratio is &t mo
1 —d~!. But from Lemmd3R, the only other possible valu@,s
which corresponds to one of the trivial case§l]

Therefore, we have built a correct polynomial-time redurcti
from SET-COVER to 1RMS. This completes the proof of Theo-
remd. O

To see an example of the case correspondence in Ldmra 3.3,
take any two pointg andp’ in Table[4. There will be somgth
dimension not “covered” by nor p’ and settingwv identical tod,
will produce a regret ratio of. Forp = p, andp’ = ps, for
example,d; is one such axis point. Notice, too, that there are no
two grocery bags in Fid] 1 that cover the grocery list. On ttheo
hand,R = p1,ps, p4 has a regret ratio of — d~* = 0.8 and the
set{s1, s3, s4} in Fig.[d covers the complete grocery list.

COROLLARY 3.4. kERMS is NP-Hard.

PROOFSKETCH. The reduction proceeds analogously to that of
Theorentl, except that we credtaxis points for every element of
U rather than just one. Then, the rank of every mapped poiat is
there is no benefit in selecting multiple copies of axis miand
the other details of the proof remain the same.



A CONTOUR VIEW OF REGRET

-- 1-contour (i, e, a)

— 1RMS solution
of size 1 (h, f, d, b)

O [

hg

Figure 2: An illustration oftRMS is dual space. Of the three dual
lines, (i,¢), (h,b), and(g,a), it is (h,b) that has the minimum
maximum distance ratio with respect to the dotted, tamntour,
(i,e,a). Therefore, it is the best solution of size The maximum
ratio for (h, b) occurs on the positivg-axis, where it is given by
the length of(a, b) divided by the length ofO, b).

The previous section showed that it is NP-Hard to compute a
regret minimizing set in arbitrary dimension. Now, we foaus
the specific case of two dimensions, and offer an efficieraciex
algorithm, consequently implying thARMSeP for the casel =
2. Figure2 illustrates the main insight of this section, thaiving
kRMS is equivalent to aual-spacegeometric problem of finding
a “convex chain,” like the black line in the figure, that isdskst”
to the “top+ rank contour,” the dotted line in the figure.

This section has two parts. In Sectionl4.1, we formally define
dual spaceconvex chainstop-k rank contours and our meaning
of the term “closest.” In Sectidn 4.2, we present the alganit

4.1 Convex chains and contours

Throughout Sectiohl4, we will work in theual spaceof [6].
That is to say, all points iD are transformed into lines in a set
£(D)H as in FigurdB. For a point; € D construct the liné; ¢
L(D) asplz + piy = 1, (or, in slope-intercept formy = (1 —
piz)/pi).

For example, thé&toudemirgpoint (0.77,0.77) in Figurel3, is
transformed into thelual ling y = 1.30 — z. Equivalently, this
transformation can be viewed as finding the line that is @tho
onal to the vector0.77,0.77) and passes through theaxis at
1/0.77 and through ther-axis at1/0.77. The three point®u-
rant, Stoudemire and Randolphare all depicted in dual space in
Figure[2 as the line§, ¢), (h, b), and(g, a), respectivelf]

An important property of this transform is that if two poinis
andp; have the same score on a weight vestoe= (z,y), then
I; andl; will intersect at the pointz, y). For example, in Tablgl 2
it was shown thaBtoudemireand Randolphhave the same score,
0.77, on weight vectomw; = (0.72,0.28). In Figure[2, the two
corresponding dual lines intersect at the pgint (0.72, 0.28).

3When D is clear from the context we will usé to denote£ (D)
for notational convenience.

“Technically, these lines stretch infinitely in both direas, but
algorithmically we are only interested in the positive qued.
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(0.00, 1.30)

(0.77,0.77)

0.77x + 0.77y = 1.00

(1.30, 0.00)

Figure 3: An illustration of the duality transform. TI8toudemire
point at(0.77,0.77) is transformed into an orthogonal line with
equation0.77x + 0.77y = 1.0.

In dual space, the analog of a set of points ®avex chairthat
begins on the positive-axis and ends on the postiyeaxis:

DEFINITION 4.1 (CONVEX CHAIN). A convex chairof sizer
is a sequence of line segmentsy, . .., s»—1), where the slope of
any segment; is negative and less than that of, 1, and any two
consecutive line segments have a common endpoint. We eall th
endpoints of the line segments fbits of the convex chain.

For example, in FigurglZ(k, f), (f,e)) and((z,d), (d, b)) are
both convex chains, although we are only interested in therse
example because the first does not end onytlagis. In contrast,
((g,e), (e,d), (d,b)) and((h, f), (e,a)) are not convex chains be-
cause the first inot convexand the second isot a chain

The other important concept for this section, borrowed ff6n
is thetop-k rank contour which models thé:’th best score for any
weight vector:

DEFINITION 4.2 (TOP-k RANK CONTOURJE]). Given a set
of lines L, thetop-k rank contouy denoted’y, is the set of points
from eachl; € £ such that for any poinp € Cy, exactlyk — 1 lines
in £ cross the segmeifD, p] (ties withstanding).

A top-k rank contour is a chain, but is not necessarily convex.
For example the top- contour in Figurd R is the dotted chain,
((,e), (e,a)). The second best scores, instead, are given by the
top-2 contour, the non-convex chaliith, f), (f,e), (e, d), (d,b)).
The top# rank contour of: lines can be found i) (n 1g n) time [6].

We assess how “close” a convex chain is to the tajnk con-
tour, because this is the same as asking how well the comdsmp
set of points approximates the tépehoices inD. We explain
this by the example of Figufd 2. First, consider the weiglttoe
wo = (1.0, 0.0). In this direction, theStoudemirdine, (h, b), has a
promixity to the contour of(¢, h)|/|(O, h)| = 0.23. On the other
hand, theDurantline, (i, ¢), has a proximity of(i,4)|/|(O, )| =
0.00.

The proximity of the convex chain to the contour is the maximu
such ratio, considering all directions. Although terantline had
a distance ratio 0f.00 in the direction ofwo = (1.0, 0.0), it has a
maximundistance ratio of(a, ¢)|/|(O, ¢)| = 0.34 in the direction
of wy = (0.0, 1.0); so, this is thelistanceof the chain((i, ¢)) from
the top4 rank contour.

For contrast, the distance of ttf&oudemireline was already
maximized atwo, = (1.0,0.0); so, the chair((h,b)) is closer to
the topd rank contour thari(4, ¢)) and represents a better (in fact,
optimal) IRMS solution of sizd.



4.2 An algorithm for two dimensions

In this section, we present Algorithnh 1 to find a convex chdin o
sizer within £(D) whose maximum distance ratio from the tbp-
rank contour is minimized. This gives th&MS solution in primal
space. The algorithm is illustrated in Figlide 4, continuting ex-
ample from Figurgl2. We begin with a high-level descriptidthe
algorithm in Sectiofi 4.2]1, then give more detail in Seddah2
by describing the data structure transitions.

4.2.1 Algorithm Description

Algorithm 1 Two-dimensionakRMS algorithm
s Input: D; r
: Output: R C D, with |R| = r and minimumk-regret ratio
: ComputeCy.
. Transform set of point® into set of lines..
. Sort£ by ascending:-intercept.
. Initialize Q with intersection points of all;, l;1 € L, sorted
by angle from positive:-axis.
: Initialize P asn x r matrix, cell (i, ) has path ) and cost
equal to the regret ratio @f onw = (1.0, 0.0).
while Q is not emptydo
Pop top element off Q.
Update data structurels Q, P as per Section 4.2.2.
end while
Update each ce(l, » — 1) of P with cost at positivey-axis.
Find cell(i, » — 1) in P with lowest cost.
Init empty setR.
for all j on convex chain in celli,» — 1) do
16: Addp;toR
17: end for
18: RETURNR

OB WNE

8:

9:
10:
11:
12:
13:
14:
15:

At a high level, the algorithm is a radial plane sweep and dy-
namic programming algorithm, which traces out and evatudie
possible convex chains ii. A sweep lineL rotates from the posi-
tive z-axis to the positive-axis, stopping at any intersection points
(as seen left to right in the five subsequent columns of sulyeiy
in Figure[4). WhileL rotates, we maintain a list of the best seen
solutions so far. At each intersection point, we check wieth
update our list of best seen solutions, then continue on. rvVhe
reaches the positivg-axis (the far right in Figurgl4), the best of the
best seen solutions is the final answer.

The plane sweep is achieved with two data structures: adsorte
list of £ and a priority queu® containingsomeof the unprocessed
joints of someof the convex chains. Meanwhile, of all convex
chains encountered up 19 the best seen solutions are maintained
in ann x r matrix P, the dynamic programming data structure.

The set of linesC is always sorted with respect to the distance
from the origin in the direction of. AsL rotates,L needs to be
updated because the sort order changes. For example, ijustqr
L in Figure[4K, the order of lines Burant, StoudemireRandolph
but just afterwards, the order 8toudemireandRandolphflips.

The priority queugd contains, sorted by increasing angle, inter-
section points that have been ‘discovered.” An intersactioint
of linesl;,; is discovered exactly wheh andl; are immediate
neighbours inC andtheir intersection point lies betwe&rand the
positive y-axis. At the moment in Figule %k, the second intersec-
tion point is discovered, because that is the first time thaR@an-
dolphandDurantlines become neighbours. This discovery process
keeps the size o smaller and avoids exhaustively searching all
n(n — 1)/2 intersection points.
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Finally, the matrixP contains a cell, j) for the best convex
chain found up td. that ends in a segment &f and contains no
more thanj joints. Stored in each cell is the convex chain itself
andthe maximum distance ratio of that convex chain from the top-
k rank contour,Cy. In Figure[4, the bottom row corresponds to
wherel; is Randolph. In Figurg4k, cefl, 0) will contain the cost
value 0.32 and the chair{(g, f)); cell (¢, 1) will contain the cost
value0.23 and the chairf(h, f), (f, f))-

4.2.2 Data structure transitions

The primary processing in the algorithm is in the data stmgct
transitions, which we describe now. Lktbe at an arbitrary in-
tersection point of lineg; andl;, denotedp; ;. For simplicity of
discussion, assume that only two lines intersect at anyngieént;
it is straight-forward to handle lines not in general pasiti

L

Because the lines are intersecting, we know they are imredglia
adjacent inC. We swapl; andl; in L to reflect the fact that imme-
diately afterp; ;, they will have opposite order as beforehand. In
Figure[4, this happens once for each column.

Q

Immediately aftep; ;, linesi; andi; have been swapped i So,
potentially, two new intersection points are discoverad:,V; and

its new neighbour (should one exist) ahdand its new neighbour
(again, should one exist). Both these intersection poirgseded
to the appropriate place @, provided that they are betweérand
the positivey-axis. The pointp; ; is removedQ. In the second
column of Figurd ¥, point is discovered and inserted. The other
intersection pointsd and f, had been discovered at initialisation
(the first column).

P

Of the four paths(l;, 1;), (I3,15), (15, 1:), (15,1;), throughp;_;, only
three are valid. For example, consider painn Figure[4h. The
turn fromStoudemirentoDurantis concave, so the resultant chain
is invalid. However, the paths straight througlas well as the path
turning fromDurant onto Stoudemirgoroduce valid convex chains.

To update the cost, it depends on the path chosen thrpugh
For a line transitting through;, ;, such agl;, l;), the convex chain
does not change, but the cost is updated to the larger of \what t
value was before and the distance ratigpgf relative toCy, in the
direction ofL. For the convex chain that turnd,, l;), the cost in
cell (4, h) depends on the best route to geptg. Specifically, the
best convex chain of sizeto p; ; is either: 1) the chain incoming
onl; if the cost in cell(j, k) is smaller; or 2) the chain incoming
onl; if the cost in cell(i, h — 1) is smaller. Call the smaller cost
mec. The cost for cellj, k) then becomes the larger ofc and the
distance ratio op;,; in the direction of_.

For rowsi andj, each of ther cells is updated in this manner.
If p;,; happens to be a vertex 6f (such as in the middle column
of Figure[4), then every cell of every row is updated in thiswmer,
not just those of lineg andl; (as in the second and fourth columns
of Figure[4).

As a last quick note, we now show Leminal4.1, which bounds
the running time and space requirements for Algoritihm 1.

LEMMA 4.1. Algorithmd finds &-regret minimizing set of size
rfor d = 21in O(rn?) time andO(n?) space.

PROOF SKETCH. The space comes from storing the dynamic
programming matrixP, which is the largest of the three data struc-
tures. The running time is dominated either by updatiig) cells
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Figure 4: An illustration of Algorithnill on the lines in Fige[2. There are fiveventsin this example, the initialisation, three intersection

points, and termination, each depicted in a column and pesgng chronologically towards the right. Each row from tofpottom shows
depicts chains ending on tizurant, StoudemireandRandolphlines, respectively. For each figure, the best interim gmhst one with0
joints and one with joint, are shown in bold (although in some cases, like (Bsthare identical). Below each figure is showndbstfor,
first, theO-joint solution and, second, tHejoint solution. In the final column (at termination), thesbeosts are underlined.

of P for each of the (up top(n — 1)/2 intersection points or by
updating allnr cells of P for the up ton — 1 vertices ofCy.

5. ARANDOMIZED ALGORITHM FOR GEN-
ERAL DIMENSION

Having shown the hardness of regret minimization in Se@jon
we know that one cannot aspire towards a fast, optimal dkguari
for kRMS in arbitrary dimension. However, we can still aim for a
fast algorithm to find sets witlow k-regret ratio; in this section,
we describe a randomized, greekRMS algorithm that achieves
this goal.

After first recalling thelRMS algorithm of Nanongkai et al. T118],
we extend it for2RMS in Sectiof 511. Then, we show how by in-
troducing random partitioning with repeated trials, we pasduce
an effectivekRMS algorithm for arbitrary: (Sectior 5.2).

Algorithm[2 is a simple yet effective greedy algorithm that e
pands an interim solutioR point-by-point with the local optimum.
For each interim solutio®, Linear Program 1 below is run on ev-
ery pointp € D to find the one that is responsible for the current
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maximum regret ratio. In the terminology of the previoustiess
each iteration froml < |R| < r finds the point or€; farthest from
R and adds that to the interim solution.

Linear Program 1 below finds, given an interim solutidrC D
and a poinp € D, the weight vectow that maximizes the-regret
ratio of R relative toR | J{p}. Thel-regret ratio is proportional to
x, which is upper-bounded in constraint (2).

LINEAR PROGRAM 1.

maximize x s.t. Q)
p-w—p -w>z Vp ER 2
w; >0 Y0<i<d (3)
p-w=1 (4)

x>0 (5)

To understand the algorithm, consider an example usingdimésp
in Table[2. Initally,R is set to{Durant}, since he maximizes the
first attribute. We first execute Linear Program 1 with respec



Algorithm 2 Greedy algorithm to computeRMS [18]

1: Input: D;r

2: Output: R C D, with |R| = r and low1-regret ratio

3: LetR = {p; € D}, wherep; is a point inD with highestp?.
4: while |R| < rdo

5: Letq befirstp € D.
6: forall pe D\ Rdo
7: Let maxregretp) be result of Linear Program 1 with in-
putp, R.
8: if maxregretp)>maxregretg) then
9: Letq bep.
10: end if
11:  end for
12:  LetR = R|U{q}-
13: end while
14: RETURNR

Stoudemire and find the positive, unit weight veciothat max-
imizes (0.77 — 1.00)wo + (0.77 — 0.66)w:: it is at (0, 1) and
produces a difference in scoresmof= 0.11. The expression for
Randolph,(0.68 — 1.00)wo + (1.00 — 0.66) w1 , is also maximized
at(0, 1), but withz = 0.34. For James, on the other hand, there is
no feasible region, because he is dominated by Durant. 8adt-th
eration of the algorithm concludes by greedily adding Répiuto

R = {Durant}, since he produced the highest score:6f 0.34.

5.1 Extending1RMS to 2RMS

To go from1RMS to 2RMS, one needs to find points not top-
ranked buR-ranked and measure regret ratio with respect to them.
Our 2RMS algorithm is largely unchanged from AlgoritHh 2 ex-
cept for invoking Linear Program 2 instead. Linear Prograinds
a weight vectow to maximizez, the regret ratio, and also deter-
mines withy in constraint (8) the amount by which the best point
in D\ R\ {p} outscorep onw. So, ify > 0, thenp is at best
2-ranked and an eligible candidate to add?oOn Line (8) of Al-
gorithm[2, we specify an additional clause, that 0, to rule out
1-ranked points.

LINEAR PROGRAM 2.

maximize z — €y s.t. 6)
p-w—p -w>z vp' € R )
p"-w—p-w<y Vp”"eD\R\{p} ®)

w; >0 Vo<i<d )
p-w=1 (10)
x>0 (11)
y>—€ (12)

Constraint (8) is of an existential nature; so, there may beem
than one point that outscorgsn the direction ofw, indicating that
p is not 2-ranked. But if some other poipt” also outscoreg on
w, then eithep” or p’” will better maximizex than doeg and be
chosen instead. Note that we inclugén the objective function to
ensure it takes the minimum valid value, making theanked case
distinctive. The really small, positive real, dampens the effect of
y—we foremost want: to be maximized, even when it is paired
with a largey.

To return to the example from before, consider again wRea
{Durant} and we evaluatp = Stoudemire. As before, we max-
imize (0.77 — 1.00)wo + (0.77 — 0.66)w:, the “distance” from
Stoudemire to the current regret minimizing sit,But now, also,
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W must have a non-negative solution(t68 — 0.77)wo + (1.00 —
0.77)wy or to (0.91 — 0.77)wo + (0.58 — 0.77)w1; otherwise,
Stoudemire is the top-ranked point on the given query doa@nd
we are computing the regret & J{p} relative to the top-ranked
rather than second-ranked point. Stoudemire maximizes0.11
at (0, 1), this time also minimzing; = 0. The feasible region of
Randolph, however, does not include 1), because botf0.77 —
0.68)wo+(0.77—1.00)w1 and(0.91—0.68)wo +(0.58—1.00) w1
are negative af0, 1). In fact, the feasible region is empty, because
Randolph is never simultaneously at best-ranked and higher
ranked than Durant. Instead, Stoudemire is selected to exigfn

5.2 Extending2RMS to RRMS

Algorithm 3 Greedy algorithm to computeRMS
1. Input: D;r; k;'T
2: Output: R C D, with |R| = r and lowk-regret ratio
3: LetR = {p; € D}, wherep; is point in D with highestp!.
4: while |R| < rdo

5: Letq befirstp € D andw = (0, ..., 0).
6: forall pe D\ Rdo
7 for all < from1to T do
8 Randomly partitionD \ R\ {p} into Do, ..., Dix_2
9 Let maxregretp) be result of Linear Program 3 with
inputp, R,Dy,...,Dg_o.
10: if maxregretp) has allz; > 0 then
11: if maxregretp)>maxregretg) then
12: Letq bep andw bew from Linear Program 3.
13: end if
14: Break inner loop and go to next point.
15: end if
16: end for
17:  end for
18: LetS = {q} andw
19: forall pe D\ Rdo
20: if p-W > q-Wthen
21: LetS = SU{p}-
22: end if
23:  end for
24:  Lets be ‘best’ member of with heuristic of choice.
25:  LetR = R|J{s}.
26: end while
27: RETURNR

To solve the more generRRMS problem, we make use of Propo-
sition[5.1 and randomness. The idea is that we decompose each
iteration of thekRMS problem into a set ddRMS problems and
optimize for a common solution.

PROPOSITION 5.1. If p = D*™  then there exists a partition-
ing of D into Dy, . .., Dy_5 such thatVD;, p = D",

To rephrase Propositidn %.1,jifis k-ranked onD with respect
to w, then we can spliD into £ — 1 partitions such thap will be
2-ranked on every one with respect to the same weight veator,
The key is that the partitions must each contain exactly dribeo
points higher ranked than

Without knowing apriori the weights af, it is challenging (and,
we posit, an interesting open research direction) to coasguch
a partitioning. A random partitioning, however, may sucfeky
separate the higher-ranked points into disjoint partitiand allow
us to findw with Linear Program 3. Of course, a random partition-
ing may very wellnot produce such a separation, but then Linear



ID | Name | Source | n| d| [Skyl
Al All-inclusives | [yvrdeal s. com 425 | 2 10
BB | Basketball dat abasebasket ball.com 21961 5 200
EN | EINino archive.ics.uci.edu/ m/datasets/El +Ni no 178080 | 5 1183
WE | Weather Cru. uea. ac. uk/cru/data/hrg/tnc/ 566262 | 13 | 16433
HH | Household usa. i puns. or g/ usa/ 862967 | 6 69
AT | Air Traffic kt.i]s.si/elena i kononovska/ dat a 115069017 | 4 87

Table 5: Statistics for the six datasets used in these erpats.

Program 3 will report that is notk-ranked and we can keep trying
new random partitionings.

LINEAR PROGRAM 3.

maximizex—erj s.t. (13)
p-w—p -w>z vp' € R (14)
p"-w—p-w<z;, Vp'eD;0<j<k—2 (15)

w; >0 0<i<d (16)

p-w=1 (17)

x>0 (18)

Tj 2> —€ 0<j<k-2 (19)

So, we have Algorithril3 to solve theRMS problem. It is sim-
ilar to Algorithm[2, except Linear Program 3 is executed save
times for each point, each after randomly partitioning R\ {p}.

If Linear Program 3 sets alt; > 0, its solution is optimal; if it
does not, either the partitioning was unlucl,s still quite poor,
or p cannot contribute to improving the interi®. So, we try an-
other hopefully luckier partitioning until after a maximummber
of trials that is dependent dn There is a probability ofl that8
trials atk = 3 are all unlucky, for example. With Propositibnb.2,
we can bound the number of partitioning trials with high ioit-
ity; although, as will be evidenced in Sect[dn 6, ‘unlucléges not
necessarily so costly, anyway.

PROPOSITION 5.2. If one repeatedly partitions into: parts a
datasetD with at leastm points of interest, the probability of not
obtaining a repetition in which each partition contains aintoof

. 2m mo, . .
interest after2:16m-" _ 2.16m™ {rjg|gijs < .1.

m!m! m!

PROOF SKETCH. The probability comes from the Chebyshev
Inequality, given that the repeated partitioning is a Betldéro-
cess with chance of succegs;"—,i.

To finish the running example, we use all the points in Thble 1
(but normalized as before and now in all four dimensions)t Le
R = {Durant} andk = 3 and consider the computation for the
point p = James. First, we partition the remaining points, say into
{{Anthony, James, Nowitzki},{ Wade, Randolph, Bryant}}.

Next, we find the vectow that simultaneously solve2RMS on
each partition. This particular partitioning has no sucttee be-
cause James is not 2"%-ranked on the first partition for any
vector on which he outranks Durant. So, the points are rahdom
re-partitioned. Eventually, some random partitioningl séparate
Wade andBryant, at which point James will be ranked third on the
weight vector(0, 0, 0.75, 0.25), the vector for which he maximally
outranks Durant while still being ranked at best third. Hoere
ultimately, James will not be added foon this iteration, because
Anthony produces a larger jump in solution quality on thegheéi
vector(0, 0, 0, 1), one for which he is exactly third ranked.
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Heuristics forkRMS. On a final note, once a maximal is
discovered, there arepoints inD that could be selected, for each
hask-regratio(p, w) = 0. Of these, we choose the point with the
largest sum of coordinates (line 24 of Algoritiith 3). So, ih de
that distinct points produce the same final solution.

6. EXPERIMENTAL EVALUATION

In this section, we empirically compateregret ratio tok-regret
ratio for values ofc < 4. To do this, we implement the algorithms
of Sectior® in C, using the MOSEK linear program (LP) sofyer,
and then look at performance over six real datasets witrertdp
solution qualityandexecution timeWe also conduct an exploration
of the impact of randomization on the solution quality.

6.1 Datasets

We run experiments against six real datasets, summariZeat in
ble[H, which range up to roughly00, 000, 000 points and up td3
dimensions. The all-inclusives (Al) dataset is the archaitysky-
line dataset, trading off ratings and prices of hotels. Taekbtball
(BB) dataset contains points for each player/team/seasobioa-
tion for rebounds assistsblocks fouls, andpoints scored The El
Nino (EN) dataset consists of oceanographic readingsslikéace
temperatureand wind speedtaken at buoys placed in the Pacific
Ocean. And the household (HH) dataset contains US censas dat
for expenses such a&sectricityandmortgage

The two largest datasets are the Weather (WE) dataset, which
consists of average monthly precipitation totals and ¢lewvaat
over half a million sensor locations, and the Air Traffic (Altaset,
which gives distances and arrival delays for over one huhdi¢
lion American flights from 1987 to 2008.

For all six datasets, the attributes have been normalizeédeto
range [0,1] by subtracting the smallest value and then iigithy
the range. Missing values have been replaced with the lovagst
found in the dataset. Non-skyline points have been pruresuse
they will never form part of any solution.

6.2 Experiment descriptions

Our experiments compare performance in terms of qualitpof s
lution and execution time. Towards the former, we measuee th
maximum k-regret ratio afterl < r < 50 tuples have been re-
ported. The purpose of this question is to determine how much
better a subset of sizecan approximate the'th best tuples of an
entire dataset than it can the topuples. We evaluate execution
time by the average wall time (in milliseconds) of the LP subr
tine, which is the primary algorithmic difference for distt values
of k. This is a more meaningful metric than the overall wall time,
because the difference between the cost of running the tiffes
and of running the entire algorithm depends primarilyonthe
number of partitioning trials, which is highly tunable.

Shttp: /7 ww. nosek. com
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(c) k-Regret Ratio vsr, WE dataset.
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(d) k-Regret Ratio vsr, AT dataset.

Figure 5:k-Regret ratio vsr. A point on the plot shows thle-regret ratio {-axis) achieved by &-regret minimizing set of sizgR| (z-axis).

Each series gives a value bf

We also run experiments to assess the effect of using random-(&d), relative to the others, we see that evert at 1, a low k-

ness. Under a perfect partitioning, the LP will find a weigbctor

w with maximal k-regret ratioz. However, due to the use of ran-
domness, it is is possible th#t repeated ‘unlucky’ trials leads to
missing this ideal solution, or even thatl’ repeated ‘unlucky’ tri-
als leads to missing the best LP solutions. We ask what percent-
age of the dataset must be missed by ‘unlucky’ randomnessebef
losing 2.5% of the value ofz. This is a measure of how costly
unluckiness can be on the quality of the solution.

We run all these experiments on a machine with two 800MHz
cores and 1GB RAM, running Ubuntu 13.04. We set the number of
random trialsT", as per Propositidn 3.2 (i.e., high enough to expect

a 90% success rate). Thus for= 2,7 = 1;fork = 3, T = §;
and fork = 4, T = 54.

6.3 Discussion

We first discuss the results of the solution quality expenitaén
Figure[®. On the Al dataset (not shown), for which we can campu
optimal solutions, we find the following sets returned fornmal
comparison. Ak = 1, R = {(4.7,$1367/pp),(3.4,$847/pp),(4.6,
$1270/pp}; atk = 2, the third element is instead (3.9, $1005/pp);

and atk > 3, it requires only two resorts to satisfy every user. So,

the sets at > 1 appear more diverse at constrained sizes.

That observation is mirrored in the plotdol Bal 5b, 5dchvh
plot k-regret ratio as a function of output size. We set thaxis
range up t&0 which is> 25% of the skyline of three datasets and
is sufficient to reduce thk-regret ratio to less than half a percent.
The exception iE8d, where thieregret ratio can be reduced @o
with 10 to 24 points, depending on the value jof Also, we do not
show k-regret ratios on thg-axis abovel 0%, because®0% is a
reasonable minimum expectation for accuracy. On the WEsdata
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regret ratio is achievable with onlyoutput points, indicating that
there are fewer interesting query weights for this dataéetoss
the other three datasets (and the two not shown), we see ajg |
from k = 1to k = 2, sometimes another jump frokr = 2 to
k = 3 (B4 andBH), and comparability betweler= 3 andk = 4.

The initial differences can be quite substantial. On the Biaset,
atk = 3 andk = 4, we achieve &-regret ratio of02 with a setR
about half the size as is required foe= 1. In contrast, on the WE
dataset, the performance is equal, on accoutt-ef 1 performing
much stronger than it does on other datasets. The conclissibat
one can consistently achieve excellent dataset approxinsaby
increasingt > 1, often substantially better than/at= 1, and that

= 2 andk = 3 produce the greatest relative dividends.

The plots in Figl b show, as a function of output size, theayer
execution time for a single run of the pertinent linear peogi(LP).
We vary they-axis, time, to the range of the specific plot so that
each series is easier to read. Thaxis is again bounded hy <
50, except foll6H. We observe an anticipated jump in execution
time fromk = 1 to k = 2, given the additional constraints added
to Linear Program 2. However, upwards/of= 2, the cost does
not increase much and the shape of the curves remains @nisist

Finally, the results on randomness are in Fifilire 7. The pluiw,
as a function of output size, what percentage of thelf@p sub-
optimal points produce a score close to optimal—charateri
the cost of selecting a sub-optimal point. Thexis runs to its
maximal possible valud,00%, in all plots and starts at the highest
value that still clearly shows all series for the specifictpl®he
z-axis runs to50, except on the HH datasé€t{7c), wherg-eegret
ratio of 0 is obtained by = 20 for £ = 1, and even earlier for the
other three values df. In all plots, we observe percentages that
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Linear Program 1 (in thgecoflRMS) or Linear Program 3 (in the

case ofkRMS, k > 1), averaged over 1000 trials. Theaxis gives R| and they-axis gives milliseconds. Each series gives a value. of

are consistently high fok > 2. For example, ak = 3, for all
valuesr, over 70% of the top100 points produce a score within
2.5% of optimal. Therefore, there is a very strong resilience to
“bad luck™: 70T trials must all fail in order to lose.5%. The con-
clusion that we draw is that one can confidently loWefand thus
decrease running time) without incurring much loss in thaligy

of the solution.

7. RELATED WORK

The idea to represent an entire dataset by a few representati
points for multi-criteria decision making has drawn mudemation
in the past decade, since the introduce of the Skyline omebst
Borzsonyi et al.[[2]. However, the susceptibility of tHe/bne op-
erator to the curse of dimensionality is well-known. Chaalef4]
made a compelling case for this, demonstrating that on th& NB
basketball dataset (as it was at the time), more tham20 tuples
appear in the skyline in high dimensions. Consequentlyethave
been numerous efforts to derive a representative subsetaifes
size (e.g.,[[5,. 18,28, 24]), especially one that presentg distinct
tuples (e.g.[[8.19]) or has a fixed size (elg.][14, 15, 21]).

Regret minimizing sets are relatively new in the lineageheke
efforts. When introduced by Nanongkai et al.][18], the ensjgha
was on proving that the maximum regret ratio is bounded by:

d—1
(c—d+1)d-14d—1
Naturally, this bound holds for the generalisation introeit in
this paper, sincé-regratio(R,w) < (k — 1)-regratio(R, w). As
far as we know, this paper is the first to address computatipres-
tions aroundk-regret minimizing sets, certainly far > 1.
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Regret minimizing sets presuppose that linear kagpieries are
of interest, a class of queries that has been well studiechard
been surveyed quite thoroughly by llyas et al1[10]. The wseh
of duality is fairly common (e.g.[]7.12.20]) as is the empba
on (layers of) lower envelopes (e.d.l[[5] 25]). Transfomgnpmints
into dual space in two dimensions often leads to the emplayme
of plane sweep algorithm5s][9] and the availability of manyutes
on arrangements of lines. For example, Agarwal et[al. [1§ giv
bounds on the the number of edges and vertices that can exst i
chain (such ag;) through an arrangement. The dual-spacekop-
rank contours of Chester et dl! [6], which were proposed sovan
monochromatic reverse tdpgueries[[22], are central to our two
dimensional algorithm. It is an interesting question whkettiual-
ity can help in higher dimensions and also whether theraszgis
strong connection between reverse togueries and-regret min-
imization as the application of these results may imply.

Lastly, anytimeskyline algorithms can be halted mid-execution
and output a non-optimal solutidn [16]. Regret minimizimgssare
well suited to these interactive scenarios [17]; so, it ésomable to
believe that:-regret minimizing sets may be suitable as well.

8. CONCLUSIONS

Thel-regret minimizing set is a nice alternative to the skylise a
a succinct representation of a dataset, but suffers froilyifitting
the topd for every query. We generalised the concept to that of
the k-regret minimizing setwhich represents a dataset not by how
closely it approximates every users’ tépshoice, but their top-
k choice. Doing so permits simultaneously achieving a loker
regret ratio while making the representative subsets muonctilsr.

In the special case af = 2, we give an efficient, exact algorithm
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Figure 7: Q4)Score loss For each value (the z-axis), they-axis gives the percentage of tuples producing scores éndwe maximal
weight vector withir2.5% of the k'th best score on the optimal maximal weight vector.

based on the dual space insight thatithegret minimizing set cor-
responds to the convex chain closest to thekopnk contour. The
algorithm uses dynamic programming and plane sweep tolsearc
the space of convex chains. For general dimension, we fgstve

a conjecture that computinglaregret minimizing set is NP-Hard
and extend the result te-regret minimizing sets. Then, we give

a randomized, greedy algorithm based on linear programitcing
find a subset wittow k-regret ratio. In comparison to computing
subsets with low -regret ratio, we show that its solution quality is
much stronger.
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