
SeeDB: Visualizing Database Queries Efficiently

Aditya Parameswaran
Stanford University & UIUC

adityagp@illinois.edu

Neoklis Polyzotis
Google & UCSC

alkis@cs.ucsc.edu

Hector Garcia-Molina
Stanford University

hector@cs.stanford.edu

ABSTRACT
Data scientists rely on visualizations to interpret the data returned
by queries, but �nding the right visualization remains amanual task
that is o�en laborious. We propose a DBMS that partially automates
the task of �nding the right visualizations for a query. In a nutshell,
given an input query Q, the new DBMS optimizer will explore not
only the space of physical plans for Q, but also the space of possible
visualizations for the results of Q. �e output will comprise a rec-
ommendation of potentially “interesting” or “useful” visualizations,
where each visualization is coupled with a suitable query execution
plan. We discuss the technical challenges in building this system
and outline an agenda for future research.

1. INTRODUCTION
... today’s researchers must consume ever higher volumes
of numbers that gush, as if from a �re hose ...

—R.M. Friedho� and T. Kiely
Data analysts must si� through huge volumes of data looking for

valuable data-speci�c insights, trends, or anomalies. �is process
involves selecting the “right” subset of the data, and the “right” way
to view it, so that the “insights” become apparent. Moreover, the
process is o�en ad-hoc and consumes a lot of the analyst’s time. Our
vision is that some especially cumbersome aspects of this search for
interesting insights can be automated.

To illustrate, consider the following interactive exploration work-
�ow, which we believe is o�en used in practice.
Step (1): First, the analyst poses a relational query to extract some
subset of data they are interested in exploring. For example, the an-
alyst may select all records associated with “stapler” products.
Step (2): �en, the analyst considers several candidate views over
this subset of data, formed by, say, aggregation and grouping; the
analyst must study all of these views one by one. For example, one
view may be total stapler sales by year, while another view may be
the quantity in stock by sales region. Since these views have two-
attributes each, we can view them as 2-dimensional graphs. For ex-
ample, Figure 1(a) may be the stapler sales (y-axis) by year (x-axis),
while Figure 1(c) may be the quantity (y-axis) by region (x-axis).
(Figures 1(b) and 1(d) are discussed below.)

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact copy-
right holder by emailing info@vldb.org. Articles from this volume were
invited to present their results at the 40th International Conference on Very
Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 4
Copyright 2013 VLDB Endowment 2150-8097/13/12.

Step (3): Next, the analyst steps through each view, anddecideswhich
views are “interesting.” �is of course is the critical and time-consu-
ming step. What makes a view like Figure 1(a) interesting or not?
Well, it all depends on the application semantics and what we are
comparing against. For example, Figure 1(a) shows decreasing sales
over time. If we are in a recession and all product sales are down
then this observation is not very interesting. However, say that Fig-
ure 1(b) shows the aggregate (all) product sales over the same time
periods. �en the stapler sales view goes against the general trend:
overall sales are up, but stapler sales are going down. In this case,
the view is potentially “interesting” because it depicts a trend in the
subset of data that the analyst is interested in (i.e., stapler-related
data) that deviates from the trend in the overall data. Of course, the
analyst must decide if this deviation is truly an insight for this ap-
plication. Even so, our key insight is that we may be able to identify
and highlight to the analyst potentially interesting views using auto-
mated mechanisms based on deviation. By doing so, we eliminate
the laborious process of stepping through all possible views that the
analyst currently performs. Once we recommend potentially inter-
esting views, we can let the analyst make the �nal decision.

(a) (b) (c) (d)
Figure 1: Views (a), (b): Sales over Time. (c), (d): Quantity by Region.

Figures 1(c) and 1(d) illustrate a di�erent type of deviation. �e
�rst �gure shows the distribution of staplers across regions, while
the second �gure shows the overall product distribution. Again, the
stapler view does not follow the general trend: the regions that have
the most staplers are not the larger regions that have most product
in stock. �e analysis must decide if this observation is interesting:
perhaps the region that has many staplers is near the world-famous
stapler-gun-wrestling contest, in which case the observation is ex-
pected. But perhaps there is a problem with the product shipping
strategy, in which case the deviation is very important.

In this vision paper, we sketch our design for a new data base
management system (DBMS), SeeDB, that automates the especially
laborious aspects of the search for useful data insights. Figure 2 de-
picts SeeDB, together with a conventional DBMS. In the conven-
tional system, the user or analyst submits a queryQ and obtains data
subsets. �us, conventional systems do not provide any means for
the analyst to get intuitive visual insights directly. In SeeDB, the an-
alyst also submits a query, but instead automatically obtains views
(or visualizations) of the query result that are potentially of inter-
est. As illustrated in our examples, these visualizations help the an-
alyst quickly interpret and understand speci�c “interesting/useful”
aspects of the query result. �us, with SeeDB, we fundamentally
modify the query-result paradigm of databases: SeeDB is provided
a query Q, and outputs visualizations of interesting aspects of Q.

325



D"

Q!

D"

Q’1!
Q’2!
…!
Q’n!

Score! Q’!
Visual 
Engine!

1.5"

2"

2.5"

3"

3.5"

4"

4.5"

0"

1"

2"

3"

4"

5"

6"

Q! DBMS!

SeeDB!

Figure 2: SeeDB Comparison with regular DBMS (The workflow for SeeDB is
only conceptual and need not happen in that order.)

Given a database and a query Q, SeeDB considers a space of
views Q′1 , . . . ,Q′n that are generated by adding to Q additional rela-
tional operators, such that the results can be readily visualized (via
the visual engine, depicted in Figure 2). For instance, one possibility
in our Staplers example was to add a group by and an aggregation
giving a view corresponding to total sales of Staplers per region. We
call these views Q′1 , . . . ,Q′n the discriminating views. To decide if a
discriminating view is interesting, SeeDB compares it to the equiva-
lent view obtained from the full database, using the same operators.
For comparing the two views, SeeDB uses a set of functions that
captures how much the �rst view deviates from the second. Prior
work in the visualization community has identi�ed several func-
tions for this purpose; however an important issue is the feasibility
of computing such functions on large databases. �ese functions
capture the deviations illustrated in our initial example (e.g., di�er-
ent slopes), and draw from existing functions that compare value
distributions (e.g., earth movers function). Of course, SeeDB is not
tied to any particular function(s), and allows the analyst to override
the defaults using their own functions. We say that SeeDB com-
putes the utility of discriminating view when it compares the dis-
criminating view against the same view on the database.
Our next example is a more detailed version of the previous ex-

ample, and clari�es the terms introduced.
Example 1.1. We focus on a database with a traditional star sch-

ema. We operate on a single fact table D, containing information
about sales. �e schema of D comprises three dimension attributes:
Product, Location, and Year, and one measure attribute: Sales.
Let us assume our analyst has entered a querywith a single selection

predicate: Q ≡ σ(Product = Staplers). �e result contains too many tuples
to examine individually, and hence the analyst has to rely on some
appropriate visualization in order to glean interesting insights about
the overall query result.
SeeDB searches over all possible discriminating views that can be

obtained by adding a single aggregate and group by operator. We ini-
tially focus on these two-attribute discriminating views because they
are easy to visualize using histograms or line plots. (SeeDB also con-
siders more general views.) One of these queries is Q′1 = R1(Q) where
R1 ≡ γLocation, sum(Sales). �is query tracks the sumof Sales over Location.
A possible result, R1(Q(D)), is the discriminating view shown in the
top part of Table 2. Another possible query is Q′2 = R2(Q), where
R2 ≡ γYear, sum(Sales), tracking the sum of Sales over Year. �e bottom
part of Table 2 shows a possible result of this second view.
�e next step is to score each view based on its utility, i.e., its ability

to show an interesting property of the query result. For this purpose,
SeeDB obtains aggregate statistics for Sales for Location and Year for
the original full database. (As we will see later, there are interesting
optimization opportunities if we can integrate this step with the pro-
cessing of Q.) Table 1 shows the full database aggregates, i.e., R1(D)
and R2(D) corresponding to our sample views. (Note the missing Q.)
For the Location attribute, both R1(D) and R1(Q(D)) have similar
distributions. (�e fact that sales are uniformly lower in R1(Q(D)) is
not surprising since R1(Q(D)) only considers a fraction of the data.)

Location Aggregates: R1(Q(D))
Boston: 30 Seattle: 40 New York: 40 San Francisco: 90

Year Aggregates: R2(Q(D))
2009: 50 2010: 40 2011: 60 2012: 50

Table 1: Aggregates for Product = ‘Staplers’
Location Aggregates: R1(D)

Boston: 300 Seattle: 300 New York: 300 San Francisco: 700
Year Aggregates: R2(D)

2009: 100 2010: 200 2011: 500 2012: 800
Table 2: Original Aggregates

However, notice that the distribution across Years is very di�erent for
tuples satisfying Product = ‘Staplers’. �at is, demand for ‘Staplers’
seems to have not gone up, unlike the other products. �is unexpected
behavior will be detected by SeeDB when it computes the utility of
R2(Q), and hence R2(Q) (and not R1(Q)) will be suggested to the
analyst for further human evaluation.
�us, there are several technical challenges that need to be addressed:
● For a given query, n, the total number of discriminating views, is
likely to be very large to explore exhaustively and precisely. Even
if we restrict ourselves to views that append a group-by and an ag-
gregation, the number of choices depends on the number of ag-
gregation methods and group-by attributes. Generating each of
R1(Q(D)), . . . , Rn(Q(D)), scoring themonutility, and thenpick-
ing the best one is certainly not feasible for most databases. �us,
we need mechanisms to prune the space of views and compute
their utility approximately. �is approach is reminiscent of how
a query optimizer costs and prunes candidate execution plans, ex-
cept that the objectives are di�erent and hence may require di�er-
ent cost models and data statistics. In addition, given that the end
result is consumed by an analyst, it may be preferable to recom-
mend a visualizationwith lower utility but also lower cost to gener-
ate. �is option creates a bi-criterion optimization problem, where
possible visualizations may trade o� between utility and cost.

● Generating and scoring the discriminating views R i(Q(D)) one-
by-one may miss interesting optimization opportunities: First, we
may share computation between discriminating views. For exam-
ple, the results of two views with di�erent aggregates but the same
group-bymay be computed together in one query, followed by pro-
jecting out to reveal the two individual views. Second, by evaluat-
ing the discriminating views in a deliberate order, we may be able
to prune views with low utility (without evaluation) that are de�-
nitely not going to be recommended to the analyst.

● Since visualizations tend to convey approximate information, e.g.,
a trend in a line plot may be more important than knowing the
exact coordinates of each point, we can introduce approximations
as part of SeeDB. �us, the utility of a discriminating view may
be computed approximately but e�ciently, and the recommended
discriminating views can be populated with approximate results,
based on synopses of the base data or of the query result, that can
be generated much more e�ciently.
Over the past few years, there has been a signi�cant e�ort from the
visualization community to provide interactive tools for data ana-
lysts. In particular, tools such as ShowMe, Polaris, and Tableau [16,
10] provide a canvas for data analysts to manipulate and view data,
tools such asWrangler [7] allow data analysts to transform and clean
data, and tools such as Pro�ler [8] allow users to visualize simple
anomalies in data. However, unlike SeeDB, these tools have little
automation; in e�ect, it is up to the analyst to generate a two-column
result (like the result of the discriminating view) to be visualized.

In this paper, we present our goals formally, and then present our
initial design for SeeDB, along with the underlying challenges.

2. SYSTEM OBJECTIVES
We now state the goals of SeeDB more formally, to provide a

blueprint for the system design sections that follow. When doing so,
we deliberately focus on a simple setting to ground our discussion.

326



However, the setting we consider is an important use-case that oc-
curs o�en in practice, and was the focus of our illustrative example.
We will consider advanced variants in Section 4.
ConcreteGoals:Weconsider a databaseDwith a snow�ake schema,
with dimension attributes A, measure attributes M, and potential
aggregate functions F over themeasure attributes. We limit the class
Q, of queries posed over D, to be those that select a horizontal frag-
ment of the fact table. �e selection of the fragment can be done
with selection predicates on the fact table, or on dimension tables
through key/foreign-key joins. Intuitively, the idea is that the an-
alyst speci�es their interest in examining facts that satisfy speci�c
conditions. SeeDB will identify visualizations that show some in-
teresting properties of these facts.
Given a query Q in Q, we de�ne RQ , the set of all discriminat-

ing views, to be the set of views that perform a group-by and some
aggregation over the results of Q. For simplicity, we assume that a
discriminating view R in RQ performs a group-by on a single at-
tribute a ∈ A, and applies an aggregation function f ∈ F on a single
measure attributem ∈ M. A view in this class corresponds to a two-
column table that shows how the value of f (m) varies with values of
attribute a. �is table can be directly visualized using a histogram, a
bar chart or a line plot. (We consider generalizations in Section 4.)
We also assume the existence of a function U(R) that can char-

acterize the utility of each view R(Q) inRQ (higher is better). For
now, we focus on picking discriminating views that optimize U(R)
with latency as low as possible: we return tomore general objectives
in Section 4. �us, our concrete goal is:

Goal 2.1. Given Q ∈ Q and a positive integer K, �nd K discrim-
inating views R i ∈ RQ , such that the R i have the largest values of
U(R i) among those inRQ , and the total latency is minimized.

OperationalizingUtility: One of the key challenges behind SeeDB
is formalizing the utility functionU(R) for a discriminating view R.
�ere are many choices forU and we expect SeeDB to recommend
views that score high on several metrics. As discussed previously,
the proposed metric tries to capture the idea of “deviation” between
distributions, i.e., a view has high utility if its contents show a trend
that deviates from the corresponding trend in the original database.
We �rst de�ne some notation. For any discriminating view R i in

the class de�ned above, we note that R i(D) and R i(Q(D)) are both
two column tables. A two-column table can be represented using a
weight vector. We let the weight vectorWa , f (m) represent the result
of R i(D) = γa , f (m)(D), i.e., distribution of the aggregate function
f on the measure quantity m across various values of the attribute
a. Going back to our example, it follows that
WYear, sum(Sales) = (2009 ∶ 100, 2010 ∶ 200, 2011 ∶ 500, 2012 ∶ 800)

Herem is Sales, f is the sum, and a is the Year attribute. �en, we let
WQ

a , f (m) represent the (changed) distribution of R i(Q(D)), the ag-
gregated quantitym across values of the attribute a, when restricted
to the result of the query Q. �us,

W σProd = ‘Staplers’
Year, sum(Sales) = (2009 ∶ 50, 2010 ∶ 40, 2011 ∶ 60, 2012 ∶ 50)

�e utility U of a discriminating view γa , f (m) is de�ned to be the
distance between WQ

a , f (m), and Wa , f (m): U(γa , f (m)) = S(WQ
a , f (m) ,

Wa , f (m))where S is a distancemetric. �e higher S is, themore use-
ful a discriminating view is. Common distance metrics used in vi-
sualization literature include K-L divergence [19], Jenson-Shannon
distance [18, 17], and earth mover distance [20]. Wang [17] pro-
vides a good overview of themetrics used in scienti�c visualizations,
while [20] provides a summary of probability-based distance met-
rics. As discussed earlier, we do not prescribe any speci�c distance
metrics, instead, we plan to support a whole range of distance met-
rics, which can be overridden by the data analyst.

We show in our extended paper [11] that in our example, we get
the right discriminating view (i.e., that of Year) when we consider
the metrics mentioned above: the utility for Year is signi�cantly
higher than that for Location for each of the metrics considered.

3. INITIAL DESIGN
Our initial design for SeeDB is as a simple wrapper over an exist-

ing database system. One straightforward work�ow is as follows:
● Step 1: Enumerate all discriminating views R ∈ RQ and evaluate
utility U(R) (i.e., compute WQ

a , f (m) and Wa , f (m)) by issuing the
corresponding counting queries to the DBMS. Select the K views
with highest U(R).

● Step 2: Compute the results of these K views using the DBMS, then
forward the results to the visual engine.
It is clear that this work�ow su�ers from several ine�ciencies. We
now discuss potential optimizations, some of which require new
query processing schemes specialized for the problem at hand.
ApproximateUtilityComputation:Wecan speedup Step 1 by com-
puting the utilities of discriminating views approximately. Naturally,
we would want the approximations to be accurate enough to select
a good set of views for Step 2.

Sampling is one possible approximation method: We construct a
sample of the query result Q(D), and the underlying data D, and
use these samples to compute approximate weight vectors WQ

a , f (m)
andWa , f (m). (In fact, the latter, which does not depend onQ, can be
computed before any queries are issued.) �e question of how large
a sample of Q is necessary to enable the weight vectorsWQ

a , f (m), for
all a, f ,m, to have high accuracy is, to the best of our knowledge,
still open. Techniques from sampling for aggregation [3], and more
generally, approximate query processing [1, 2] may be relevant here.

Ideally, we would want error bounds on the resulting approxi-
mate utilities, in order to enable SeeDB to select views of provably
high utility and avoid views of provably low utility. �ese guarantees
may depend on the speci�c metric used. For instance, approxima-
tion guarantees on the magnitudes of the weight vectors may di-
rectly translate to guarantees on the earthmover distance (a simpler
metric), but not the Jenson-Shannon distance (a complex metric).
Searching the Space of Discriminating Views: �e space of dis-
criminating views may be too large to search exhaustively in an ef-
�cient manner, particularly if SeeDB relies on exact utility com-
putation. Instead, it may be possible to prune the search space by
leveraging relationships between discriminating views in terms of
utility. For instance, functional dependencies among grouping at-
tributes can help us infer that certain views will have the exact same
utility by virtue of having the same groups. Furthermore, the search
strategy that navigates the space of views may also take into account
inter-dependencies: for instance, investing computational resources
to determine that a view has provably low utility would be useful, if
this determination will lead to the pruning of several other views
correlated with the speci�c view.
Multi-Query Optimization: Step 2 comprises the evaluation of K
queries and so raises opportunities formulti-query optimization [15].
For instance, if we are recommending several discriminating views
with the same group-by attribute, wemay combine the computation
of the views into a single group-by query withmultiple aggregations
(one per view). We expect that the opportunities to share computa-
tion will increase with more complex queries and views.

Multi-query optimization may also be used to optimize utility
computation (Step 1). For instance, multi-query optimization may
reveal that WQ

a , f i(m) may be computed together for all i. Addition-
ally, since we make repeated calls to evaluate WQ

a , f (m) for di�erent
a, f ,m, we can instead �rst materialize the query result Q(D) and

327



then compute the weight vectors WQ
a , f (m) by issuing queries on the

materialized result. Materializing Q(D) can also help in evaluating
R(Q(D)) for each selected discriminating view R in Step 2.
Fusing theTwoSteps: Up to this pointwe considered view selection
and view computation as two separate stages insideSeeDB. Alterna-
tively, wemay fuse the two stages in order to share work between the
computation of utilities (Step 1) and the evaluation of view queries
(Step 2), thus reducing end-to-end latency.

Computing U(R) requires knowledge about the contents of R,
and therefore, we compute U(R) and R(Q(D)) together. Since
it may be prohibitively expensive to compute these quantities for
each R, and since the end goal is to recommend only K views, we
may employ approximate utility computation coupled with a prun-
ing rule. Speci�cally, suppose that is it possible to schedule the com-
putation of Q(D) and receive its output in a random order (e.g., as
described in [6]). SeeDB will then observe a sample of increasing
size as it consumes the output of Q(D). Processing the output in-
volves two tasks: (a) updating a running estimate of the utility of
each view (leveraging the fact that the observed output is a sam-
ple of Q(D)), and (b) updating the current contents of unpruned
views using hash-based aggregation. SeeDB can use the running
utility estimates to prune views of low utility. Overall, as SeeDB
processes Q(D) it can make progress towards both selecting the
top-K views and computing their contents. �us, this specialized
query-processing strategy can reduce SeeDB’s end-to-end latency
but it comes with higher resource requirements (since many group-
by queries need to be processed concurrently).

4. ENHANCEMENTS AND EXTENSIONS
We now present some enhancements that may further improve

the analyst’s user experience beyond those suggested previously.
Reducing Perceived Latency: To reduce perceived latency, SeeDB
can �rst produce the discriminating view result in the top-K that
takes the least amount of time to execute. �at way, the user can pe-
ruse the �rst visualization as soon as possible. �en, SeeDB can
generate the remaining views. Further, SeeDB can, in the back-
ground, compute the result of the current top-K views while consid-
ering other views. If a view is no longer in the current top-K, then
it is replaced with another (better) view, which begins executing.
Latency �reshold: We may wish to incorporate a user-speci�ed
overall latency threshold in our goal (i.e., �nd top-Kviews such that
total latency is bounded), so that the analyst does not have to wait
too long to see visualizations. Dealing with a latency threshold is
certainly more challenging, and will require new techniques. One
simple heuristic is to discard any views (without computation)whose
cost is estimated to be large. Also, we may be able to leverage inter-
dependencies between views for further pruning based on cost.
General Settings: SeeDB can be generalized to handle more elab-
orate discriminating views with little or no change. For instance,
SeeDB can easily handle multiple group-by attributes, resulting in
multi-column views that can be visualized as stacked bar-charts.
Our discriminating views could include additional selection predi-
cates (in addition to a group-by and an aggregation); for instance, in
our staplers example, perhaps the trend line of total sales of staplers
in California is an interesting visualization, because it di�ers from
the total sales of staplers in the rest of the country. Overall, there is
a rich space of general discriminating views we can consider.
Re�nement of Visualizations: Since analysts are rarely interested
in absolute values in their visualizations, we may be able to lever-
age ideas similar to those used in online aggregation [5] to produce
visualizations that become more accurate over time.
Selecting Diverse Views: Our goal simply selects the K views with

the highest utility, ignoring the fact that the discriminating views
are related. For instance, an analyst may prefer one visualization
each of sales and revenue, instead of two visualizations of sales, since
the former covers moremeasure attributes. Incorporating such per-
sonalized preferences requires new models of discriminating view-
diversity (leveraging metrics from recommendation systems) and
hence new computation methods.

5. RELATED WORK
Previous work related to SeeDB falls under three themes: visualiza-
tion tools (covered in Section 1), OLAP, and database visualizations:
OLAP: �ere has been some work on browsing data cubes, allow-
ing analysts to variously �nd “explanations” for why two cube values
were di�erent, to �nd which neighboring cubes have similar prop-
erties to the cube under consideration, or get suggestions on what
unexplored data cubes should be looked at next [12, 14, 13].
DatabaseVisualizationWork: Fusion tables [4] allows users to cre-
ate visualizations layered on top of web databases; they do not con-
sider the problem of automatic visualization generation. Devise [9]
translated user-manipulated visualizations into database queries.

6. CONCLUSIONS
We outlined our vision for SeeDB: a system that provides analysts
with visualizations highlighting interesting aspects of the query re-
sult. We de�ned several concrete problems in architecting SeeDB,
relating to areas ranging from multi-query optimization and ap-
proximation tomulti-criteria optimization. We believe that the gen-
eral area of bringing visualizations closer to the DBMS is a challeng-
ing, yet, important direction for database research in the future.

7. REFERENCES
[1] K. Chakrabarti et al. Approximate query processing using wavelets. In

VLDB, pages 111–122, 2000.
[2] G. Cormode and S. Muthukrishnan. An improved data stream summary:

the count-min sketch and its applications. J. Algorithms, 55(1):58–75, 2005.
[3] P. B. Gibbons. Distinct sampling for highly-accurate answers to distinct

values queries and event reports. In VLDB, pages 541–550, 2001.
[4] H. Gonzalez et al. Google fusion tables: web-centered data management

and collaboration. In SIGMOD Conference, pages 1061–1066, 2010.
[5] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online aggregation. In

J. Peckham, editor, SIGMOD 1997, pages 171–182. ACM Press, 1997.
[6] C. Jermaine et al. Scalable approximate query processing with the dbo

engine. ACM Trans. Database Syst., 33(4), 2008.
[7] S. Kandel et al. Wrangler: interactive visual specification of data

transformation scripts. In CHI, pages 3363–3372, 2011.
[8] S. Kandel et al. Profiler: integrated statistical analysis and visualization

for data quality assessment. In AVI, pages 547–554, 2012.
[9] M. Livny et al. Devise: Integrated querying and visualization of large

datasets. In SIGMOD Conference, pages 301–312, 1997.
[10] J. D. Mackinlay et al. Show me: Automatic presentation for visual

analysis. IEEE Trans. Vis. Comput. Graph., 13(6):1137–1144, 2007.
[11] A. Parameswaran, N. Polyzotis, and H. Garcia-Molina. SeeDB:

Visualizing Database Queries Efficiently. Stanford Infolab, 2013.
[12] S. Sarawagi. Explaining differences in multidimensional aggregates. In

VLDB, pages 42–53, 1999.
[13] S. Sarawagi. User-adaptive exploration of multidimensional data. In

VLDB, pages 307–316, 2000.
[14] G. Sathe and S. Sarawagi. Intelligent rollups in multidimensional olap

data. In VLDB, pages 531–540, 2001.
[15] T. K. Sellis. Multiple-query optimization. ACM TODS, 13(1):23–52, 1988.
[16] C. Stolte et al. Polaris: a system for query, analysis, and visualization of

multidimensional databases. Commun. ACM, 51(11):75–84, 2008.
[17] C. Wang and H.-W. Shen. Information theory in scientific visualization.

Entropy, 13(1):254–273, 2011.
[18] Wikipedia. Jensen shannon divergence — wikipedia, the free

encyclopedia, 2013. [Online; accessed 16-July-2013].
[19] Wikipedia. Kullback leibler divergence — wikipedia, the free

encyclopedia, 2013. [Online; accessed 16-July-2013].
[20] Wikipedia. Statistical distance — wikipedia, the free encyclopedia, 2013.

[Online; accessed 16-July-2013].

328


