Gestural Query Specification

Arnab Nandi

Lilong Jiang Michael Mandel

Computer Science & Engineering
The Ohio State University

{arnab,jianglil, nandelm}@cse.osu.edu

ABSTRACT

Direct, ad-hoc interaction with databases has typically been per-
formed over console-oriented conversational interfaces using query
languages such as SQL. With the rise in popularity of gestural user
interfaces and computing devices that use gestures as their exclusive
modes of interaction, database query interfaces require a fundamen-
tal rethinking to work without keyboards. We present a novel query
specification system that allows the user to query databases using a
series of gestures. We present a novel gesture recognition system
that uses both the interaction and the state of the database to classify
gestural input into relational database queries. We conduct exhaus-
tive systems performance tests and user studies to demonstrate that
our system is not only performant and capable of interactive laten-
cies, but it is also more usable, faster to use and more intuitive than
existing systems.

1. INTRODUCTION

Next-generation computing devices such as tablets, smartphones,
motion capture-based systems such as the Kinect, and eye-tracking-
based systems such as Google Glass have ushered us into a new age
of natural user interaction with data. The number of smartphones
and tablets sold in 2011 was 1.5 times the number of desktops,
laptops, and netbooks combined [9] for the same period; and in
the last quarter of that year, this ratio jumped to 1.9 times. In
a more recent study [29], sales of tablet devices are expected to
surpass those of portable computers in 2013, and surpass all personal
computers in 2015. Based on these trends, it is clear that both the
size and the heterogeneity of non-keyboard interaction is growing
rapidly, and soon will be a dominant mode of interaction.

End-user-friendly interaction with databases is a well-motivated
problem [31]. As discussed in the related work section (Section 6),
there has been a wide variety of work in query interfaces in both
domain-specific and domain-independent use cases. However, cur-
rent efforts are based on keyboard or mouse-driven interaction, and
are therefore unsuitable for gestures.

We capture the heterogeneous modes of natural, movement-based
interaction with data under a common terminology, gestural query-
ing. Each gesture is a single movement — performed by the user

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 4

Copyright 2013 VLDB Endowment 2150-8097/13/12.

289

CHINOOK V/

Artist Albumid

>
| Artistld - NI Artistld
1:2

n=2

\

Black Sabbath

ame: Black Sabbath | | Title

Iy
-
Iy

Black Sabbath

Black Sabbath Vol. 4 (Remaster)

S
-
S

Black Sabbath

Employee

Figure 1: Query Specification using Multi-touch Gestures. The
query task from our motivating example (Section 1.1) is speci-
fied using a series of gestures. As two tables are brought close
to each other, the attributes are presented in an arc such that
they are amenable to be joined. The preview of most likely join
is presented as feedback to the user for guidance.

using a finger, hand, head or input device, denoting an action to be
performed on the database query interface. Gestures encompass
finger-based multitouch points (e.g., input from the iPad) includ-
ing pressure for each finger, skeletal motion tracking (e.g., Kinect),
and more. We label databases that support such querying gestural
databases. In this paper, we articulate the challenges in building
a query interface that supports gestural querying from such inputs,
and study a novel system that allows for gestural query specification.

Gestural user interfaces have become a popular mode of inter-
action with a wide variety of touch-based, motion-tracking, or
eye-tracking devices. Given the rising popularity of such devices,
domain-specific applications have come up with mappings between
standard gestures and actions pertinent to the system. The onus of
gesture recognition is on the user interface layer, that identifies the
gesture as one of a set of gestures predefined by the operating sys-
tem, independent of the application state. The gesture type, along
with metadata parameters such as coordinates and pressure, are
sent to the application, which then uses them to infer actions. This
mapping of interpreted gestures to a domain-specific action can be
considered as a classification problem.

Unlike domain-specific applications, in the context of ad-hoc,
open-domain querying of relational databases, the use of gestures
as the sole mode of interaction faces several challenges. First, the
space of possible actions is large! — the action depends on the
underlying database query language (e.g., SQL), the schema of
the database (the tables and the attributes for each table), and the
data contained in it (the unique values for each attribute, and the
individual tuples for each table). One solution to this problem is
to present a modal interface allowing the user to first pick the type

"When considering n-ary joins, this space can be infinite.

of query, and then drill down the parameters of the desired query.
Such a modal interface goes against the desiderata of fluidity and
direct manipulability. Further, if the user is unsure about the exact
query [44] itself, the database system will need to guide the user to
the exact query intent, and the intended query result.

Thus, to provide for an effective querying experience, there is a
strong need for the system to effectively aid the user in articulat-
ing the intended query using gestures. This problem of gestural
query specification relies on both gestural input and the state of the
database to recognize and articulate queries.

1.1 Motivating Example

To better explain the system, we motivate our problem with a
simple ad-hoc querying task. Consider a relational database about
music, which contains information about music artists, albums and
performances. From this database, the user is tasked to find the titles
of all the albums created by the artist “Black Sabbath”. While the
task is simple to express, it embodies many of the challenges users
have with querying the system — discovering the schema and data,
understanding the query language and interface, and then interacting
with the system to extract the required information.

Figure 1 demonstrates this task using one possible frontend for
gestural querying — a multitouch interface. The user first browses
the schema and data by dragging elements from the database tray
into the workspace, and then peeks into them by pinching out on
each table. The artist “Black Sabbath” is filtered by using a simple
gesture: dragging the “Black Sabbath” cell to the attribute header,
followed by a join operation, performed by bringing the ARTIST
and ALBUM close to each other. The interface fluidly guides the
user by responding to each touch and gestural movement, providing
previews and feedback of the results to the most likely query. It
should be noted that the interaction is done directly on the data itself,
and is composable — queries can be constructed piecemeal, and the
ordering of the filter clause and the join could be interchanged. The
gestural query paradigm allows for the user to intuitively specify an
articulate query by interacting with the system without having to
invest time learning about the schema, data, or the query language.
As we will see in our experimental evaluation, our novel query
specification system outperforms existing methods in usability.

1.2 Challenges and Opportunities

The use of gestures to support ad-hoc database interaction brings
forth a set of challenges and opportunities. Interaction is continu-
ous — unlike traditional keyboard interaction where the user types
out a string of characters (denoting a query) and then pressing enter
to execute it, gestural interaction is expected to be fluid. Users
expect to see feedback during the articulation of the gesture itself.
This leads us to observe the emergence of a new database query
paradigm: in place of the traditional Query— Result interaction,
we now have a continuous loop of interaction, where the user re-
ceives constant feedback from the database during the specification
of the query itself. Second, touch-based, augmented reality, and
motion-oriented interfaces have popularized the notion of a direct
manipulation [27] interface. In the context of database querying,
users expect to manage, query, and manipulate data by directly inter-
acting with it — a contrast from the current paradigm of constructing
declarative queries and then applying them to the data. Finally, new
patterns of interaction are likely to overwhelm the user — unlike
traditional keyboard interaction with a limited number of keys to
press and keywords to generate, there can be an infinite number of
gestures, and implied actions from these gestures. Thus, it becomes
the responsibility of the query specification system to guide the
user during the database interaction process.

290

Contributions & Qutline: In this paper, we make the following
contributions:

e We introduce and define the problem of gestural query specifica-
tion, a critical task in database querying that is gaining importance

with the proliferation of purely gesture-oriented interfaces.

We propose a novel querying framework that allows the user to
effectively specify relational queries using a series of gestures.

We detail the architecture and implementation of a novel gestural
query specification system, GESTUREQUERY, that provides feed-
back to the user during the query process, and detail the various
systems considerations and optimizations involved in the building
of the system.

We evaluate the effectiveness of our system by performing exhaus-
tive usability studies and systems evaluation using real workloads.
We show that GESTUREQUERY is not only performant to use for
real-world use cases, but also significantly more usable compared
to existing querying methods.

The paper is organized as follows. In the following section, we
describe the various terminologies and preliminary concepts that
are central to our work. In Section 3, we describe a novel Gestural
Query Language, that allows the user to specify relational queries
using an intuitive set of gestures. Section 4 details the underlying
architecture and implementation considerations of our Query Spec-
ification System. In Section 5 we provide a detailed performance
analysis and discuss the results of an exhaustive usability study. We
end with related work, conclusions, and future work.

2. MODELS AND PRELIMINARIES

Data Model: It should be noted that while our paper uses the
relational model as its underlying data model, our contributions
are independent of this choice, and can be applied to any other
data model. From a presentation standpoint, we additionally allow
relations to have ORDER BY attributes.

Query Model: Our system allows for both read and write queries,
at the data and the schema level. Specifically, we allow for selec-
tion, projection, union, join, and groupby/aggregate operations over
relations. Selections are constructed as conjunctions of clauses, and
disjunctions can be created using the union operator. As we will
describe in Section 3, each query operation takes one or more rela-
tion as input, and outputs one relation. In addition, each operation
generates feedback for the user during the gesture articulation phase
to guide them.

Gestural Articulation: A gesture is defined as a movement of the
hand or body. In our system, a gesture G is represented as a set
of time-series of points; p; = (¢,1,m) where t is the timestamp
of that point, [is locational information in the interface, and m
is the metadata information associated with that point and time
and |p| is the number of points. For example, in the context of
a capacitive 2-dimensional multi-touch interface that supports 10
fingers at a touch sampling rate of 30Hz (such as those found in
most tablet devices), there would be a time-series of up to ten 2-
dimensional points, at 30 sets per second: [= {(z, y) } and |I| < 10.
m in this example could represent pressure and size of the finger
touch. Our model of gestural input allows for a wide variety of
input: for 3-D depth-capture devices such as the Microsoft Kinect,
l = {(z,y,2)}. The user interacts with the system in a series of
articulations, individual fluid motions. Each gesture articulation
typically lasts a few seconds, going from an ambiguous gesture
at the start (the user has not provided any point information yet)

to an articulate gesture (the user has made a discernible gesture,
encoded as hundreds of timestamped point instances), followed by
the completion of the gesture. It should be noted that for gestural
interfaces, the user expects feedback from the system during the
articulation of the gesture as well — it is not sufficient to only react
at the end of the articulation. This is because the nature of feedback
might affect the gesture the user performs. For example, a user
who is trying to perform a UNION on two relations may notice
that the schema of the two relations are in fact incompatible, and
thus consider performing a JOIN instead, changing from a stacking
gesture (one relation on top of another) to a composing gesture (two
relations side by side) in the same fluid finger movement.

Query Specification: Given a database query task, the user per-
forms a series of interactions to query the database. The process
of interacting with the database to go from a conceptual task to
specifying the correct structured query is called query specification.
Query specification solves a query task, and comprises one or more
query intent transitions.

Query Intent: Users issue queries by focusing on their query intent,
going from a vague information need to an exact query formulation.
The query intent is a probability distribution over a space of valid
relational queries. Initially, the user provides no information to
the system, thus the query intent is a uniform distribution over all
possible queries to the database. Given sufficient information from
the gesture and the query context (described below), the system
can narrow down this distribution, bounding the space of possible
queries. At the completion of a gesture, the query intent space is
that of a single query with 100% probability: an explicit query. The
process of narrowing the query space and arriving at an explicit
query is called a query intent transition. A single user session will
comprise multiple query intent transitions, each building on the
previous one.

Query Context: All interactions take place within a query specifica-
tion session. Due to the directly manipulable nature of the interface,
the system catalogs all query intent transitions and all recent inter-
mediate results and feedback, termed the query context. This allows
the system to infer and narrow the space of possible queries. Further,
the query context can be used to prioritize the surfacing of feedback
to the user, as discussed in the forthcoming paragraphs.

Query Gesture: Each set of user gestures is codified as a search
pattern, with a “likelihood score”. Each gesture maps to one or
many parameterized queries. When the likelihood score for a certain
gesture goes above a fixed threshold, the system attempts to pop-
ulate the parameters of the parameterized query using the gesture
information (e.g., which relations are being dragged) and the query
context, building a query template. This query template is used to
narrow the query intent space (described above). In the event that
multiple gestures are inferred at the same time, the intent space is
the union of all corresponding query templates.

Intent Feedback: The goal of the user interface is to accelerate the
narrowing of the intent space, allowing the user to quickly reach an
explicit query. To do this, the system provides feedback to the user
during the entire interaction loop. Since the amount of feedback
possible is quite large, and there is a cost of overburdening the user
with too much information. This leads to an interesting problem:
How do we rank feedback such that it causes the user to narrow the
intent space? While the presentation of feedback is central to the
user interaction, the generation of feedback itself can leverage prior
work in areas such as result diversification [55] and is beyond the
scope of this paper. In this paper, we focus on the query language,
interaction paradigm, and query specification system.

291

Example Walkthrough: To familiarize the reader with the terms
presented, we walk through the user interaction in the motivating
example. The user has the query specification task of representing
aFILTER (i.e., selection) followed by a JOIN. This is done using
a series of six quick gestures — the user first performs a gesture to
drag the ARTIST relation into the workspace, putting it in the query
context, followed by a pinch-out gesture to PREVIEW the relation.
The same pair of gestures is performed on the ALBUM relation. The
user then performs a FILTER gesture on ARTIST, selecting only
“Black Sabbath”. Due to the closed algebra, all direct manipulations
on presented data result in relations as well, thus allowing subse-
quent actions on the data. The user then articulates a JOIN gesture
by bringing the relations close to each other, considering each pair
of attributes. During the gesture articulation, the query intent is
initially equally spread across all the valid JOINs — for tables with
M and N attributes, this can yield M x N possible queries. The
user is provided with intent feedback, a preview of the most likely
join result and join statistics. The user then uses this feedback to
complete the articulation of the query, bringing the most desirable
pair of attributes close to each other. This articulation completes
the query intent transition — the intent has gone from a uniform
distribution over M X N possible queries to exactly one possible
join query. This completes the articulation of the gesture, and corre-
spondingly, the intent transition and the overall specification of the
tasked query. Ultimately, the user is left with the desired result.

3. A GESTURAL QUERY LANGUAGE

As depicted in Figure 1, the database query interface allows users
to directly manipulate results by interacting with them in a sequence
of gestures. The interface is divided into three parts: the header, tray,
and workspace. The header displays the database information and
allows users to pick another database. The tray shows a list of tables
available in the selected database, along with tuple cardinalities.
The tray also acts as a source for database table interface objects.
Tables are dragged to the workspace from the database tray. Each
table in the workspace represents a view of the table, i.e., cloned
representation of the data, and can be directly manipulated. Each
gesture denotes a single manipulation action and impacts only the
cloned instance — not the original database. There are a finite number
of intuitive gestures that the user can learn, each of which when
performed on the workspace can correspond to an action. Users
can undo each action to return to the previous workspace state.
Since actions directly correspond to relational queries, all actions
manipulate one or more relations into another relation. Thus, actions
are composable and can be performed in sequence, manipulating
relations in the workspace till the desired result is achieved.

3.1 Desiderata

The development of a gestural query language is a critical task
— the language needs to capture the nuances of the new generation
of user interfaces, while at the same time, provide the user with the
expressiveness and capabilities of existing querying methods. As
a process, we detail the desired features of an ideal gestural query
language. As we will see in the following sections, we leverage
a combination of algebraic, algorithmic, and design-based solu-
tions to meet these needs, and come up with a usable and efficient
way to specify queries using gestures.

Direct Manipulation: Modern user interfaces have brought forth a
paradigm shift in user input and output. In place of indirect interac-
tion via textual commands or mouse movements, users now expect
to touch, move, and interact directly with the data and interface ele-
ments. Therefore, our system needs to allow for direct manipulation:

Users should not be expected to construct abstract queries, but to in-
teract with the data directly. Thus, queries are constructed implicitly
— each gestural operation by the user transforms the existing data,
iteratively specifying the intended query in steps.

Closure and Composition: The iterative and directly manipulable
nature of the system implies that the data presented to the user can
be perceived as a view of a query expression over the database. For
interaction to be intuitive, all gestures (and thus the corresponding
query operations) should be available to the user at all times. There-
fore, we require that our gestural query operators be closed under
relational algebra, and thus all gesture operations are performed on
one or more relations, and yield new relation as the final output,
allowing for composition of operations.

Feedback: While each gesture is performed on a relation and yields
a relation upon completion of the gesture, it is imperative that the
user be guided through the space of possible queries and results.
As mentioned in the previous section, this is increasingly important
in the context of gestural interfaces where the space of possible
gestures is unbounded and there are few constraints provided to
the user (e.g., finite number of keys on a keyboard versus a touch
interface with no explicit targets). Unlike the final result of each
operation, feedback need not always be a relation — it can be any
piece of information that aids the user in articulating their intended
query. From a usability perspective, we observe that modeling
feedback on the most likely query result is most useful to the user.

Expressivity: It is important that our language should not hold the
user back in terms of their ability to specify queries. In the following
subsection, we present our gesture vocabulary that allows users to
perform both schema and data-level queries, providing a mapping
between gestures and most relational algebra operations. Further, it
is important for the system to let the user express queries efficiently
— thus, most gestures allow taking advantage of ideas such as multi-
touch to perform complex operations (e.g., conjunctive selections
can be performed by filtering on multiple values and attributes, one
per finger, that can then be UNIONed together to return a disjunction
of conjunctive selections).

3.2 A Gesture Vocabulary

In this section, we describe the vocabulary of gestures used in
our system. Our vocabulary works on the relational data model
and assumes the use of multi-point gestures, as per our gesture
definition. It should be noted that while the existence of a gesture
vocabulary is critical to our system, the gesture itself is not important
— users are welcome to come up with their own creative and intuitive
gestures. Custom gestures, when encoded as feature functions for
the gesture classifier will work similar to the gestures proposed
below. However, as discussed in Section 3.3, our gesture vocabulary
has been carefully thought through and has been through several
iterations of design. As part of the overall system, this set of gestures
has been formally evaluated to be highly usable and intuitive as per
the evaluations performed in Section 5. Visual representations of
most actions are presented in Figure 2.

UNDO: This is a universal action, performed by swiping the workspace
to the left. This restores the workspace to the previous state, un-
doing the prior gesture. This (non-operator) query is implemented
by maintaining a stack of prior queries; and is extremely useful for
exploration / trial-and-error query specification tasks.

PREVIEW: This action works on a single table. When dragged from
the database tray, each table is represented by the name of the table
and its attributes. By making the pinch-out gesture on the table in

292

the workspace, the PREVIEW action is issued on the target table.
This is issued to the database as a SQL query SELECT » FROM
TARGET_TABLE LIMIT 6;, presenting the first six rows of the
table on screen’.

SORT: By swiping the attribute header right/left, users can sort the
data according to the attribute in ascending/descending order. The
sorted attribute is highlighted. Ordering by multiple attributes can
be performed by successively swiping headers.

AGGREGATE: This action works on a single table. The user first
needs to drag the grouping attribute to the table header to bring
up a popup menu of aggregate functions. The user then drags the
aggregated attribute through the desired aggregation functions in the
menu.

REARRANGE: By dragging the attribute header into a different place
in the attribute list, the user can change the relative positions of the
attributes. This allows positional operations such as JOINS to be
performed more easily.

FILTER: This action works on a single table. By tapping and
holding a table cell, a free-floating copy of the cell shows up under
the user’s finger. The user can drag this copy into the attribute header
to filter the preview. If the user release his finger immediately after
the copy overlaps with the attribute header, the table will be filtered
by equality to the selected value. If the user holds the copy on the
attribute header, a range slider will appear and the user can filter the
table by adjusting the range on the slider.

JOIN: Two tables can be joined by moving them close to each
other. The JOIN action represents the inner equijoin SQL query,
representing combinations of rows that have the same value for the
attributes that are being joined upon. When two tables are brought
close to each other, their attribute lists curve so that the user can
bring the desired pair of attributes closest to each other. The design
considerations for this curvature are described in Section 3.3.

UNION: Two tables can be unified into a single table if their at-
tributes are compatible; i.e., they have the same number of attributes,
and each pair of attributes is of the same data type. To unify tables,
the user drags one table onto another from the top, in a stacking
gesture. A preview of compatible columns is presented as color
coded feedback.

INSERT: In order to insert one new tuple, the user can doubletap
the bottom of the table. A blank tuple will be added into the end of
the table that the user can edit.

UPDATE: To update the value of a table cell, the user uses two-
fingers to swipe the cell. If the cell is numeric, scrolling up will
increase the value while scrolling down will decrease the value. If
the user holds their finger on the cell, a distribution slider will pop up
and the user can update the value through the slider. If the value is
categorical, a menu will appear allowing the selection of a category.
If the value is alphanumeric, text input with autocompletion will be
triggered, based on prior gestural text input work [56].

ALTER: There are two ways of changing the table schema. One way
is to change the attribute layout using the REARRANGE action. The
other way is to scroll the attribute header using two fingers, which
allows the user to change the datatype or name of the attribute.

2We skip more complex variants of preview for conciseness and to
focus on the gesture recognition challenges.

halS Employee Employee 500 Employee
e T e ! T (LELETe
ojectld 2 2 4 7T g projectid 2 2 4 projectld®* T2 ® 2 4 | | | | | | | I | j
jocanom nye | sF ATL location NYC SF ATL location N SF ATL
deptid 2 31 3 deptld 22 31 3 deptid 31 3
deptld
Preview Sort Filter Range o
Filter Projection
MIN
MAX
Employee AVG
d A Employee
i Y Sum Employee | =~ E’f""“yee . id 1 2 3
projectld S | -- * _'d 11,2 3 projectld 2 2 4
location ‘ S T"’Jef“d Nf{c A‘;L location | NYC | SF_| ATL
location M
deptld o deptld —, 22 31 3
" dept| 22 3
* (—cid title d
location
title
department
Union Rearrange Aggregate Update schema & update value Insert

Figure 2: Gestures in the GESTUREQUERY gestural query language. Usability experiments demonstrate that this language is both

easy to use and quicker to use than traditional interfaces.

PROJECTION: The user can drag multiple attributes out of one
table to make a new table.

3.3 Design Considerations: Interactive Join

It is important to note that while the above vocabulary of gestures
is demonstrative and gestures can be trivially replaced with others,
the design of these gestures was done with care and is the product
of multiple iterations of user testing. To provide insight into the
development process of these gestures, we now walk through two
design aspects of the JOIN gesture.

3.3.1 Minimizing Gestures for Exploratory Querying

An important challenge in ad-hoc querying is that the user is typi-
cally unfamiliar with both the schema and the data. Thus, we expect
the user to perform a large number of trial and error queries, discov-
ering the database in the process. To encourage the user to discover
the database, and at the same time minimize the effort involved, we
consider a variety of gestures for JOIN (shown in Figure 3) and
pick the one that is intuitive while quantifiably involving the least
amount of effort for exploratory querying.

One possible gesture (Figure 3 (a)) for JOIN is inspired by mouse-
driven interfaces for SQL databases — the user can simply drag a
column from one relation to another. The system can generate a
preview of the join during the drag operation, allowing the user to
abort the join if the result does not look right. However, for relations
with M and N attributes each, finding the right combination of
attributes will involve a worst case of M x N separate drag gestures,
each considering only one join preview per gesture.

A variant of this gesture (Figure 3 (b)) is to allow the user to not
abort the gesture on an unfavorable preview result, and to continue
the drag gesture towards a different column. This allows the user to
discover the right join in MIN(M, N) gestures, which is a reduction
from the previous number of actions.

Person Employee

id

Person Person

id

id

proje -
projld projld

loc:
de|

location location

department

department

(@)

Figure 3: Considerations for the interactive JOIN. Each of
these options requires more gestures than the one implemented
in our system, as seen in Figure 1.

293

A third method (Figure 3 (c)) is to pick two attributes in each of
the relations and then to drag them together in a pinching action.
Clearly, since we begin the gesture by picking the two attributes, we
are again forced to perform a worst case of M x N gestures, which
is again undesirable.

The fourth method is to simply bring the two tables close to each
other. By moving each attribute close to the other during the gesture
articulation phase, there is exactly one dragging gesture to perform,
and all possible attribute combinations can be previewed in the same
gesture. Thus, this gesture is the one we use for JOIN queries,
shown in Figure 1. As we will see in our experimental evaluation,
this JOIN gesture is both quicker to use than traditional interfaces
and also easily discoverable. Further, it allows the specification
system to leverage data and schema information to easily rule out
impossible joins, thereby accelerating the query process.

3.3.2 Readable and Pragmatic Layout

While most gestures such as PREVIEW and UNION interactions
are straightforward from a presentation standpoint, laying out at-
tributes during the JOIN interaction faces several challenges. First,
due to the textual nature of the information, it needs to be presented
in such a way that readability is preserved. Second, the interface
should allow the user to express all possible queries. In the case of
a pair of tables with M and NV attributes of the same type, there are
M x N possible joins.

Research in information visualization has extensively studied
layouts such as radial methods [17] for static use cases such as
menus, and has also looked into interactive exploration [58] of data.
However, the interactive, gesture-driven composition of two tables is
a novel and unique setting. To this end, we consider multiple layout
options to represent the JOIN operation, as shown in Figure 4.

The first option is to present attributes as simple vertical lists.
The problem with such a layout is that for any position of two
vertical lists, many pairs of attributes can be at identical distances,
leaving the JOIN intent ambiguous. For example, aligning a pair of

e p emvre|

Employee d -] @ |

L > supenvisorld

projectid <> parentProjectid g I

location <> managerld |/
title

Vertical

Figure 4: Layout Considerations for the interactive JOIN.

attributes at the top of their respective tables’ lists will always result
in aligning the second attributes at the same distance.

A second option is to consider a layout where each table is repre-
sented as a radial menu. Geometrically, two circles are closest at
exactly one location, uniquely specifying a pair of attributes. How-
ever, radial menus are hard to read, don’t scale to a large number
of attributes, and need to be rotated to allow all M x N attribute
pairings. As a solution to these problems, we use an arc layout, such
that attributes are vertically stacked ensuring readability, but are
placed in an arc connected at the table label, ensuring unambiguous
joining intent. Further, making the orientation of the arcs flexible
and user controllable (a multitouch interaction involving 2 — —4
points, 1 or 2 for each table) allows any pair of attributes to be
selected as the join predicate.

3.4 Scaling Challenges

We now discuss the impact of scale on the gestural querying
paradigm and interface. Due to the iterative nature of query specifi-
cation, the user can compose large, complex queries using a series
of intuitive gestures, thanks to the closure of the operations, as
described in Section 3.1. Gestures are designed to represent the
common case first; subsequent gestures can adapt the query itself,
e.g., the default inner equijoins can be changed by swiping the JOIN
symbol presented up / down to switch out from an equijoin, and
right / left to modulate inner / outer participation on each side. Each
gesture manipulates the query constructed so far in the workspace.
Furthermore, should the user feel the need for gestural idioms (i.e.
gestures that represent a complex compound query) it is trivial to
introduce new gestures into the gesture vocabulary (Section 4). In
addition to dealing with larger queries, interacting with large, com-
plex schema is a key consideration. The explorative nature of a
gestural interface is ideal for navigating larger schema. Gestures
described are amenable to the ranking of attributes [40, 16], allow-
ing for operations over relations with a large number of attributes
to prioritize gestures towards the most likely queries. Furthermore,
techniques such as schema summarization [60] that allow gestures
against simplified representations of schema, are ideal future work.

4. QUERY SPECIFICATION SYSTEM

The overall architecture of the query specification system is shown
in Figure 5. The user articulates gestures in the gesture query
language on a user interface with a dedicated cache for quickly
previewing results. These gestures are interpreted by the query
specification module, which first translates the gestures into a set
of features. The classification step then predicts the most likely
query based on the gesture features and the database state. Results
are generated using these queries and fed back to the user through
the feedback generation module. This section will describe these
modules in detail.

4.1 Gesture Recognition as Classification

‘We model the mapping of gestures (i.e., a collection of time-series
of point information) into queries as a classification problem. A
gesture is classified as a particular query according to the proximity
and compatibility of the tables involved. Classification based solely
on proximity is the currently prevalent Ul paradigm. By adding
compatibility, we are able to increase the likelihood of selecting
semantically meaningful queries. Proximity encompasses all of the
spatial information about the UI elements, including size, shape, po-
sition, and orientation of table and attribute graphical representations
along with their velocity and acceleration. Compatibility criteria
include schema information like matching field types and similar

294

User Feedback
g @ = [Generation
< o
]
o— & [& ro e
h= S @ x
J] S© | s
E £ Query
5 = | Specification
)
D | Gesture |~>| Feature Generation Result
ey Cache
Language Gesture Classification

Figure 5: Overall architecture of query specification system.

data using comparisons like join participation histograms, extreme
values, intersection in random samples, and total intersection.

We assume the input to our classifier is similar to what is available
on current multitouch mobile platforms. The Ul layer will supply the
classifier with a list of (x, y) coordinates and an ordinal identifier
indicating the finger with which it is associated. These identifiers
are assigned arbitrarily when a gesture is initiated, but are consistent
over the course of the gesture. Given this input, the classifier makes
a decision based on the most recent coordinate for each identifier.

We use a maximum entropy classifier [41, Section 9.2.6] in which
we define many “features” of gestures (see Table 1), including prox-
imity and compatibility features conditioned on each type of query,
and combine them linearly in the argument of an exponential. Math-
ematically, the goodness g(q) of a potential query g with feature

values f;(q) is
9(q) = exp (Z Aifi(t])) . ©)

4.2 Feature Design

The feature functions, f;(q), for our classifier recognize various
constituent parts of gestures and characteristic relationships in the
data. New queries can be defined by adding new feature functions
and adding new potential queries g to the set of queries. Our two-
stage approach takes advantage of an optimization not possible in
typical maximum entropy classifiers — features are computed in a
specific order and earlier features that return a value of —oo stop the
computation of later features, avoiding unnecessary calculations.

The features used for distinguishing between JOIN and UNION
are shown in Table 1. They include features on the number of
touch points involved, the proximity of tables and attributes, and the
compatibility of tables and attributes. The features are computed in
the order shown in Table 1, with touch number features computed
first.

The number of touch points in a gesture immediately rules out
certain queries, so the elimination of subsequent unnecessary pro-
cessing of those queries saves time. Similarly, tables or attributes
that are not close enough together (the Close feature) cannot be in-
volved in JOIN queries, and tables that are not stacked on top of one
another (the Stack feature) cannot be involved in UNION queries.
By eliminating those possibilities, the computation of unnecessary
compatibility features can be eliminated.

Finally, the compatibility features measure whether attributes are
the correct type (the Joinl feature) for JOIN queries, whether tables
have compatible schemas (the U1 feature) for UNION queries, and
the degree to which two attributes contain similar data (the Join2
feature). Finally, note that within the maximum entropy framework,
feature functions can evaluate to discrete values, such as Booleans
of either —oo or 0 (log of 0 and 1), or to continuous values between
—oo and 0 for the Dist and Join2 features.

In the experiments described in Section 5, we compare three
different versions of the classifier. The first, called “Proximity”,

Table 1: Features used in maximum entropy classifier.
Columns are the feature Name, whether it applies to Union
and/or Join queries (U/J), the Type of feature (Num: number
of tables, Prox: proximity, Comp: compatibility), a description
of when it is “On”, the entities provided to it as input (1T: one
table, 2T: two tables, 2A: two attributes), and its output type
(Bool: {—o0, 0}, Cont: (—oo, 0]).

Name U/J Type On when In Out
Tchl — Num 1 simultaneous touch IT Bool
Tch2a — Num 2 simultaneous touches IT Bool
Tch2b UJ Num 2 simultaneous touches 2T Bool
Tch3 J Num 3 simultaneous touches 2T Bool
Tch4 J Num 4 simultaneous touches 2T Bool
Close UJ Prox Attrs. are close enough 2A Bool
Dist UJ Prox Negated distance 2A Cont
Stack U Prox Tables are stacked 2T Bool
Joinl J Comp Attrs. are the same type 2A Bool
Join2 J Comp Data sim. btwn. attrs. 2A Cont
Ul U Comp Tables share schema 2T Bool
U2 U Comp Attr. types match, notord. 2T Bool

does not use any of the compatibility features. The second, called
“Proximity + Schema” uses the proximity features and compatibil-
ity features Joinl, U1, and U2, but not Join2. The third version,
called “Proximity + Schema + Data” uses all of the proximity and
compatibility features.

4.3 Classification Example

To illustrate how the classifier works, consider the example query
and gesture described in Section 1.1 with the table layout shown
in Figure 1. Before the user begins the gesture, there are no ac-
tive touches, so all of the TchX feature functions are —oo, making
g(gq) = 0 for all queries ¢ and obviating the need for further pro-
cessing. When the user touches the headers of the Artist and Album
tables, the Tch2b feature function becomes 0 because there are two
simultaneous touches on two separate tables while the other TchX
feature functions are still —oco. Thus g(q) = 0 for queries not
involving two touches on two different tables, but processing pro-
ceeds on the remaining queries to evaluate g(g). At the beginning
of the gesture, all pairs of attributes are far away from each other
and the Close feature function is —oco, making g(q) = 0 for all
queries. Once the tables get close enough together, the Close feature
becomes 0 and the Dist features are computed between the six pairs
of attributes in the two tables. Because the tables are side-by-side,
the Stacked feature is —oo, and only JOIN queries have non-zero
goodness. After identifying compatible attribute pairs with the Joinl
and Join?2 feature functions, the closest compatible pair of attributes
having the highest goodness is shown as a preview.

4.4 Implementation Details

In addition to the proximity and schema-based compatibility fea-
ture functions, our system uses data similarity as a feature to aid
multi-attribute queries such as joins. This feature is based on a
probability distribution over histograms of join participation counts.
The motivation for such a measure is an intuition that the user would
typically only issue queries that could usefully be displayed on our
interface, and thus each value should participate in a small number

295

of results, not too many and not too few. The data compatibility
feature, termed Join2, is designed to capture this intuition.

To estimate the data similarity between two attributes, the number
of times that each value from one attribute appears in the other
is counted and a histogram is constructed from the counts for all
of the values. This histogram is then converted to a multinomial
distribution and its probability is measured under a dirichlet distri-
bution. In addition, to avoid zero probabilities, we provide a small
Laplace prior on the histogram bin counts, so that every bin has
0.01 of a count added to it. This has a large effect on bins with
zero counts, but an insignificant effect on bins with non-zero counts.
If the histogram bin values are h;, and the normalized counts are,
T = ﬁ, then the dirichlet likelihood with parameters «; is

Hi F(ai)
where I'(x) is the gamma function. This dirichlet likelihood is
scaled by a reasonable A; to make it comparable to the other good-
nesses. In the current experiments, we define the o parameters and
the scaling exponent by hand. We define «; to be

dir(x,) =

@

1 1<i<5
=14 745 6<i<20 3)
0 otherwise

In the future, these parameters could be learned from pairs of com-
patible attributes, although for these experiments we did not have
enough pairs to perform such an estimation.

All of the parameters of the classifier, \;, can be learned across
a collection of recorded training gestures to tune the quality of
the classifier. For the preliminary experiments in Section 5, these
parameters are instead set manually. Learning these tunings from
data will allow future quality improvements. We plan to learn
these parameters by treating all Ul states in a gesture as training
instances with the query at which the user eventually arrives as the
correct query, much in the same way that search engines learn spell
checking [13] and search suggestions from search sessions.

4.5 Context Caching

Note that some of the computations performed in evaluating the
feature functions can be shared between different feature functions.
For example, the computation of distances between attributes is
necessary for the Stack, Dist, and Close features. Similarly, attribute
compatibilities are necessary for computing table compatibilities, so
computations would be repeated by the U1, U2, and Join1 features.
In order to further speed up the system, these computations can be
memoized such that they are only computed at most once and only
if necessary, with the result cached for subsequent feature functions.
The speedup due to this caching is shown in Section 5.4.

5. EXPERIMENTS AND EVALUATION

We perform experiments both from the user perspective, evalu-
ating the usability of the system, and from a systems perspective,
evaluating the performance of the system and sharing insights from
the impact of caching strategies employed in the gesture classifier.

In these experiments we test an iPad implementation of the GES-
TUREQUERY system. The system comprises a frontend written
in Javascript and HTML on the iPad and a backend based on Tor-
nado® running on a Linux PC. We use publicly available datasets,
Chinook (11 tables, 64 columns,15K tuples, IMB)4 and TPC-H (9

3http ://www.tornadoweb.org
4http: //chinookdatabase.codeplex.com

tables, 76 columns, 86K tuples, ISMB)5 as the test databases®. We
performed three user studies under procedures approved by our
institutional review board’.

User Study Setup: We adopt a within-subjects experimental design
since the compared systems were already highly discernible (e.g.,
CONSOLE-BASED SQL vs. GESTUREQUERY) and catching-on
effects were not applicable.

Each experiment was performed over 30 users from the student
body of the authors’ university, a sample size motivated by prior
research in user studies [37, 19, 23]. We report mean and stan-
dard errors for all metrics to demonstrate consistency across users,
and perform 1-tailed t-tests to establish statistical significance. All
studies were carefully designed to avoid bias [37]. Users were re-
cruited from the student body at the university and care was taken
to ensure an even distribution of proficiency by asking objective
post-interview questions about their degree major and prior expe-
rience with databases; 15 of the 30 students were confirmed to be
proficient at data-related tasks and the other 15 were classified as
naive users. For consistency each user was given an identical tuto-
rial (read off a written script) on the use of each interface and had a
chance to practice each task before their actions were recorded. In
order to avoid bias from learning effects on the user, the order of
the tasks was randomized, as was the order of the systems within
each task. Fatigue effects were avoided by restricting the length of
each experiment and scheduling breaks into the study. Carryover
effects were avoided by restricting the number of similar tasks, and
by counterbalancing (i.e., varying the order of both the systems
evaluated and the individual tasks for each user).

Systems and Studies: The interfaces compared were a CONSOLE-
BASED SQL (SQLite), the VISUAL QUERY BUILDER of Active
Query Builder® which represents a state-of-the-art keyboard-and-
mouse query interface, and our system, GESTUREQUERY. We
performed three studies, Completion Time, Discoverability, and
Anticipation, each with their own set of objective and subjective
metrics, as described below.

5.1 Completion Time

We first compare the time it takes users to specify queries on
three different interfaces. Each student was given six SQL queries
to perform on each interface, for example “ALBUM JOIN ARTIST
ON ALBUM.ARTISTID = ARTIST.ARTISTID”.

The objective metrics of performance in this study are completion
time, the total time it takes, on average, to complete each task on
each interface, and interactivity for GestureQuery, the fraction
of touches that are classified within a predefined interactive latency
threshold. The subjects also completed a survey questionnaire af-
ter finishing the study, providing details on their majors of study,
relevant coursework and prior experience working with databases.
Subjects were also surveyed on subjective metrics; usability (how
easy it was to use each system) and learnability (how easy it was
to learn to each system).

Figure 6 shows the average completion time for each action in
three different systems. GESTUREQUERY’s average completion
times are lower and have less variance than both CONSOLE-BASED
SQL and VISUAL QUERY BUILDER.

5ht:tp ://www.tpc.org/tpch

6It should be noted that the goal of our experiments is to compare the feasibility of
gestural query specification against existing methods; larger, more complex datasets
can dealt with using existing summarization methods [50, 60]

708U IRB #2013B0084

8http: //activequerybuilder.com

296

™ Console-based SQL

M Visual Query Builder

IS
S

GestureQuery

Prediction (s)

w
S

5 8
=
H
—_
—
—
—
—

Preview Filter Sort Group by & Join Union

Aggregate

Figure 6: Average completion time for six query types using
three different interfaces: Users completed tasks using GES-
TUREQUERY quicker than the other two interfaces. Error bars
show standard error of the mean.

Statistical Significance: In order to determine whether these dif-
ferences were statistically significant, we performed 1-tailed t-tests
on the results. The actions, null hypotheses and p-values are shown
in Appendix A. We can clearly see that users construct queries
significantly more quickly using GESTUREQUERY than the other
two systems, with the significance level under 0.01.

User Survey: Results of the subjective survey questions are shown
in Table 2. Each user cast a single vote for each question, and users
who selected multiple systems for an answer had their votes divided
between those systems. As we can see from the table, most users
find GESTUREQUERY easier to use by a large margin except for the
JOIN action, where VISUAL QUERY BUILDER received 15 votes
compared to GESTUREQUERY’s 12 for usability. In addition, users
think that GESTUREQUERY is easier to learn than console-based
SQL and VISUAL QUERY BUILDER except for the JOIN operation,
where GESTUREQUERY and VISUAL QUERY BUILDER received 14
and 15 votes respectively. In contrast, for AGGREGATE, a similarly
complex operation, GESTUREQUERY was preferred by most for
both usability and learnability.

Drilling down further into the survey results uncovers more in-
sights for the JOIN gesture — in terms of usability, for proficient
users, 9 out of 15 preferred VISUAL QUERY BUILDER and 4 pre-
ferred GESTUREQUERY, in contrast to naive users, where GES-
TUREQUERY received 8 votes and VISUAL QUERY BUILDER re-
ceived 6. In terms of learnability, for proficient users, 9.5 voted for
VISUAL QUERY BUILDER and 5.5 voted for GESTUREQUERY (.5
votes for ties), in contrast to naive users, where GESTUREQUERY re-
ceived 8.5 votes and VISUAL QUERY BUILDER received 5.5. Revis-
iting individual subjects’ interactions reveals that several proficient
users prefer to perform JOINs by combining two attributes (e.g. by
pinching two attributes together), while naive users have a prefer-
ence of gesturing compositions at the relation level (by pinching two
relations together). Thus, the JOIN gesture in GestureQuery
seems to work better with naive users. This again motivates our
ability to customize the gesture vocabulary at the classifier level,
discussed in Section 4.

System Performance: Table 3 shows the interactivity results, the
fraction of gestural inputs (movement of multitouch points on the
device) that are classified within 33 ms, a threshold chosen based on
the sampling rate of the multitouch sensor, which runs at 30 Hz. No-
tice that the interactivity results demonstrate a highly fluid interface.
There are some gestural inputs that are slower than the interactive
threshold. This is caused by the initial loading of schema informa-
tion into the frontend’s Context Cache, which can be improved by
prepopulation of relevant information, an area for future work.

Table 2: Number of users selecting, based on a written sur-
vey after the tasks, each system as easiest to use (usability) and
learn (learnability) for each query type. Systems are CONSOLE-
BASED SQL, VISUAL QUERY BUILDER (VQB), and GEs-
TUREQUERY (GQ - our system). For users claiming equal
preference for multiple systems, their votes were split equally
amongst the systems.

Survey Action Console VQB GQ
Usability PREVIEW 1 5 24
Usability FILTER 5 1.5 23.5
Usability SORT 0 2 28
Usability =~ AGGREGATE 5 4 21
Usability JOIN 3 15 12
Usability UNION 2 0 28

Learnability = PREVIEW 1.66 2.16 26.16
Learnability FILTER 5 4.5 20.5
Learnability SORT 1.33 1.33 27.33
Learnability AGGREGATE 2 10.5 175
Learnability JOIN 1 15 14
Learnability UNION 3 0 27

Table 3: Interactivity: percentage of touch classifications that
take less than 33 ms.

AGGREGATE
99.6

JOIN
98.4

UNION
98.0

PREVIEW
95.1

FILTER
98.8

SORT
97.8

5.2 Discoverability

Another aspect of evaluating ease of use of interaction is to assess
how intuitive or discoverable the interactions of a system are. Thus,
our second study compares VISUAL QUERY BUILDER to GES-
TUREQUERY in terms of the discoverability of the JOIN action,
i.e., whether an untrained user is able to intuit how to successfully
perform gestural interaction from the interface and its usability affor-
dances [45]. We recruited thirty students for this study, distributed
across both proficient and naive users similar to the Completion
Time study discussed in the previous section. It should be noted
that care was taken to avoid training effects — subjects who had
previously performed the Completion Time study were not allowed
to perform the Discoverability study. Each subject was provided
a task described in natural language, and asked to figure out and
complete the query task on each system within 15 minutes. The
order of the systems was randomized across subjects to avoid biases
from learning effects. The task involved a PREVIEW, FILTER, and
JOIN, described to the subjects as answering the question, “What
are the titles of the albums created by the artist ‘Black Sabbath’?”
Before the experiment, we provided a tutorial to each subject on
performing the PREVIEW and FILTER actions in both systems, but
left it to the user to discover the JOIN action.

Figure 7 shares the results of the discoverability experiment.
Twenty-three of the thirty subjects successfully figured out how
to complete the task using GESTUREQUERY while only seventeen
students were able to complete the task using VISUAL QUERY
BUILDER. In addition, for those who did complete the task, the
average completion time using VISUAL QUERY BUILDER was more
than 19% of that for GESTUREQUERY. If we consider a time-out
completion time for the students who don’t complete the task as
15 min, the percentage is increased to 31%.

297

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

B Proximity I I
H Proximity + Schema

Proximity + Schema + Data

i)

Join2A Join2R

Anticipation

1l

JoinlA JoinlR Unionl Union2

Figure 8: Average anticipation scores for six queries performed
by 30 subjects with standard errors. 1.0 represents correct clas-
sification at the start of the gesture articulation, and O repre-
sents an incorrect classification even after completion of the ges-
ture. Information from the schema and data in the database al-
lows our classifier to better predict the intended database query
for ambiguous gestures.

5.3 Anticipation

As our third study, we compare the ability of three different
classifiers to anticipate a user’s intent. Thirty of the subjects who
participated in the first two studies were recruited to perform two
JOIN queries and two UNION queries using GESTUREQUERY. The
Joins were performed in two different ways, once by re-arranging
the attributes and then dragging the two tables together, and once by
adjusting the attribute arc before dragging the two tables together,
giving a total of 180 gestures, demonstrating the versatility of the
classifier over different gestures. We compared three different ver-
sions of our classifier on recordings of these gestures. The first
uses only proximity of the UI elements to predict the desired query.
The second uses proximity and schema compatibility of attributes
and the third uses proximity, schema compatibility, and data com-
patibility, as described in Section 4. Gestures were recorded until
a classifier was able to recognize the correct query. Results are
measured as anticipation, the fraction of the gesture articulation
time remaining after a classifier first recognizes the correct query.
This number is 1.0 for gestures that are recognized correctly the
moment the articulation process begins, and O for gestures that are
never recognized.

Results of the anticipation study are presented in Figure 8. Using
both proximity and schema compatibility features is better than just
proximity in the all JOIN queries. Considering proximity, schema
and data compatibility together helps improve anticipation scores for
all but the first JOIN, for which data compatibility in fact negatively
impacts anticipation scores. Schema and data compatibility are not
helpful for the UNION queries because the subjects only perform
them on tables that are already fully schema compatible.

Table 4: Cache performance of three versions of classifier on
180 recorded gestures. “SKkips prox” and ‘“Prox cache hit” both
allow computation to be avoided.

Prox Schema Schema-+Data
Computes prox 333,315 81,583 81,583
Skips prox 0 251,732 251,732
Prox cache miss 299,846 74,951 74,951
Prox cache hit 143,750 21,944 21,944

5.4 Optimization Performance

In addition to user-facing numbers, we study the speedup of using
context caching, described in Section 4.5, as shown in Table 4 for
the three versions of the classifier compared in our experiments. The

1000

Discoverability(s)

~m

= 3
0
© © Ng

Users

<

M GestureQuery M Visual Query Builder

Figure 7: Discoverability: time taken by users to discover how to complete a Join action in GESTUREQUERY and VISUAL QUERY
BUILDER, in seconds. Tasks that were not completed within 15 minutes are displayed as 15 minutes.

first optimization is that when the classifier is using compatibility
information, it does not need to compute the proximity of incom-
patible attributes. This leads to a 4x speedup of this computation.
The second optimization is to cache the computation of distances be-
tween rectangles in the UL This leads to an additional 23% speedup
when the first optimization is active and a 32% speedup when it is
not. Note that the “Prox cache hit” and “Prox cache miss” do not
add up to the “Computes prox” values because “Computes prox”
only includes proximity computations from JOIN queries.

6. RELATED WORK

Work towards making databases usable to end users has seen
more attention lately [31]. Solutions towards usable data interaction
have ranged from innovations in the query paradigm such as natural
language, example and output-driven querying [1, 30, 61, 53] to
query visualization [22, 15], to user interface innovations in spread-
sheet interfaces [7, 6, 38] and autocompletion [43]. Automated
form generation [32, 12] assists the process of creating and evolving
queries for analytical use cases, while query recommendation [11,
35, 4] efforts using logs have focused on generating the queries
themselves. A majority of these query interfaces rely heavily on
textual or traditional user interface input which is impractical or
infeasible in our context.

Studies on multitouch interfaces [18, 54] have demonstrated
the superiority of gestural interaction over mouse-driven WIMP
paradigms. Kammer et al. [33] formalize gestures according to the
semantics, pragmatics and syntactics of interaction, while Yee [59]
discusses concerns regarding direct and indirect gestural interac-
tions. Visual analytics systems such as Tableau [51] and TaP [21]
map interactions and gestures from the Ul layer to a set of database
query templates, without considering the contents of the database
itself. Liu et al. [39] have discussed scale challenges in interactive
visualization. The visual mining and exploration of datasets [34, 20]
has been discussed before, and can be considered ideal applications
on top of our database architecture, allowing for both scale and
effectiveness of querying.

Interaction with databases using non-keyboard interfaces has re-
ceived attention, most lately in the vision we have laid out for our
system [42, 28]. However, most existing systems map interaction
APIs to isolated database queries [25, 47] without any considera-
tion of the query paradigm, query algebra, data or schema of the
database [52, 36, 5, 3]. This ad-hoc mapping of gestures, while

298

appealing, does not consider the overall usability of the database
querying or its overall effectiveness. In this paper, we posit that a
careful consideration of all contexts in the database is essential to
building a successful querying mechanism, which we consider to be
a key contribution of our work. As demonstrated in our experimental
results, this careful consideration pays off in terms of quantifiable
improvements in usability.

Probabilistic methods for improving gesture recognition [57] and
mapping interaction to actions [14, 48] have been discussed before,
however such methods would be too computationally intensive to
recognize the space of all possible database queries. In contrast
to these, our classifier performs a two-stage recognition, mapping
gesture coordinates to action types, and then using an arc layout and
database statistics to successfully identify the exact query.

Work in natural user interfaces [8] has expounded on the use
of interfaces in non-keyboard contexts. In the paradigm of direct
manipulation, [49] have discussed methods to directly interact with
data allowing the user to situate the interaction in the same flow as
the result output. We are motivated and inspired by these bodies
of work. However, querying databases poses several interaction
challenges even in the context of natural user interfaces and direct
manipulation — addressing these challenges is the central focus of
our paper. An often-used, and intuitive natural database interface is
to map direct manipulation actions to a query algebra [51], thereby
offloading the burden of computation to the database. However, in
gestural interfaces, several aspects of such a mapping are impractical,
motivating our rethinking of the database query paradigm itself.

The use of a feedback loop has been studied in HCI work, es-
pecially in assistive input methods [56]. In the context of mixed-
initiative user interfaces [26], the idea of prioritization of apparent
actions to the end-user is helpful. By modeling the database query-
ing step as a transition from an ambiguous set of queries to an
articulate query, our system’s prioritization of feedback during the
transition draws from the principle of mixed-initiative interfaces. In
database literature, priority scheduling of real-time databases [46]
focuses on performance guarantees in multi-tenant contexts, mini-
mizing the number of missed deadlines — work in this area does not
consider the query specification stage. For interactive querying, on-
line and approximate query execution [2, 24] focus on the surfacing
of answers for explicit queries as they are computed. In our context,
the queries themselves are not created yet. Combining dynamic
query specification and the development of execution strategies for
imprecise, interaction-oriented queries would be an ideal next step.

7. CONCLUSION AND FUTURE WORK

Interacting with databases using gestures is challenging due to
the large number of possible database queries. In this paper, we
present a novel query specification architecture that allows users to
query databases with gestures. We present a novel, well-designed
gestural query language to express queries. We build a maximum-
entropy classifier-based query recognition system that uses not only
multitouch coordinates, but also database state such as schema and
data statistics to correctly map multitouch gestures to relational
database queries. When compared against conventional coordinate-
based gesture mapping, our classifier is more accurate and predictive
at identifying intended database queries, and performs well within
interactive latency constraints.

We evaluate the efficiency, usability and learnability of our system
to users at multiple levels of proficiency in querying databases and
our gestural interface. Our detailed user studies demonstrate that our
GESTUREQUERY system significantly outperforms current methods
on multiple usability metrics for all classes of users.

Going forward, there are multiple challenges that need to be
addressed. Some areas of expansion are at the implementation level,
such as dealing with textual input in a gesture-oriented interface,
which has been well-studied in prior user interface and accessibility
literature [56]. Gestural interaction with databases is currently a
completely unexplored area of research, and hence is ripe with a
wide variety of possible extensions and follow-up problems.

As discussed in Section 3.4, scaling the Gestural Query process to
more complex queries and to larger and more complex datasets is an
immediate next step. For larger datasets, the (possibly approximate)
execution of queries within interactive response times requires a fun-
damental rethinking of the query execution infrastructure. Further,
the direct manipulation of complex schema through summarized
representations would require extensions to the vocabulary of gestu-
ral operations. A detailed study focusing on scaling challenges is
ideal follow-up work.

Another area of study is the feedback generation used in our
system. Intuitively, the feedback presented to the user is meant to aid
them in quickly disambiguating the space of possible query intents,
while maximizing the entropy of the query results. The interactive
summarization of results [50] is significant for constrained display
contexts such as mobile devices, and can be leveraged by our system.
Further, generating and presenting such feedback within interactive
latencies is a unique systems challenge, which can be solved using a
combination of information visualization methods [10], multi-layer
caching techniques and online query execution strategies inspired
by Hellerstein et al. [24].

A final area of interest is that of using the gesture information
from existing interaction logs to tune the parameters of our classifier,
which can then be evaluated to measure the benefits (completion time
and anticipation) and generality (across both users and queries) of
user training, allowing us to investigate areas such as personalization
of gestures and tuning of the gesture prediction itself.

8. ACKNOWLEDGEMENTS

We would like to thank the paper reviewers and Azza Abouzeid
for their insights and feedback, which have helped significantly
improve the quality of this paper.

9. REFERENCES

[1] A. Abouzied, J. Hellerstein, and A. Silberschatz. DataPlay:
Interactive Tweaking and Example-driven Correction of
Graphical Database Queries. UIST, 2012.

299

[2] S. Acharya, P. B. Gibbons, and V. Poosala. Aqua: A Fast
Decision Support Systems Using Approximate Query
Answers. VLDB, 1999.
S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: A System
for Keyword-Based Search over Relational Databases. ICDE,
2002.
J. Akbarnejad, G. Chatzopoulou, M. Eirinaki, S. Koshy,
S. Mittal, D. On, N. Polyzotis, and J. S. V. Varman. SQL
QueRIE Recommendations. VLDB, 2010.
S. Amer-Yahia, L. V. Lakshmanan, and S. Pandit. FleXPath:
Flexible Structure and Full-Text Querying for XML.
SIGMOD, 2004.
E. Bakke and E. Benson. The Schema-Independent Database
UL CIDR, 2011.
E. Bakke, D. Karger, and R. Miller. A Spreadsheet-Based
User Interface for Managing Plural Relationships in
Structured Data. CHI, 2011.
A. Camara. Natural User Interfaces. INTERACT, 2011.
Canalys. Worldwide Smartphone and Client PC Shipment
Estimates. 2012.
S. K. Card, J. D. Mackinlay, and B. Schneiderman. Readings
in Information Visualization: Using Vision to Think
(Interactive Technologies). Morgan Kaufmann, 1999.
G. Chatzopoulou, M. Eirinaki, and N. Polyzotis. Query
Recommendations for Interactive Database Exploration.
SSDBM, 20009.
K. Chen, H. Chen, N. Conway, J. M. Hellerstein, and T. S.
Parikh. Usher: Improving Data Quality with Dynamic Forms.
TKDE, 2011.
[13] S. Cucerzan and E. Brill. Spelling correction as an iterative
process that exploits the collective knowledge of web users.
EMNLP, 2004.
S. Damaraju and A. Kerne. Multitouch Gesture Learning and
Recognition System. Tabletops and Interactive Surfaces,
2008.
J. Danaparamita and W. Gatterbauer. QueryViz: Helping
Users Understand SQL Queries and their Patterns. EDBT,
2011.
G. Das, V. Hristidis, N. Kapoor, and S. Sudarshan. Ordering
the Attributes of Query Results. SIGMOD, 2006.
G. M. Draper, Y. Livnat, and R. F. Riesenfeld. A Survey of
Radial Methods for Information Visualization. IEEE VCG,
2009.
S. M. Drucker, D. Fisher, R. Sadana, J. Herron, et al.
TouchViz: A Case Study Comparing Two Interfaces for Data
Analytics on Tablets. CHI, 2013.
L. Faulkner. Beyond the five-user assumption: Benefits of
increased sample sizes in usability testing. Behavior Research
Methods, Instruments, & Computers, 2003.
M. C. Ferreira de Oliveira and H. Levkowitz. From Visual
Data Exploration to Visual Data Mining: A Survey. [EEE
VCG, 2003.
S. Floring and T. Hesselmann. TaP: Towards Visual Analytics
on Interactive Surfaces. CoVIS, 2010.
W. Gatterbauer. Databases will Visualize Queries too. VLDB,
2011.
A. Griffin and J. R. Hauser. The Voice of the Customer.
Marketing science, 1993.
[24] J. M. Hellerstein, M. J. Franklin, S. Chandrasekaran,
A. Deshpande, et al. Adaptive Query Processing: Technology
in Evolution. IEEE Data Engineering Bulletin, 2000.

3

—

[4

—

[5

—

(6]
(71

(8]

(9]

[10]

(11]

[12]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]
[22]

(23]

[25]

[26]
[27]
(28]
[29]
[30]

[31]

[32]
[33]
[34]

[35]

[36]
[37]
[38]
[39]
[40]
[41]
[42]
[43]
[44]
[45]
[46]
[47]
[48]

[49]

[50]

[51]
[52]

S. Hirte, A. Seifert, S. Baumann, D. Klan, and K. Sattler.
Data® — A Kinect Interface for OLAP using Complex Event
Processing. ICDE, 2012.

E. Horvitz. Principles of Mixed-Initiative User Interfaces.
CHI, 1999.

E. L. Hutchins, J. D. Hollan, and D. A. Norman. Direct

Manipulation Interfaces. Human—Computer Interaction, 1985.

S. Idreos and E. Liarou. dbTouch: Analytics at your
Fingertips. CIDR, 2013.

International Data Corporation. Worldwide Quarterly Tablet
Tracker. 2013.

Y. Ishikawa, R. Subramanya, and C. Faloutsos. MindReader:
Querying databases through multiple examples. VLDB, 1998.
H. Jagadish, A. Chapman, A. Elkiss, M. Jayapandian, Y. Li,
A. Nandi, and C. Yu. Making Database Systems Usable.
SIGMOD, 2007.

M. Jayapandian and H. Jagadish. Automating the Design and
Construction of Query Forms. TKDE, 2009.

D. Kammer, J. Wojdziak, M. Keck, R. Groh, and S. Taranko.
Towards a Formalization of Multi-touch Gestures. IS, 2010.
D. A. Keim. Visual Exploration of Large Data Sets. CACM,
2001.

N. Khoussainova, Y. Kwon, M. Balazinska, and D. Suciu.
SnipSuggest: Context-Aware Autocompletion for SQL.
VLDB, 2010.

B. Kimelfeld and Y. Sagiv. Finding and Approximating Top-k
Answers in Keyword Proximity Search. PODS, 2006.

J. Lazar, J. H. Feng, and H. Hochheiser. Research Methods in
Human-Computer Interaction. Wiley. com, 2010.

B. Liu and H. Jagadish. A Spreadsheet Algebra for a Direct
Data Manipulation Query Interface. ICDE, 2009.

Z. Liu, B. Jiang, and J. Heer. imMens: Real-time Visual
Querying of Big Data. EuroVis, 2013.

M. Miah, G. Das, V. Hristidis, and H. Mannila. Standing Out
in a Crowd: Selecting Attributes for Maximum Visibility.
ICDE, 2008.

K. P. Murphy. Machine Learning: A Probabilistic Perspective
(Adaptive Computation and Machine Learning series). MIT
Press, 2012.

A. Nandi. Querying Without Keyboards. CIDR, 2013.

A. Nandi and H. Jagadish. Assisted Querying using
Instant-response Interfaces. SIGMOD, 2007.

A. Nandi and H. Jagadish. Guided Interaction: Rethinking the
Query-Result Paradigm. VLDB, 2011.

D. A. Norman. Affordance, Conventions, and Design.
Interactions, 1999.

H. Pang, M. J. Carey, and M. Livny. Multiclass Query
Scheduling in Real-Time Database Systems. TKDE, 1995.

S. Patney et al. SQL Server Kinection. PASS, 2011.

J. Schwarz, J. Mankoff, and S. Hudson. Monte Carlo Methods
for Managing Interactive State, Action and Feedback Under
Uncertainty. UIST, 2011.

B. Shneiderman, C. Williamson, and C. Ahlberg. Dynamic
Queries: Database Searching by Direct Manipulation. CHI,
1992.

M. Singh, A. Nandi, and H. Jagadish. Skimmer: Rapid
Scrolling of Relational Query Results. SIGMOD, 2012.

C. Stolte. Visual Interfaces to Data. SIGMOD, 2010.

A. Termehchy and M. Winslett. Using Structural Information
in XML Keyword Search Effectively. TODS, 2011.

[53] Q. T. Tran, C.-Y. Chan, and S. Parthasarathy. Query by Output.
SIGMOD, 20009.

[54] B. Ullmer and H. Ishii. Emerging Frameworks for Tangible
User Interfaces. IBM Sys. Journal, 2000.

[55] M. R. Vieira, H. L. Razente, M. C. N. Barioni,

M. Hadjieleftheriou, D. Srivastava, C. Traina, and V. J.
Tsotras. On Query Result Diversification. /ICDE, 2011.

[56] D.J. Ward, A. F. Blackwell, and D. J. MacKay. Dasher — a
Data Entry Interface Using Continuous Gestures and
Language Models. UIST, 2000.

[57] D. Weir, S. Rogers, R. Murray-Smith, and M. Lochtefeld. A
User-Specific Machine Learning Approach for Improving
Touch Accuracy on Mobile Devices. UIST, 2012.

[58] G.J. Wills. NicheWorks — Interactive Visualization of Very
Large Graphs. Computational and Graphical Statistics, 1999.

[59] W. Yee. Potential Limitations of Multi-touch Gesture
Vocabulary: Differentiation, Adoption, Fatigue.
Human-Computer Interaction: Novel Interaction Methods and
Techniques, 2009.

[60] C. Yu and H. Jagadish. Schema Summarization. VLDB, 2006.

[61] M. Zloof. Query by Example. NCCE, 1975.

APPENDIX

anticipation. represents the anticipation time of the console-based
SQL, anticipation, represents the anticipation time of the visual
query builder and anticipationg represents the anticipation time
of our system.

A. T-TEST RESULT

Action Null hypothesis P-value
Preview anticipation. < anticipationy 1.93E-12
Preview anticipation, < anticipationg 2.20E-16
Filter anticipation. < anticipationg 1.14E-12
Filter anticipation, < anticipationg 6.79E-09
Sort anticipation. < anticipationg 4.50E-10
Sort anticipation, < anticipationg 1.29E-05
Group by & anticipation. < anticipationg 1.66E-09
Aggregate
Group by & anticipation, < anticipationg 1.26E-05
Aggregate
Join anticipation. < anticipationg 1.54E-12
Join anticipation, < anticipationg 0.007703
Union anticipation. < anticipationg 2.76E-10
Union anticipation, < anticipationg 8.90E-06

300

