
OLTP-Bench: An Extensible Testbed for
Benchmarking Relational Databases

Djellel Eddine Difallah Andrew Pavlo
U. of Fribourg, Switzerland Carnegie Mellon University, USA

djelleleddine.difallah@unifr.ch pavlo@cs.cmu.edu

Carlo Curino Philippe Cudre-Mauroux
Microsoft Corporation, USA U. of Fribourg, Switzerland
ccurino@microsoft.com pcm@unifr.ch

ABSTRACT
Benchmarking is an essential aspect of any database management
system (DBMS) effort. Despite several recent advancements, such
as pre-configured cloud database images and database-as-a-service
(DBaaS) offerings, the deployment of a comprehensive testing plat-
form with a diverse set of datasets and workloads is still far from
being trivial. In many cases, researchers and developers are limited
to a small number of workloads to evaluate the performance charac-
teristics of their work. This is due to the lack of a universal bench-
marking infrastructure, and to the difficulty of gaining access to real
data and workloads. This results in lots of unnecessary engineer-
ing efforts and makes the performance evaluation results difficult to
compare. To remedy these problems, we present OLTP-Bench, an
extensible “batteries included” DBMS benchmarking testbed. The
key contributions of OLTP-Bench are its ease of use and extensibil-
ity, support for tight control of transaction mixtures, request rates,
and access distributions over time, as well as the ability to support
all major DBMSs and DBaaS platforms. Moreover, it is bundled
with fifteen workloads that all differ in complexity and system de-
mands, including four synthetic workloads, eight workloads from
popular benchmarks, and three workloads that are derived from
real-world applications. We demonstrate through a comprehen-
sive set of experiments conducted on popular DBMS and DBaaS
offerings the different features provided by OLTP-Bench and the
effectiveness of our testbed in characterizing the performance of
database services.

1. INTRODUCTION
Performance analysis and tuning is one of the more difficult as-

pects of data management. It is especially challenging for com-
plex systems that execute highly-concurrent workloads on large-
scale datasets, because there are many factors that influence perfor-
mance. We suspect, in fact, that the recent success of distributed
key-value storage systems [13] is at least partially due to the diffi-
culty of understanding and predicting the performance of relational
DBMSs for these execution environments.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 4
Copyright 2013 VLDB Endowment 2150-8097/13/12.

To overcome this problem, it is imperative that application de-
velopers use a testing environment that is stable, controlled and
repeatable [19]. In the context of DBMSs, this is achieved through
the use of a benchmark that allows one to measure key performance
metrics of a system under stress conditions. A benchmark consists
of a sample data set and a corresponding workload that is represen-
tative of the target application for the system. A good benchmark
provides insight to users and enables them to (1) validate alternative
options (e.g., by experimenting with different systems or configu-
rations), (2) collect performance metrics and compare them with
real-world requirements, and (3) explore the causes of performance
bottlenecks. From these requirements emerges the need for a com-
prehensive testbed that supports both a large number of database
systems and a wide range of benchmarks that capture the essence
of an important set of applications. Although a number of bench-
marks have been proposed in the past [10, 16], to the best of our
knowledge such an extensive testbed is not available today.

The work that we present in this paper represents our effort to
tackle this problem and to contribute to better repeatability and eas-
ier comparison of results for evaluating DBMS performance. We
present OLTP-Bench, an extensible, open-source testbed for bench-
marking DBMSs using a diverse set of workloads [2]. This effort
is motivated by our own laborious experiences in setting up exper-
imental evaluation frameworks for previous research projects. The
testbed is capable of (1) driving relational DBMSs via standard
interfaces, (2) tightly controlling the transaction mixture, request
rate, and access distribution of the workload, and (3) automatically
gathering a rich set of performance and resource statistics.

In addition to the testbed itself, we implemented 15 benchmarks
in OLTP-Bench. We believe that the combination of a
well-designed testbed with a rich family of benchmarks is a
valuable asset. In summary, our contributions include:
• An automated and extensible framework to setup, run, and an-

alyze the results of DBMS performance experiments with con-
trolled and repeatable settings.

• Both real datasets and synthetic generators, along with their ac-
companying workloads, that span many interesting OLTP/Web
applications, all implemented in the same framework.

• Experimental findings about popular DBMSs and DBaaS offer-
ings derived from hundreds of experiments.

The rest of this paper is organized as follows: we start by dis-
cussing the motivation for this project in Section 2, followed by an
introduction to the OLTP-Bench architecture and its main features
in Section 3. Section 4 is dedicated to the description of the data
and workloads that are currently bundled with OLTP-Bench. We

277

then demonstrate how OLTP-Bench can be leveraged in many dif-
ferent benchmarking scenarios in Sections 6 and 7. Finally, we
present our conclusions and discuss how we plan to extend our
work and foster a community-driven effort in Sections 9 and 10.

2. MOTIVATION
In the early 1990s, Jim Gray edited a compendium that dis-

cussed popular benchmarks and various metrics (e.g., price vs per-
formance) for evaluating transaction processing systems [19]. Gray
argued both for generic benchmarks, which are useful in comparing
the general performance of several systems, and domain-specific
benchmarks, since “performance varies enormously from one ap-
plication domain to another.” For the latter, a meaningful bench-
mark is one that is relevant, portable, scalable, and simple.

Given these guidelines, one fundamental design principle of the
OLTP-Bench project is that it does not impose any fixed set of con-
figuration rules or pre-defined metrics of success for the bench-
marks. We do not want to restrict the applicability of our frame-
work and workloads to any specific context, since we believe that it
is impossible to devise any single set of rules that will be applicable
and relevant for all future deployment and execution scenarios. For
example, novel hardware configurations are likely to require dif-
ferent database sizes and access distributions, while new execution
models may require a different number of concurrent connections,
latency requirements, and transaction mixtures. Hence, we contend
that such standardizations are often biased towards the opinions of
the proposers, and are likely to lead to design decisions that are
only aimed at “scoring well” according to synthetic metrics of suc-
cess. Nevertheless, having an immediate appreciation of how a sys-
tem achieved is important and can be extracted from the classical
throughput and latency metrics.

Others have called for the diversification of the data sets used
for database research by encouraging more public and challeng-
ing workloads [39]. Existing benchmarking frameworks, however,
only support a small number of workloads [16, 24] or a single
DBMS [3, 5]. Our framework improves on previous efforts by sup-
porting a greater selection of both benchmarks and DBMSs. We
also follow the lead of [16] in leaving competition rules unspeci-
fied and let the users decide what the most suitable use cases are
given their execution environment.

As mentioned above, this effort is motivated by the challenges
that we faced when setting up performance evaluation campaigns
for our previous projects [17, 25], as well as from extensive dis-
cussions with several other database developers and experienced
researchers. From these interactions, we gathered the following list
of requirements for a modern database testbed:

(R1) Transactional Scalability: the ability to scale to high
throughputs, without being restricted by clients;

(R2) Flexible Workload Generation: the ability to generate
workloads for open, closed, and semi-open loop systems;

(R3) Fine-Grained Rate Control: the ability to control request
rates with great precision (since even small oscillations of the
throughput can make the interpretation of results difficult);

(R4) Mixed and Evolving Workloads: the ability to support
mixed workloads, and to change the rate, composition, and
access distribution of the workloads dynamically over time
to simulate real-life events and evolving workloads;

(R5) Synthetic and Real Data & Workloads: the need to han-
dle both synthetic and real data sets and workloads, to avoid
compromises between real-life tests and ease of scalability;

Remote OLTP-Bench

config.xml trace.txt

Workload
Manager

Statistics
Collection

Server

SQL-Dialect
Management

Resource
Monitoring

Trace
Analyzer

Data
Dumps

workloads

Data
Generators

t3 t1t2..

consume
Queue

Add

Master OLTP-Bench

..
.

Worker
Worker

Worker

JDBC
Pool

th
in
k_
tim

e

In
it/

Sy
nc

DBMS

Figure 1: The architecture of the OLTP-Bench framework; On the left-
hand side, the client-side driver handles workers and generates throttled
workloads according to configuration provided by the user. On the right-
hand side, the DBMS server monitor gathers resource utilization statistics.

(R6) Ease of Deployment: the ability to deploy experimental set-
tings and run experiments easily on a variety of DBMSs and
DBaaSs using an integrated framework;

(R7) Extensibility: the ability to extend the testbed to support dif-
ferent benchmark configurations or to integrate a new bench-
mark with a small engineering effort;

(R8) Lightweight, Fine-Grained Statistics Gathering: the abil-
ity to collect detailed statistics of both client-side activity and
server-side resource utilization with minimum impact on the
overall performance;

(R9) Assisted Statistics Visualization: the ability to render
graphs for collected statistics semi-automatically, to
minimize the time-to-insight during experiments.

(R10) Repeatability and Verification: the ability to rerun exper-
iments under specific circumstances to verify results, check
for completeness and consistency.

3. THE OLTP-Bench TESTBED
This section provides an overview of the architecture of the

OLTP-Bench testbed and discusses how it is designed to meet the
identified requirements in Section 2. OLTP-Bench works with
any single-node DBMS, distributed DBMS (e.g., NewSQL), and
DBaaS system that supports SQL through JDBC. Fig. 1 shows
the architecture of our framework; its two main components are
(1) the client-side benchmark driver and (2) a server-side module.
OLTP-Bench is written entirely in Java, including all of the
built-in benchmarks. The framework itself has almost no impact
on the DBMS’s performance. The client-side portion is small and
portable (less than 5MB, excluding workload traces and sample
data sets). The framework has been tested and deployed on a
variety of Unix-like platforms.

3.1 Workload Manager
The benchmark driver is responsible for controlling the client

workers that execute queries on the target system and gather per-
formance statistics from them. The centralized Workload Man-
ager reads the user-provided benchmark configuration file (“con-
fig.xml”) that specifies the parameters used in the benchmark invo-
cation, including the size of the connection pool (i.e., correspond-
ing to the number of parallel connections), the exact composition
of the workload, the desired transaction throughput, and the dura-
tion. All of these parameters are specified for each “phase” of the
experiment, enabling evolving behaviors.

At runtime, the Workload Manager instantiates one or more
Worker threads, and populates a request queue that is consumed
by them. As described in Section 3.4, these threads may run on
the same node as the Workload Manager or may run on other
machines. The Workers’ request queue offers a trade-off between

278

requirements R1, R2, R3, and R4; the centralized manager not
only enables us to control the exact throughput rates and mixtures
of the benchmark, but it also allows the workers to be lightweight
enough to achieve good scalability. In a simple test using the
YCSB benchmark with a main-memory DBMS, we were able to
generate 12.5k transactions per second per Worker thread.

The Workers connect to the target DBMS using JDBC and itera-
tively pull tasks from the request queue. For each new transaction,
the Worker invokes the corresponding transaction’s control code
(i.e., program logic with parameterized queries) and either commits
or aborts the transaction. The Workload Manager creates requests
for the Workers using either a synthetic load generator or from “re-
playing” a pre-existing execution trace (R5). For example, for the
Wikipedia benchmark, we use a trace from the actual website.

3.2 Workload Generation
OLTP-Bench supports three different system models for Work-

ers to invoke transactions: (1) closed-loop, (2) open-loop, and (3)
semi-open-loop [32]. Allowing users to choose which model to use
in their testing enables them to explore different application scenar-
ios and simulate several real-world scenarios (R2). In closed-loop
testing, OLTP-Bench initializes a fixed number of Workers that re-
peatedly issue transactions with a random think time between each
request. With the open-loop execution setting, the rate at which
requests are invoked follows a stochastic process. Lastly, under
a semi-open policy, the system acts essentially as an open-system
with the difference that the Worker pauses for a random think time
before submitting a new transaction. This simulates real-world
workloads where clients do not immediately submit a new request
as soon as their previous query is answered.

In addition to the aforementioned features, OLTP-Bench can
handle dynamic changes to the number of Workers and transaction
weights over the phases to allow more complex modeling.
OLTP-Bench can also drive multiple benchmarks at the same time
to test the ability of a DBMS to balance the workload among
different databases or multiple tenants.

3.3 SQL Dialect Translation
In order to support multiple DBMSs in a single framework, we

developed a special sub-component, called the SQL-Dialect Man-
ager, that rewrites the pre-defined queries for each transaction from
SQL-92 to the native format of the target DBMS (R6)1. Along
with the SQL-Dialect Manager, OLTP-Bench uses a universal in-
ternal catalog for each benchmark (regardless of the target DBMS)
to extract additional information about the benchmark’s tables and
columns. This allows the benchmark’s utility code and transaction
control code to be ported to new DBMSs with minimal effort (R7).
The current version of OLTP-Bench supports a number of com-
mercial systems, including MSSQL, Oracle, and DB2, as well as
popular open-source systems, such as MySQL and PostgreSQL.

3.4 Distributed Clients
In order to saturate high-performance distributed DBMSs with

enough transaction requests, OLTP-Bench supports deploying
workers across multiple machines [17, 25]. Multiple remote
OLTP-Bench instances are spawned by the central Workload
Manager via SSH (R1). The Manager then sends commands for
starting and stopping the benchmark trial over a network socket.
At the end of the benchmark run, it retrieves the results from the
client nodes and merges them into a single output file.

1More complex and non-standard SQL must be manually loaded into OLTP-Bench.
We defer the problem of automatically translating SQL to the appropriate dialect as
future work.

Class Benchmark Application Domain

Transactional

AuctionMark On-line Auctions
CH-benCHmark Mixture of OLTP and OLAP
SEATS On-line Airline Ticketing
SmallBank Banking System
TATP Caller Location App
TPC-C Order Processing
Voter Talent Show Voting

Web-Oriented

Epinions Social Networking
LinkBench Social Networking
Twitter Social Networking
Wikipedia On-line Encyclopedia

Feature Testing

ResourceStresser Isolated Resource Stresser
YCSB Scalable Key-value Store
JPAB Object-Relational Mapping
SIBench Transactional Isolation

Table 1: The set of benchmarks supported in OLTP-Bench.

3.5 Runtime Results & Statistics Collection
As the workers execute transactions and receive results from

the DBMS, they also collect detailed statistics about the workload.
The workers maintain a compact in-memory representation of these
statistics, thereby avoiding the potential risk of blocking due to disk
writes outside of the DBMS (R1, R8). These statistics are continu-
ously forwarded to the Workload Manager, which aggregates them
according to the experimental setup, and then writes both the raw
statistics and their aggregated version into the benchmark output
file. A separate component, called the Trace Analyzer, reads these
results and generates graphs for the user (R9).

We monitor the resource utilization on the server side using our
own extended version of the DSTAT libraries2. This light-weight
server monitoring component captures statistics from the OS (i.e.,
CPU, RAM, and I/O activity) and from the DBMS itself whenever
possible (i.e., resource consumption) with minimal impact on per-
formance. At the end of the experiment, these statistics are sent to
the Trace Analyzer and are automatically aligned with the data col-
lected by the clients based on timestamps. The resource monitoring
is specific to the operating system and the DBMS (since no generic
API is available for this task).

Finally, given an (optional) file containing authoritative results,
the system compares the results obtained through the experiments
to the expected results (R10).

4. BENCHMARK DATA & WORKLOADS
We now provide an overview of the benchmarks currently imple-

mented in OLTP-Bench. Table 1 gives the application domain for
each benchmark and Table 2 shows their profile statistics. The size
of each benchmark’s database is configurable by the administrator
and the working set size is automatically self-scaling.

Jim Gray’s effort in the early 1990s (see Section 2) evaluated
six different benchmarks for transaction processing systems. Since
then, the range of applications requiring transaction support has
grown with the emergence of Web-based application domains like
collaborative editing, social networking, or on-line reservations.
Given the multiplicity and diversity in OLTP and Web-based ap-
plications, we do not claim that this initial set of benchmarks is
exhaustive nor that their classes are definitive. We believe, how-
ever, that each of the following benchmarks is useful in modeling
a specific application domain. We now describe the workloads in
detail and categorize them into three groups: transactional work-
loads, Web-oriented workloads (including social network applica-
tions), and workloads designed to facilitate isolated feature testing.

2http://dag.wieers.com/home-made/dstat/

279

http://dag.wieers.com/home-made/dstat/

Tables Columns Indexes Txns Read-Only Txns
AuctionMark 16 125 14 9 55.0%
CH-benCHmark 12 106 3 27 54.0%
Epinions 5 21 10 9 50.0%
JPAB 7 68 5 4 25.0%
LinkBench 3 17 1 10 69.05%
ResourceStresser 4 23 0 6 33.3%
SEATS 10 189 5 6 45.0%
SIBench 1 2 1 2 50.0%
SmallBank 3 6 4 6 15.0%
TATP 4 51 5 7 40.0%
TPC-C 9 92 3 5 8.0%
Twitter 5 18 4 5 0.9%
Voter 3 9 3 1 0.0%
Wikipedia 12 122 40 5 92.2%
YCSB 1 11 0 6 50.0%

Table 2: Profile information for the benchmark workloads.

4.1 Transactional Benchmarks
This category contains traditional OLTP benchmarks character-

ized by write-heavy transactions with complex relations.

4.1.1 AuctionMark
AuctionMark is an OLTP benchmark that models the workload

characteristics of an on-line auction site [6]. It consists of 10 trans-
actions, one of which is executed at a regular interval to process
recently ended auctions. The database and workload properties are
derived from information extracted from a well-known auction site,
as well as from another benchmark [28]. The user-to-item ratio
follows a Zipfian distribution, which means that there are a small
number of users that sell a large portion of the items. The total
number of transactions that target each item is temporally skewed,
as items receive more activity as the auction approaches its closing.

This benchmark is useful for measuring the performance of a
DBMS for workloads with a large number of tables that cannot eas-
ily be denormalized. Another notable feature is that the amount of
work performed by each transaction is non-deterministic. For ex-
ample, a new bid on an item may require updating multiple records
depending on whether it is greater than the current highest bid.

4.1.2 CH-benCHmark
This is a mixed workload derived from TPC-Cand TPC-H [15].

It is useful to evaluate DBMSs designed to serve both OLTP and
OLAP workloads. The implementation leverages the ability of
OLTP-Bench to run multiple workloads. It uses our built-in imple-
mentation of TPC-C along with 22 additional analytical queries.

4.1.3 SEATS
The SEATS benchmark models an airline ticketing system where

customers search for flights and make on-line reservations [35]. It
consists of eight tables and six transaction types. Approximately
60% of the transactions are read-only (e.g., customers searching
for open seats), while the other 40% involve creating, updating,
and deleting reservation records.

The benchmark is designed to emulate a back-end system that
processes requests from multiple applications that each provides
disparate inputs. Thus, many of its transactions use secondary in-
dexes or foreign-key joins to find the primary key of a customer’s
reservation record. For example, customers may access the sys-
tem using various credentials, including their frequent flyer num-
ber, their customer account number, or their login name.

4.1.4 SmallBank
This workload models a banking application where transactions

perform simple read and update operations on customers’

accounts [11]. All of the transactions involve a small number of
tuples. The transactions’ access patterns are skewed such that a
small number of accounts receive most of the requests. We also
extended the original SmallBank implementation to include an
additional transaction that transfers money between accounts.

4.1.5 TATP
The TATP benchmark is an OLTP application that simulates a

caller location system used by telecommunication providers [40].
The benchmarks consists of four tables, three of which are foreign
key descendants of a single “root” table. All seven transactions
in TATP reference tuples using either the root’s primary key or a
separate unique identification string. The transactions that are only
provided with the non-primary key identifier use a secondary index
to find the root record that corresponds to this identifier.

The transactions in this benchmark are more lightweight than
the ones in the other benchmarks supported in OLTP-Bench. All of
TATP’s transactions contain only 1-3 queries and 80% of them are
read-only. TATP does include, however, a larger number of trans-
actions that abort due to assertions in their control code. As such,
this benchmark provides a useful workload scenario for measuring
a DBMS’s ability to run non-conflicting transactions concurrently.

4.1.6 TPC-C
The TPC-C benchmark is the current industry standard for eval-

uating the performance of OLTP systems [36]. It consists of nine
tables and five procedures that simulate a warehouse-centric order
processing application. All of the transactions in TPC-C provide a
warehouse id as an input parameter that is the ancestral foreign key
for all but one of TPC-C’s tables. The number of NewOrder trans-
actions executed per second is often used as the canonical measure-
ment for the throughput of a DBMS. TPC-C’s transactions are more
complex and write-heavy than in other benchmarks (e.g., under the
default settings, 92% of TPC-C’s issued transactions modify ta-
bles). One interesting aspect of TPC-C is that if the number of
warehouses in the database is sufficiently small, then the DBMS
will likely become lock-bound.

OLTP-Bench’s version of TPC-C is a “good faith” implementa-
tion, although we omit the “thinking time” for workers. This means
that each worker issues transactions without pausing, and thus only
a small number of parallel connections are needed to saturate the
DBMS. This mitigates the need to increase the size of the database
with the number of concurrent transactions3.

4.1.7 Voter
The Voter workload is derived from the software system used to

record votes for a Japanese and Canadian television talent show.
As users call in to vote on their favorite contestant during the show,
the application invokes transactions that update the total number of
votes for each contestant. The DBMS records the number of votes
made by each user up to a fixed limit. A separate transaction is
periodically invoked to compute vote totals during the show.

This benchmark is designed to saturate the DBMS with many
short-lived transactions that all update a small number of records.

4.2 Web-Oriented Benchmarks
The following set of benchmarks model Web-based applications.

These workloads feature social networks with graph traversal op-
erations on many-to-many relationships with non-uniform access.
These benchmarks are designed to mimic real-world applications
using publicly available traces and data dumps.
3In the official version of TPC-C, each worker acts on behalf of a single customer
account, which is associated with a warehouse.

280

4.2.1 Epinions
This benchmark is derived from the Epinions.com consumer re-

view website. It uses data collected from a previous study [23]
together with additional statistics extracted from the website. This
workload is centered on users interacting with other users and writ-
ing reviews for various items in the database (e.g., products). It
consists of nine different transactions, of which four interact with
user records only, four interact with item records only, and one in-
teracts with all of the tables in the database. Users have both an
n-to-m relationship with items (i.e., representing user reviews and
ratings of items) and an n-to-m relationship with users.

This workload emerged from one of the original “social network-
ing” websites and thus provides an interesting challenge for rela-
tional DBMSs. It is similar to the Twitter benchmark, except that
its many-to-many relationships are traversed using SQL joins (as
opposed to application-side joins), and it has more complex inter-
actions between its tables.

4.2.2 LinkBench
This synthetic benchmark was developed by Facebook to eval-

uate systems running a workload similar to their MySQL produc-
tion deployment [8]. The social graph is synthetically generated at
configurable scale while keeping the properties of the real social
graph. The workload is based on real traces of queries executed on
the production system.

4.2.3 Twitter
The Twitter workload is inspired by the popular micro-blogging

website. In order to provide a realistic benchmark, we obtained
an anonymized snapshot of the Twitter social graph from August
2009 that contains 51 million users and almost 2 billion “follows”
relationships [14]. We created a synthetic workload generator that
is based on an approximation of the queries/transactions needed to
support the application functionalities as we observe them by us-
ing the web site, along with information derived from a data set
of 200,000 tweets. Although we do not claim that this is a precise
representation of Twitter’s system, it still reflects its important char-
acteristics, such as heavily skewed many-to-many relationships.

4.2.4 Wikipedia
This workload is based on the popular on-line encyclopedia.

Since the website’s underlying software, MediaWiki, is
open-source, we are able to use the real schema, transactions, and
queries as used in the live website. This benchmark’s workload
is derived from (1) data dumps, (2) statistical information on the
read/write ratios, and (3) front-end access patterns [38] and several
personal email communications with the Wikipedia administrators.
Although the total size of the Wikipedia database exceeds 4TB, a
significant portion of it is historical or archival data (e.g., every
article revision is stored in the database). Thus, the working set
size at any time is much smaller than the overall data.

We extracted and modeled the most common operations in Wiki-
pedia for article and “watchlist” management. These two operation
categories account for over 99% of the actual workload executed on
Wikipedia’s underlying DBMS cluster. The combination of a large
database (including large secondary indexes), a complex schema,
and the use of transactions makes this benchmark invaluable to test
novel indexing, caching, and partitioning strategies.

4.3 Feature Testing Benchmarks
OLTP-Bench’s third category of benchmarks are intended to

test individual features of a system. These workloads, also known

as micro-benchmarks, are simpler and more lightweight than the
benchmarks found in the other two categories.

4.3.1 JPAB (Object Relation Mapping)
Since object-relational mapping tools are often used in

DBMS-based applications, especially in enterprise settings, we
ported the Java Persistence API Performance Benchmark (JPAB)
to our framework [1]. This workload represents a large class of
enterprise applications that have several properties that are unique
to ORMs. For example, many ORM implementations generate
unoptimized bursts of small reads in order to chase object pointers.
As such, this workload can be used to test various improvements in
both the application and DBMS-level for this type of application.

4.3.2 ResourceStresser
In contrast to most of the other benchmarks in OLTP-Bench

that emulate existing systems or common application patterns, we
developed ResourceStresser as a purely synthetic benchmark that
can create isolated contention on system resources. Each of the
benchmark’s transaction imposes some load on three specific re-
sources: CPU, disk I/O, and locks. As an example, the CPU-
intensive transactions repeatedly execute SQL encryption functions
on small amounts of data. Using these transactions as building
blocks, one can control the workload mixture in the framework to
simulate diverse kinds of applications and execution scenarios.

4.3.3 SIBench
SIBench is a microbenchamark designed to explore snapshot iso-

lation in DBMSs [12]. It contains a single key/value table and two
transactions that fetch the minimum value of a column or increment
a single value of an entry. This workload creates a situation where
the DBMS must resolve read-write conflicts while also stressing
the CPU by scanning the table for the minimum value.

4.3.4 YCSB
The Yahoo! Cloud Serving Benchmark (YCSB) is a collection

of micro-benchmarks that represent data management applications
whose workload is simple but requires high scalability [16]. Such
applications are often large-scale services created by Web-based
companies. Although these services are often deployed using dis-
tributed key/value storage systems, this benchmark can also pro-
vide insight into the capabilities of traditional DBMSs.

The YCSB workload contains various combinations of
read/write operations and access distributions that match products
inside Yahoo! It is representative of simple key-value store appli-
cations. The benchmark has been leveraged in previous studies for
exploiting the trade-offs between availability/consistency/partition
tolerance, and more generally to showcase storage engines and
caching results (e.g., improving the throughput of random writes).

5. EXPERIMENTAL DEPLOYMENT
We now turn to two series of experiments that we performed to

demonstrate the capabilities of OLTP-Bench. In Section 6, we first
showcase the key features of the OLTP-Bench testbed and demon-
strate the relevance of the workloads we have implemented. We
then present experiments on DBaaS systems in Section 7 that ex-
amine the variance in service quality, and the metrics that OLTP-
Bench computes. We also use OLTP-Bench to evaluate the DBaaSs
with respect to price and instance selection for a given scenario. We
use a total of three different DBaaS offerings from two different
vendors: two from Amazon’s RDS and the other from Microsoft’s
SQL Azure platform. Due to the commercial license agreements
for both vendors, we anonymize the service names in this section

281

0 100 200 300 400 500 600 700
0

500

1000

1500

2000

time (sec)

th
ro

ug
hp

ut
 (t

ps
)

0 100 200 300 400 500 600 700
0

500

1000

1500

time (sec)

la
te

nc
y

(m
s)

500

525

throughput

95th %ile latency

(a) Throughput
0 100 200 300 400 500 600 700

0

500

1000

1500

2000

time (sec)

th
ro

ug
hp

ut
 (t

ps
)

0 100 200 300 400 500 600 700
0

500

1000

1500

time (sec)

la
te

nc
y

(m
s)

500

525

throughput

95th %ile latency

(b) Latency

Figure 2: Rate Control – MySQL running Wikipedia demonstrating precise
control of request rates.

using different identifiers than in Section 6 to avoid indirect infer-
ences. Since these DBaaSs are provided as a “managed” solution,
there are no configuration or tuning parameters to consider. Each
DBaaS is used with the default configuration without adding any
special features available for an additional fee.

As reported in [30], the variability of cluster conditions in
“noisy” cloud computing environments can significantly affect
benchmark results. To mitigate such problems, we ran all of our
experiments with restarting instances as little as possible, and
executed the benchmarks multiple times and averaged the results.
All RDS/EC2 instances were located in the US-East region, while
for Azure we used the US-West region.

In each experiment, both the throughput and latency measure-
ments are aggregated over one-second-windows. Latency is mea-
sured as the processing time of a transaction, from start to end,
excluding internal queuing times. The client-side module logs the
running times of all the transactions such that latency percentiles
and averages can be computed a posteriori during the trace analysis
phase. These experiments are not meant to show absolute differ-
ences between the DBMSs, but rather to show that OLTP-Bench
supports features that are important in benchmarking OLTP and
Web-based applications on DBMSs. Using these features together
with the benchmarks enables one to understand the performance
and scalability limits of different systems running in different ap-
plication domains and on different infrastructures.

6. OLTP-Bench FEATURE EVALUATION
In this section we showcase the key features of theL OLTP-

Bench testbed. Although OLTP-Bench supports different DBMS
vendors, for the first experiments in this section we use a single
DBMS type (MySQL) deployed on the Amazon EC2 platform.
This allows us to compare the differences of several experiments
for multiple workloads and highlight how OLTP-Bench’s metrics
helps in diagnosing some performance issues in typical scenarios.
Unless specified, we used the XLarge instance type of EC2, and
a connection pool of 200. The full set of configurations for these
comparisons is available on the project’s website [2].

6.1 Rate Control

0 10 20 30 40 50 60
0

50

100

150

200

250

300

350

400

time (sec)

Th
ro

ug
hp

ut
(tp

s)

(a) Throughput

0 10 20 30 40 50 60
0

200

400

600

800

1000

1200

1400

1600

1800

time (sec)

95
th

 %
ile

 la
te

nc
y(

m
s)

(b) Latency

NewOrder (45%) Payment (43%) OrderStatus (4%) Delivery (4%) StockLevel (4%)(a) Throughput0 10 20 30 40 50 60
0

50

100

150

200

250

300

350

400

time (sec)

Th
ro

ug
hp

ut
(tp

s)

(a) Throughput

0 10 20 30 40 50 60
0

200

400

600

800

1000

1200

1400

1600

1800

time (sec)

95
th

 %
ile

 la
te

nc
y(

m
s)

(b) Latency

NewOrder (45%) Payment (43%) OrderStatus (4%) Delivery (4%) StockLevel (4%)

0 10 20 30 40 50 60
0

50

100

150

200

250

300

350

400

time (sec)

Th
ro

ug
hp

ut
(tp

s)

(a) Throughput

0 10 20 30 40 50 60
0

200

400

600

800

1000

1200

1400

1600

1800

time (sec)

95
th

 %
ile

 la
te

nc
y(

m
s)

(b) Latency

NewOrder (45%) Payment (43%) OrderStatus (4%) Delivery (4%) StockLevel (4%)

(b) Latency

Figure 3: Multi-Class Reporting– MySQL running TPC-C showing the
behavior of each of the five TPC-C’s transaction types.

We begin with demonstrating OLTP-Bench’s ability to control
the request rates of transactions with fine-grained precision. We use
MySQL as a reference DBMS and run the Wikipedia benchmark
on a 100k article database starting at 25 transactions per second
(tps) and growing by 25 tps every 10 seconds. We chose Wikipedia
for this experiment because both its data and workload are heavily
skewed (in size and access frequency, respectively), which makes
them difficult to control at the granularity that we need. The data
and workload trace used in all of the experiments for Wikipedia are
generated synthetically based on real traces. We separately com-
pared results achieved by MySQL under identical conditions for
both synthetic and real data and traces, and observed 1.7% rela-
tive error for throughput and 1% for average latency—higher per-
centiles of latency and resource consumption metrics diverge more
dramatically. This accuracy is sufficient for most scenarios. The
real data and traces are available when higher accuracy is required.

Fig. 2a shows that MySQL’s throughput almost matches the tar-
get request rates until ∼680 seconds into the experiment, at which
point the DBMS becomes overloaded. The zoomed-in portion of
the graph illustrates the framework’s ability to change the through-
put in small increments, and to hold the throughput at a constant
rate. The latency measurements in Fig. 2b also show that the 95th
percentile latency is small until the framework hits saturation, at
which point the latency increases to over one second.

6.2 Multi-Class Reporting
Being able to understand how a DBMS behaves with multi-class

workloads is another important feature that our testbed offers.
OLTP-Bench collects information on each transaction separately at
runtime, and then automatically groups the results according to the
transaction type for easy visualization. In this experiment, we ran
the TPC-C benchmark at saturation and collect the throughput and
latency measurements. The graphs in Fig. 3 show the performance
breakdown per transaction type. Although the NewOrder and
Payment transactions represent the majority of the transaction in
the TPC-C workload, the Delivery transaction has the most
significant impact on the overall system response time.

6.3 Evolving Workload Mixtures
We now test OLTP-Bench’s ability to smoothly evolve the trans-

action mixture during an experiment. We choose YCSB as our tar-

282

0 500 1000 1500 2000 2500 3000
0

5000

10000

15000

th
ro

ug
hp

ut
 (t

ps
)

throughput

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

time (sec)

95
th

 %
ile

 la
te

nc
y

(m
s)

95th %ile latency

0 500 1000 1500 2000 2500 3000
0

100

200

300

400

cp
u

us
ag

e
(%

)

cpu utilization

0 500 1000 1500 2000 2500 3000
0

10

20

30

di
sk

 (M
B/

S)

disk read
disk write

0 500 1000 1500 2000 2500 3000
0

0.5k

1k

1.5k

2k

2.5k

time (sec)

di
sk

 (i
op

s)

io read
io write

0 500 1000 1500 2000 2500 3000
0

50

100

150

time (sec)
ne

tw
or

k
(M

B/
S)

net recv
net send

100% ReadRecord

100% InsertRecord

100% ScanRecord

 100%
DeleteRecord

100% ReadModifyWrite

100% UpdateRecord

time (sec) time (sec) time (sec)
(a) Throughput

0 500 1000 1500 2000 2500 3000
0

5000

10000

15000
th

ro
ug

hp
ut

 (t
ps

)

throughput

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

time (sec)

95
th

 %
ile

 la
te

nc
y

(m
s)

95th %ile latency

0 500 1000 1500 2000 2500 3000
0

100

200

300

400

cp
u

us
ag

e
(%

)

cpu utilization

0 500 1000 1500 2000 2500 3000
0

10

20

30

di
sk

 (M
B/

S)

disk read
disk write

0 500 1000 1500 2000 2500 3000
0

0.5k

1k

1.5k

2k

2.5k

time (sec)

di
sk

 (i
op

s)

io read
io write

0 500 1000 1500 2000 2500 3000
0

50

100

150

time (sec)
ne

tw
or

k
(M

B/
S)

net recv
net send

100% ReadRecord

100% InsertRecord

100% ScanRecord

 100%
DeleteRecord

100% ReadModifyWrite

100% UpdateRecord

time (sec) time (sec) time (sec)
(b) CPU Utilization

0 500 1000 1500 2000 2500 3000
0

5000

10000

15000

th
ro

ug
hp

ut
 (t

ps
)

throughput

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

time (sec)

95
th

 %
ile

 la
te

nc
y

(m
s)

95th %ile latency

0 500 1000 1500 2000 2500 3000
0

100

200

300

400

cp
u

us
ag

e
(%

)

cpu utilization

0 500 1000 1500 2000 2500 3000
0

10

20

30

di
sk

 (M
B/

S)

disk read
disk write

0 500 1000 1500 2000 2500 3000
0

0.5k

1k

1.5k

2k

2.5k

time (sec)

di
sk

 (i
op

s)

io read
io write

0 500 1000 1500 2000 2500 3000
0

50

100

150

time (sec)

ne
tw

or
k

(M
B/

S)

net recv
net send

100% ReadRecord

100% InsertRecord

100% ScanRecord

 100%
DeleteRecord

100% ReadModifyWrite

100% UpdateRecord

(c) Latency

0 500 1000 1500 2000 2500 3000
0

5000

10000

15000

th
ro

ug
hp

ut
 (t

ps
)

throughput

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

time (sec)

95
th

 %
ile

 la
te

nc
y

(m
s)

95th %ile latency

0 500 1000 1500 2000 2500 3000
0

100

200

300

400

cp
u

us
ag

e
(%

)

cpu utilization

0 500 1000 1500 2000 2500 3000
0

10

20

30

di
sk

 (M
B/

S)

disk read
disk write

0 500 1000 1500 2000 2500 3000
0

0.5k

1k

1.5k

2k

2.5k

time (sec)

di
sk

 (i
op

s)

io read
io write

0 500 1000 1500 2000 2500 3000
0

50

100

150

time (sec)

ne
tw

or
k

(M
B/

S)

net recv
net send

100% ReadRecord

100% InsertRecord

100% ScanRecord

 100%
DeleteRecord

100% ReadModifyWrite

100% UpdateRecord

time (sec) time (sec) time (sec)
(d) Disk Utilization

0 500 1000 1500 2000 2500 3000
0

5000

10000

15000

th
ro

ug
hp

ut
 (t

ps
)

throughput

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

time (sec)

95
th

 %
ile

 la
te

nc
y

(m
s)

95th %ile latency

0 500 1000 1500 2000 2500 3000
0

100

200

300

400

cp
u

us
ag

e
(%

)

cpu utilization

0 500 1000 1500 2000 2500 3000
0

10

20

30

di
sk

 (M
B/

S)

disk read
disk write

0 500 1000 1500 2000 2500 3000
0

0.5k

1k

1.5k

2k

2.5k

time (sec)

di
sk

 (i
op

s)

io read
io write

0 500 1000 1500 2000 2500 3000
0

50

100

150

time (sec)

ne
tw

or
k

(M
B/

S)

net recv
net send

100% ReadRecord

100% InsertRecord

100% ScanRecord

 100%
DeleteRecord

100% ReadModifyWrite

100% UpdateRecord

(e) Network Utilization

0 500 1000 1500 2000 2500 3000
0

5000

10000

15000

th
ro

ug
hp

ut
 (t

ps
)

throughput

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

time (sec)

95
th

 %
ile

 la
te

nc
y

(m
s)

95th %ile latency

0 500 1000 1500 2000 2500 3000
0

100

200

300

400

cp
u

us
ag

e
(%

)

cpu utilization

0 500 1000 1500 2000 2500 3000
0

10

20

30

di
sk

 (M
B/

S)

disk read
disk write

0 500 1000 1500 2000 2500 3000
0

0.5k

1k

1.5k

2k

2.5k

time (sec)

di
sk

 (i
op

s)

io read
io write

0 500 1000 1500 2000 2500 3000
0

50

100

150

time (sec)
ne

tw
or

k
(M

B/
S)

net recv
net send

100% ReadRecord

100% InsertRecord

100% ScanRecord

 100%
DeleteRecord

100% ReadModifyWrite

100% UpdateRecord

(f) Disk I/O

Figure 4: Evolving Mixture – MySQL running YCSB demonstrating evolving mixture of transactions.

get workload since it is composed of a series of simple transactions
that each perform a specific type of operation (as opposed to the
more complex transactions in other benchmarks that execute a di-
verse set of queries). The default scale factor for YCSB for this
experiment and for following experiments is 1.2M tuples. Using
MySQL, we first run the system at its maximal throughput using
a single transaction type from YCSB (ReadRecord). Then, over
a 10 minute period, we gradually transition to a workload mixture
consisting of 100% of the next transaction type (InsertRecord)
by changing the ratio by 10% every minute. We repeat this process
for the four remaining transaction types in YCSB.

The graphs in Fig. 4 show the throughput and 95th percentile
latency, and several resource metrics to indicate how different
transactions types stress different resources. Each figure is
annotated at the time when the next transition is started in
the workload mixture. These results are revealing of the
underlying type of operation performed by the transactions. For
example, Fig. 4b shows that the ReadRecord transactions are
CPU-intensive due to parsing and in-memory index look-ups,
while the ScanRecord transactions show heavy network I/O in
Fig. 4e and longer latencies in Fig. 4c due to MySQL becoming
network-bound. Fig. 4d shows that the transactions that write
data, such as InsertRecord and UpdateRecord, cause the
DBMS to become disk-bound. Deletes are also disk-intensive, but
since less data needs to be written per delete (only undo logs), the
throughput and CPU load are higher.

The throughput of the ReadModifyWrite transaction in
Fig. 4a is particularly interesting. This transaction performs the
same update operation as the UpdateRecord transaction (but
with a read query before the update), yet it achieves a significantly
higher throughput. This is caused by the DeleteRecord
phase, which removes a large number of tuples right before
the ReadModifyWrite phase, and which results in a large
percentage of the ReadModifyWrite transactions trying to
modify non-existing tuples. A simple reordering of the phases
in the experiment would correct this issue, but we left it as is
to illustrate how the detailed OS resource metrics provided by
OLTP-Bench helped us track down this problem.

6.4 Evolving Access Distributions
In this experiment, we test OLTP-Bench’s ability to evolve the

distribution of a workload’s access patterns during execution. Sim-

ulating the formation and movement of hot spots in this manner
enables users to carefully emulate some of the most elusive char-
acteristics of real-life workloads, and thus investigate the system
response under such conditions. In order to make the implications
of this feature clear, we use the Twitter benchmark but configure its
workload mixture to only execute transactions that retrieve a single
tweet message via a primary key look-up. To drive this workload
on MySQL, we used OLTP-Bench to generate a trace file that alter-
nates between a uniform and a Zipfian distribution on the tweet’s
primary keys that are accessed by these transactions. We set the size
of the workload’s working set data to 4GB (roughly 20M tweets)
and MySQL’s buffer pool size to 2GB. This increases the likeli-
hood that the DBMS will have to retrieve records from disk for the
uniformly distributed transaction requests.

The results in Fig. 5 show that the MySQL satisfies most of
the requests from cached requests in its buffer pool for a Zipfian-
skewed access distribution, thereby achieving low-latency, high-
throughput, and incurring minimal disk reads with higher CPU
loads. The non-skewed access distribution, however, causes the
DBMS to fetch data from disk, which in turn increases disk I/O.

6.5 Exploring Rich Metrics
Another important feature of OLTP-Bench is its ability to collect

statistics from both the OS and DBMS directly during a bench-
mark invocation. We demonstrate how the rich metrics produced
by OLTP-Bench can help administrators understand peculiar per-
formance issues. As an example, we use a real problem that we en-
countered when running experiments for this paper using the YCSB
benchmark on MySQL.

The graph in Fig. 6a shows the throughput of MySQL running
YCSB for an hour. After ∼2600 seconds, the throughput suddenly
begins to degrade for a six minute period. It then returns to its pre-
vious rate of ∼4000 tps. This behavior was repeatable and would
always occur at the same point every time we ran this benchmark.

To investigate this phenomenon, we used two of the over 300
metrics collected by OLTP-Bench while a benchmark executes.
The first metric, shown in Fig. 6b, is the amount of free space
in the MySQL’s buffer pool (measured as the number of pages,
where each page is 16KB). The second metric, shown in Fig. 6c, is
the number of physical reads performed by MySQL, correspond-
ing to pages that were not in the buffer pool and therefore need to
be fetched from disk. After an initial warm-up phase, the number

283

0

5k

10k

15k
th

ro
ug

hp
ut

 (t
ps

)

0

1000

2000

95
th

 %
ile

 la
te

nc
y

(m
s)

0

200

400

cp
u

us
ag

e
(%

)

0

2

4

6

8

di
sk

 (M
B/

S)

disk read
disk write

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

200

400

time (sec)

di
sk

 (i
op

s)

io read
io write

Zipfianuniform uniform Zipfian

Figure 5: Evolving Access Distributions – MySQL running Twitter alter-
nating random reads with uniform and Zipfian distributions.

of page reads is close to zero; this indicates that the benchmark’s
working set fits entirely in memory. After 2600 seconds, however,
the graph in Fig. 6b shows that MySQL runs out of empty pages
in the buffer pool and therefore must evict pages to accommodate
new data. Since many pages get evicted all at once, it is likely that
MySQL chooses to free up non-dirty pages (which can be dropped
without a disk write) rather than pushing dirty pages to disk. As a
result, the pages needed for new transactions are now only avail-
able from disk, which explains the increase in page reads shown in
Fig. 6c. Eventually, the algorithms governing the eviction and those
controlling dirty-pages write-backs converge to a more stable state,
in which MySQL maintains the load effectively. The availability
of a large variety of metrics and data, such as those automatically
captured by OLTP-Bench, is invaluable when looking into specific
issues like the one described above.

6.6 Multitenancy
We next use OLTP-Bench’s ability to support multiple bench-

marks simultaneously to explore how well MySQL is able to han-
dle multiple workloads within the same DBMS instance. Such de-
ployments are common in shared-hosting and virtualized environ-
ments. We execute the TATP, TPC-C, and Wikipedia benchmarks
simultaneously and measure how well the system is able to handle
the concurrent workloads. These benchmarks were chosen because
they each have different characteristics.

We first load the three benchmarks’ data sets into the target
DBMS. We then start all three benchmark clients simultaneously
running at throttled speeds: TATP at 5000 tps, TPC-C at 10 tps,
and Wikipedia at 500 tps. These numbers were chosen from
previous experiments showing that the three DBMSs were able
to handle such workloads without becoming overloaded. After
five minutes, we increase the requested throughput for TPC-C to
push the DBMS to become disk-bound (due to the large number
of writes in TPC-C), and observe the impact on the other two
benchmarks before going back to the initial setting. Although we
did not expect that each workload would be fully isolated from the

0 500 1000 1500 2000 2500 3000 3500
0

1000

2000

3000

4000

5000

th
ro

ug
hp

ut
 (t

ps
)

throughput

0 500 1000 1500 2000 2500 3000 3500
0

100k
200k
300k
400k
500k

fre
e

bu
ffe

rp
oo

l (
#p

ag
es

)

Innodb free bufferpool

0 500 1000 1500 2000 2500 3000 3500
0

50

100

150

time (sec)

in
no

db
 p

hy
si

ca
l r

ea
ds

 (#
)

Innodb physical reads

Runs-out of
free pages

Fetches from disk
evicted pages

time (sec)

time (sec)
(a) Throughput

0 500 1000 1500 2000 2500 3000 3500
0

1000

2000

3000

4000

5000

th
ro

ug
hp

ut
 (t

ps
)

throughput

0 500 1000 1500 2000 2500 3000 3500
0

100k
200k
300k
400k
500k

fre
e

bu
ffe

rp
oo

l (
#p

ag
es

)

Innodb free bufferpool

0 500 1000 1500 2000 2500 3000 3500
0

50

100

150

time (sec)
in

no
db

 p
hy

si
ca

l r
ea

ds
 (#

)

Innodb physical reads

Runs-out of
free pages

Fetches from disk
evicted pages

time (sec)

time (sec)

(b) Number of Free Buffer Pool Pages

0 500 1000 1500 2000 2500 3000 3500
0

1000

2000

3000

4000

5000

th
ro

ug
hp

ut
 (t

ps
)

throughput

0 500 1000 1500 2000 2500 3000 3500
0

100k
200k
300k
400k
500k

fre
e

bu
ffe

rp
oo

l (
#p

ag
es

)

Innodb free bufferpool

0 500 1000 1500 2000 2500 3000 3500
0

50

100

150

time (sec)
in

no
db

 p
hy

si
ca

l r
ea

ds
 (#

)

Innodb physical reads

Runs-out of
free pages

Fetches from disk
evicted pages

time (sec)

time (sec)

(c) Number of Physical Reads

Figure 6: Exploring Rich Metrics – MySQL running YCSB leveraging
DBMS metrics to investigate an unexpected performance drop.

effects of the other workloads, we wanted to observe the degree of
fairness in each system’s scheduler and the extent to which each
workload is throttled.

As shown in Fig. 7, MySQL sustains this combined workload el-
egantly in the first part of the experiment, fully serving the request
rates imposed by the clients (normalized for the sake of presenta-
tion). MySQL provides good performance overall, albeit in a more
skewed way, since Wikipedia is only slightly affected but TATP’s
throughput is reduced by 20%.

6.7 Distributed Clients
We demonstrate how OLTP-Bench can run multiple clients

in parallel to overcome any client side bottleneck that might
hinder the full exploitation of the server. We used the SEATS
benchmark deployed in MySQL. We configured OLTP-Bench to
use a fixed pool of 200 Worker threads that were deployed on
EC2 Small instances. For each trial, we increase the number of
client instances and evenly assign the Workers among them. The
results in Fig. 8 show that using a single client machine achieves
the lowest throughput and highest latency (for this benchmark).
By distributing the client-side computation workload on more
machines, we improve the overall throughput until reaching the
saturated throughput of the server at five client instances.

6.8 Repeatability
Lastly, we demonstrate how OLTP-Bench can be used to validate

or refute previous experimental results. Repeatability is difficult if
the testbed is not publicly available, configuration parameters were
not reported, or the hardware is difficult to acquire (e.g., outdated,
expensive). We ran the SIBench workload with a hardware setting
similar to the one used in [26]. Fig. 9 shows a comparison between
Snapshot Isolation (SI) [26] versus the Serializable SI introduced
in PostgreSQL v9.1. As previously reported in [12], the number of

284

0 200 400 600 800
0

20

40

60

80

100

120

time (sec)

no
rm

al
iz

ed
 th

ro
ug

hp
ut

 (%
)

tatp tpcc wikipedia

0 200 400 600 800
 0

 1K

 2K

 3K

 4K

 5K

time (sec)

95
th

 %
ile

 la
te

nc
y

(m
s)

0 200 400 600 800
0

20

40

60

80

100

120

time (sec)

no
rm

al
iz

ed
 th

ro
ug

hp
ut

 (%
)

tatp tpcc wikipedia

0 200 400 600 800
 0

 1K

 2K

 3K

 4K

 5K

time (sec)

95
th

 %
ile

 la
te

nc
y

(m
s)

0 200 400 600 800
0

20

40

60

80

100

120

time (sec)

no
rm

al
iz

ed
 th

ro
ug

hp
ut

 (%
)

tatp tpcc wikipedia

0 200 400 600 800
 0

 1K

 2K

 3K

 4K

 5K

time (sec)

95
th

 %
ile

 la
te

nc
y

(m
s)

MySQL DBMS-X DBMS-Y

Figure 7: Multitenancy – MySQL running the TATP, Wikipedia, and TPC-
C benchmarks at throttled speeds, followed by TPC-C running at its maxi-
mum speed.

1 2 3 4 5 6
0

500

1000

1500

2000

2500

3000

number of client nodes

Th
ro

ug
hp

ut
 (t

ps
)

1 2 3 4 5 6
0

100

200

300

400

500

600

700

800

900

1000

number of client nodes

av
g

95
th

 %
ile

 la
te

nc
y

(m
s)

(a) Throughput

1 2 3 4 5 6
0

500

1000

1500

2000

2500

3000

number of client nodes

Th
ro

ug
hp

ut
 (t

ps
)

1 2 3 4 5 6
0

100

200

300

400

500

600

700

800

900

1000

number of client nodes

av
g

95
th

 %
ile

 la
te

nc
y

(m
s)

(b) Latency

Figure 8: Distributed Clients – OLTP-Bench running a SEATS workload
on 1–6 EC2-Small machines. The DBMS is MySQL running on EC2-
XLarge instance with a connection pool of 200.

terminals increases the amount of lock contention in Serializable
SI. But this information is omitted from [26], and thus we initially
got inconsistent results. Only after contacting the authors did we
learn that they used four terminals, which then made our experi-
mental results in Fig. 9 match those originally reported in [26].

7. “DB-AS-A-SERVICE” EVALUATION
In contrast to self-managed DBMSs, users do not have access

to the underlying system configuration used in a DBaaS platform.
This makes it more difficult to detect and correctly diagnose perfor-
mance problems, since the internals of the system are obfuscated.

To overcome this problem, we now show how our testbed
helps administrators evaluate the performance of their databases
deployed on DBaaS platforms. We begin in Section 7.1 by
showing how OLTP-Bench can detect abnormal quality-of-service
issues. We then compare the performance-vs-cost of different
workloads executing on the same DBaaS platform in Section 7.3,
as well as the performance-vs-cost of different DBaaSs executing
the same workload in Section 7.3. Lastly, we show a side-by-side
comparison of all the DBaaS platforms we tested in Section 7.4.

For all of the experiments in this section, OLTP-Bench was initi-
ated from virtual machines hosted in the same data centers as their
target DBaaS instances. We used 30 Worker threads and an fixed
configuration for the workload mixture and target throughput rate.

101 102 103 104
50

55

60

65

70
75

80

85

90
95

100

Table size (rows)

Th
ro

ug
hp

ut
 (n

or
m

al
iz

ed
)

Snapshot Isolation
Serializable SI (4 terminals)
Serializable SI (16 terminals)
Serializable SI (32 terminals)

Figure 9: Repeatability – PostgreSQL running SIBench with varying num-
ber of rows and terminals. Here, Serializable SI transaction throughput is
compared to SI as a percentage.

0 200 400 600 800
0

50

100

150

200

250

300

Th
ro

ug
hp

ut
 (T

Ps
)

(a) Throughput DBMSX

micro small medium large

0 200 400 600 800
0

500

1000

1500

2000

time (sec)

La
te

nc
y

(m
se

c)

(c) Latency DBMSX

0 200 400 600 800
0

50

100

150

200

250

300

Th
ro

ug
hp

ut
 (T

Ps
)

(b) Throughput DBMSY

0 200 400 600 800
0

500

1000

1500

2000

time (sec)

La
te

nc
y

(m
se

c)

(d) Latency DBMSY

Figure 10: DBaaS – Performance on better instance types (micro, small,
medium, large) on two DBaaS services.

7.1 Variance in the Cloud
We first present a set of experiments designed to showcase

OLTP-Bench’s ability to collect and visualize performance metrics
that can be used to make vendors accountable for the quality of
service on their platforms. Since a user has little or no control
over the configuration parameters of a DBaaS, it is difficult to
discern whether one is getting the expected service that they are
paying for. In this case, our benchmarking methodology departs
from traditional benchmarking tools in that we try to achieve
statistically significant performance results in the cloud.

The results in Fig. 10 show the throughput and latency
measurements of executing TPC-C on two DBaaS platforms.
We ran the same workload at saturation on four different DBaaS
instance types. There are two notable observations from these
results. First, we see that the performance of micro instances
show sporadic bursts. In addition, we observe that while better
instances provide consistent throughput increases, the response
time is noticeably better for the larger instances only.

Next, we explore the variability of services across the same in-
stance types. Similar investigations were conducted on Amazon
EC2 cloud in [29, 30] while in the present work we focus on
DBaaSs offerings. For this experiment, we run TPC-C on four
Medium instances. As shown in the results in Fig. 11, the perfor-
mance of both DBMS-X and DBMS-Y are inconsistent over time
and across different instances.

For both platforms, the results in Fig. 11 also show that some
instances are more stable than others. To determine whether this
is always the case, we ran TPC-C for over two hours at saturation

285

0 100 200 300 400 500 600 700 800
0

50

100

150

200

250

300

350

time (sec)

Th
ro

ug
hp

ut
 (T

Ps
)

0 100 200 300 400 500 600 700 800
0

200

400

600

800

1000

time (sec)

La
te

nc
y

(m
se

c)

 Instance1 Instance2 Instance3 Instance4

Figure 11: Variance in the Cloud – Demonstrating the erratic service of a
commercial DBaaS running TPC-C workload on multiple instances of the
same types on two DBaaS’s.

2000 3000 4000 5000 6000 7000
200

210

220

230

240

250

Time (sec)

Th
ro

ug
hp

ut
 (T

Ps
)

95% confidence intervals on the mean Throughput
Estimate of the mean Throughput

2000 3000 4000 5000 6000 7000
500

520

540

560

580

600

Time (sec)

La
te

nc
y

(m
se

c)

95% confidence intervals on the mean Latency
Estimate of the mean Latency

(a) Throughput

2000 3000 4000 5000 6000 7000
200

210

220

230

240

250

Time (sec)

Th
ro

ug
hp

ut
 (T

Ps
)

95% confidence intervals on the mean Throughput
Estimate of the mean Throughput

2000 3000 4000 5000 6000 7000
500

520

540

560

580

600

Time (sec)

La
te

nc
y

(m
se

c)

95% confidence intervals on the mean Latency
Estimate of the mean Latency

(b) Latency

Figure 12: Variance in the Cloud – Performance measurements over an
extended period of time.

on a large instance of a DBaaS and we computed the cumulative
mean throughput and latency. The results in Fig. 12 show that up
to a certain point, the longer we run the benchmark the tighter be-
comes the 95% confidence interval on both throughput and latency.
This means that over time we can collect more accurate conclusions
on the instance’s performance. Similarly, by testing additional in-
stances of the same type and from the same data center, we obtain
confidence intervals on the data center’s quality of service.

7.2 Performance-vs-Cost Comparison
Next, we used OLTP-Bench to measure the performance-vs-cost

ratio of a single DBaaS provider. Such a comparison allows a user
to decide what the right trade-off is between performance and cost
for a given application. Using the YCSB and Wikipedia bench-
marks, we used OLTP-Bench to deploy databases on five differ-
ent instance sizes on Amazon’s RDS platform (Table 3). We then
ran each benchmark separately at its maximum speed for a total
of 30 minutes. During that time, OLTP-Bench calculates the aver-
age maximum sustained throughput and the 95th percentile latency
from the middle 20 minutes of the experiment’s run.

The graph in Fig. 13 shows these throughput and latency
measurements collected by OLTP-Bench compared to the
different instance sizes. For YCSB, the L instance yields the
best cost/performance ratio, with good overall throughput and
low latency. Anything beyond that price point does not yield any
significant throughput improvement. We suspect that this because
of two possible causes. First, since the more expensive instances
might be co-located with other busy instances, there is increased
resource contention. Another possibility is that the throughput
plateaus because the disk becomes the main bottleneck, though we

 S L XL−HM 2XL−HM 4XL−HM
0

1000

2000

3000

4000
throughput

th
ro

ug
hp

ut
 (t

ps
)

 S L XL−HM 2XL−HM 4XL−HM
0

200

400

600

800

la
te

nc
y

(m
s)

throughput (YCSB) throughput (Wikipedia) latency (YCSB) latency (Wikipedia)

ycsb RDS price−performance

 S L XL−HM 2XL−HM 4XL−HM

10M

20M

30M

40M
performance vs cost

machine size

pe
rfo

rm
an

ce
 v

s
co

st
 (t

ra
ns

 /
$)

YCSB performance/cost
Wikipedia performance/cost

Figure 13: DBaaS Performance-vs-Cost – Comparing RDS using the Wiki-
pedia and YCSB workloads within same data center.

Instance Type CPU (v-core) RAM I/O Perf.
Small (S) 1 EC2 (1) 1.7G Moderate
Large (L) 4 EC2 (4) 7.5 G High
HighMem XLarge (XL-HM) 6.5 EC2 (2) 17.1 G Moderate
HighMem 2XLarge (2XL-HM) 13 EC2 (4) 34.2 G High
HighMem 4XLarge (4XL-HM) 26 EC2 (8) 68.4 G High

Table 3: EC2 RDS Experimental Systems

can only speculate on that point since this is an OS statistic that
OLTP-Bench is unable to retrieve from a DBaaS.

Fig. 13 shows different results for executing the Wikipedia
benchmark on Amazon RDS. Irrespective of the differences in
absolute values with YCSB, which are dependent on the actual
workload, the results indicate that the Wikipedia benchmark
obtains better throughput and latency for the larger, more expen-
sive instances. We suspect that since Wikipedia’s workload is
read-intensive, the CPU is the main bottleneck as the benchmark’s
working set fits in memory. As for the price/performance ratio,
the results suggest that the XL-HM instance is the best choice for
this workload. Although the 2XL-HM and 4XL-HM instances
provide better performance, the additional cost incurred by the
more expensive machines outweighs their performance advantage.

7.3 Performance-vs-Cost DBMS Comparison
Similarly to the previous experiment, we now compare the per-

formance/cost trade-off of the two different DBaaS offerings avail-
able from Amazon RDS. We use YCSB in this evaluation because
of its diverse transactions. We again use OLTP-Bench to deploy the
benchmark’s database on five different instance sizes (Table 3) and
measure their throughput and latency over a 30 minute period.

The results in Fig. 14 show that the two underlying DBMSs in
RDS behave similarly with the only exception of an unexpectedly
lower latency for DBMS-W. There are several interesting patterns
that emerge from the data collected by OLTP-Bench. Foremost is
that the performance/cost ratios for both systems get worse when
running on bigger instances. The best choice for both DBMS-W
and DBMS-K appears to be once again the L instance.

These results show that performance and cost are complex as-
pects in a DBaaS context, and that it is hard to quantify such metrics
without a testbed like ours.

7.4 Comparing DBaaS Providers
In this final experiment, we compare all of the major DBaaS of-

ferings using the SEATS benchmarks. Since network latency is an
important factor for OLTP workloads, we ran all of the workers on

286

 S L XL−HM 2XL−HM 4XL−HM
0

1000

2000

3000

4000
throughput

th
ro

ug
hp

ut
 (t

ps
)

 S L XL−HM 2XL−HM 4XL−HM
0

50

100

150

200

la
te

nc
y

(m
s)

DBMSW throughput DBMSK throughput DBMSW latency DBMSK latency

ycsb RDS price−performance

 S L XL−HM 2XL−HM 4XL−HM

10M

20M

30M

40M
performance vs cost

machine size

pe
rfo

rm
an

ce
 v

s
co

st
 (t

ra
ns

 /
$)

DBMSW performance/cost
DBMSK performance/cost

Figure 14: DBaaS Performance-vs-Cost DBMS Comparison – Comparing
the performance of YCSB running on two DBMS back-ends on Amazon’s
RDS platform.

0 500 1000 1500 2000 2500 3000 3500
0

100

200

300

400

500

600

700

time (sec)

th
ro

ug
hp

ut
 (t

ps
)

DBMSA
DBMSB
DBMSC

0 500 1000 1500 2000 2500 3000 3500
0

500

1000

1500

2000

time (sec)

95
th

 %
ile

 la
te

nc
y

(m
s)

DBMSA
DBMSB
DBMSC

DBMSA DBMSB DBMSC
0

0.1

0.2

0.3

0.4

co
st

 ($
)

DBMSA DBMSB DBMSC
0

1

2

3

4

5

6 x 106

pe
rfo

rm
an

ce
/c

os
t (

tra
ns

ac
tio

ns
/$

)

(a) Throughput
0 500 1000 1500 2000 2500 3000 3500

0

100

200

300

400

500

600

700

time (sec)

th
ro

ug
hp

ut
 (t

ps
)

DBMSA
DBMSB
DBMSC

0 500 1000 1500 2000 2500 3000 3500
0

500

1000

1500

2000

time (sec)

95
th

 %
ile

 la
te

nc
y

(m
s)

DBMSA
DBMSB
DBMSC

DBMSA DBMSB DBMSC
0

0.1

0.2

0.3

0.4

co
st

 ($
)

DBMSA DBMSB DBMSC
0

1

2

3

4

5

6 x 106

pe
rfo

rm
an

ce
/c

os
t (

tra
ns

ac
tio

ns
/$

)

(b) Latency

Figure 15: Comparing DBaaS Providers: Performance trade-off across
RDS offerings and SQL Azure for SEATS across data-centers (New opaque
names and different workload to preserve anonymity of vendors.)

virtual machines hosted in the same data center region as the man-
aged instances to ensure fairness between the DBaaS providers.
The results in Fig. 15 show that DBMS-A has an erratic latency
behavior but offers the best performance-vs-cost ratio. DBMS-
B achieves a steadier throughput and lowest latency for a higher
price. Again, this is a simple yet convincing example of how proper
benchmarking can help better understand the trade-offs between
these two aspects of cloud-based deployments.

7.5 Discussion
Performance and cost are just two of the many dimensions that

one must consider when choosing a database service provider. In
this context, Kossmann et al. [21] conducted an end-to-end study
on performance and cost using TPC-W and reported several find-
ings, among which that service providers prioritise different aspects
depending on their business model. Similary, we found that the
performance/cost trade-off was the most difficult to explore and re-
quires the use of appropriate benchmark corresponding to the target
application. Although some of our findings were surprising, they
coincide with anecdotal evidence from DBMS researchers in both
industry and academia. This suggests that understanding how to
best leverage DBaaS solutions is still a major challenge today. We
believe that this is due to two factors: (1) the pricing schemes cur-
rently used by DBaaS vendors make it difficult to predict the final

costs since they are typically based on complex metrics involving
storage, bandwidth, and I/O, and (2) the information needed to de-
termine the performance that one can obtain from a particular de-
ployment is often hidden because of the lack of guarantees on raw
resources. Based on our own experience in working with OLTP-
Bench, this dearth of information only allows one to speculate on
their cause. We believe, however, that this is likely to change as the
DBaaS landscape matures, but for now benchmarking is the best
line of defense for early adopters of this new generation of services.

8. RELATED WORK
Benchmarking and performance analysis received considerable

attention in the late 1980s and early 1990s [10, 20, 19], when many
standard synthetic benchmarks were created [36, 40, 4]. More re-
cently, the emergence of new application domains has led to a pro-
liferation of new benchmark specifications that target specific sub-
fields, such as XML data stores [31], streaming data [7], key-value
stores [16], table stores [24], hybrid OLAP/OLTP databases [18],
dynamic websites [28], P2P systems [22], spatial databases [27],
and cloud services [21]. Other benchmarking frameworks only sup-
port just one particular DBMS platform [5, 3, 37]. To the best of
our knowledge, OLTP-Bench is the first database benchmarking
testbed that supports both multiple DBMSs and workloads.

When designing our testbed, we embraced the principles intro-
duced in [33], by providing tools to control the mixture and rate of
the transactions and by supporting “trace-based” benchmarks based
on real data. The set of workloads that we present in this paper
spans several important application domains, and enables users of
OLTP-Bench to easily design benchmarks that emulate real appli-
cations or stress-testing individual system features.

We strived to offer an automated benchmark controller that
is easy to run and extend. Other multi-workload benchmarking
frameworks, such as Shore-Kits [37], are difficult to extend and
only work for a single DBMS. In that sense, the project in [34] is
similar to ours, but is designed for a broader class of use cases
(generic server benchmarking), focuses on a few metrics only
(e.g., peak-rate), and does not provide DBMS-specific benchmarks
or tools. Both OLTP-Bench and the system described in [34] can
be used to help administrators tune the configuration parameters
of a system by running semi-automated experiments, following a
new paradigm called experiment-driven management that suggests
to replace analytical modeling by semi-automated experiments to
manage database systems [9] or cloud infrastructures [41].

9. FUTURE WORK
Although our testbed is fully functional, we hope that it is just

the starting point of a long-running effort. Our current and future
development plans include:
• Native NoSQL systems support: We plan on extending our

API to support workloads on NoSQL systems natively.
• Improved SQL Dialect Support: We intend to enhance the

SQL-Dialect Manager’s ability to automatically translate each
benchmark query into different SQL dialects.

• Automatic Request Distribution Collection: We would like
OLTP-Bench to be able to automatically extract important ac-
cess distribution information from real-world workloads and
data and to automatically generate a benchmark that is based
on this information.

• Stored Procedures: We plan to extend OLTP-Bench to include
support for automatically generating stored procedures for each
benchmark. This is particularly challenging due to the lack of

287

a common language to express stored procedures in the various
DBMSs we support.

We also plan to leverage OLTP-Bench’s growing user base to im-
prove and extend our testbed, including adding both new OLTP and
OLAP benchmarks and configuration rules that are tailored to dif-
ferent DBMSs and cloud environments. We hope to involve not
only researchers but also application developers in this effort.

10. CONCLUSIONS
This work presented OLTP-Bench, a “batteries included” testbed

for benchmarking DBMSs. OLTP-Bench allows a user to run per-
formance analysis experiments with tight control on the mixture,
rate, and access distribution of transactions for its 15 built-in work-
loads. The workloads include synthetic micro-benchmarks, popu-
lar OLTP benchmarks, and real-world Web applications. We con-
ducted extensive testing that demonstrate that OLTP-Bench can be
used for different types of experimental analyses on four different
DBMSs and three cloud-based database services. The source code
for OLTP-Bench, as well as detailed configuration parameters, raw
results, and detailed graphs for all of the experiments we present in
this paper are available on the project’s website [2].

11. ACKNOWLEDGMENTS
The authors thank Evan Jones and Yang Zhang for initial help,

Dimitri Vorona for porting benchmarks, Sam Madden, Ben Reed,
Rusty Sears, Barzan Mozafari, and Ippokratis Pandis for their feed-
back. This work was supported (in part) by Amazon and the Swiss
National Science Foundation (#PP00P2-128459).

12. REFERENCES
[1] JPA Performance Benchmark. http://www.jpab.org.
[2] OLTPBenchmark.com. http://oltpbenchmark.com.
[3] pgbench. http://postgresql.org/docs/9.2/static/pgbench.html.
[4] PolePosition: The Open Source Database Benchmark.

http://polepos.org.
[5] SysBench: A System Performance Benchmark.

http://sysbench.sourceforge.net.
[6] V. Angkanawaraphan and A. Pavlo. AuctionMark: A Benchmark for

High-Performance OLTP Systems.
http://hstore.cs.brown.edu/projects/auctionmark.

[7] A. Arasu, M. Cherniack, E. F. Galvez, D. Maier, A. Maskey,
E. Ryvkina, M. Stonebraker, and R. Tibbetts. Linear road: A stream
data management benchmark. In VLDB, 2004.

[8] T. G. Armstrong, V. Ponnekanti, D. Borthakur, and M. Callaghan.
Linkbench: a database benchmark based on the facebook social
graph. In SIGMOD Conference, pages 1185–1196, 2013.

[9] S. Babu, N. Borisov, S. Duan, H. Herodotou, and V. Thummala.
Automated experiment-driven management of (database) systems. In
HotOS, 2009.

[10] D. Bitton, D. J. DeWitt, and C. Turbyfill. Benchmarking database
systems a systematic approach. In VLDB, 1983.

[11] M. J. Cahill, U. Röhm, and A. D. Fekete. Serializable isolation for
snapshot databases. SIGMOD, pages 729–738, 2008.

[12] M. J. Cahill, U. Röhm, and A. D. Fekete. Serializable isolation for
snapshot databases. ACM Transactions on Database Systems
(TODS), 34(4):20, 2009.

[13] R. Cattell. Scalable SQL and NoSQL data stores. SIGMOD Rec.,
39:12–27, 2011.

[14] M. Cha, H. Haddadi, F. Benevenuto, and K. P. Gummadi. Measuring
user influence in Twitter: The million follower fallacy. In ICWSM,
May 2010.

[15] R. Cole, F. Funke, L. Giakoumakis, W. Guy, A. Kemper,
S. Krompass, H. Kuno, R. Nambiar, T. Neumann, M. Poess, et al.
The mixed workload ch-benchmark. In Proceedings of the Fourth
International Workshop on Testing Database Systems, page 8. ACM,
2011.

[16] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.
Benchmarking cloud serving systems with ycsb. In SoCC, pages
143–154, 2010.

[17] C. Curino, E. Jones, R. A. Popa, N. Malviya, E. Wu, S. Madden,
H. Balakrishnan, and N. Zeldovich. Relational Cloud: A Database
Service for the Cloud. In CIDR, pages 235–240, 2011.

[18] F. Funke, A. Kemper, and T. Neumann. Benchmarking hybrid OLTP
& OLAP database systems. In BTW, pages 390–409, 2011.

[19] J. Gray. Benchmark Handbook: For Database and Transaction
Processing Systems. Morgan Kaufmann Publishers Inc., 1992.

[20] W. H. Highleyman. Performance Analysis of Transaction Processing
Systems. Prentice Hall, 1989.

[21] D. Kossmann, T. Kraska, and S. Loesing. An evaluation of alternative
architectures for transaction processing in the cloud. In Proceedings
of the 2010 ACM SIGMOD International Conference on
Management of data, pages 579–590. ACM, 2010.

[22] M. Lehn, T. Triebel, C. Gross, D. Stingl, K. Saller, W. Effelsberg,
A. Kovacevic, and R. Steinmetz. Designing benchmarks for p2p
systems. In From Active Data Management to Event-Based Systems
and More. 2010.

[23] P. Massa and P. Avesani. Controversial users demand local trust
metrics: an experimental study on epinions.com community. In
AAAI-05, pages 121–126, 2005.

[24] S. Patil, M. Polte, K. Ren, W. Tantisiriroj, L. Xiao, J. López,
G. Gibson, A. Fuchs, and B. Rinaldi. YCSB++: benchmarking and
performance debugging advanced features in scalable table stores.
SOCC, pages 9:1–9:14, 2011.

[25] A. Pavlo, E. P. Jones, and S. Zdonik. On predictive modeling for
optimizing transaction execution in parallel OLTP systems. Proc.
VLDB Endow., 5:85–96, October 2011.

[26] D. R. Ports and K. Grittner. Serializable snapshot isolation in
postgresql. Proceedings of the VLDB Endowment, 5(12):1850–1861,
2012.

[27] S. Ray, B. Simion, and A. Brown. Jackpine: A benchmark to evaluate
spatial database performance. In ICDE, 2011.

[28] E. Sarhan, A. Ghalwash, and M. Khafagy. Specification and
implementation of dynamic web site benchmark in
telecommunication area. In WEAS, pages 863–867, 2008.

[29] Scalyr. Even Stranger than Expected: a Systematic Look at EC2 I/O.
http://blog.scalyr.com/2012/10/16/a-systematic-look-at-ec2-io/.

[30] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz. Runtime measurements
in the cloud: Observing, analyzing, and reducing variance. PVLDB,
3(1), 2010.

[31] A. Schmidt, F. Waas, M. Kersten, M. J. Carey, I. Manolescu, and
R. Busse. Xmark: a benchmark for xml data management. In VLDB,
2002.

[32] B. Schroeder, A. Wierman, and M. Harchol-Balter. Open versus
closed: a cautionary tale. NSDI, pages 18–18, 2006.

[33] M. Seltzer, D. Krinsky, K. Smith, and X. Zhang. The case for
application-specific benchmarking. In HotOS, 1999.

[34] P. Shivam, V. Marupadi, J. Chase, T. Subramaniam, and S. Babu.
Cutting corners: workbench automation for server benchmarking. In
USENIX, 2008.

[35] M. Stonebraker and A. Pavlo. The SEATS Airline Ticketing Systems
Benchmark. http://hstore.cs.brown.edu/projects/seats.

[36] The Transaction Processing Council. TPC-C Benchmark (Revision
5.9.0). http://www.tpc.org/tpcc/spec/tpcc current.pdf, June 2007.

[37] P. Tözün, I. Pandis, C. Kaynak, D. Jevdjic, and A. Ailamaki. From A
to E: analyzing TPC’s OLTP benchmarks: the obsolete, the
ubiquitous, the unexplored. EDBT, pages 17–28, 2013.

[38] G. Urdaneta, G. Pierre, and M. van Steen. Wikipedia workload
analysis for decentralized hosting. Comput. Netw., 53:1830–1845,
July 2009.

[39] G. Weikum. Where is the Data in the Big Data Wave?
http://wp.sigmod.org/?p=786.

[40] A. Wolski. TATP Benchmark Description (Version 1.0).
http://tatpbenchmark.sourceforge.net, March 2009.

[41] W. Zheng, R. Bianchini, G. J. Janakiraman, J. R. Santos, and
Y. Turner. Justrunit: experiment-based management of virtualized
data centers. In USENIX, 2009.

288

http://www.jpab.org
http://oltpbenchmark.com
http://postgresql.org/docs/9.2/static/pgbench.html
http://polepos.org
http://sysbench.sourceforge.net
http://hstore.cs.brown.edu/projects/auctionmark
http://blog.scalyr.com/2012/10/16/a-systematic-look-at-ec2-io/
http://hstore.cs.brown.edu/projects/seats
http://www.tpc.org/tpcc/spec/tpcc_current.pdf
http://wp.sigmod.org/?p=786
http://tatpbenchmark.sourceforge.net

	Introduction
	Motivation
	The OLTP-Bench Testbed
	Workload Manager
	Workload Generation
	SQL Dialect Translation
	Distributed Clients
	Runtime Results & Statistics Collection

	Benchmark Data & Workloads
	Transactional Benchmarks
	AuctionMark
	CH-benCHmark
	SEATS
	SmallBank
	TATP
	TPC-C
	Voter

	Web-Oriented Benchmarks
	Epinions
	LinkBench
	Twitter
	Wikipedia

	Feature Testing Benchmarks
	JPAB (Object Relation Mapping)
	ResourceStresser
	SIBench
	YCSB

	Experimental Deployment
	OLTP-Bench Feature Evaluation
	Rate Control
	Multi-Class Reporting
	Evolving Workload Mixtures
	Evolving Access Distributions
	Exploring Rich Metrics
	Multitenancy
	Distributed Clients
	Repeatability

	``DB-as-a-Service'' Evaluation
	Variance in the Cloud
	Performance-vs-Cost Comparison
	Performance-vs-Cost DBMS Comparison
	Comparing DBaaS Providers
	Discussion

	Related Work
	Future Work
	Conclusions
	Acknowledgments
	References

