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ABSTRACT
Many data-intensive applications have to query a database
that involves sequences of sets of objects. It is not uncom-
mon that the order of the sets in such a sequence does not
affect the result of the query. Such queries are called sym-
metric. In this paper, the authors wish to initiate research
on symmetric queries.

Thereto, a data model is proposed in which a binary re-
lation between objects and set names encodes set member-
ship. On this data model, two query languages are intro-
duced, QuineCALC and SyCALC. They are correlated in a
manner that is made precise with the symmetric Boolean
functions of Quine, respectively symmetric relational func-
tions, on sequences of sets of given length. The latter do
not only involve the Boolean operations union, intersection,
and complement, but also projection and Cartesian product.
Quine’s characterization of symmetric Boolean functions in
terms of incidence information is generalized to QuineCALC
queries. In the process, an incidence-based normal form for
QuineCALC queries is proposed.

Inspired by these desirable incidence-related properties of
QuineCALC queries, counting-only queries are introduced as
SyCALC queries for which the result only depends on inci-
dence information. Counting-only queries are then charac-
terized as quantified Boolean combinations of QuineCALC
queries, and a normal form is proposed for them as well.
Finally, it is shown that, while it is undecidable whether
a SyCALC query is counting-only, it is decidable whether a
counting-only query is a QuineCALC query.
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1. INTRODUCTION
Many applications, several of which data-intensive, have

to deal with sequences of sets of objects, where all objects
are of the same type. Here are some more classical examples:

• objects are parts, and S1, . . . , Sn is a sequence of sets
of parts such that Sj is the set of parts supplied by
supplier j.

• objects are products, and S1, . . . , Sn is a sequence of
sets of products such that each Sj is the set of products
bought in transaction j, as is the case in the frequent-
itemset problem [2].

• objects are students, and S1, . . . , Sn is a sequence of
sets of students such that each Sj is the set of students
taking course j.

Observe that, in all these examples, it is possible that Si =
Sj for i 6= j. Indeed, two distinct suppliers may supply
exactly the same parts; or two distinct transactions may
involve exactly the same products; or two distinct courses
may have exactly the same students enrolled in them. Other
possible examples include companies and their customers,
documents and the words contained therein, or RDF rela-
tionships involving pairs of objects [8, 12, 18].

In this article, we study computable queries q(S1, . . . , Sn)
taking as input a sequence of sets S1, . . . , Sn, n ≥ 0, of
objects of some common type, and returning as output a set
of m-tuples of such objects for some fixed value of m ≥ 0,
and, which, in addition, satisfy the following condition:

for each permutation i1, . . . , in of 1, . . . , n,
q(Si1 , . . . , Sin) = q(S1, . . . , Sn).

We call such queries symmetric queries.
It should be emphasized at this point that, unlike m, the

number n should not be considered as fixed, but rather as a
parameter of the problem under consideration.

Obviously, the class of symmetric queries is a strict sub-
set of the class of all computable queries that operate on
sequences of sets. For example, the unary query returning
the first set of the input sequence is clearly not symmetric.
Nevertheless, the class of symmetric queries is quite rich.
The following example queries, referring to the application
areas listed above, illustrate this.
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1. Retrieve the parts that are supplied by at least two
suppliers.

2. Retrieve the parts that are supplied by all suppliers.

3. Is each supplied part supplied by just one supplier?

4. Retrieve the parts that are supplied by exactly one
supplier, provided that there exist parts that are sup-
plied by at least three suppliers.

5. Do all suppliers supply the same parts?

6. Retrieve the pairs of products that occur together in
at least two transactions.

7. Retrieve the pairs of students taking the same courses.

The above queries will be used in examples throughout the
paper. We shall refer to them as Queries 1–7, respectively.

Wherever numbers of sets are mentioned in Queries 1–
7, we chose small values for purposes of exposition. In the
context of vast amounts of data, it is to be expected that
these numbers will actually be quite large (e.g., variations
on Query 6 in the context of the frequent itemset problem).

As a matter of fact, symmetric queries or functions (not
necessarily on sequences of sets) abound in very diverse
fields. For instance, symmetric functions are very preva-
lent in mathematics. As an example, symmetric polyno-
mials play a fundamental role in finding roots of single-
variable polynomials and finding solutions to systems of
multi-variable polynomial equations1 [16]. In linear algebra,
functions such as those that determine the rank, determi-
nant, and eigenvalues of a square matrix are invariant un-
der permutations of rows, and of columns [10, 16]. There is
also a comprehensive literature on symmetric Boolean func-
tions (e.g., [3, 4, 13]). In statistics, most summary data are
symmetrical functions of the input, such as sum, count, av-
erage, median, maximum, minimum, variance, and higher-
order moments. In programming, examples of symmetric
functions on lists of data include size, membership check-
ing, and sorting.

With the current strong interest in cluster computing,
data-parallel computation on partitioned data, data ana-
lytics, etc., one is interested in operators that are commuta-
tive and associative, and can therefore be ordered, grouped,
combined, and merged arbitrarily. A good example of this
is MapReduce, where it is commonly assumed that the re-
ducer and combiner functions are symmetric [5, 6, 7, 9].
Typically, it is up to the programmer to guarantee that this
property is satisfied. The strategy followed in this paper is
to propose expressive query languages that guarantee this
property implicity, and thus liberate the programmer from
having to argue for it explicity.

It is therefore surprising that symmetric queries have hard-
ly been studied in the context of database systems, even
though our examples above show that symmetric queries are
quite prevalent as well. We should note that certain special
examples of symmetric queries have been considered in the
context of nested relations and complex-object databases.
For example, the “unnest” operator in the nested relational
model [15] is an operator that when applied to a set of sets

1The study of symmetric polynomials in mathematics has a
long history. For example, Isaac Newton already established
fundamental results about symmetric polynomials [11].

returns the union of these sets (see also, the “
S

” operator
in NRC [17] and the “set-collapse” operator in the complex-
object algebra [1]). Other examples of symmetric queries
were introduced by Sarathy et al. [14], using the “

S
,” “

T
,”

and the “
L

” operators. Applied to a set of sets, “
S

” re-
turns the union of these sets, “

T
” returns the intersection

of these sets, and “
L

” returns the set of objects that are
members of just one of these sets.

Notice that Queries 1–7 above can be expressed in terms of
union, intersection, complement, projection, and Cartesian
product. Below, we give the corresponding expression for
each of these seven queries.2

q1(S1, . . . , Sn) =
[

1≤i<j≤n

Si ∩ Sj ;

q2(S1, . . . , Sn) =
\

1≤i≤n

Si;

q3(S1, . . . , Sn) = π〈〉

“ [
1≤i<j≤n

Si ∩ Sj

”
;

q4(S1, . . . , Sn) =

„“ [
1≤i≤n

Si

”
∩

[
1≤i<j≤n

Si ∩ Sj

«
×

π〈〉

“ [
1≤i<j<k≤n

Si ∩ Sj ∩ Sk

”
;

q5(S1, . . . , Sn) = π〈〉

“ [
1≤i6=j≤n

Si ∩ Sj

”
;

q6(S1, . . . , Sn) =
[

1≤i<j≤n

(Si ∩ Sj)× (Si ∩ Sj);

q7(S1, . . . , Sn) =
[

1≤i≤n

(Si × Si) ∪ (Si × Si).

Observe that several of the above expressions can be rewrit-
ten using set difference instead of complement3. The latter
is stronger, as S1 − S2 = S1 ∩ S2.

4

To our knowledge, the class of symmetric queries that can
be expressed using union, intersection, complement, projec-
tion, and Cartesian product, has not been studied. Initiat-
ing such a study is the purpose of the present paper.

For this study, we can start from the work of Quine [13],
who studied so-called symmetric Boolean functions which
have as argument a sequence of sets of objects of a given
length and return a set of objects defined in terms of the
input sets using only union, intersection, and complement.
Quine obtained the remarkable result that such a symmetric
Boolean function can be entirely characterized in terms of
the incidence of each object in the domain, i.e., the num-
ber of sets in which this object occurs. Concretely, given a
sequence S1, . . . , Sn of sets of objects as argument for the

2If S is a set, then π〈〉(S) = {〈〉} if S 6= ∅, and π〈〉(S) = ∅
if S = ∅. These are the only null-ary sets. We view “{〈〉}”
as a representation of true and “∅” as a representation of
false. In this way, Boolean queries can easily be expressed.
Also notice that T × {〈〉} = T and T × ∅ = ∅.
3With respect to some appropriately chosen domain.
4For domain-independent queries, complement and differ-
ence can be used interchangeably; however, we do not want
to impose domain independence at this stage, although we
believe it is possible to deal with this issues pretty much in
the same way as in the standard relational model. We chose,
however, not to impose additional semantic and/or syntactic
restrictions which could obfuscate the focus of this work.
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function, there is some subset N of {0, . . . , n} such that,
for each object in the domain, this object is in the result of
the function applied to S1, . . . , Sn if and only if the num-
ber of sets among S1, . . . , Sn the object belongs to is in N .
Moreover, this property characterizes symmetry of Boolean
functions.

Returning to our example symmetric queries above, no-
tice that Queries 1 and 2 have been expressed as symmetric
Boolean queries in the sense of Quine.5 For these queries,
the set N in Quine’s characterization result is {2, . . . , n},
respectively {n}. Notice that this property allows for an ef-
ficient evaluation of these queries, as the relevant incidence
information can be retrieved efficiently. All other queries are
not expressed as symmetric Boolean functions in the sense
of Quine, as the corresponding expressions involve projec-
tion and/or Cartesian product. Notice, however, that the
expressions for Queries 3, 4, and 5 contain subexpressions
representing symmetric Boolean functions in the sense of
Quine. We may therefore hope that Quine’s characterization
can still be of use to evaluate also such queries efficiently.
In sharp contrast with these three queries, the expressions
for Queries 6 and 7 do not contain subexpressions repre-
senting symmetric Boolean functions in the sense of Quine.
This should not be too surprising if we look at the seman-
tics of these symmetric queries. For example, if we look
at Query 6, “Retrieve the pairs of products that occur to-
gether in at least two transactions,” then knowing the num-
ber of transactions each product occurs in is not very helpful
for answering this query. Similarly, knowing the number of
courses each student takes is not very helpful for answering
Query 7, “Retrieve the pairs of students taking the same
courses.”

In order to study the issues raised above more closely, we
first want to do away with the explicit occurrence of n in
the model considered so far, which is undesirable from a
database perspective. To see this, consider again parts and
suppliers. First of all, the interesting setting is a dynamic
one where new suppliers start up a business all the time and
old ones go out of business. Second, the number of suppli-
ers n is “hard-wired” in the expressions given above for our
example queries. Changing n will yield another expression.
Thus, to overcome these limitations, we need a data model
for representing sequences of sets of arbitrary length which
allows defining query languages over that data model for
specifying symmetric queries without making explicit refer-
ence to the length of the represented sequence of sets.

Concretely, we propose to model an arbitrary sequence
of sets by a set σ of set names and a binary membership
relation γ. An object o belongs to a set of the sequence
named S if and only if S ∈ σ and 〈o, S〉 ∈ γ. Notice that
we need the set σ because some sets in the sequence under
consideration may be empty and hence will not occur in
γ. In the representation we propose, we lose of course the
order of the sets in the sequence, but this is irrelevant in
our setting as all queries under consideration are symmetric
anyway.

In this paper, we propose as a query language a two-sorted
first-order logic over a binary predicate Γ representing the
set membership relation of our data model, called SyCALC
(from “Symmetric Calculus”). As mentioned, SyCALC has
two sorts of variables: one ranges over set names and one

5Technically, one for each value of the parameter n.

over objects. The language is designed in such a way that
object variables and set variables cannot be compared. Of
course, we will ensure that only symmetric queries can be ex-
pressed in SyCALC. As an illustration, Query 6 is expressed
in SyCALC by

{(x, y) | ∃X∃Y (Γ(x, X)∧ Γ(x, Y )∧ Γ(y, X)∧ Γ(y, Y )∧X 6= Y )}.

Our considerations above lead naturally to the following
research questions regarding SyCALC.

1. Is there a syntactically definable fragment of SyCALC
that is a conservative extension of the symmetric Bool-
ean functions in the sense of Quine?

2. If so, let us call this fragment QuineCALC. Can the
characterization result of Quine for symmetric Boolean
functions using incidence information be lifted to a
characterization of QuineCALC?

3. It is possible to extend the symmetric Boolean func-
tions in the sense of Quine to what we call symmet-
ric relational functions by also allowing projection and
Cartesian product besides union, intersection, and com-
plement. Is SyCALC a conservative extension of the
symmetric relational functions?

4. Are there unary symmetric queries that are expressible
in SyCALC but not in QuineCALC which can neverthe-
less be characterized in terms of incidence information?

5. Are there also non-unary symmetric queries express-
ible in SyCALC which can be characterized in terms of
incidence information?

6. We shall call the subclass of SyCALC queries that can
be expressed in terms of incidence information the
counting-only queries. Are there SyCALC queries that
are not counting-only queries?

7. Is there a syntactically definable fragment of SyCALC
that expresses precisely the counting-only queries?

8. Is it decidable if a SyCALC query is a counting-only
query?

9. Is it decidable if a counting-only query is a QuineCALC
query?

In this paper, we show that the answer to each of these
research questions is “yes,” except for Research Question 8,
for which the answer is “no.”

This paper is organized as follows. In Section 2, we present
our data model. We introduce symmetric queries over our
data model as well as functions on finite sequences of sets of
a given length, and correlate both. In Section 3, we intro-
duce QuineCALC, and establish a correspondence between
QuineCALC queries and symmetric Boolean functions. We
also characterize QuineCALC queries in terms of incidence
information of the objects they return. In Section 4, we
introduce SyCALC, and establish a correspondence between
SyCALC queries and symmetric relational functions. We also
introduce counting-only queries, which we characterize as
quantified Boolean combinations of QuineCALC queries. We
show that, while it is undecidable whether a SyCALC query is
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counting-only, it is decidable whether a counting-only query
is equivalent to a QuineCALC query. Finally, in Section 5,
we formulate some conclusions, and discuss directions for
future research.

2. PRELIMINARIES
As explained in the Introduction, we work with two sorts,

objects and sets of these objects. We assume the existence
of an infinitely enumerable domain D of objects, and an
infinitely enumerable domain S of names of sets of objects.
From now on, we shall always implicitly assume that every
object under consideration is in D, and that every set name
is in S. (In particular, the set corresponding to such a set
name is assumed to consist of objects in D.) Even though
in practical examples we may expect that D ∩ S = ∅, there
is no need to make that assumption explicitly because we
shall never compare objects and set names.

For our data model, we consider structures (D,S, σ, γ),
where σ is a finite subset of S, expliciting the set names
under consideration, and γ is a finite subset of D × σ, pro-
viding set membership information. For o ∈ D, we define
the incidence of o in γ as inc(o, γ) = |{S | 〈o, S〉 ∈ γ}|, i.e.,
the number of named sets to which o belongs.6

To capture better the semantics of our data model, we
introduce the following definition. Let S1, . . . , Sn be a se-
quence of named sets.7 Then the encoding of S1, . . . , Sn,
denoted enc(S1, . . . , Sn), is the structure (D,S, σ, γ), where
σ = {S1, . . . , Sn} and γ is defined by

γ = {〈o, Si〉 | 1 ≤ i ≤ n & o ∈ Si}.

Notice that, whenever i1, . . . , in is a permutation of 1, . . . , n,
then enc(Si1 , . . . , Sin) = enc(S1, . . . , Sn). Conversely, every
structure (D,S, σ, γ) is the encoding of a finite sequence of
named sets (and of all its permutations). If we denote by
inc(o, S1, . . . , Sn) the incidence of o in S1, . . . , Sn, i.e., the
number of sets in the sequence S1, . . . , Sn to which o belongs,
then, clearly, inc(o, S1, . . . , Sn) = inc(o, γ), justifying the use
of that notation also in this context.

Example 1. Consider set names R, S, T , and U . The sets
corresponding to R, S, and T are visualized by the Venn
diagram in Figure 1, left. (Elements of D not in R, S, or
T are not shown.) Furthermore, we assume that the set
corresponding to U is empty. The sequence R,S, T, U (or
any of the fifteen other permutations thereof) is represented
by the structure (D,S, σ, γ), where σ = {R,S, T, U} and the
binary membership relation γ is shown in Figure 1, right.

In this example, we have inc(a,R, S, T, U) = inc(a, γ) = 1,
inc(b, R, S, T, U) = inc(b, γ) = 3, and inc(c, R, S, T, U) =
inc(c, γ) = 2.

As explained in the Introduction, we consider (symmet-
ric) queries at two levels: a more restricted, “static” level

6Observe that this number does not depend on D or S,
justifying the notation.
7As we have argued in the Introduction, it is important to
emphasize that S1, . . . , Sn are the names of the sets under
consideration, as it may well be that, for 1 ≤ i 6= j ≤ n,
Si and Sj represent the same set of objects. For simplicity
of notation, however, we shall not distinguish between set
names and the sets they represent. Hence, a statement such
as S2 = {o1, o2, o5} must be read as “the set named S2

consists of the objects o1, o2, and o5.” Similarly, o1 ∈ S2

must be read as “object o1 belongs to the set named S2.”

T

c

b

a

R

S

Ra

b R

b S

b T

c S

c T

γ Object Set

Figure 1: Encoding of a finite sequence of named
sets by a binary membership relation.

in which we consider as input sequences of sets of a given
length, and a “dynamic” level, in which this restriction is
removed by encoding the sequence of sets into a structure
as defined above.

Inspired by the terminology of Quine, we shall speak of
functions on sequences of sets at the “static” level. Such
a function f taking as arguments a sequence of n sets, for
some fixed n ≥ 0, and returning m-tuples of objects of these
sets, for some fixed m ≥ 0, is called symmetric if, for all se-
quences of sets S1, . . . , Sn and for all permutations i1, . . . , in
of 1, . . . , n, f(Si1 , . . . , Sin) = f(S1, . . . , Sn).

At the “dynamic” level, we speak of queries. A query
q takes as input a structure (D,S, σ, γ) and maps it to a
subset of Dm for some fixed m ≥ 0.

Both concepts are of course closely interconnected.
For a fixed value of n ≥ 0, we can associate with a query

q a function fq,n on sequences of n sets defined by

fq,n(S1, . . . , Sn) := q(enc(S1, . . . , Sn)),

for all sequences of n named sets S1, . . . , Sn. By construc-
tion, this function is symmetric. Since n is a parameter in
this construction, we actually obtain a family of symmetric
functions, one for each value of n.

Conversely, consider a family F = {f0, f1, f2, . . .} of sym-
metric functions such that fn, n ≥ 0, operates on sequences
of n sets (all of which produce output of the same arity).
Then, we can associate with F a query qF , as follows. Let
(D,S, σ, γ) be a structure, with σ = {S1, . . . , Sn}. Associate
sets to S1, . . . , Sn such that enc(S1, . . . , Sn) = (D,S, σ, γ).
Then, qF (D,S, σ, γ) := fn(S1, . . . , Sn). The well-defined-
ness of qF relies on the symmetry of f0, f1, f2, . . .. Clearly,
fqF ,n = fn. Of course, the query qF will not be very mean-
ingful from a practical point of view unless the symmetric
functions of the family F are closely related.

Notice that the mathematical construction detailed above
corresponds to a definite reality. Indeed, in all examples
of symmetric functions on sequences of sets S1, . . . , Sn pre-
sented in the Introduction, the number n is in fact a param-
eter. Hence, it is indeed fair to say that, in all the cases,
we have been dealing with a family of symmetric functions,
one for each value of n, rather than with just one symmetric
function for some fixed value of n.

To conclude these Preliminaries, we point out that, while
we will establish interconnections between particular classes
of queries and particular classes of symmetric functions on
sequences of sets, the main focus in this study is on queries.
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3. QUINECALC
Rather than first defining SyCALC, and then identifying a

syntactically definable fragment of it that is a conservative
extension of the symmetric Boolean functions in the sense
of Quine (cf. Research Question 1), we first define a first-
order language, called QuineCALC, of which we show that it
is indeed a conservative extension of the symmetric Boolean
functions in the sense of Quine. Later, in Section 4, we will
extend QuineCALC to SyCALC, the language which is at the
core of this study.

3.1 Language definition
QuineCALC is a restricted first-order logic with a single

binary relation name Γ for set membership, i.e., Γ(x,X)
means that object x belongs to the set named X.

The alphabet contains two sorts of variables: lowercase
variables x, y, z, . . . and uppercase variables X,Y, Z, . . ., pos-
sibly subscripted. Intuitively, lowercase variables denote ob-
jects, and uppercase variables denote sets. The alphabet
contains no constant symbols. QuineCALC formulae are de-
fined by the following syntax rule:8

ϕ := Γ(x,X) | X = Y | X 6= Y |
ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ1 | ∃Xϕ1.

Observe that the (in)equality predicate and existential quan-
tification cannot be applied to lowercase variables.

A QuineCALC query {x | ϕ(x)} is defined by a QuineCALC
formula with exactly one lowercase variable x and without
free occurrences of uppercase variables.9

Given a structure (D,S, σ, γ), a QuineCALC query is eval-
uated in the usual way, where lowercase (object) variables
range over D and uppercase (set name) variables range over
σ. Observe that equality or inequality of uppercase vari-
ables refers to the equality or inequality of the set names
to which they are evaluated, and not the contents of the
corresponding sets! The binary relation symbol Γ is inter-
preted as the membership relation γ. For o ∈ D, we denote
by (D,S, σ, γ) |= ϕ(o) that ϕ(x) evaluates to true in the
structure under consideration if x is substituted by o. For
n ≥ 0, we say that two QuineCALC queries {x | ϕ1(x)} and
{x | ϕ2(x)} are n-equivalent if, for all structures (D,S, σ, γ)
with |σ| = n, and for all objects o ∈ D, (D,S, σ, γ) |= ϕ1(o)
if and only if (D,S, σ, γ) |= ϕ2(o). Two QuineCALC queries
are equivalent if they are n-equivalent for all n ≥ 0.

Example 2. The QuineCALC query˘
x

˛̨
∃X∃Y

`
Γ(x,X) ∧ Γ(x, Y ) ∧X 6= Y

´
}

expresses Query 1 and the QuineCALC query

{x | ¬∃X¬Γ(x,X)}

expresses Query 2 in the Introduction.

In the following example, we present QuineCALC queries
which will be used throughout this paper.

Example 3. For evey natural number i ≥ 0, the query
that upon input the structure (D,S, σ, γ) returns the objects

8For convenience, we allowed some redundance in this rule.
9Observe that all occurrences of lowercase variables in a
QuineCALC formula must be free, since the language has no
quantification over lowercase variables.

that belong to at least i sets of σ according to the member-
ship information in γ is expressed by the QuineCALC query˘

x
˛̨
∃X1 · · · ∃Xi

` ^
1≤j<k≤i

Xj 6= Xk ∧
^

1≤j≤i

Γ(x,Xj)
´¯
.

We shall denote the QuineCALC formula in this query by
gteq(x, i). The query that returns the objects that belong
to exactly i sets of σ is then expressed by the QuineCALC
query {x | gteq(x, i) ∧ ¬gteq(x, i+ 1)}. We shall denote
the QuineCALC formula in this query by eq(x, i). We shall
also consider the query that returns the objects that do not
belong to at least i sets of σ10, which is expressed by the
QuineCALC query˘

x
˛̨
∃X1 · · · ∃Xi

` ^
1≤j<k≤i

Xj 6= Xk ∧
^

1≤j≤i

¬Γ(x,Xj)
´¯
.

We shall denote the QuineCALC formula in this query by
cogteq(x, i). The query that returns the objects that do not
belong to exactly i sets of σ11 is then expressed by the Quine-
CALC query {x | cogteq(x, i) ∧ ¬cogteq(x, i+ 1)}. We shall
denote the QuineCALC formula in this query by coeq(x, i).

3.2 QuineCALC and symmetric Boolean
functions

Obviously, the class of sets that can be specified by Quine-
CALC queries given a particular structure as input is closed
under union, intersection, and complement. We will take
this observation one step further, and show that QuineCALC
is a conservative extension of the symmetric Boolean func-
tions in the sense of Quine, thereby solving Research Ques-
tion 1. Thereto, we introduce the following terminology.

Definition 1. Let n ≥ 0, and let f be a symmetric func-
tion operating on sequences of n sets of objects and returning
sets of these objects, and let q := {x | ϕ(x)} be a Quine-
CALC query. We say that q is n-equivalent to f , denoted
q ≡n f , if, for all sequences of n named sets S1, . . . , Sn and
for all objects o ∈ D, we have that o ∈ f(S1, . . . , Sn) if and
only if enc(S1, . . . , Sn) |= ϕ(o).

Intuitively, q ≡n f says that q and f return the same
values on inputs consisting of sequences of n sets, provided
this input is appropriately encoded for applying QuineCALC
queries.

We now formally define Boolean functions and symmetric
Boolean functions in the sense of Quine.

Definition 2. Let n ≥ 0. A (symmetric) function oper-
ating on sequences of n sets of objects S1, . . . , Sn is called
Boolean if the output is again a set of objects, and this set
can be described as a Boolean combination of S1, . . . , Sn

(using union, intersection, and complement).

The following two theorems link QuineCALC queries with
symmetric Boolean functions, one for each direction.

Theorem 1. For every QuineCALC query q, and for ev-
ery natural number n ≥ 0, there exists a symmetric Boolean
function fq,n operating on sequences of n sets such that
q ≡n fq,n.

10Or, equivalently, the objects that belong to at most n − i
sets of σ, with n = |σ|.

11Or, equivalently, the objects that belong to exactly n − i
sets of σ, with n = |σ|.

29



Proof. Let q := {x | ϕ(x)} be a QuineCALC query and
n ≥ 0 a natural number. The operator qe(·) eliminates ex-
istential quantifiers from QuineCALC queries, and is defined
as follows, where 1 ≤ i, j ≤ n:

qe(Γ(x, Si)) = Γ(x, Si);

qe(Si = Sj) =


true if i = j,
false if i 6= j;

qe(Si 6= Sj) =


true if i 6= j,
false if i = j;

qe(ϕ1 ∧ ϕ2) = qe(ϕ1) ∧ qe(ϕ2);

qe(ϕ1 ∨ ϕ2) = qe(ϕ1) ∨ qe(ϕ2);

qe(¬ϕ1) = ¬qe(ϕ1);

qe(∃Xϕ1) =


false if n = 0,W

1≤i≤n qe(ϕ1[X → Si]) if n > 0.

In the last line above, ϕ1[X → Si] denotes the expression
obtained from ϕ1 by replacing each free occurrence of X
with Si.

Although not essential for the proof, we implicitly assume
that some obvious simplications are made when applying
these rules. For instance, if qe(ϕ1) ≡ true, then qe(ϕ1 ∧ ϕ2)
may simply be replaced by qe(ϕ2), qe(ϕ1 ∨ ϕ2) may simply
be replaced by true, and qe(¬ϕ1) may simply be replaced
by false. Similarly, if X does not occur explicitly as a free
variable in ϕ1 and n > 0, then qe(∃Xϕ1) may simply be
replaced by qe(ϕ1).

We next compute fun(qe(ϕ)) as follows12, where 1 ≤ i ≤
n:

fun(true) = D;
fun(false) = ∅;
fun(Γ(x, Si)) = Si;
fun(ϕ1 ∧ ϕ2) = fun(ϕ1) ∩ fun(ϕ2);
fun(ϕ1 ∨ ϕ2) = fun(ϕ1) ∪ fun(ϕ2);

fun(¬ϕ1) = fun(ϕ1).

Also in this stage of the translation, we implicitly assume
that some obvious simplifications are made.

It is now straightforward that the expression fun(qe(ϕ))
defines a symmetric Boolean function fq,n(S1, . . . , Sn) on
sequences of n sets for which q ≡n fq,n.

Observe that the last rule for the computation of qe(·)
reveals in which way n occurs as a parameter in fq,n.

Example 4. Consider the QuineCALC queries in Exam-
ple 2, expressing Queries 1 and 2. Choose n = 3. Then
the symmetric Boolean functions on sequences of three sets
S1, S2, S3 that are 3-equivalent to these QuineCALC queries
are, after some straightforward simplifications, defined by
the expressions (S1∩S2)∪(S1∩S3)∪(S2∩S3) and S1∩S2∩S3,
respectively.

Conversely, the second theorem explains how to translate
symmetric Boolean functions on sequences of n sets into
QuineCALC queries.

Theorem 2. For every natural number n ≥ 0 and for ev-
ery symmetric Boolean function fn(S1, . . . , Sn), there exists
a QuineCALC query qfn such that qfn ≡n fn.

12Here, we assume that “D” and “∅” are abbreviations of
“

T
1≤i≤n Si ∪ Si” and “

S
1≤i≤n Si ∩ Si,” symmetric expres-

sions which always return the intended value, even in the
limit case n = 0.

Proof. The proof of Theorem 2 relies on the following
theorem by Quine [13, p. 178] (slightly adapated to our no-
tations and terminology).

Property 1. Let n ≥ 0. For a Boolean function
f on sequences of n sets of objects and returning
a set of these objects, the following statements
are equivalent:

1. f is symmetric;

2. there exists a set N of natural numbers such
that, for all sequences of sets S1, . . . , Sn and
all objects o, o ∈ f(S1, . . . , Sn) if and only
if inc(o, S1, . . . , Sn) ∈ N .

Thus, let N be the set of natural numbers characterizing the
symmetric Boolean function fn in the statement of Theo-
rem 2 in the sense of Property 1. Consider the QuineCALC
query qfn := {x | ϕ(x)} where ϕ(x) is false if N = ∅ and_

i∈N

eq(x, i)

otherwise. It is straightforward that qfn ≡n fn.

Example 5. We revisit Example 4. First consider the
symmetric Boolean function f3(S1, S2, S3) = (S1 ∩ S2) ∪
(S1 ∩ S3) ∪ (S2 ∩ S3). For this function, the characterizing
set N according to Property 1 equals {2, 3}. Hence, by the
proof of Theorem 2, we have that qf3 ≡3 f3, with

qf3 := {x | eq(x, 2) ∨ eq(x, 3)}.

The QuineCALC query in Example 2 from which f3 was de-
rived in Example 4 can be rewritten as {x | gteq(x, 2)}. The
latter QuineCALC query is 3-equivalent to qf3 , and, hence,
they are both 3-equivalent to f3. Notice, however, that both
QuineCALC queries are not equivalent.

For the other symmetric Boolean function in Example 4,
g3(S1, S2, S3) = S1∩S2∩S3, we have that N = {3}. Hence,
qg3 ≡3 g3, with

qg3 := {x | eq(x, 3)}.

The QuineCALC query in Example 2 from which g3 was de-
rived in Example 4 can be rewritten as {x | coeq(x, 0)}. The
latter QuineCALC query is 3-equivalent to qg3 , and, hence,
they are both 3-equivalent to g3. Notice, however, that both
QuineCALC queries are not equivalent.

Theorems 1 and 2 together settle Research Question 1:
QuineCALC (which will turn out to be a syntactically de-
finable fragment of SyCALC in Section 4) is a conservative
extension of the fixed-arity symmetric Boolean functions.

From Theorem 1 and Property 1 in the proof of Theo-
rem 2, we can immediately derive the following corollary.

Corollary 1. Let {x | ϕ(x)} be a QuineCALC query and
let (D,S, σ, γ) be a structure. Let o1, o2 ∈ D such that
inc(o1, γ) = inc(o2, γ). Then (D,S, σ, γ) |= ϕ(o1) if and
only if (D,S, σ, γ) |= ϕ(o2).

3.3 QuineCALC and counting
In Section 3.2, we already established a correspondence

between QuineCALC queries and incidence information, pro-
vided we only consider structures where n, the number of
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set names under consideration, is fixed. How does this in-
cidence information for different values of n relate to each
other? We provide an answer to that question in the follow-
ing theorem.

Theorem 3. Let q := {x | ϕ(x)} be a QuineCALC query
for which ϕ(x) has quantifier depth q ≥ 0. Then, there
exists a QuineCALC query qinc = {x | ψ(x)} where ψ is a
disjunction13 of subformulae of the form eq(x, i) (0 ≤ i <
q), subformulae of the form coeq(x, j) (0 ≤ j < q), and
at most one subformula of the form gteq(x, i) ∧ cogteq(x, j)
(0 ≤ i, j ≤ q), such that, for all n ≥ 2q−1, q is n-equivalent
to qinc.

Proof. (Sketch.) Subformulae from which QuineCALC
formulae are built can be written as ϕ(x,X1, . . . , Xr), r ≥ 0.
(Even if x does not occur explicitly, such as in subformulae
of the form X = Y or X 6= Y , we can still assume that x
is an unconstrained implicit variable in this formula.) We
can prove by structural induction (details omitted) that,
under the assumption in the statement of the Theorem,
ϕ(x,X1, . . . , Xr) can be rewritten as_

1≤i≤m

ϕi(x,X1, . . . , Xr),

with

1. m ≥ 0; and

2. for i = 1, . . . ,m,

ϕi = %i ∧ ci ∧ si1 Γ(x,X1) ∧ · · · ∧ sir Γ(x,Xr).

Here,14

(a) %i =
V

1≤j<k≤r Xj θijk Xk,

where “θijk” is either “=” or “ 6=;”

(b) ci is either eq(x, pi) (0 ≤ pi < q), coeq(x, ni)
(0 ≤ ni < q), or gteq(x, pi) ∧ cogteq(x, ni) (0 ≤
pi, ni ≤ q).

(c) for j = 1, . . . , r, “
sij Γ(x,Xj)” is either “Γ(x,Xj)”

or “¬Γ(x,Xj).”

The result then follows immediately by considering ϕ(x) as
a subformula of itself.

We already know from Quine’s results that we can express
a QuineCALC query in terms of incidence information pro-
vided we only consider structures for a given size n of σ.
What Theorem 3 adds is that this can be done uniformly
so from a certain minimal value of n onward defined as one
less than twice the quantifier depth. The following example
shows that the bound is tight.

Example 6. Consider the QuineCALC query

{x | ¬(∃X∃Y ∃Z(X 6= Y ∧ Y 6= Z ∧ Z 6= X ∧
Γ(x,X) ∧ Γ(x, Y ) ∧ Γ(x, Z))) ∧

¬(∃X∃Y ∃Z(X 6= Y ∧ Y 6= Z ∧ Z 6= X ∧
¬Γ(x,X) ∧ ¬Γ(x, Y ) ∧ ¬Γ(x, Z)))}.

In words, this query returns all objects such that both the
number of sets in which this object occurs and the number

13An empty disjunction is interpreted as “false.”
14An empty conjunction is interpreted as “true.”

of sets in which this object does not occur is at most 2.
The quantifier depth q of the above formula is 3, and hence
2q − 1 = 5. Theorem 3 therefore pertains to all values of n
greater than or equal to 5.

Indeed, if we only consider structures (D,S, σ, γ) with n =
|σ| ≥ 5, the output of the above query is obviously empty
(i.e, the query formula is equivalent to an empty disjunction,
which we interpret as false). For n = 4, however, the query
is equivalent to eq(x, 2); for n = 3, the query is equivalent
to eq(x, 1) ∨ eq(x, 2); and for n ≤ 2, the query is equivalent
to true, which can be written as gteq(x, 0) ∧ cogteq(x, 0).

Where in the proof of Theorem 3 does the lowerbound 2q−
1 for n arise? If, in the construction, it is required to consider
the conjunction of a subexpression eq(x, pi) (0 ≤ pi < q)
and a subexpression coeq(x, ni) (0 ≤ ni < q), then this
conjunction evaluates to false if n ≥ 2q− 1. If n is smaller,
however, it may be that pi = n − ni, for example, if q = 3,
n = 4, and pi = ni = 2 (cf. Example 6 above). Depending on
the precise values of pi and ni in the conjunctions that must
be considered, it may sometimes be possible to decrease the
lowerbound of 2q − 1. In the extreme case where no such
conjuctions occur, there is actually no lowerbound. This is,
e.g., the case for the query {x | ¬∃X¬Γ(x,X)}, expressing
Query 1 in the Introduction, which in general returns the
objects that are in all sets under consideration. Obviously,
this query is equivalent to {x | coeq(x, 0)}.

From Theorem 3 and Quine’s results, we can derive the
following Corollary.

Corollary 2. Let q := {x | ϕ(x)} be a QuineCALC
query for which ϕ(x) has quantifier depth q ≥ 0. Then,
q is equivalent to the QuineCALC query q′ := {x | ϕ′(x)},
where ϕ′(x) has the form

`2q−2_
n=0

(Eq(n) ∧ ψn(x)
´
∨ (Gteq(2q − 1) ∧ ψ(x)),

where

• Gteq(r) stands for ∃X1 . . . ∃Xr

V
1≤i<j≤r Xi 6= Xj;

• Eq(r) stands for Gteq(r) ∧ ¬Gteq(r + 1);

• ψn(x) is a disjunction of subformulae of the form
eq(x, i) (0 ≤ i ≤ n); and

• ψ(x) is a disjunction of subformulae of the form eq(x, i)
(0 ≤ i < q), subformulae of the form coeq(x, j) (0 ≤
j < q), and at most one subformula of the form
gteq(x, i) ∧ cogteq(x, j) (0 ≤ i, j ≤ q).

Example 7. Consider the QuineCALC query of Example 6.
By Corollary 2, and after applying some straightforward
simplifications, this query is equivalent to the QuineCALC
query expressed by the formula

Eq(0) ∨ Eq(1) ∨ Eq(2) ∨
(Eq(3) ∧ (eq(x, 1) ∨ eq(x, 2))) ∨ (Eq(4) ∧ eq(x, 2)).

As the characterization result of Corollary 2 lifts the char-
acterization result of Quine for symmetric Boolean functions
using incidence information to QuineCALC queries, we have
answered Research Question 2 in the affirmative.
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4. SYCALC
As announced in the opening paragraph of Section 3, we

will now extend QuineCALC to SyCALC, the language which
is at the core of this study.

4.1 Language definition
QuineCALC is a generalization of symmetric n-ary Boolean

functions whose arguments and values are sets, and that
are specifiable exclusively by means of union, intersection,
and complement. We now add projection and Cartesian
product to this list of operators. In our logic framework, this
corresponds to extending QuineCALC by allowing multiple
lowercase variables in formulas over which quantification is
allowed. More precisely, SyCALC formulae are defined by
the following syntax rule:

ϕ := Γ(x,X) | X = Y | X 6= Y |
ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ1 | ∃xϕ1 | ∃Xϕ1.

A SyCALC query has the form {〈x1, . . . , xm〉 |ϕ(x1, . . . , xm)},
where ϕ(x1, . . . , xm) is a SyCALC formula without free oc-
currences of uppercase variables. A SyCALC formula is called
closed if no variable occurs free in it. A SyCALC query de-
fined by a closed SyCALC formula represents a query with
Boolean output or a “yes-no query,” where “{〈〉}” is inter-
preted as true and “∅” is interpreted as false.

The semantics of SyCALC is analogous to the semantics
of QuineCALC. For a sequence of objects o1, . . . , om ∈ D, we
denote by (D,S, σ, γ) |= ϕ(o1, . . . , om) that ϕ(x1, . . . , xm)
evaluates to true in the structure under consideration if xi

is substituted by oi, 1 ≤ i ≤ m.15 For n ≥ 0, we say
that two SyCALC queries {〈x1, . . . , xm〉 | ϕ1(x1, . . . , xm)}
and {〈x1, . . . , xm〉 | ϕ2(x1, . . . , xm)} are n-equivalent if, for
all structures (D,S, σ, γ) with |σ| = n, and for all sequences
of objects o1, . . . , om, (D,S, σ, γ) |= ϕ1(o1, . . . , om) if and
only if (D,S, σ, γ) |= ϕ2(o1, . . . , om). Two SyCALC queries
are equivalent if they are n-equivalent for all n ≥ 0.

Example 8. The SyCALC queries

(3) {〈〉 | ¬∃x∃X∃Y (Γ(x,X) ∧ Γ(x, Y ) ∧X 6= Y )};

(4) {〈x〉 | ∃X(Γ(x,X) ∧ ¬∃Y (Γ(x, Y ) ∧X 6= Y )) ∧
∃y∃X∃Y ∃Z(Γ(y,X) ∧ Γ(y, Y ) ∧ Γ(y, Z) ∧
X 6= Y ∧ Y 6= Z ∧ Z 6= X)};

(5) {〈〉 | ¬∃x∃X∃Y (Γ(x,X) ∧ ¬Γ(x, Y ))};

(6) {〈x, y〉 | ∃X∃Y (Γ(x,X) ∧ Γ(y,X) ∧
Γ(x, Y ) ∧ Γ(y, Y ) ∧X 6= Y )};

(7) {〈x, y〉 | (∃XΓ(x,X)) ∧ (∃XΓ(y,X)) ∧
¬∃X(Γ(x,X) ∧ ¬Γ(y,X)) ∧
¬∃X(¬Γ(x,X) ∧ Γ(y,X))}

respectively express Queries 3–7 in the Introduction.

Example 9. Let r ≥ 0, and let Gteq(r) and Eq(r) be the
expressions described in the statement of Corollary 2. The
queries {〈〉 | Gteq(r)} and {〈〉 | Eq(r)} are SyCALC queries
that, upon input a structure (D,S, σ, γ), return whether n =
|σ| ≥ r, respectively whether n = |σ| = r.

15Remember that lowercase (object) variables range over D,
whereas uppercase (set name) variables range over σ.

Unsurprisingly, the language SyCALC is more expressive
than the language QuineCALC, even if we restrict ourselves
to SyCALC queries returning unary output. We give an ex-
ample of such a SyCALC query that is not expressible in
QuineCALC.

Example 10. Consider the SyCALC query in Example 8
equivalent to Query 4 in the Introduction. Let o1, o2 ∈
D, S1, S2, S3 ∈ S, and σ = {S1, S2, S3}, and let γ1 =
{〈o1, S1〉, 〈o2, S1〉, 〈o2, S2〉, 〈o2, S3〉}, and γ2 ={〈o1, S1〉}. Al-
though inc(o1, γ1) = inc(o1, γ2) = 1, o1 is returned upon
input the structure (D,S, σ, γ1), but not upon input the
structure (D,S, σ, γ2), in violation of Corollary 2. Hence,
this query is not equivalent to a QuineCALC query.

4.2 SyCALC and symmetric relational
functions

In order to solve Research Question 3, we extend Theo-
rems 1 and 2 from QuineCALC to SyCALC.

First, we extend Quine’s notion of “(symmetric) Boolean
function” to accommodate the presence of projection and
Cartesian product. Thereto, we must allow the output to
be relations of any arity over the objects in D. Notice that
sets of objects in D can be interpreted as unary relations. To
emphasize the distinction, we shall refer to such functions
as (symmetric) relational functions.

Definition 3. Let n,m ≥ 0. A (symmetric) function op-
erating on sequences of n sets of objects S1, . . . , Sn is called
relational if the output is an m-ary relation on these ob-
jects, and this relation can be described as a combination
of S1, . . . , Sn using intersection, union, complement, projec-
tion, and Cartesian product.16

We also extend the notion of equivalence of a QuineCALC
query and a symmetric function returning sets of objects to
the equivalence of a general SyCALC query and a symmetric
function returning a relation on these objects.

Definition 4. Let n,m ≥ 0, and let f be a symmetric
function operating on sequences of n sets of objects and
returning m-ary relations on these objects, and let q :=
{〈x1, . . . , xm〉 | ϕ(x1, . . . , xm)} be a SyCALC query. We
say that q is n-equivalent to f , denoted q ≡n f , if, for
all sequences of n named sets S1, . . . , Sn and for all se-
quences of m objects o1, . . . , om, we have that 〈o1, . . . , om〉 ∈
f(S1, . . . , Sn) if and only if enc(S1, . . . , Sn) |= ϕ(o1, . . . , om).

We can now generalize Theorem 1.

Theorem 4. For every SyCALC query q, and for every
natural number n ≥ 0, there exists a symmetric relational
function fq,n(S1, . . . , Sn) such that q ≡n fq,n.

Proof. Let q := {〈x1, . . . , xm〉 | ϕ(x1, . . . , xm)} be a Sy-
CALC query and n ≥ 0. The proof goes along the same
lines as the proof of Theorem 1. In the context of SyCALC,
the function qe(·) to eliminate quantification over uppercase
variable must be extended by adding the rule

qe(∃xϕ1) = ∃xqe(ϕ1).

to take into account quantification over lowercase variables.

16Note that union and intersection are only applied to
operands with the same arity.
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Defining the function fun(·) that translates qe(ϕ) into
a symmetric relational function requires some more care.
From the proof of Theorem 1, we retain the rules

fun(true) = D;

fun(false) = ∅;
fun(Γ(x, Si)) = Si.

In the other rules below, fun(ϕ1(x1, . . . , xr)) always defines
a subset of Dr:

fun(ϕ1(x1, . . . , xr1) ∧ ϕ2(xr2+1, . . . , xr)) =

fun(ϕ1(x1, . . . , xr1))×Dr−r1 ∩
Dr2 × fun(ϕ2(xr2+1, . . . , xr));

fun(ϕ1(x1, . . . , xr1) ∨ ϕ2(xr2+1, . . . , xr)) =

fun(ϕ1(x1, . . . , xr1))×Dr−r1 ∪
Dr2 × fun(ϕ2(xr2+1, . . . , xr));

fun(¬ϕ1(x1, . . . , xr)) = Dr − fun(ϕ1(x1, . . . , xr));

fun(∃xr+1ϕ1(x1, . . . , xr, xr+1)) =

π1,...,r(fun(ϕ1(x1, . . . , xr, xr+1)));

fun(ϕ1(xτ(1), . . . , xτ(r))) =

πτ(1),...,τ(r)(fun(ϕ1(x1, . . . , xr))).

In the last rule, τ is a permutation of {1, . . . , r}. We use this
rule to reorder the variables whenever needed to apply the
rules before. It is now straightforward that the expression
fun(qe(ϕ(x1, . . . , xm))) defines a symmetric relational func-
tion fq,n on sequences of n sets that returns m-ary relations
for which q ≡n fq,n.

Example 11. Consider the SyCALC queries in Example 8,
expressing Queries 3–7. Choose n = 3. Then the symmetric
relational functions on sequences of three sets S1, S2, S3 that
are 3-equivalent to these SyCALC queries are, after some
straightforward simplications,

(3) π〈〉((S1 ∩ S2) ∪ (S2 ∩ S3) ∪ (S3 ∩ S1));

(4)
`
(S1 ∩ S2 ∪ S3) ∪ (S2 ∩ S3 ∪ S1) ∪

(S3 ∩ S1 ∪ S2)
´
× π〈〉(S1 ∩ S2 ∩ S3);

(5) π〈〉
`
(S1 ∩ S2) ∪ (S2 ∩ S3) ∪ (S3 ∩ S1)

´
;

(6)
`
(S1 × S1) ∩ (S2 × S2)

´
∪

`
(S2 × S2) ∩ (S3 × S3)

´
∪`

(S3 × S3) ∩ (S1 × S1)
´
;

(7)
`
(S1 ∪ S2 ∪ S3)× (S1 ∪ S2 ∪ S3)

´
∩

(S1 × S1) ∪ (S2 × S2) ∪ (S3 × S3) ∩

(S1 × S1) ∪ (S2 × S2) ∪ (S3 × S3),

respectively.

We now turn to the generalization of Theorem 2 to Sy-
CALC queries.

Theorem 5. For all natural numbers n,m ≥ 0 and for
every symmetric relational function fn(S1, . . . , Sn) on se-
quences of n sets that return m-ary relations, there exists a
SyCALC query qfn := {〈x1, . . . , xm〉 | ϕ(x1, . . . , xm)} such
that qfn ≡n fn.

Proof. By assumption, the symmetric relational func-
tion fn in the statement of Theorem 5 can be described
by some expression E(S1, . . . , Sn) that only uses S1, . . . , Sn,
intersection, union, complement, projection, and Cartesian
product. Hence, E can be translated to a relational calculus
expression {(x1, . . . , xm) | C(x1, . . . , xm)}. Now consider

C′(x1, . . . , xm, X1, . . . , Xn),

which is C(x1, . . . , xm) in which each atomic subexpression
“xi ∈ Sj” is substituted by “Γ(xi, Xj).” Finally, define
ϕ(x1, . . . , xm) as

∃X1 · · · ∃Xn

` ^
1≤i<j≤n

Xi 6= Xj ∧ C′(x1, . . . , xm, X1, . . . , Xn)
´
.

Then, the expression qe(ϕ) computed in the proof of Theo-
rem 4 yields ^

τ∈Perm{1,...,n}

C′(x1, . . . , xm, Sτ(1), . . . , Sτ(n)).

In the computation of fun(qe(ϕ)) in the proof of Theorem 4,
Γ(xi, Sj) is translated into Sj . Hence, we may conclude that
the expression fun(qe(ϕ)) is in fact the standard translation
of

{(x1, . . . , xm) |
^

τ∈Perm{1,...,n}

C(xτ(1), . . . , xτ(n))}.

into the relational algebra (with complement instead of dif-
ference), which, by construction, is equivalent to the expres-
sion

S
τ∈Perm{1,...,n}E(Sτ(1), . . . , Sτ(n)), describing the re-

lational function
S

τ∈Perm{1,...,n} fn(Sτ(1), . . . , Sτ(n)). Since

fn is a symmetric relational function, all terms in this union
are equal, and hence equal to fn(S1, . . . , Sn). It follows that
ϕ ≡n fn.

Example 12. We revisit Example 11. As a first example,
consider the symmetric relational function f3(S1, S2, S3) =
π〈〉((S1 ∩ S2) ∪ (S1 ∩ S3) ∪ (S2 ∩ S3)). If we apply the con-
struction in the proof of Theorem 5 to this relational func-
tion, we obtain the SyCALC query

{〈〉 | ∃x∃X∃Y ∃Z
“
X 6= Y ∧ Y 6= Z ∧ Z 6= X ∧`

(Γ(x,X) ∧ Γ(x, Y )) ∨ (Γ(x, Y ) ∧ Γ(x, Z)) ∨

(Γ(x, Z) ∧ Γ(x,X))
´”
},

which, on structures with n ≥ 3, can be simplified to the
SyCALC query in Example 8 expressing Query 3. So, both
queries are 3-equivalent, and hence also 3-equivalent to f3.

As a second example, consider g3(S1, S2, S3) = (S1×S1 ∩
S2 × S2) ∪ (S2 × S2 ∩ S3 × S3) ∪ (S3 × S3 ∩ S1 × S1). If
we apply the construction in the proof of Theorem 5 to this
relational function, we obtain the SyCALC query

{〈x, y〉 | ∃X∃Y ∃Z(X 6= Y ∧ Y 6= Z ∧ Z 6= X ∧
((Γ(x,X) ∧ Γ(y,X) ∧ Γ(x, Y ) ∧ Γ(y, Y )) ∨
(Γ(x, Y ) ∧ Γ(y, Y ) ∧ Γ(x, Z) ∧ Γ(y, Z)) ∨
(Γ(x, Z) ∧ Γ(y, Z) ∧ Γ(x,X) ∧ Γ(y,X))))},

which, on structures with n ≥ 3, can be simplified to the
SyCALC query in Example 8 expressing Query 6. So, both
queries are 3-equivalent, and hence also 3-equivalent to f3.

Theorems 4 and 5 together settle Research Question 3.
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4.3 SyCALC Queries that only count
Let us call two structures (D,S, σ, γ1) and (D,S, σ, γ2)

incidence-equivalent if, for each object o ∈ D, inc(o, γ1) =
inc(o, γ2). By Corollary 2, QuineCALC queries cannot dis-
tinguish between incidence-equivalent structures. This is no
longer true for SyCALC queries, however.

Example 13. Consider the SyCALC query in Example 8
equivalent to Query 7 in the Introduction. Let o1, o2 ∈ D,
S1, S2, S3 ∈ S, and σ = {S1, S2, S3}, and let

γ1 = {〈o1, S1〉, 〈o1, S2〉, 〈o2, S1〉, 〈o2, S2〉} and

γ2 = {〈o1, S1〉, 〈o1, S3〉, 〈o2, S2〉, 〈o2, S3〉}.

Although inc(o1, γ1) = inc(o1, γ2) = 2 and inc(o2, γ1) =
inc(o2, γ2) = 2, (o1, o2) is returned upon input the structure
(D,S, σ, γ1), but not upon input the structure (D,S, σ, γ2).

Therefore, it makes sense to define counting-only queries
as SyCALC queries that cannot distinguish between inci-
dence-equivalent structures.

Definition 5. Let q := {〈x1, . . . , xm〉 | ϕ(x1, . . . , xm)} be
a SyCALC query. We say that q is counting-only if, for all
incidence-equivalent structures (D,S, σ, γ1) and (D,S, σ, γ2),
we have, for all objects o1, . . . , om ∈ D, that (D,S, σ, γ1) |=
ϕ(o1, . . . , om) if and only if (D,S, σ, γ2) |= ϕ(o1, . . . , om).

By Corollary 2, all QuineCALC queries are counting-only.
There are, however, many counting-only SyCALC queries
that are not equivalent to a QuineCALC query.

Example 14. Consider the SyCALC queries in Example 8.
The SyCALC query expressing Query 3 in the Introduction

returns true on a structure (D,S, σ, γ) precisely if, for all
o ∈ D, inc(o, γ) ≤ 1. Hence, it is counting-only. As it does
not return unary output, it can of course not be equivalent
to a QuineCALC query.

Given a structure (D,S, σ, γ), the SyCALC query express-
ing Query 4 returns all objects o ∈ D with inc(o, γ) = 1
provided there exists o′ ∈ D with inc(o′, γ) ≥ 3. Hence, it
is counting-only. Even though it returns unary output, it is
not equivalent to a QuineCALC query, as shown in Exam-
ple 10.

Given a structure (D,S, σ, γ), the SyCALC query express-
ing Query 5 returns true if, for all objects o ∈ D, inc(o, γ) =
n, with n = |σ|. Hence, it is counting-only.

Next consider the SyCALC query expressing Query 6. Let
o1, o2, o3 ∈ D, S1, S2, S3 ∈ S, and σ = {S1, S2, S3}, and let
γ1 = {〈o1, S1〉, 〈o1, S2〉, 〈o2, S1〉, 〈o2, S2〉, 〈o3, S3〉}, and γ2 =
{〈o1, S1〉, 〈o1, S2〉, 〈o2, S1〉, 〈o2, S3〉, 〈o3, S2〉}. We have that
inc(o1, γ1) = inc(o1, γ2) = 2, inc(o2, γ1) = inc(o2, γ2) = 2,
and inc(o3, γ1) = inc(o3, γ2) = 1, yet the query returns
(o1, o2) upon input (D,S, σ, γ1), but does not return (o1, o2)
upon input (D,S, σ, γ2). Hence it is not counting-only.

Finally, the SyCALC query expressing Query 7 is not count-
ing-only either, as shown in Example 13.

With Example 14, Research Questions 4, 5, and 6 have
been answered in the affirmative.

Definition 5 is in our opinion a very compelling, intu-
itive semantic definition of counting-only queries, but, un-
fortunately, it does not teach us much about the nature of
counting-only SyCALC queries. Therefore, we state a char-
acterization of counting-only SyCALC queries in the same
vein as in Corollary 2 for QuineCALC queries.

Theorem 6. Let q := {〈x1, . . . , xm〉 | ϕ(x1, . . . , xm)} be
a counting-only SyCALC query for which ϕ(x1, . . . , xm) has
quantifier depth qS ≥ 0 in the uppercase (set name) vari-
ables. Then, q is equivalent to the SyCALC query q′ :=
{〈x1, . . . , xm〉 | ϕ′(x1, . . . , xm)}, in which ϕ′(x1, . . . , xm) has
the form` 2qS−2_

n=0

(Eq(n) ∧ ψn(x1, . . . , xm))
´
∨

(Gteq(2qS − 1) ∧ ψ(x1, . . . , xm)),

where

• for n = 1, . . . , 2qS −2, ψn(x1, . . . , xm) is a disjunction
of formulae of the form ϑ1 ∧ . . . ∧ ϑn ∧ α1(x1) ∧ . . . ∧
αm(xm), with

– for i = 1, . . . , n, ϑi is ∃xeq(x, i) or ¬∃xeq(x, i);

– for j = 1, . . . ,m, αj(xj) is of the form eq(xj , kj),
with 0 ≤ kj ≤ n; and

• ψ(x1, . . . , xm) is a disjunction of formulae of the form

ϑ1∧. . .∧ϑqS−1∧ϑ∧ϑqS−1∧. . . ϑ0∧α1(x1)∧. . .∧αm(xm),

with

– for i = 1, . . . , qS − 1, ϑi is either ∃xeq(x, i) or
¬∃xeq(x, i);

– ϑ is ∃x(gteq(x, qS) ∧ cogteq(x, qS)) or
¬∃x(gteq(x, qS) ∧ cogteq(x, qS));

– for j = qS − 1, . . . , 0, ϑj is either ∃xcoeq(x, j) or
¬∃xcoeq(x, j);

– for ` = 1, . . . ,m, α`(x`) is either of the form
eq(x`, k`), with 0 ≤ k` < qS ; or of the form
coeq(x`, k`), with 0 ≤ k` < qS ; or of the form
gteq(x`, qS) ∧ cogteq(x`, qS).

Proof. (Sketch.) Let (D,S, σ, γ) be a structure and ~o :=
o1, . . . , om ∈ D such that (D,S, σ, γ) |= ~o. We construct a
SyCALC formula ϕσ,γ,~o describing the incidence information
contained herein. Thereto, we distinguish two cases.

1. n = |σ| < 2qS − 1. Then, let ϕσ,γ,~o be the formula
Eq(n) ∧ ψσ,γ,~o, where ψσ,γ,~o is a conjunction of the
following formula:

• for i = 1, . . . , n, ∃xeq(x, i) if there exists o ∈ D
with inc(o, γ) = i, and ¬∃xeq(x, i) otherwise; and

• for j = 1, . . . ,m, eq(xj , inc(oj , γ)).

2. n = |σ| ≥ 2qS − 1. Let ϕσ,γ,~o be the formula

Gteq(2qS − 1) ∧ ψσ,γ,~o,

where ψσ,γ,~o is a conjunction of the following formula:

• for i = 1, . . . , qS − 1, ∃xeq(x, i) if there exists o ∈
D with inc(o, γ) = i, and ¬∃xeq(x, i) otherwise;

• ∃x(gteq(x, qS) ∧ cogteq(x, qS)) if there exists o ∈
D with qS ≤ inc(o, γ) ≤ n− qS , and
¬∃x(gteq(x, qS) ∧ cogteq(x, qS)) otherwise;

• for j = qS − 1, . . . , 0, ∃xcoeq(x, j) if there exists
o ∈ D with inc(o, γ) = n − j, and ¬∃xcoeq(x, j)
otherwise;
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• for ` = 1, . . . ,m, α`(x`) equals8<: eq(x`, inc(o`, γ)) if inc(o`, γ) < qS ;
coeq(x`, inc(o`, γ)) if inc(o`, γ) > n− qS ;
gteq(x`, qS) ∧ cogteq(x`, qS) otherwise.

Let (D,S, σ′, γ′) be a structure and ~o′ = o′1, . . . , o
′
m ∈ D a

sequence of m objects such that (D,S, σ′, γ′) |= ϕσ,γ,~o(~o
′).

It can be shown that (D,S, σ′, γ′) |= ϕ(~o′) (details omit-
ted). Hence, the counting-only query q is equivalent to
q′ := {〈x1, . . . , xm〉 | ϕ′(x1, . . . , xm)} with ϕ′ equal to_

σ,γ,~o with
(D,S,σ,γ)|=ϕ(~o)

ϕσ,γ,~o(x1, . . . , xm).

Inspection of the formulae ϕσ,γ,~o(x1, . . . , xm) reveals that
there are only finitely many different ones in this seemingly
infinite disjuction, and that they are of the form described
in the statement of this Theorem.

Example 15. As shown in Example 14, the SyCALC queries
in Example 8 expressing Queries 3–5 are counting-only.

The SyCALC query expressing Query 3 can be rewritten as
{〈〉 | ¬∃xgteq(x, 2)}; the SyCALC query expressing Query 4
can be rewritten as {x | eq(x, 1)∧∃ygteq(y, 3)}; and, finally,
the SyCALC query expressing Query 5 can be rewritten as
{〈〉 | ¬∃x(gteq(x, 1) ∧ cogteq(x, 1))}.

The rewritten queries conform to Theorem 6, after apply-
ing some straightforward simplifications. In particular, we
did not have to distinguish between different sizes of σ. This
is not always the case, however, as was already illustrated in
Example 7 for QuineCALC queries (which are special cases
of counting-only SyCALC queries).

The formulae Eq(n) or Gteq(2qS − 1) in the statement of
Theorem 6 are of course not QuineCALC formulae (if only
because they do not have a free lowercase variable). How-
ever, they can easily be grouped with one of the formulae
with which they are conjoined, so that we can derive the
following corollary to Theorem 6.

Corollary 3. Let q := {〈x1, . . . , xm〉 | ϕ(x1, . . . , xm)}
be a SyCALC query. Then q is counting-only if and only if
ϕ is equivalent to a quantified Boolean combination of Quine-
CALC query formulae.

Theorem 6 and Corollary 3 also provide a positive answer
to Research Question 7.

Unfortunately, it is undecidable whether a given SyCALC
query is counting-only (proof omitted):

Theorem 7. It is undecidable whether a SyCALC query
is counting-only.

If we know, however, that a SyCALC query is counting-
only, we can decide if it is equivalent to a QuineCALC query.

Theorem 8. It is decidable whether a counting-only Sy-
CALC query is equivalent to a QuineCALC query.

Proof. (Sketch.) The proof is based on the one hand
on Theorem 6, describing a normal form for counting-only
SyCALC queries, and on the other hand on Corollary 2, de-
scribing a normal form for QuineCALC queries. Thus, let
q := {x | ϕ(x)} be a counting-only SyCALC query returning

unary output, and having quantifier depth qS in the upper-
case variables. For each n = 1, . . . , 2qS−1, let S1, . . . , Sn be
different set names in S, and consider the 2n+1 subsets N
of {0, . . . , n}. For each subset N , let oi, i ∈ N , be different
objects in D, and consider the structure (D,S, σ, γN ) where
σ = {S1, . . . , Sn} and γN =

S
i∈N{(oi, S1), . . . , (oi, Si)}.17

Define

Kn,N = {k ∈ N | (D,S, σ, γN ) |= ϕ(ok)}.

Then, q is equivalent to a QuineCALC query if and only if,
for all n = 1, . . . , 2qS − 1, and for all N1, N2 ⊆ {0, . . . , n},
Kn,N1 ∩N2 = Kn,N2 ∩N1.

Hence, while Research Question 8 has a negative answer,
Research Question 9 has a positive answer.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we have introduced two query languages,

QuineCALC and SyCALC, with the purpose of capturing sym-
metric queries over sequences of sets of objects. We have
defined these languages in such a way that QuineCALC is a
syntactic fragment of SyCALC. We have shown that Quine-
CALC queries correspond to symmetric functions specifiable
by means of union, intersection, and complement, i.e., the
symmetric Boolean functions of Quine [13], while SyCALC
queries also capture projection and Cartesian product.

We have characterized QuineCALC queries in terms of in-
cidence information of the objects involved, which is an im-
portant simplification in order to answer these queries. In
general, this simplification is no longer possible for SyCALC
queries. However, we have been able to characterize the class
of SyCALC queries that can be answered using only incidence
information as quantified Boolean combinations of Quine-
CALC queries. Unfortunately, it is undecidable whether a
SyCALC query is such a counting-only query, but it is decid-
able whether a counting-only query is equivalent to a Quine-
CALC query.

Reviewing both our original motivation to study symmet-
ric queries and the theoretical results reported upon in this
paper, we may thus conclude that, on the one hand, the class
of symmetrical queries is interesting to study from a prac-
tical, application-oriented point of view and, on the other
hand, that non-trivial foundational questions can be an-
swered about this class. At the same time, however, we
realize that our paper is just a first step in the study of
symmetric queries, and leaves many problems unaddressed.
Below, we list some of these.

1. Extensions and restrictions. Several extensions or re-
strictions of SyCALC are worth-while to study:

(a) Observe that in SyCALC we excluded the binary
predicate “x = y” on domain variables. On the
one hand, several results in this paper dependend
on that (in particular, Theorem 6 and Corrol-
lary 3 on counting-only queries), but, on the other
hand, adding this predicate would permit us to
study symmetric queries that can be expressed
in terms of the full relational algebra (including
equality and inequality selection).

17Hence, even if 0 ∈ N , o0 never occurs in γN .
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(b) We could study extensions of SyCALC that in-
corporate aggregate functions. For example, the
query “Find all pairs of students taking the same
number of courses” is not expressible in SyCALC,
but is clearly an interesting symmetric query.

(c) It would also be interesting to characterize the
monotonic (or anti-monotonic) fragments of the
languages considered in this paper.

2. Other decision problems. We think of satisfiability,
equivalence, . . . For example, it would be interesting to
determine whether the equivalence problem for count-
ing-only queries is decidable. We conjecture that this
is the case.

3. Complexity and optimization problems. In this paper,
we did not study the efficiency of evaluating and op-
timizing symmetric queries. For example, we have
algorithms to “normalize” QuineCALC and counting-
only SyCALC queries into queries that only involve in-
cidence predicates. We have not analyzed the time
and/or space complexity of these algorithms, however.
Another topic for further study is query optimization.
For example, the counting-only query {x | gteq(x, 3)∧
¬∃ygteq(y, 3)} can be optimized to {x | false}.

4. Extensions of the concept of counting-only queries. If
we consider the query “Retrieve the pairs of words that
occur together in at least three documents,” we cannot
help but feel that it has the flavor of a counting-only
query, yet we can prove it is not. A strategy to study
this query is to extend our notion of incidence infor-
mation to pairs of objects. For a structure (D,S, σ, γ),
and o1, o2 ∈ D, we can define

inc2(o1, o2, γ) = |{S | 〈o1, S〉 ∈ γ & 〈o2, S〉 ∈ γ}|.

The above query actually searches for all pairs (o1, o2)
for which inc2(o1, o2, γ) ≥ 3. Of course, this notion
of 2-incidence can be generalized to k-incidence for
any k ≥ 1. We plan to investigate if our current re-
sults about counting-only queries can be extended for
a broader notion of “counting-only” queries based on
these more general notions of incidence information.

5. Precomputation and indexes. To evaluate QuineCALC
and, more generally, counting-only queries, efficiently,
we could precompute the incidence relation and main-
tain an index on it. For example, we could store
and maintain an index that keeps pairs of the form
(i, {o1, . . . , on}) where {o1, . . . , on} is the set of all ob-
jects that occur in at least i sets. This could speed
up evaluating symmetric queries that involve incidence
predicates.

6. Simulation. Since SyCALC queries are first-order, it
makes sense to ask how these queries may be simu-
lated in SQL and MapReduce in a “smart” manner.
This could well be very challenging, since (1) many
interesting symmetric queries are non-monotonic and
(2) the data sets involved can be very large.
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