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ABSTRACT
Search engines are continuously employing advanced tech-
niques that aim to capture user intentions and provide re-
sults that go beyond the data that simply satisfy the query
conditions. Examples include the personalized results, re-
lated searches, similarity search, popular and relaxed queries.
In this work we introduce a novel query paradigm that con-
siders a user query as an example of the data in which the
user is interested. We call these queries exemplar queries
and claim that they can play an important role in dealing
with the information deluge. We provide a formal specifi-
cation of the semantics of such queries and show that they
are fundamentally different from notions like queries by ex-
ample, approximate and related queries. We provide an im-
plementation of these semantics for graph-based data and
present an exact solution with a number of optimizations
that improve performance without compromising the qual-
ity of the answers. We also provide an approximate solution
that prunes the search space and achieves considerably bet-
ter time-performance with minimal or no impact on effec-
tiveness. We experimentally evaluate the effectiveness and
efficiency of these solutions with synthetic and real datasets,
and illustrate the usefulness of exemplar queries in practice.

1. INTRODUCTION
Traditional query answering is about finding the struc-

tures in a data repository that satisfy the query conditions [2,
7, 8, 12, 17, 32]. Recent advances in information and com-
munication technologies have brought query answering sys-
tems to the general public, driving a significant effort for
simplifying these systems to a level that allows them to be
used by the average user. New techniques for answering
simpler, less structured and less specific queries, have at-
tracted considerable attention [6]. This is because the aver-
age users are typically not accustomed to the technicalities of
the query language, neither its capabilities, which makes it
hard to provide a full specification of the elements of interest.
To cope with these situations, query answering systems have
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employed techniques such as query relaxation [22], seman-
tic enhancements [5], statistics-driven query answering [14],
log-based analysis [9, 24], and others.

A hidden assumption behind all the aforementioned tech-
niques is that the user is aware of the characteristics of the
structures of interest and can (at least partially) describe
them in the query. We advocate here that there are many
practical scenarios in which this is not the case. We are
interested in those cases where the user knows one single
element among those that are expected to be in the desired
result set, and we would like to study ways to infer the rest
of the elements from this. In other words, the user “query”
works as an example of what the elements of interests that
are expected to be returned by the search engine are. We
call this novel query paradigm exemplar queries to empha-
size its different nature from those previously mentioned and
the new evaluation methods they require.

The notion of exemplar queries reminisces the well-known
notion of query by example (QBE) [35], yet, it is fundamen-
tally different. In QBE, the user query is also an example,
but is used simply to communicate to the query evaluation
engine the conditions in a more user-friendly way. In some
sense, QBE works like a wildcard query. In contrast, the
query in our case is rather a sample from the desired set,
indicating the type of elements that are expected to be in
the results. These elements may have characteristic proper-
ties different from those mentioned in the user query, simply
because their similarity to the example that the user query
provides may be based on characteristics that are not explic-
itly stated in the query. Our approach is also different from
query relaxation [22, 23], which aims at producing more
generic versions of a query. As in the case of QBE, these
queries have some of the properties of the original query at
their core.

Exemplar queries find important practical applications in
information searching. They are particularly suitable for the
case of a student, a curious citizen, an investigator, a lawyer
or a reporter that needs to perform a study on a topic to
which she may not be familiar, but has as a starting point
an element from the desired result set. Exemplar queries
can form the basis of a new form of search engines that uses
them as the main query evaluation mechanism, or they can
be used to enhance the services that existing search engines
are currently offering. In particular, in parallel to the query
evaluation a search engine performs, the query can also be
seen as an exemplar query and be evaluated as such. These
results can be appended to the results the search engine
generates, increasing the probability to capture the user’s
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intent. Alternatively, the results of the exemplar query eval-
uation can be modeled as a set of queries, and then appended
in the list of “related/additional queries” that most modern
search engines are currently suggesting to their users. For
instance, a query on the World War II will typically return
documents related to this war. Evaluating the query as an
exemplar query will result to many other big wars in history.
Then, documents related to these wars can be added in the
result set, or queries retrieving data about these wars can
be added in the list of the related searches that the search
engine suggests to the user.

For the evaluation of exemplar queries we consider two
steps. The goal of the first step is to evaluate the user query
and identify in the data repository the structure that the
user is describing in the query. Once this structure has been
identified, in the second step we examine the data store to
find similar structures. Our approach is principled and does
not depend on the data store model. In this study though,
we focus on the case where the data store is based on a graph
data model with labels on the edges. In order to find similar
structures, we naturally use a version of graph similarity (in
particular, graph-isomorphism), but in a way that takes into
consideration also labels on the edges. Furthermore, we are
interested only on the k most promising results. Traditional
query answering on graphs [19, 20, 34], that focuses on find-
ing the best subset of nodes matching a given graph-query,
has no straightforward time-efficient adaptation to allow the
retrieval of the top-k most similar subgraphs based on our
form of similarity. The brute-force solution is exponential in
nature, so we devised an efficient iterative pruning schema
that pre-computes a representation of the neighborhood of
each node, using only the information on the edges. We
demonstrate that this algorithm is exact, i.e., it preserves
the quality of the answers, while significantly reducing com-
putation time. We also propose an approximate algorithm,
which prunes the search space, keeping only the subgraph
portion that is closer to the user-query, i.e., contains the
top-k answers. We show that this heuristic works very well
in practice, with no significant compromise on the quality
of the results.

Our contributions can be summarized as follows: (i) we
introduce and formally define a novel form of query answer-
ing, referred to as exemplar queries, that treats a query as
a sample from the desired result set; (ii) we study exemplar
queries for graph-based models, and devise a similarity met-
ric that takes edge-labels into consideration; (iii) we propose
two algorithms to compute the exact solution, a baseline and
an optimized one, and we further describe an approximation
algorithm with significant efficiency gains and minimal ef-
fect on quality; (iv) we experimentally show that existing
approaches either fail to produce correct exemplar query
evaluations, or they do so in a much longer time, that makes
them inapplicable for online applications; finally, (v) we per-
form a thorough experimental evaluation, using the largest
multigraph ever used (freebase) in this field, that demon-
strates the efficiency of our solution, and a user-study that
validates the usefulness of exemplar queries.

The remainder of the paper is structured as follows. Sec-
tion 2 provides a motivating example while Section 3 defines
formally the notion of exemplar queries, and an instantia-
tion of the problem on a graph-based data model. Sections
from 4 to 7 provide algorithmic solutions to this instantia-
tion of the problem. Section 8 describes our experimental

Figure 1: Exemplar Query Evaluation

evaluation and findings. Finally, we present the related work
in Section 9, and conclude in Section 10.

2. MOTIVATING EXAMPLE
Consider a university student who has been given an as-

signment to perform a study on company acquisitions in the
Bay area. The student is not really an expert in the field,
and not familiar with the related terminology. Writing a
query with the terms “acquisitions” and “Bay Area” will,
in the best case, return documents talking about the topic
of acquisitions, and also mentioning the Bay area. An ar-
ticle on the takeover of del.icio.us by Yahoo! may not be
returned if the actual words of acquisition and Bay area are
not explicitly mentioned in the text.

The student knows that a good case of the type of acqui-
sition she is looking for is the one of YouTube by Google.
Thus, she issues the query: “Google founded-in Menlo Park
acquired YouTube”. The search engine typically responds
with results related to Google, Menlo Park, and YouTube,
but will not return anything related to an acquisition of
del.icio.us by Yahoo!. If there is a significant number of users
that have performed similar searches in the past, an anal-
ysis of the query logs may reveal that information and the
search engine may be able to propose, in the related searches
section, queries on Yahoo! and del.icio.us. (A simple test
in existing search engines reveals that this is not actually
happening.) Relaxing one or more of the query conditions
does not help in a significant way, since the results are still
focused around the Google case.

Consider now a second candidate answer for the user query:
Opel that was acquired by General Motors (GM). Among
the Yahoo!-del.icio.us and GM-Opel, it is more likely that
the former is among the company acquisitions that the user
is interested in, and not the latter. This is because even
though Yahoo! was founded in a different city than Google,
that city is still in California (just like with Google), while
the city that GM was founded is in Michigan. Furthermore,
the example of Google-YouTube that the user provided is
about IT companies, and so are the Yahoo!-del.icio.us, while
GM-Opel belong to the automotive industry.

Thus, there is a need to devise a method for inferring the
set of elements that the user is interested in from a single
sample (of that set), provided by the user.

3. PROBLEM STATEMENT
Achieving the required functionality seems to be a two-

step process. The first is to identify in the data reposi-
tory the structure that the user is referring to in the query,
i.e., those that represent the sample that the user already
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knows to be part of the desired result set. This can be easily
achieved using traditional query evaluation techniques that
identify in the data repository the structures satisfying the
specifications set in the user query. We denote the results
of this type of evaluation of a query Q as eval(Q) and refer
to it as the user sample.

The second step is to find the remaining structures of
interest for the user based on the structure that has been
identified in the first step. Note that there is a query that
describes all these structures that the user is looking for, it is
just that she is not aware of that query or is not in a position
to describe it. Thus, it is natural to assume that all the
structures of interest have some commonalities, especially
to the one that the user provided as an indicative example.
As such, we are interested in finding similar structures to
the results of the first step, and return these results as an
answer to the user-provided query.

We refer to this new query paradigm as exemplar queries
and the results of their evaluation as relevant answers.

Definition 1. The evaluation of an exemplar query Qe
on a database D, denoted as xmpEval(Qe), is the set {a
| ∃s∈eval(Qe) ∧ a≈s}, where a and s are structures in D
and the symbol ≈ indicates a similarity function.

Looking for structures similar and not exact to those ex-
plicitly described in the query, reminisces query relaxation.
Yet, it is different. In query relaxation, one or more of the
query conditions are relaxed, so the results in the answer set
are elements that satisfy some of the conditions of the user
query. The desired results in our case may satisfy a small
number of the query conditions, since the similarity to the
structure specified by the user query may be based on char-
acteristics that are different to those mentioned in the user
query.

Note that the definition of exemplar queries is indepen-
dent of the data model, of the query form, of the retrieved
results and of the similarity function. As long as there is a
standard query evaluation methodology and some similar-
ity function that can be used that fits a specific use case,
the exemplar queries can be answered. This allows maxi-
mum flexibility and the ability to use exemplar queries in
a wide range of different applications. We are particularly
interested in applying exemplar queries in cases where the
data is highly heterogeneous and have some relaxed struc-
ture. For that reason we have chosen to use a flexible data
model, a simple query form, a traditional query evaluation
that is based on graph node & edge isomorphism, and a
very generic similarity function that is based on edge label-
preserving similarity on graphs.

For the representation of the data we consider a flexible
entity-based data model [11] that can easily represent var-
ious forms of heterogeneous knowledge. In particular, we
assume an infinite set of labels L and of values V. The set
V consists of an infinite set of atomic values T and of object
identifiers O, i.e., V=T ∪O. An object is a representation
of a real world entity or concept and is modeled through
an object identifier and a set of attributes for that identifier
that model characteristic properties of the real world entity
or concept. An attribute of an object o∈O is a triple 〈o, l, v〉,
where l∈L and v∈V.

A database is a finite collection of objects, alongside a
finite set of attributes for these objects. The attributes are

either connecting the objects or specify some characteristic
properties of them.

Definition 2. A database D is a pair 〈O,A〉 where O⊆O
and A⊂O×L×(O∪T ), both finite.

A database can be represented as a graph where every ob-
ject or atomic value in the database is represented as a node
and every attribute as a labeled edge from the node repre-
senting the object of the attribute to the node representing
its value. Thus, we can equivalently say that a database
〈O,A〉 is a graph G(N,E), also denoted as 〈N,E〉, where
the set of nodes N is the set {n | n∈O ∨ ∃〈n′, l, n〉∈A} and

the set of edges E is the set {n l→ n′ | 〈n, l, n′〉∈A}. The

expression n
l→ n′, denotes an edge from node n to node n′

labeled l. We also say that two nodes n1, n2 are equivalent,
and denote it as n≡n′, if they represent the same atomic
value or the same object, i.e., the identifiers of the objects
they respectively represent are the same.

Definition 3. A database D is edge-preserving1 isomorphic
to a database D′, denoted as D'D′, if there is a bijective
function µ from the nodes of D to the nodes of D′ such that

for every edge n1
l→n2 in D, the edge µ(n1)

l→µ(n2) is in D′.

A query is traditionally an expression describing a set of
objects alongside a set of conditions they need to satisfy.
These conditions describe certain characteristics of these ob-
jects and the relationships they may have among them. We
make the natural assumption that the objects referenced in
a query are somehow all connected, otherwise the query ex-
pression would actually constitute two independent queries.
Since a query describes a set of objects with attributes, i.e.,
properties and relationships among them, it can also be seen
as a database and consequently represented as a connected
graph. Answering a query on a database means finding the
database structures that satisfy the query specification. By
the term database structures we mean a set of objects and a
set of attributes for these objects. In graph terms, answering
a query means finding the subgraphs in the database that
have a structure like the one of the graph representation of
the query. The set of these subgraphs constitutes the answer
set of the query.

Definition 4. A query Q is a database whose graph rep-
resentation is a connected graph. An answer to a query
Q:〈NQ, EQ〉 on a database D is any subgraph D′:〈ND′ , ED′〉
of D that is isomorphic to Q, i.e., D′'Q, and ∀nQ∈NQ,
nD′∈ND′ : µ(nQ)=nD′ ⇒ nQ≡nD′ . The set of all such sub-
graphs, denoted as eval(Q), is referred to as the answer set
of the query.

Note that our implementation of exemplar queries can
also be used in cases where queries are flat keyword queries,
provided that they are first translated to some structured
form. This task is outside of the scope of this work, but
there is already a large amount of literature [5] on that topic.

Regarding the similarity function, although multiple dif-
ferent forms of similarity can be used we consider edge label-
only isomorphism as the implementation of this similarity,
since we found it to be most natural for our purposes. Note
that the similarity between structures may range from very

1In the rest of the document we will be dropping the part
“edge-preserving”
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Algorithm 1 XQ

Input: Database D: 〈N,E〉
Input: User Query Q
Output: Set of relevant answers Q
1: Q ← ∅
2: S ← eval(Q)
3: ns ← selectARandomNode(S)
4: for each n ∈ N do
5: A← FindIsomorphicSubgraph(S, ns, D, n)
6: if A 6= ∅ then
7: Q ← Q ∪ A
8: Rank(Q)
9: return Q

high to very low with no clear understanding on where one
should stop. For this we will be interested in finding only the
k most similar structures, i.e., the top-k, and return them
ranked.

Example 1. Consider the example described in Section 2
and the portion of the database illustrated in Figure 1. The
user query (the exemplar query) is the one shown at the top
right corner of the figure. The evaluation of that query on
the database results to the user sample that is indicated in
the database with the dashed box labeled S. Searching for
similar structures (edge-isomorphic structures) to this user
sample, results to the two structures indicates with the dot-
ted line boxes labeled A1 and A2, that serve as the relevant
answers to the exemplar query. Among the two relevant an-
swers, the neighborhood of A1 has more nodes and edges in
common to the user sample S, for instance, the IT Company,
the Search Engine and the California, than those that the
neighborhood of A2 has in common, hence, A1 should be
ranked higher than A2.

Since the first step of the exemplar query evaluation is a
standard search in a graph database for a graph (the user
query) we will not spend more time on this. Instead, we
focus on the implementation of the second step, which is to
devise a method that from a given subgraph (the user sam-
ple) finds efficiently other edge-isomorphic subgraphs (the
relevant answers) and ranks them based on their neighbor-
hood. The challenging part of this is that there is no clear
limit on how large neighborhood to consider, apart from
the whole database itself. In our implementation we have
considered Freebase, which is one of the largest knowledge
graphs available nowadays. Existing works on graph simi-
larity assume search on a large number of small graphs, but
searching on a very large graph in the form we consider here
has not been considered extensively.

4. THE BASIC XQ ALGORITHM
Once the first step of the exemplar query evaluation has

been performed and the user sample S has been identified
in the database D, the set of similar to it structures will
have to be discovered. This similarity is based on graph-
isomorphism on the edge labels. To do so, the user sample
S will have to be compared with every other subgraph in the
database. Instead of considering the exponential number of
subgraphs in the database, a node ns from S is randomly se-
lected to serve as a seed. Then all the nodes in the database
D are considered, one at a time. For each such node n, it
is checked if a subgraph that contains n and is isomorphic

Algorithm 2 IterativePruning

Input: A database D : 〈N,E〉
Input: A user sample S : 〈NS , ES〉
Output: A set of candidate mappings µ ⊆ NS ×N
1: NSd ← d-neighborhood of S
2: Vis ← ∅ . Visited nodes
3: nmin ← arg min

n∈NS

Sel(n)

4: C ← {nmin} . Query candidates
5: µ(nmin)← {n|NSd (nmin) ⊆ Nd(n)}
6: for each ns ∈ C do

7: if ns
`→ n′s ∈ ES and n′s 6∈ Vis then

8: µ(ns)← µ(ns) \ {n|n
`

6→ n1, n ∈ µ(ns)}
9: µ(n′s)← {n1|n

`→ n1, n ∈ µ(ns),NSd (n
′
s) ⊆ Nd(n1)}

10: else if n′s
`→ q ∈ ES and n′s 6∈ Vis then

11: µ(ns)← µ(ns) \ {n|n1

`
6→ n, n ∈ µ(ns)}

12: µ(n′s)← {n1|n1
`→ n, n ∈ µ(ns),NSd (n

′
s) ⊆ Nd(n1)}

13: C ← C ∪ {n′s|ns
`→ n′s ∨ ns

`← n′s}
14: C ← C \ {ns}
15: Vis ← Vis ∪{ns}

to S can be constructed. If such a graph is found, then it is
added in the result set, i.e., the set of relevant answers. At
the end of this procedure the relevant answers are sorted and
returned all or only the top-k as an answer to the exemplar
query. The sorting task is studied in details in Section 7.
The pseudo-code of the above steps is described in Algo-
rithm 1.

The construction of the isomorphic subgraphs (line 5 in
Algorithm 1) is done by initially considering a graph G con-
sisting only from the node ns and a subgraph T consisting
only from node n, and assuming that an isomorphic func-
tion maps ns to n. Then iteratively trying to expand the
subgraphs G and T with edges from S and D respectively
such that the resulted subgraphs remain edge-isomorphic.
If after a number of steps, the graph G becomes equal to S,
then the graph T is one of the answers.

5. AN EFFICIENT EXACT SOLUTION
Searching for possible matches of the user sample in the

entire database, as the Algorithm XQ requires is definitely
an expensive operation. Sub-graph isomorphism is known
to be an NP-complete problem. One can exclude the edges
with labels that do not appear in the user sample, but the
complexity and the number of operations that need to be
done will still be high.

To improve the performance, we propose an effective way
to prune the search space, i.e., the list of database nodes
we have to match to the nodes of the user sample in order
to find isomorphic structures, leading to a new algorithm
FastXQ. For this we devise an efficient technique for com-
paring nodes, and an algorithm for effectively rejecting pairs
of nodes that are bound to not participate in any isomorphic
mapping, we call this algorithm IterativePruning. Al-
though this technique may lead to false positives, the schema
is effective and reduces significantly the search space. The
false positives are subsequently removed by running the tra-
ditional isomorphic verification algorithm on them.

For the first, inspired by [19], we devise a technique that
is meant to represent the neighborhood in a compact way,
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and to match the nodes in advance without the need to
examine all the nodes in the graph. In more details, the
idea is to store in advance a compact representation of the
neighborhood of each node, i.e., nodes and edges that are at
a fixed distance d from each node. This provides an effective
way to compare nodes, allowing the pruning to remove the
non-matching nodes without having to actually visit their
neighborhood.

A basic concept of our approach is also the notion of neigh-
borhood. We call d-neighbor of a node n a node that is
reachable from n in at most d steps, i.e., the shortest path
from n to this node is no longer than d.

Definition 5 (d-neighbor). Let n ∈ N be a node of a
database D = 〈N,E〉. The node ni ∈ N is a d-neighbor
of n if there exists a shortest path from n to ni of length at
most d. The d-neighborhood of n, denoted as Nd(n), is the
set of d-neighbors of n.

For every node in the database we compute a table con-
sisting of the number of nodes that are reachable from that
node at some specific distance and with a path ending with
a label `. In other words, for a node n, for every label ` and
for every distance i we keep the cardinality of the set Wn,l,i,
where

Wn,`,i = {n1|n1
`→ n2 ∨ n1

`← n2, n2 ∈ Ni−1(n)}

In practice, since doing so for every node in the database
is expensive in terms of space, we employ an implementation
similar to the idea of the inverted indexes. We use an index
structure that for every label and for every distance can
provide a list of all the nodes that have a label ` at the
respective distance, and the cardinality of such labels.

Note that, once computed for each label ` and each i ≤ d,
W compactly represents the neighborhood of a node. For
this reason, if we compute W for the nodes of the user sam-
ple as well, we can compare nodes in the database and nodes
in the user sample, in order to know in advance which nodes
can be pruned. We denote the d-neighborhood of a node
ns of graph S by NSd (ns). A node n ∈ N of D = 〈N,E〉
matches a node ns ∈ NS in the user sample, and there-
fore is not pruned, if for each label l and a distance i ≤ d,
|Wn,`,i| ≥ |Wns,`,i| (ref. to Theorem 1 for a formal proof).

Using the ability to compare nodes through the compact
representation of their neighborhood, we devise a way of fast
eliminating pairs of the user sample and database nodes, re-
spectively, that are unlikely to participate in an isomorphism
match. Traditional techniques that compute isomorphisms
compute matches of the different nodes independently and
then try to combine the results.

We believe that this process can be optimized further, if
the comparison of the nodes takes into consideration the
previously computed matches. To implement this idea we
adopt the notion of simulation [27]. A graph simulates an-
other graph if it exists a way to map each transition on the
first graph with a transition in the second.

Definition 6 (Simulation). Let G1 = 〈N1, E1〉 and G2 =
〈N2, E2〉 be two graphs. G2 simulates G1 if there exists a
relation R, such that, for every node n1 ∈ N1 and n2 ∈ N2

for which (n1, n2) ∈ R and n1
`→ n′1, there exists a n′2 such

that n2
`→ n′2 and (n′1, n

′
2) ∈ R

Deciding whether one graph simulates another graph is
known to be solvable in polynomial time with respect to

the size of the graph [16]. The main idea of our approach
is to perform multiple simulations of the user sample on
the database graph while pruning the non matching nodes
iteratively. The algorithm works as follows. First, it calcu-
lates the d-neighborhood for each node of the user sample.
Then, a user sample node is selected as starting node. Al-
though any node is a valid starting node we propose to pick
the node with the lowest selectivity among the user sam-
ple nodes, with the hope to reduce the number of candidate
matches between the user sample and database nodes. The
selectivity is an estimate of the number of possible matches
generated from a user sample node. The idea is to consider
the number of adjacent nodes of a user sample node and the
frequency of the labels of the edges connected to it. The
selectivity of a node n is

Sel(n) = freq(n) +

d∑
i=1

1

i

∑
Wn,`,i

|E`|, (1)

where the frequency freq(n) of a node n is defined as the
sum of the number of outgoing and incoming edges. Sim-
ilarly, we define the frequency of a label ` as the number
of edges in the graph having label ` and we denote it as
|E`|. The less probable the combination of labels at a cer-
tain distance is, the lower the selectivity and the higher is
the expected pruning power.

After having selected the starting node nmin, the algo-
rithm retrieves the nodes in the database that match the
node nmin and marks them as candidate mappings µ(nmin),
where µ ⊆ NS×N is the mapping between user sample and
database nodes that the algorithm will compute. Then the
algorithm iteratively checks, for each user sample node ns
not yet visited, that each adjacent edge of ns matches the
edges adjacent to the nodes n ∈ µ(ns), verifying the label
and the direction of the edge. If it does not match, then n is
removed from µ(ns), otherwise we consider a node n1 adja-
cent to n a candidate for the user sample node n′s adjacent
to ns, i.e., we insert it into µ(ns), if the condition described
by Theorem 1 holds. Finally, the user sample node ns is
marked as visited and removed from the candidate list. The
steps of the algorithm are described in pseudo-code in Al-
gorithm 2.

The following theorem guarantees that Algorithm 2 does
not falsely discard any node while traversing the user sample
nodes. However, it may introduce false positives, i.e., nodes
that match the user sample nodes but are not included in
an isomorphism.

Theorem 1. Given a database D = 〈N,E〉 and a user sam-
ple S, let Nd and NSd be the d-neighborhood of D and S re-
spectively. If there exists a subgraph-isomorphism µ : NS →
N , then ∀ns ∈ NS ,NSd (ns) ⊆ Nd(n), n ∈ N,n ∈ µ(ns)

Proof. (by contradiction) Suppose that (ns, n) ∈ µ, but
NSd (ns) 6⊆Nd(n), then there exists i, 1 ≤ i ≤ v and a label
` such that |Wns,`,i| > |Wn,`,i|. For this reason we can say
that there exists n′s ∈ Wns,`,i, connected to n′′s ∈ Ni−1(ns)

by `, i.e., n′s
`→ n′′s . The latter assumption is true since we

assume that µ is a subgraph-isomorphism. However, there

does not exist any µ(n′s)
`→ µ(n′′s ), which contradicts the

subgraph-isomorphism hypothesis.

Additionally, a guarantee that the algorithm correctly com-
putes multiple simulations of the user sample S, is offered
by the following theorem.

369



Theorem 2. Given a user sample S, if Algorithm 2 termi-
nates with a complete exploration of the nodes S, then there
exists in µ a simulation R of the user sample S.

(The proof is omitted due to space limitations)
In the worst case, Algorithm 2 will have to traverse the

entire database for each node. Thus, the complexity of the
algorithm is O(|N | ∗ (|NS | + |ES |)). Since the user sample
is typically very small, the algorithm is, for the majority of
practical cases, linear to the size of the graph. In imple-
mentation, to reduce the time computation of µ we used a
hash map for storing the nodes of the user sample and their
partial mappings.

The set of candidate mappings computed by Algorithm 2
is used to eliminate those nodes of the database that will
never participate in an isomorphism with the user sample
nodes. The reduced-size database that results from this
elimination can then be fed to the XQ Algorithm of Sec-
tion 4. We refer to this new algorithm as FastXQ.

6. AN APPROXIMATE SOLUTION
In the previous section, we described an exact solution to

prune the search space, removing nodes that cannot possi-
bly match the user sample. In this section, we propose an
additional method that removes in advance nodes that are
likely to not be relevant for the user, we call this method
ApFastXQ.

We aim at restricting in advance the search space in or-
der to search for solutions only in the portion of the graph
that is more likely to contain relevant answers. As already
mentioned in the previous sections, both pairs Yahoo!-Flickr
and GM-Opel are part of the solution space, but the pair
Yahoo!-Flickr is more relevant to the user, and therefore we
would like to restrict our search only to the subgraph that
is containing the second but not the first.

In the following, we describe how we model this portion
of the graph, which we call Relevant Neighborhood (Sec-
tion 6.1). That portion is the subset of nodes with higher
proximity to the nodes of the user sample. The intuition
behind this is that nodes in the graph that are located far
from the user sample will be also semantically distant from
the user’s intention as expressed in the exemplar query.

We model a relatedness measure based on the distance in
the graph, and we use it to prune away nodes that are far
away from the user sample before even looking for isomor-
phic structures.

It is clear that, while the approach described in the pre-
vious section is exact (does not discard any valid answers),
this second approach is approximate: some correct answers
could potentially be filtered out as they fall out of the Rele-
vant Neighborhood. For this reason, we propose a principled
way of measuring the relatedness and for pruning the graph,
aimed at discarding only irrelevant solutions. We implement
a function that iteratively retrieves the Relevant Neighbor-
hood without traversing the entire graph (Section 6.2). As
we show later (Section 8), thanks to the RelevantNeigh-
borhood algorithm, by operating in this special portion of
the graph, we can effectively reduce the search space. The
restricted search space can then be given as input to Algo-
rithm 1, without sacrificing the quality of the results. We
can still apply on this subgraph the pruning techniques pre-
sented in the previous section and then look for isomorphic

Figure 2: A visualization of APPV

structures on a much smaller database. Hence, the Ap-
FastXQ algorithm first applies the RelevantNeighbor-
hood algorithm and then FastXQ.

6.1 Identifying the Relevant Neighborhood
To find the subset Qρ of the set of answers Q, that con-

tains the answers that are relevant to the user, we assume to
have some measure of relevance ρ. Since the only evidence of
the user’s intent is the input query Q and the correspond-
ing user sample S we have found in the first step of the
exemplar query evaluation, we can define the set of relevant
answers as Qρ = {A′ ∈ Q|ρ(A′, S) > τ}, with τ > 0 being a
minimum threshold.

Since Qρ is clearly a set of subgraphs in D, we say that
the set of solution Qρ is contained in the subgraph Dρ ⊆ D,
which is any subgraph of D that contains all the members of
Qρ, relevant answers, and none of the remaining irrelevant
solutions in Q\Qρ. For this reason we call Dρ the Relevant
Neighborhood of the sample S.

This portion of the graph, being a subgraph itself, is iden-
tified by the subset of relevant nodes Nρ ⊆ N . Those are
nodes whose relevance measure ρ is within the a threshold
τ , i.e., Nρ = {n ∈ N |ρ(n, S) > τ}. Operationally, we first
identify the set of relevant nodes Nρ, and then with only
those nodes, we easily construct the subgraph Dρ ⊆ D.

In our solution, we implement ρ as a distance measure on
the graph, such that it measures the distance of every node
from the nodes of the sample NS , and we keep only nodes
that are within a certain distance threshold from the sample.
In order to compute this distance we propose the Adaptive
Personalized PageRank Vector (APPV), an extension of the
Personalized PageRank Vector (PPV), designed to exploit
the properties of our problem. This is implemented by the
RelevantNeighborhood algorithm.

6.2 The RelevantNeighborhood Algorithm
Our solution models the computation of the Personalized

PageRank vector (PPV) [18] which is used as an estimate
of the distances of the nodes in the graph from the subset
of nodes in the user sample. In the literature Personalized
PageRank [15, 18] is a well known technique that computes
the PageRank biased towards the preferences of the user. In
our case, user preferences are expressed through the query
Q and for this reason we initialize the preference vector ac-
cording to the nodes in the user sample S, which models the
query Q in the database.

The main difference between the original PPV model and
our solution, APPV, lays on the semantic of edges. Tra-
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Algorithm 3 RelevantNeighborhood

Input: User Sample S : 〈NS , ES〉
Input: Database D : 〈N,E〉
Input: Teleportation probability c
Input: Threshold τ
Output: Subgraph D′ ⊆ D
1: Ā← AdjacencyNormalized(D,S)
2: p← [0]×N
3: for each qi ∈ NS do
4: p[qi]← 1/|NS |
5: v ← ComputeAPPV(Ā,p, c, τ)
6: ND′ ← Nearest(N,v)
7: D′ ← GetSubgraph(D,ND′)
8: return D′

ditionally, edges between nodes are treated equally as they
usually represent just a link from one webpage to another
(i.e., they are of the same kind). In contrast, our model
adapts to the various edges and their labels, according to S.
In particular, the edges in our model may represent different
kinds of relationships. It is therefore natural to differentiate
based on the information carried by different edges, as some
relationships are more informative than others. Moreover,
labels that do appear in the user query should be treated dif-
ferently when computing the PageRank, because they rep-
resent the user preference.

Figure 2 depicts the output of the computation on the
graph of our running example. Here all the nodes have been
assigned the weights from the final APPV, computed using
the set of nodes in the sample as initial preferences.

The set Nρ, which satisfies the selectivity requirement,
consists of nodes with Personalized PageRank score higher
than a minimum threshold τ , 0 < τ < 1.

This whole process, presented in Algorithm 3, returns the
portion of the graph that is combined with Algorithm 2
to produce a restricted database D′ which is provided to
Algorithm 1 instead of D.

Assume a model of the database D = 〈N,E〉, and let AD

be the adjacency matrix of this graph. If |N | is the number
of nodes in the database, then AD is an |N | × |N | square
matrix. In this matrix, we have that 0 < ADij ≤ 1 if and only

if the node i has a relationship e`ij with node j with label

`; otherwise, we have ADij = 0. In this way, the element ADij
models the amount of information that is transferred from
node i to node j by the edge e`ij as a function of its label

`. In our solution, the values in AD are proportional to the
amount of information [29] carried by the edge e`ij , which is:

I(e`ij) = I(`) = log
1

P (`)
= − logP (`) (2)

P (`) =

∣∣E`∣∣
|E| (3)

where E` is the set of edges with label `. Note that the
frequency of a label can be easily computed in the database.

In order to account for the importance of the edges in
the user sample, we additionally define matrix AS , which is
constructed from the adjacency matrix of the database, but
where only entries for edges whose label appears also in S
are assigned a non-zero value. In other words, we construct
an |N | × |N | square matrix with 0 < ASij ≤ 1 if the nodes i

Algorithm 4 ComputeAPPV

Input: Adjacency Matrix Ā
Input: Node vector p
Input: restart probability c
Input: threshold τ
Output: Approximate APPV v
1: for each qi ∈ p do
2: p[qi]← p[qi]× 1/τ

3: v ← p
4: while ∃ ni ∈ p | p[ni] 6= 0 do
5: aux← [0]
6: for each ni ∈ p | p[ni] 6= 0 do
7: particles← p[ni]× (1− c)
8: for each ni → nj ∈ D (Sort by Āij Desc.) do
9: if particles ≤ τ then

10: break
11: passing ← particles× Āij
12: if passing ≤ τ then
13: passing ← τ

14: aux[nj ]← aux[nj ] + passing
15: particles← particles− passing
16: p← aux
17: for each ni ∈ p do
18: v[ni]← v[ni] + p[ni]

19: return v

and j are connected by an edge and that edge has a label `
that appears as label of one edge in the user sample S, and
with ASij=0 otherwise.

We then combine the two matrices into the matrix Ā =
AD+AS and normalize it. Under this transformation Ā be-
comes the transition probability matrix for the knowledge-
base graph, where more relevance is given to edges carrying
more information, as well as to edges with labels that ap-
pear in the query. We also define p, an |N | × 1 column
vector, which serves as the normalized preference vector for
which p[i] 6= 0 iff ni ∈ NS , i.e., 0 < p[i] ≤ 1 if and only
if the node i is in S. Given the column normalized transi-
tion probability matrix Ā, the teleportation probability c,
and the preference vector p, our technique adheres to the
Personalized PageRank semantics [10, 18].

Thus, the APPV v is defined as the stationary distribu-
tion of the Markov chain with state transition given by the
matrix

(1− c)Āv + cp (4)

where the teleportation probability c ∈ (0, 1) is typically
≈ 0.15, with small changes in this value having little effect
in practice [26].

The exact computation of this vector typically requires
O(n2) time and space. Performing the computation through
power iteration requires O(nt) time, where t is the number of
iterations to be performed. Nevertheless, this computation
is still not practical for very large graphs.

In order to compute this value fast, we extend the tem-
plate proposed in [3] and apply an approach similar to the
weighted particle filtering procedure proposed in [21] but ex-
tended to correctly take into account the teleportation prob-
ability, and to consider the non-uniform edge weights that
we previously introduced. The extension is shown in Algo-
rithm 4.
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Algorithm 4 simulates a set of 1/τ floating particles (line
2) starting from each node with a non-zero value in p. At
each iteration (lines 6-15), they split among the neighbors
of the node they are currently visiting, but we prevent them
to split to arbitrarily small sizes, limiting them to have min-
imum size τ (lines 12-13). When spreading the particles
among the neighbors, the algorithm gives preference to the
edges with higher weights. The restart probability c will
dissipate part of the particles at every iteration (line 7), and
the algorithm will stop when no more particles are floating
around.

At the end of the algorithm, we return the APPV con-
taining the scores that have been accumulated through each
iteration on every node. We then keep the subset of the
graph containing only those nodes with a score higher than
some threshold and the edges connected to them (line 6-7
in Algorithm 3). Since we are dealing with an iterative ap-
proximation, we will take all nodes which have been visited
by at least one particle, which actually means that we set
the threshold to be equal to τ .

7. RANKING QUERY ANSWERS
Once the answers have been computed from the user sam-

ple, they need to be ranked in order to either be returned
sorted to the user that posed the query, or to select only the
k most promising candidates, i.e., the top-k. To do this, we
introduce a novel ranking function that is a linear combina-
tion of two scores, namely, the structural similarity score S
based on the d-neighborhood and the amount of information
as provided by the Personalized PageRank, which indicates
the importance of a label in the graph. The score of each
answer is computed by using the above two parameters to
compare the answer to the user sample.

Most node similarity measures proposed in the literature
are based on the concept of graph similarity and isomor-
phism. This is the case for Graph Edit Distance [13], which
is computed with a reduction to graph isomorphism, and is
therefore inapplicable to our problem, due to its high time
complexity. A different method is proposed in [19] and is
based on a vectorial representation of nodes. This idea seems
suitable for our settings, thus we extended it in order to cap-
ture the differences among nodes that emerge when taking
into account the edge-labels of the neighbors. We also em-
bed distance information aiming at giving different weights
to nodes based on their distance from the sample. Thus, for
every node n we build a vector containing a value for every
label ` ∈ L in the graph, and we compute this score as

σ(n, `) =

d∑
i=1

I(`)|Wn,`,i|
i2

(5)

Given the vectorial representation of two nodes, we com-
pute the node similarity S using a metric for vectors, such
as the Jaccard, euclidean distance or cosine similarity. Note
that our vectorial representation contains already the com-
puted score σ. In our experiments we use cosine similarity
but any other similarity metrics can also be used. There-
fore, the structural similarity between a node ns of the user
sample and n is computed as follows:

S(ns, n) =

L∑
`

σ(ns, `)σ(n, `)√∑L
` σ(ns, `)2

√∑L
` σ(n, `)2

(6)

The structural similarity above does not take into account
the proximity measure of the results with respect to the
user sample. Therefore, we consider a linear combination,
parametrized by λ, between the node similarity (structural)
and the Personalized PageRank (proximity) as follows.

ρ(ns, n) = λS(ns, n) + (1− λ)p[n] (7)

where p[n] is the APPV as defined in the previous section.
The final score of a query answer with respect to the user

sample S is the sum of ρ(ns, n) for every node ns in the
user sample with respect to the corresponding (isomorphic)
node n in the query answer. Note that the choice of λ is
data dependent. A value λ close to 1 favors results that are
mostly similar to the neighbors of the user sample nodes. On
the other hand, a value close to 0 will take into account only
solutions that are close to the original query. For this reason,
we can see λ as a diversification parameter that depends on
the user and on the data. This is also the approach taken
by most diversification models [1].

8. EXPERIMENTAL EVALUATION
In this section, we experimentally validate our solution by

comparing it to other approaches, and measuring its perfor-
mance.

Queries: We extracted 90 real queries from the AOL query
log to use as the query test set, and manually mapped them
to the knowledge base2. These queries are highly heteroge-
neous in terms of size and frequency of the edge labels. We
then used 50 of these queries for the user study.

Datasets: We downloaded a full dump of the Freebase
knowledge base3 in August 2012. We removed every triple
that is used as internal specification for the community (such
as the user and groups data and discussion topics) obtain-
ing a fully connected graph of 53 million nodes and 213
million edges (occupying 24GB of main memory). To the
best of our knowledge this is the biggest graph used in this
context in the literature, and the first time that the en-
tire Freebase graph is used for this purpose. While related
works [19, 33, 31] evaluate their methods on just a small
part of Freebase, we explored solutions that scale to the
full size of the knowledge-base. In the following we refer
to it as Real. Based on Real we generated 10 synthetic
datasets embedding 20 samples of the test set in different
points of the graph. We performed a breadth first traversal
of the graph from a fixed starting node and we randomly
chose to embed an answer according to a distribution that
decreases exponentially with the distance from the starting
node (thus modeling answers at varying distances). Only a
fixed number of answers are embedded in the graph. To test
the scalability with respect to the graph size, we generated
graphs having 0.5M, 1M, 5M, 10M and 20M nodes, and 1K
embedded queries. We denote them as GSize-x where x is
the graph size. Similarly, to test the scalability with respect
to the number of answers to retrieve, we generated graphs
with 10M nodes, and 0.5K, 1K, 2K, 5K and 10K embedded
answers. We denote them as QSize-x where x is the number
of generated answer.

Experimental Setup: Due to space limitations, we do not
report the experiments with varying the parameter d of It-

2List of queries: http://disi.unitn.eu/~themis/exemplarquery
3
http://download.freebase.com/datadumps/
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erativePruning (Section 5). For the rest of this paper, we
use d = 3 since it proved to be a reasonable choice and al-
lowed us to compute answers in less than 1 second. We also
observed that λ = 0.3 (see Section 7) is a good compromise
for retrieving diverse and qualitative results. In Section 8.4
we study the effect of varying the threshold parameter τ
(see Section 6.2), for which the default value is 0.003. All
the reported results are averages over 5 consecutive runs.
We implemented our solution in Java 1.6, and ran the ex-
periments on a i686 Intel Xeon X3220 2.40GH, 32Gb RAM
machine over Linux kernel v2.6.30. The graphs are loaded
into main memory using our graph library available under
open source license4.

Implemented Algorithms: Apart from FastXQ and Ap-
FastXQ, we implemented three additional algorithms from
related works:

QueryReformulation: An algorithm that produces query re-
formulations by mining sessions from query logs in a term-
level fashion [32]. The model is trained on the AOL query

4
https://github.com/mutandon/Grava

log and the suggestions are based on our query test set.

EQ-Graph: Entity-query graph is a model that computes
serendipitous suggestions starting from entity mentions in a
page [9]. We manually adapted our query test set to work
in this setting associating to each node the corresponding
Wikipedia page (or the best Wikipedia page that represents
the node). The model is trained on a big query log from the
Yahoo! Search Engine.

NeMa: This algorithm [20], and other previous works, are
based on the assumption that there exists a truly small set
of correct answers to a graph query. In our case, this prop-
erty does not hold: what we need to find is a generaliza-
tion of the original sample already present in the dataset.
Therefore, we implement their technique taking into account
edge label matches instead of node matches. The authors
kindly provided us a C++ implementation (compiled using
gcc v4.4.3).

Summary of Experiments: We set up user studies, where
we evaluated the usefulness (Section 8.1) of our approach,
and also compared it (Section 8.2) to the related works we
discussed above.
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Q1: Google - YouTube - Menlo Park
Google - YouTube - Menlo Park
Yahoo! - LAUNCH Media - Stanford University
Yahoo! - Musicmatch - Stanford University
Yahoo! - Right Media - Stanford University
Yahoo! - Inktomi Corporation - Stanford University

Table 1: Top-5 results with NeMa for “Google
YouTube Menlo Park”

Q2: Condom - Sex - HIV infection
Water purification - Fecal-oral route - Cholera
Smoking cessation - Vector - Diabetes mellitus
Oral Transm. - Cytomegalovirus Infections - Oral Transm.
Oral Transmission - Cerebral palsy - Cytomegalovirus
Water purification - Fecal-oral route - Cholera

Table 2: Top-5 results with NeMa for “Condom Sex
HIV infection”

Q1: Google - YouTube - Menlo Park
Google - AdMob - Menlo Park
Google - DoubleClick - Menlo Park

Yahoo! - del.icio.us - Santa Clara
Microsoft - Powerset - Albuquerque

A&E Television - Lifetime Ent. Services

Table 3: Results for exemplar query “Google
YouTube Menlo Park”

Q2: Condom - Sex - HIV infection
Safe sex - Sex - HIV infection
Sexual abstinence - Sex - HIV infection

Safe sex - Vertical transmission - Hepatitis B
Safe sex - Vertical transmission - Syphilis

Hand washing - Droplet Contact - Cold

Table 4: Results for exemplar query “Condom Sex
HIV infection”

Section 8.2 further studies the performance and quality of
our solutions when compared to a query answering system
for graphs. In Section 8.3, we study the impact of Itera-
tivePruning on query time, and the correlation between
pruning time and node selectivity. Section 8.4 presents the
effect of τ on query time. Finally, scalability experiments of
the proposed algorithms are described in Section 8.5.

Summary of Results: Our user studies demonstrate that
92% of the users exemplar queries are relevant and useful for
search tasks, and that existing approaches are not able to
provide effective solutions for our problem, while our method
identifies meaningful results with 81% precision. When com-
pared to existing approaches, our algorithm retrieves results
almost 3 orders of magnitude faster than a state of the art
graph matching algorithm. We observe that the proposed
pruning strategy reduces the query-time by 30% on aver-
age, with even higher improvements when we choose start-
ing nodes with low selectivity. Finally, the last set of results
demonstrate the scalability of our approach to the largest
knowledge graph available in the field (53M nodes, 213M
edges), while maintaining low response time.

8.1 Usefulness
In order to assess the quality of the proposed solution,

we conducted the following user study. We asked 94 users
(uniformly distributed with respect to education level, age
and country) to evaluate our system. For each query in
the test set, we provided an explanation of the topic, the
query intention, and our answer set with the top-10 results
provided by our ranking function. We asked each user to
rate each result as irrelevant, weakly related, or very related
with respect to the topic and the expressed query intention.
Each user evaluated between 2 to 10 queries (on average
8). The users provided 4540 marks in total, shown in Fig-
ure 3: 81% of our results are marked as relevant (weakly
or strongly) and only 19% of them are not considered rele-
vant suggestions. Out of the 427 suggestions we produced,
172 (i.e., 40%) are judged highly relevant by more than 50%
of the users. Note also that each exemplar query contains
at least one relevant (weakly or strongly) result for 99%
of the users. Moreover, we ask each user to express her
opinion with respect to (a) the idea of using examples as
a search paradigm, (b) whether she already had the need

of searching using exemplar queries, and (c) the usefulness
of the system in general. As shown in Figure 4, 92% of
the users considers the exemplar queries paradigm and the
overall system useful for retrieving additional and relevant
information. Moreover, 62% of the people interviewed de-
clared that they had already had the need to perform this
kind of exemplar queries search in the past (but there was
no system to support them).

8.2 Comparison to Previous Work
In the following we compare our method against two dif-

ferent approaches: (a) algorithms that produce related queries,
and (b) an approximate query answering technique for graphs.

Related Queries: We implemented and compared with
the methods QueryReformulation and EQ-Graph mentioned
earlier, through a user study similar to the one presented
in Section 8.1. For each query in the test set, we presented
to users three groups of suggestions: one produced with our
method, and one produced by each one of the two methods
above. We then asked users which of the three groups of
suggestions they considered the most helpful for each query
task.

The results, depicted in Figure 5, show that in 64% of the
cases the users preferred our solution to the other two. Fur-
thermore, for 78% of the queries that received more than 2
marks, the majority of users preferred our solution. In 18%
of the cases none of the proposed solutions were satisfying,
neither the answers proposed by our model nor those pro-
duced by the other algorithms. Overall, the two competing
approaches together was preferred by less than 30% of the
users, none of them choosing the two approaches in all the
queries.

Approximate Query Answering on Graphs: We now
present the comparison between our approach and NeMa [20],
a state of the art technique for answering approximate queries
on graphs. Since on Real a single query takes NeMa more
than 13 hours to process, we test NeMa on graphs obtained
after applying RelevantNeighborhood on our query test
set, thus giving it an advantage. The results in Figure 6
show that NeMa is almost three orders of magnitude slower
than our algorithm. This suggests that a query answering
technique for graphs is not applicable to our setting.

We also provide anecdotal evidence comparing the top-5
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results from our method and NeMa. Tables 1 and 2 show
the top-5 results of NeMa for two different exemplar queries
compared with the results of our algorithm, shown in Ta-
bles 3 and 4 (for our algorithm, we report the top-2 results
containing query terms, the top-2 results not containing
query terms, and for reference, the lowest ranking result).
We observe that if the structure of the exemplar query is
complex (e.g., it contains cycles), NeMa fails to find the cor-
rect answers, mapping different query nodes on the same
graph node as depicted in Table 2-row 3, where the same
graph node,“Oral Transmission”, is used twice. Actually,
87% of the answers produced by NeMa are not isomorphic
to the test queries, producing results that contain the same
node more than once, and thus, leading to poor results. Fur-
thermore, the top answers proposed by NeMa for Q2 con-
tain diseases that are not sexually transmitted (e.g., diabetes
that is ranked 2nd), a situation that does not occur with our
algorithm.

8.3 Pruning Effectiveness
In the next experiments we show the impact of pruning

on query time and the effect of selectivity on pruning time.

Pruning impact: We perform a batch of experiments using
the query test set, comparing the query time with and with-
out applying IterativePruning, and depict the results in
Figure 7. (We note that, as discussed in Section 5, our prun-
ing technique does not modify the quality of the final result
set, neither does it discard any relevant result.) Applying
pruning results in 3% to 99% less query time. Moreover,
we observe that for 17% of the queries, pruning does not
affect the query time. We notice that pruning is more effec-
tive when the frequencies of the edge labels of the sample in
the graph are high, since a large part of the graph is elimi-
nated with fewer operations. This observation allows us to
run the IterativePruning on demand. On average, Iter-
ativePruning reduces query time by 30% and the graph
size by 80% (by removing non-matching edges). This entire
batch of experiments takes 38 minutes to execute without
pruning and 17 minutes with pruning, saving 55% of the
total time.

Pruning Selectivity: We study the performance of prun-
ing in terms of time as a function of the selectivity of the
starting node in the sample. Remember that low selectivity
means better pruning (see Equation 1). We run experiments
measuring the correlation between time and selectivity, se-
lecting the different nodes of the sample as starting nodes.
The results show a positive correlation of 0.57 between se-
lectivity and time performance, which is statistically signif-
icant at the 0.01 significance level. We conclude that start-
ing from a low selective node positively impacts the pruning
time, with savings up to 87%.

8.4 Calibrating RelevantNeighborhood
We study the effect of τ on RelevantNeighborhood

in terms of time and quality of the results. Parameter τ of
RelevantNeighborhood determines the degree of approx-
imation of the estimation of PPV of each node. In Figure 12,
we plot the size of the neighborhoods (counts of nodes and
edges) visited for increasing values of τ (from 0.0005 to 0.01),
and the number of answers retrieved in each case. The ob-
served decrease in the number of visited nodes and edges
is directly proportional to the number of answers retrieved,

and exhibits an exponential decay as τ increases. Figure 13
shows that with larger values of τ the time needed to com-
pute the results decreases in the same manner.

We now evaluate the quality of the answers produced by
ApFastXQ, by measuring precision at 1,5,10,50,100, where
precision at k (abbreviated P@k) is defined as the fraction
of results produced by FastXQ that are also produced by
ApFastXQ in the first k positions. Table 5 shows that
overall precision is high, especially for the top positions. Any
value of τ between 0.003 and 0.005 is a reasonable choice,
leading to high precision and an average query time of less
than 2.4 seconds. Evidently, the choice of this parameter
depends on the application. In a biological setting, where
precision is more important than time, τ = 0.002 could be a
reasonable choice, producing very precise answers in about
10 seconds. On the web, where timely answers are needed,
τ = 0.005 can still offer precise answers in the top positions,
in less than 1 second. In our experiments, we used τ = 0.003.

τ P@1 P@5 P@10 P@50 P@100
0.002 1 0.99 0.99 0.85 0.75
0.003 1 0.97 0.94 0.80 0.73
0.004 1 0.95 0.93 0.71 0.60
0.005 1 0.94 0.92 0.66 0.56

Table 5: Precision of ApFastXQ varying τ

8.5 Scalability
We present the scalability experiments as a function of the

number of answers and the size of the database. In Figure 8
we show the number of visited edges and nodes, as well as
the number of results when the number of embedded answers
increase (recall that QSize-x contains exactly x answers for
each exemplar query). The time of ApFastXQ is the sum
of the times shown in Figure 8. We observe that using Rel-
evantNeighborhood as the number of answers increases
from 60 to 100, the number of explored nodes remains al-
most the same. This behavior is expected, since Relevant-
Neighborhood does not explore more nodes as long as the
structure of the graph remains almost unchanged, but it
finds more answers embedded in the same subgraph.

Conversely, if the size of the dataset increases and the
number of answers is fixed (Figures 10 and 11) it is less likely
to find answers close to the exemplar query. As expected,
since the number of nodes explored is almost the same (see
Figure 10) the time is constant, even though we move from
500k to 20M nodes. This supports our design choice, since
changes in the peripheral part of the graph do not affect the
APPV algorithm.

9. RELATED WORK
Query Modification. Many different works study ways to
provide the user with answers that may be of interest even
if they were not explicitly requested in the query. Query
refinement [22] extends the user query in order to retrieve
more precise results [2, 7, 28, 32] using some external knowl-
edge. In our work we are not trying to alter the query, but
only use it as a sample that can lead us to additional queries
generating resources of interest. Query relaxation [22, 23],
on the other hand, relaxes an over-specified query that re-
turns no answers to allow a non-empty answer set to be
produced. Our approach is somehow similar, however, query
relaxation is driven by the conditions in the query. It will
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not include results that are similar to those the user query
generates, unless they are satisfying a subset of these con-
ditions. In contrast, our approach adds additional results
by using similarities at the data level. Related queries deal
with the discovery of queries generating results of possible
interest to a user based on a query that the user has already
posed. Their discovery is based on information like query
logs [2, 32], document corpuses [7], knowledge bases [25] or
wikis [9]. Since our work can also be used to suggest related
queries as explained in the introduction, we can be seen as
complementary to these approaches, offering a new way of
generating related queries.

Another group of works that do not try to extend/improve
the query results with new data, but only to organize them
in some way that is more comprehensive to the user, is the
one of faceted-search [12] and query categorization [30]. De-
spite the fundamental difference from our approach, these
works are also aiming at increasing the user satisfaction.

Query Answering on Graphs. Most works on finding a
graph structure in a large graph exploit graph edit distance
that measures similarity between subgraphs [13]. Comput-
ing the graph edit-distance is NP-hard and numerous index-
ing and pruning techniques have been proposed to improve
performance [31, 33]. Our solution is mainly related to works
in which the representation of a portion of the neighborhood
of a node is used to prune in advance nodes that are unre-
lated to those in the query [19, 20, 34].

10. CONCLUSIONS
In this paper we introduced a novel query paradigm called

exemplar queries. We formally defined it and described how
it is applied on a graph-based data model, where it requires
search for graph-isomorphism in order to evaluate a query.
We discussed why traditional query answering on graphs is
not applicable in this context, and proposed an exact solu-
tion based on an effective and theoretically sound pruning
technique, alongside an efficient approximation algorithm.
Moreover, we proposed a novel pruning technique based on
the concept of d-neighborhood and of bi-simulation. We
evaluated the efficiency and effectiveness of our approach
using one of the biggest multigraphs in the literature, and
coupled our results with a user study that confirms the use-
fulness of the proposed system. As future work, we are
considering to study the case in which we have multiple ex-
emplar queries for the same desired answer set.
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