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ABSTRACT
We propose OptIQ, a query optimization approach for iterative
queries in distributed environment. OptIQ removes redundant
computations among different iterations by extending the tradi-
tional techniques of view materialization and incremental view
evaluation. First, OptIQ decomposes iterative queries into invariant
and variant views, and materializes the former view. Redundant
computations are removed by reusing the materialized view among
iterations. Second, OptIQ incrementally evaluates the variant
view, so that redundant computations are removed by skipping
the evaluation on converged tuples in the variant view. We verify
the effectiveness of OptIQ through the queries of PageRank and
k-means clustering on real datasets. The results show that OptIQ
achieves high efficiency, up to five times faster than is possible
without removing the redundant computations among iterations.

1. INTRODUCTION
Many Web-based companies such as Google, Facebook, Yahoo

are intensively analyzing tremendous amounts of data, such as user
contents and access logs. MapReduce [4], which is a distributed
computation framework, is widely used for statistical analysis.
MapReduce works on hundreds or thousands of commodity
machines and assures high scalability and availability. For
example, dozens to hundreds of TB datasets are processed daily
by MapReduce at Google [5], and 75TB of compressed data is
processed every day by Hadoop at Facebook [27].

In detail, MapReduce allows map functions to be applied to the
data stored in a distributed file system, resulting in key-value pairs.
All the produced pairs are routed (shuffled) to reduce tasks accord-
ing to the output key, so that all pairs with the same key wind up
at the same reduce task. The reduce tasks apply reduce functions
to the values associated with one key and produce a single result
for that key. Thus, the programmers can implement various types
of distributed algorithms on MapReduce by implementing the map
and reduce functions; MapReduce isolates the programmers from
the difficulties caused by the distributed processing; how data and
processes are distributed to the servers and how to handle failures
and straggles of servers.
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1: class Mapper
2: method Map(nid n; node N)
3: p ← N.PageRank/|N.AdjacencyList|
4: Emit(nid n, N) // Pass along graph structure
5: for all nodeid m ∈ N.AdjacencyList do
6: Emit(nid m, p) // Pass PageRank mass to neighbors

1: class Reducer
2: method Reduce(nid m, [p1,p2,...])
3: M ← φ
4: for all p ∈ counts [p1,p2,...] do
5: if IsNode(p) then
6: M ← p // Recover graph structure
7: else
8: s ← s + p // Sum incoming PageRank contributions
9: M.PageRank ← s
10: Emit(nid m, node M)

Figure 1: PageRank program (single iteration) in MapReduce

The active application fields of the MapReduce framework in-
clude machine learning algorithms [24, 26, 25, 12, 21]. Shim pre-
sented in his tutorial talk in [24] the state-of-the-art in MapReduce
algorithms for data mining, machine learning, and similarity joins.
Chu et al. [25] describe a method of rewriting various types of ma-
chine learning algorithms into summation form, which can be di-
rectly transformed to the MapReduce framework. Mahout [26] pro-
vides libraries of machine learning algorithms. In particular, there
are many iterative algorithms for machine learning, which are com-
mon in clustering and graph mining; PageRank, random walk with
restarts (RWR), k-means clustering, non-negative matrix factoriza-
tion (NMF) [14].

However, it is still difficult for programmers to implement itera-
tive algorithms efficiently on the MapReduce framework, because
improving their response time is not a trivial task. For example,
consider the PageRank computation on MapReduce [16]; PageR-
ank is computed by iteratively executing the program in Figure 1
1 until convergence. The map function evenly divides each node’s
PageRank score, N.PageRank, and passes each fraction to neighbor
m along outgoing edges. The reduce function sums up the divided
scores, p1, p2, ..., at each destination node m. Which parts of this
program are inefficient? There are two types of redundant compu-
tations. First, the map function shuffles the graph structure (line
4 in map function) in every iteration. This is redundant and the
redundancy is removed by reusing the shuffled result of the graph
structure. Second, the PageRank scores of the nodes are computed
in every iteration, even if many of them have already converged
in earlier iterations. This is also redundant and can be improved
by computing PageRank incrementally, that is to skip computing
the PageRank scores of converged nodes. However, it is burden

1This program is a simplified version of PageRank since the au-
thors of [16] ignore the random jump factor and dangling nodes.
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for programmers to manually program applications by identifying
and removing the above redundant computations. Several tech-
niques have been proposed for efficient query processing of iter-
ative queries on distributed frameworks, Spark [28], HaLoop [3],
REX [19]. None of them are automatic and general framework for
query optimization. Those former approaches force programmers
to identify and remove redundant computations manually by inte-
grating caching or incremental techniques into programs. In detail,
Spark and HaLoop cache and reuse input files to map functions and
reduce functions across iterations, however the programmers have
to manually design invariant tables and specify those tables to be
cached during iterations. REX achieves incremental computation,
however the programmers have to manually identify which parts of
the programs are incrementally computable and indicate how those
parts should be incrementally computed. For the above problem,
the traditional query optimization techniques do not identify and
remove the redundant computations among different iterations.

We open up a new research field of optimization for iterative
queries. We tackle this field by integrating the traditional optimiza-
tion techniques in database and compiler areas. We extend SQL
language to express iterative queries and propose a query optimiza-
tion approach, OptIQ ([Opt]imization for [I]terative [Q]ueries), for
iterative queries with convergence property. The novelty of OptIQ
is that it provides general framework for removing redundant com-
putations identified in iterative queries. Since SQL is a declarative
high level language that hides low level execution plans, the pro-
grammers are freed from the burden of manually identifying and
removing redundant computations in iterative queries. OptIQ auto-
matically removes the redundant computations in iterative queries
by extending the traditional techniques of view materialization and
incremental view evaluation in database area and those of program
analysis and transformation in compiler area. First, OptIQ decom-
poses iterative queries into invariant and variant views, and mate-
rializes the former view for reusing it in the following iterations.
Second, OptIQ incrementalizes the variant views by skipping the
evaluation of converged tuples. OptIQ is fully automatic and mini-
mizes redundant computations efficiently.

Our contributions are summarized as follows:

• We identify a problem of redundant computations in process-
ing iterative queries, which is a typical problem in iterative
algorithms, such as clustering and graph mining.

• We propose OptIQ, an automatic query optimization tech-
nique for iterative queries with convergence property. For
a given iterative query, OptIQ removes redundant computa-
tions among different iterations by extending the traditional
techniques of view materialization and incremental view
evaluation in database area and those of program analysis
and transformation in compiler area.

• We implement OptIQ on MapReduce and Spark. We also
report experiments on iterative queries of PageRank and
k-means clustering over real datasets. The results show
that OptIQ achieves high efficiency both on MapReduce
and Spark, up to five times faster than is possible without
removing the redundant computations among iterations.

The rest of this paper is organized as follows. Section 2 defines a
query language for iterative queries. OptIQ is introduced in Section
3. Section 4 describes how queries are compiled into MapReduce
programs. Section 5 reports the results of experiments on clustering
and graph mining. Section 6 addresses related work and Section 7
concludes this paper.

initialize {initialize temporal tables}*
iterate

{{set|let} update table = step query}*
until condition on update table
return {result construction}*

Figure 2: Iterative query syntax

2. ITERATIVE QUERY LANGUAGE
We define a query language for iterative queries. Figure 2 shows

the syntax, which is influenced by MRQL [7].
A query consists of three parts; The initialize clause initializes

tables, which are used in step queries. The iterate clause speci-
fies step queries and update tables; set and let statements specify
that the result of step query is set to global table and local table,
respectively. While the local table stores the tuples computed in
the current iteration, the global table stores the tuples computed in
the current and previous iterations. We refer to tuples in the cur-
rent iteration as new tuples and those in the previous iteration as
old tuples by using prefixes new and old, respectively. The differ-
ence between global table and local table affects query optimiza-
tion, particularly in distributed environments. Global tables have
to be stored in a distributed file system so that they are accessed
from different iterations, whereas local tables can be stored in a
local file system for optimization. We assume that the program-
mers use set statement only and that it may be replaced by the let
statement or vice versa during query optimization. The step queries
are iteratively evaluated until convergence. The until clause speci-
fies the convergence condition on the global table. A convergence
condition is expressed by comparing old and new tuples of an up-
date table and it is tested against all the tuples of the update table.
The old and new tuples are related by the key as follows; tuple r1
accessed by new is the new version of tuple r2 accessed by old,
if they share the same key. The return clause constructs a query
result after the convergence.

Step queries are expressed by SQL statements whose operators
are given as follows:

projection : T (a1, ..., an) = πa1,...,an(R)

selection : T (schema(R)) = σφ(R)

join : T (schema(R) ∪ schema(S)) = R ��φ S

group− by : T (a1, ..., an, m) = a1,...,anGm=f(τ) (R)

where R and S are input tables, T (list) is a table with list at-
tributes, schema(R) are the attributes of R, a1, ..., an ⊆ schema(R),
τ ⊆ schema(R), and φ is a propositional formula.

The projection operation projects a set of specified attributes, a1,
..., an, in the input table. The selection operation extracts the tuples
that satisfy propositional formula φ in the input table. The join op-
eration computes the cross product of two input tables and extracts
the tuples that satisfy φ2. The resulting schema is the union of
the schema of the input tables. The group-by operation constructs
groups of tuples and computes aggregate functions, so that the tu-
ples within the same group share the same values of key attributes,
a1, ..., an, and those tuples are put into aggregation function f(τ )
and the result is set to attribute m. The resulting schema consists of
a1, ..., an and m.

EXAMPLE 2.1 (PAGERANK). We consider a query for the
simplified version of PageRank in Figure 1 without any loss in

2We use �� as a natural join and R ��a S as a simplified form of
R ��R.a=S.a S.
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generality. We apply OptIQ to the original PageRank and conduct
experiments in Section 5.

Schema:
1: Graph(src,dest,score)

2: Count(src,count)

3: Score(dest,score)

Query:
1: initialize
2: setup Graph’;

3: Count = select src,count(dest) as count

4: from Graph

5: group by src;

6: iterate
7: set Score =

8: select n.dest,sum(n.score/Count.count) as score

9: from Graph’ as n, Count

10: where n.src = Count.src

11: group by n.dest;

12: set Graph’ =

13: select m.src,m.dest,Score.score

14: from Graph’ as m, Score

15: where m.src = Score.dest;

16: until |new.score - old.score| < ε on Score;

17: return Score;

Graph table has attributes of the identity of node src, the desti-
nation node dest of src, and the PageRank score score of src.
Count and Score are tables derived from Graph. src and dest

are keys in Count and Score, respectively. PageRank for Graph
is computed as follows. The initialize clause copies Graph′ from
Graph and the score of the nodes are initialized as the inverse of the
number of nodes by following the definition of PageRank. Count
is defined by the query in lines 3-5, which computes the number
of out-going edges for each node src. There are two step queries
in the iterate clause starting from line 7 with a convergence condi-
tion in line 16. The iteration is terminated when the difference be-
tween the new scores and the old scores of Score are smaller than
threshold ε. The first query (lines 8-11) computes a new PageRank
score for each destination node n.dest by summing up the divided
scores n.score/Count.conunt of incoming source nodes. The re-
sult is set to Score. The second query (lines 13-15) updates the old
scores of Graph′ by the new scores of Score by joining Score and
Graph′ .

EXAMPLE 2.2 (k-MEANS CLUSTERING). A query for com-
puting k-means clustering is given as follows.

Schema:
1: Centroid(id,pos)

2: Point(id,cid,pos)

Query:
1: initialize setup Centroid; Point’ = Point;

2: iterate
3: set Point’ =

4: select p.id,

5: (select c.id

6: from Centroid as c

7: order by distance(c.pos,p.pos)

8: limit 1) as cid,p.pos

9: from Point’ as p;

10: set Centroid =

11: select cid as id, avg(pos) as pos

12: from Point’

13: group by cid;

14: until |new.pos - old.pos| < ε on Centroid;

15: return Centroid;

There are two tables, Centroid and Point. Point is a collec-
tion of data points to be clustered. Centroid is a collection of the
centroids of the clusters. Centroid has the attributes of identity id
and position pos. Point has the attributes of identity id, identity
of Centroid to which Point belongs to, and position pos. The
initialize clause initializes Centroid as k points randomly chosen
from Point (line 1). The iterate clause starts at line 2 and con-
tains a convergence condition (line 14); the iteration is terminated
when the difference between new and old positions of Centroid is
smaller than ε. There are two step queries in lines 3-13. The first
query locates the closest centroid in Centroid to every data point
in Point. The second query groups data points in Point by the
closest centroid, computes the average position of the data points
in each group, and sets it as a new position of the centroid.

3. QUERY OPTIMIZATION
OptIQ is a query optimization technique for iterative queries; it

removes redundant computations among different iterations. Here
we have a question: “What are redundant computations among iter-
ations?” The redundant computations are the operations on unmod-
ified attributes of tuples or on attributes of unmodified tuples among
iterations. OptIQ enhances two traditional optimization techniques
for SQL queries: view materialization and incremental view eval-
uation. Both techniques reuse the results of step queries. The
view materialization technique reuses the result of subqueries for
unmodified attributes. The incremental view evaluation technique
reuses the result of queries for unmodified tuples. The ideas that
underlie the removal of redundant computations are as follows.

Table decomposition & view materialization detects modified
attributes among iterations, extracts maximum subqueries in
iterative queries that do not access any modified attributes
(we call the subqueries invariant views), and materializes
the subqueries. The input queries are rewritten to use the
invariant views for efficient query processing.

Automatic incrementalization detects modified tuples (delta ta-
ble) among iterations, derives incremental queries for input
queries, and thus incrementally evaluates them for the mod-
ified tuples. This incrementalization optionally utilizes fil-
tering function to reduce the number of the modified tuples
according to convergence condition. Actually, various re-
searches [19, 17] employ this idea. We leave users to choose
to use this filtering function, since there is a trade-off be-
tween speed and accuracy.

Figure 3 overviews OptIQ. The left part shows the original query
execution flow of an iterative query. The middle part shows a query
execution flow after applying table decomposition & view materi-
alization. Invariant views are extracted from the original query and
they are constructed before the iterations. Variant views are re-
peatedly evaluated until convergence. The right part shows a query
execution flow based on the incremental evaluation; a variant view
is incrementally evaluated (indicated by “+=” and “delta” in the
figure) during iterations.

3.1 View materialization
OptIQ optimizes iterative queries by employing view material-

ization in the following steps: 1) decompose input update tables
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Figure 3: Overview of OptIQ

into variant and invariant tables, and rewrite the iterative query such
that the update tables are replaced by variant tables. 2) materialize
partial operations in the iterative query (we call it invariant view)
that accesses invariant tables, and rewrite and simplify the iterative
query in which the invariant view is reused. In this subsection, we
will explain the above two-step view materialization by using the
PageRank iterative query in Example 2.1 as a running example. We
show how to rewrite a k-means iterative query after that.

3.1.1 Table decomposition
An iterative query is executed by updating (possibly large) ta-

bles, called update tables, at each step. The purpose of table de-
composition is to remove redundant computations by splitting the
update table into a variant and an invariant one. A variant table
contains ‘modified’ attributes of the original table which may be
updated during a single step computation. An invariant table con-
tains not only ‘unmodified’ attributes of the original table which
are not updated during computation but also new attributes which
store values derived from the unmodified attributes. Additionally,
both tables share an unmodified attribute such that the original ta-
ble can be obtained by joining variant and invariant tables using the
attribute.

Modified and unmodified attributes are discriminated by a con-
servative analysis: we judge an attribute to be unmodified only
when the attribute is projected at the set statement of the update
table. In the running example, the Graph’ table is an update ta-
ble that has three attributes, score, src, and dest. Since src and
dest are just projected at the set statement of Graph’ (lines 12-
15), they are unmodified attributes while the score attribute is
modified. Even though more attributes might be found unmodi-
fied through further analysis, we take a conservative approach to
this discrimination step.

Next we decompose the update table according to the discrimi-
nation of modified and unmodified attributes. We have two update
tables, Score and Graph’. Since Score has no unmodified at-
tribute except its key dest, we do not decompose the Score table.
Let us decompose the Graph’ table. We choose an unmodified
attribute of the update table. The attribute is used for synthesiz-
ing the update table from variant and invariant tables by joining
them. For the running example, by letting src be the key attribute,
we have two tables VT(src,score) and IT(src,dest) such that
Graph’= VT ��src IT.

We rewrite the iterative query by replacing the Graph’ table with
VT ��src IT. First we initialize variant and invariant tables instead
of the update table in the initialize clause. Next, we rewrite all
subqueries by flattening them in the following ways:

• We rewrite the attributes of the VT ��src IT table into those of
either VT or IT. Regarding the src attribute, we may rewrite
it into either VT.src or IT.src according to whether the
next step can yield further improvement.

Schema:
Graph(src,dest,score)
Count(src,count)
Score(dest,score)
VT(src,score)
IT(src,dest)

Query:
1: initialize VT = select src,score from Graph;
2: IT = select src,dest from Graph;
3: Count = select src,count(dest)
4: from IT
5: group by src;
6: iterate
7: set Score =
8: select IT.dest,sum(VT.score/Count.count) as score
9: from VT, IT, Count
10: where IT.src = Count.src
11: VT.src = IT.src
12: group by IT.dest;
13: set VT =
14: select VT.src,Score.score
15: from VT, Score
16: where VT.src = Score.dest;
17: until |new.score - old.score| < ε on Score;
18: return Score;

Figure 4: PageRank query after table decomposition

• We replace from VT ��src IT table with from VT, IT and
add VT.src = IT.src to the where clause. If none of the
attributes of the VT (resp. IT) table are referred to, we just
replace the from clause with from IT (resp. from VT).

For example, the subquery

select n.dest,sum(n.score/Count.count) as score
from (VT ��src IT) as n, Count
where n.src = Count.src
group by n.dest

is rewritten into

select IT.dest,sum(VT.score/Count.count) as score
from VT, IT, Count
where IT.src = Count.src

VT.src = IT.src
group by IT.dest

This yields the query in Figure 4.

3.1.2 Subquery lifting
So far we have decomposed the attributes into unmodified and

modified ones, and decomposed the table into invariant and variant
tables. The step queries were rewritten in terms of these tables.

The next step is to construct read-only materialized views that
are accessed by the step queries. We call them invariant views.
Since an invariant view is constructed only once across the entire
step queries, it is constructed in the initialize clause in the iterative
query. The most primitive way of constructing an invariant view is
just to project the unmodified attributes, and this is already achieved
at the time of the table decomposition (Figure 4). Moreover, we
could remove more redundancy by extracting loop-invariant com-
putations using unmodified attributes in the iteration. This opti-
mization is called loop invariant code motion [2] in the traditional
compiler literature, and we achieve in OptIQ by the following three
steps.

Step 1: Constant let statement lifting. Lift let statements in the
iterate clause to the initialize clause, if they are constant queries,
i.e., all of their computations depend only on the invariant tables
(we do not have such a lifting opportunity in the running example).
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Schema:
Graph(src,dest,score)
Count(src,count)
Score(dest,score)
IT(src,dest)
IT_Count(src,dest,count)

Query:
1: initialize IT = select src,dest from Graph;
2: Count = select src,count(dest)
3: from IT group by src;
4: IT_Count = select IT.src,IT.dest,Count.count
5: from IT, Count
6: where IT.src = Count.src;
7: iterate
8: set Score =
9: select ic.dest,sum(sc.score/ic.count) as score
10: from Score as sc, IT_Count as ic
11: where sc.dest = ic.src
12: group by ic.dest;
13: until |new.score - old.score| < ε on Score;
14: return Score;

Figure 5: PageRank query after subquery lifting

Step 2: Invariant subquery lifting. In addition, we can extract
and materialize invariant subqueries used in the computation of ta-
bles including modified attributes in the set and let statements. The
enclosing queries are rewritten accordingly using the materialized
views.

In the running example, since the lifted table Count is always
used for joining with the invariant table IT at the set statement
for Score (lines 7-12), we can preliminarily join the IT and
Count tables to form (in addition to IT) another materialized view
IT_Count as follows:

IT_Count = select IT.src,IT.dest,Count.count
from IT, Count
where IT.src = Count.src.

Correspondingly, the set statement is rewritten by replacing the ta-
bles IT and Count in the from and select clauses by IT_Count,
and removing the join condition in the where clause corresponding
to the above join, to yield

set Score =
select ic.dest,sum(VT.score/ic.count) as score
from VT, IT_Count as ic
where VT.src = ic.src
group by ic.dest.

Step 3: Common subquery elimination. If we have common
subqueries in the initialize clause, we can further factor them out
to reduce the redundancy within the clause (we do not have such
an elimination opportunity in the running example). We also ap-
ply other common query rewriting techniques such as unnesting or
identity query elimination, whenever possible including the previ-
ous and the following steps.

In the running example, the set statement computing VT
(lines 13-16) can be rewritten into

set VT = Score

assuming that the set of src in VT and the set of dest in Score

are identical. Correspondingly, we can replace VTs with Score in
the set statement updating Score (VT.src should be replaced by
Score.dest), and remove the definitions of VT from the initialize
clause and set statement entirely.

After these three steps, we obtain the query in Figure 5. Note
that we may apply further grouping for the materialized views for

Schema:
Centroid(id,pos)
Point(id,cid,pos)
VT(id,cid)
IT(id,pos)

Query:
1: initialize
2: IT = select id,pos from Point
3: iterate
4: let VT =
5: select IT.id,
6: (select c.id
7: from Centroid as c
8: order by distance(c.pos,IT.pos)
9: limit 1) as cid
10: from IT
11: set Centroid =
12: select VT.cid as id, avg(IT.pos)
13: from VT, IT
14: group by VT.cid
15: where VT.id = IT.id
16: until |new.pos - old.pos| < ε on Centroid;
17: return Centroid;

Figure 6: k-means query after rewriting

efficient MapReduce computation. We revisit this optimization in
Section 4.2.

3.1.3 Other example: k-means query
We apply our query rewriting to another example, k-means clus-

tering, see Example 2.2.
In this query, two tables, Point’ and Centroid, are the update

tables. The Point’ table has two unmodified attributes, id and
pos, while the Centroid table has none. Hence, we only apply
table decomposition to the Point’ table.

We choose the unmodified attribute id for table decomposition
because it is a primary key. We rewrite the Point’ table into
VT ��id IT by using the variant table VT(id,cid) and the invariant
table IT(id,pos).

The set statement for Point’ is rewritten into the set statement
for VT as follows:

set VT =
select IT.id,

(select c.id
from Centroid as c
order by distance(c.pos,IT.pos)
limit 1) as cid

from IT;

Although the select IT.id clause could be select VT.id, we use
IT.id so that the join operation (from VT.id = IT.id) is not
required.

The rewritten query is shown in Figure 6, where we apply further
simplification as follows. Note that in the iteration body, the VT

table computed at the previous iteration is never referred to. Hence,
we do not have to initialize the VT table and we can use just let
rather than set for VT.

3.2 Automatic incrementalization
In this section, we propose a specific automatic incrementaliza-

tion technique for optimization of iterative queries; it automatically
detects the modified tuples (delta tables) among iterations and in-
crementally evaluates the iterative query for those tuples.
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3.2.1 Update operations
Before explaining how to evaluate iterative queries incremen-

tally, we should elucidate what kind of changes we consider (al-
low) on the tables (relational databases). There are basically three
kinds of changes on tables, tuple insertion, tuple deletion, and tuple
update. A tuple insertion

T � Δ

adds a disjoint set of tuples in Δ to table T , a tuple deletion

T \ Δ

deletes a set of tuples in Δ from table T , and a tuple update

T ⊕m Δ

updates tuples of T by replacing the value of attribute m by
“adding” it to the corresponding m value in Δ.

It is worth noting that tuple updates appear more often than the
other two changes in the context of iterative queries, in which a
table is iteratively updated until it reaches a stable form. We can
define tuple update generally as follows:

T ⊕m1,...,mk Δ
def
=

π(T.m1+Δ.m1),...,(T.mk+Δ.mk),u1,...,uk′ (T �� Δ)

where mi and uj denote modified attributes and unmodified at-
tributes in the update table T , respectively. For instance, given a
personal table we may express raising a worker’s salary and his po-
sition level by Personal ⊕salary,levelUp. Note that we sometimes
omit modified attributes on ⊕ when they are not used. Dually, we
can define the following:

T1 �m1,...,mk T2
def
=

π(T1.m1−T2.m1),...,(T1.mk−T2.mk),u1,...,uk′ (T1 �� T2)

where T1 and T2 have a common schema.

3.2.2 Detecting delta tables
It turns out to be rather straightforward to detect delta tables after

our table decomposition as discussed in Section 3.1, where a set of
modified attributes have been identified. For variant table T with
modified attributes m1, . . . ,mn, we define a tuple update on T by

T ⊕m1,...,mn ΔT

where overloaded + (used in the definition of ⊕ as given before)
on the values of attribute mi is defined as follows:

• If mi is a numeric attribute, + is the common addition oper-
ation.

• If mi is an enumeration attribute, + is defined as replacing
the original value by a new one (i.e., a+ b = b).

3.2.3 Deriving incremental queries
A lot of work is being devoted to deriving incremental queries

for the insertion and deletion of tuples in relational databases by
using the notion of delta tuples [9] or ring structure [13]. In iter-
ative computation, however, updates (changes of values of tuples)
in the iteration are more frequent than deletion or insertion [19].
This leads us to look into new ways to deal with value updates for
deriving incremental queries.

Consider the following simple but general iterate clause:

iterate
set T = q(T )

until φ(ΔT )
(1)

where T is an update table, and q(T ) is a query (written in rela-
tional algebra) to table T , and φ(ΔT ) denotes a termination condi-
tion on delta table ΔT .

We would like to see how to efficiently compute

set T = q(T ⊕ ΔT )

iteratively. To this end, we distribute the computation of q into
T ⊕ΔT and investigate new ways of incrementalizing aggregation
computations in group-by. These form the core of our automatic
incrementalization algorithm.

Query distribution over tuple updates
Suppose that q is distributed over ⊕ by ⊗:

q(T ⊕ ΔT ) = q(T ) ⊗ q(ΔT ).

Then, we can rewrite the iterate-clause (1) into the following itera-
tive query:

initialize
ΔT = q(T ) � T

iterate
set T = T ⊗ ΔT

set ΔT = q(ΔT )
set ΔT = ψ(ΔT , C)

until φ(ΔT )

(2)

if ΔT obtained in the initialization does not satisfy φ. As a matter
of fact, even if the initial ΔT satisfies φ (which seldom happens in
practice), it is still fine to use (2) because computing ΔT once again
dose not matter when ΔT converges. Note that ψ is an optional fil-
tering function for adapting ΔT according to context C. We have
to pay attention that introducing ψ may change the accuracy of the
result. In our PageRank example as will be shown in Example 3.1,
the termination condition φ is utilized as the filtering function ψ
for adapting ΔT to reduce the size of ΔT ; the result of the incre-
mental version is slightly different from the original one. We will
discuss this in Section 5.3.1. Also, Adaptive PageRank [11] can be
emulated by using ψ with an iterative parameter in a suitable way.

In general, q may not be fully distributed over ⊕, but if we could
distribute it to some extent and extract some computations on T
out, we could reuse the computation results on T in the iteration
steps. Figure 7 summarizes the rules for this distribution. We use ā
to denote a set of attributes. When an input query is not distributed
over ⊕, we abandon incrementalizing it. For the selection operator,
the distributive law holds if there are no common attributes between
the attributes used in the selection conditions and the modified at-
tributes. The rules for projection and join are easy to understand.

For the group-by operator, it can be distributed over ⊕ if the
aggregation function is sum over the modified attribute b. We omit
rules for other aggregation functions such as count.

EXAMPLE 3.1 (PAGERANK INCREMENTALIZATION).
Consider incrementalizing the PageRank query shown in Figure 5.
The query body (lines 9 - 12) in the iterate clause can, in terms
of relational algebra with incorporation of the delta table ΔScore ,
be rewritten as follows by using the distributive laws listed in Fig-
ure 7 where IC and SC denote IT Count and Score, respectively.
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ā ∩ b̄ = ∅
σp(ā)(T ⊕b̄ ΔT ) = σp(ā)(T ) ⊕b̄ σp(ā)(ΔT )

SEL

ā ⊇ b̄

πā(T ⊕b̄ ΔT ) = πā(T ) ⊕b̄ πā(Δ(T ))
PROJ1

ā ∩ b̄ = ∅
πā(T ⊕b̄ ΔT ) = πā(T )

PROJ2

ā ∩ b̄ = ∅ c̄ ∩ b̄ = ∅
(T1 ⊕ā ΔT1) ��p(b̄) (T2 ⊕c̄ ΔT2)

= (T1 ��p(b̄) T2) ⊕ā (ΔT1 ��p(b̄) T2)
⊕c̄ (T1 ��p(b̄) ΔT2)

JOIN

āGm=sum(b) (T ⊕b ΔT )
= ( āGm=sum(b) (T ))

⊕m ( āGm=sum(b) (ΔT ))

GROUPBY

Figure 7: Distribution rules for incrementalization

Also, the join predicate φ denotes Score.dest = IT Count.src,
and sum(T) denotes sum(score/count).

πIC.dest, SC.score

(IC.destGscore=sum(T)((SC ⊕score ΔSC) ��φ IC))
= {by JOIN}
πIC.dest, SC.score

(IC.destGscore=sum(T)((SC ��φ IC) ⊕score (ΔSC ��φ IC)))
= {by GROUPBY}
πIC.dest, SC.score

((IC.destGscore=sum(T)(SC ��φ IC))
⊕score

(IC.destGscore=sum(T)(ΔSC ��φ IC)))
= {by PROJ1}
πIC.dest, SC.score(IC.destGscore=sum(T)(SC ��φ IC))
⊕score

πIC.dest, SC.score(IC.destGscore=sum(T)(ΔSC ��φ IC))

Since the binary operator ⊕score is distributed by the relational
algebra operators used in this query, we can incrementalize this
query. The incrementalized query is shown in Figure 8, where
dScore corresponds to a delta table of Score. Note that we use
the termination condition as the optional filtering function ψ (line
34) described above.

Groupby distribution over tuple insertion/deletion
Incremental computation of aggregation functions used in the
group-by operation is worth further investigation for improving
efficiency. While Figure 7 shows distribution rules for tuple
updates, we show below distribution rules for dealing with tuple
insertion/deletion when aggregation functions are used in the
group-by operation.

For the aggregate function sum . we have the following distribu-
tion rules.

kGsum(m) (T � ΔT )
= kGsum(m) (T ) +m kGsum(m) (ΔT )

kGsum(m) (T \ ΔT )
= kGsum(m) (T ) −m kGsum(m) (ΔT )

The first distribution rule says that if tuples ΔT are inserted into
T , the group-by operation kGsum(m) (T � ΔT ) can be computed

Schema:
Graph(src,dest,score)
Count(src,count)
Score(dest,score)
IT(src,dest)
IT_Count(src,dest,count)
Score’(dest,score)
dScore(dest,score)

Query:
1: initialize
2: IT =
3: select src,dest from Graph;
4: Count =
5: select src,count(dest)
6: from IT group by src;
7: IT_Count =
8: select IT.src,IT.dest,Count.count
9: from IT, Count
10: where IT.src = Count.src;
11: Score’ =
12: select ic.dest,sum(sc.score/ic.count) as score
13: from Score as sc, IT_Count as ic
14: where sc.dest = ic.src
15: group by ic.dest;
16: dScore =
17: select dest,(Score’.score - Score.score) as score
18: from Score, Score’
19: where Score’.dest=Score.dest
20: and not(|Score’.score-Score.score| < ε);
21: iterate
22: set Score =
23: select dest,(Score.score + dScore.score)
24: from Score, dScore
25: where Score.dest=dScore.dest;
26: set dScore =
27: select ic.dest,sum(sc.score/ic.count) as score
28: from dScore as sc, IT_Count as ic
29: where sc.dest = ic.src
30: group by ic.dest;
31: set dScore =
32: select *
33: from dScore
34: where not(|score| < ε);
35: until |new.score - old.score| < ε on Score;
36: return Score;

Figure 8: Incrementalized PageRank Query

incrementally by adding kGsum(m) (ΔT ) to the original result
( kGsum(m) (T )). The second equation is for the case when a set
of tuples is deleted.

There are similar distribution rules for count omitted here. For
the aggregation function average , it can be defined in terms of sum
and count , so its incremental computation can be realized through
those of sum and count .

For the aggregation functions max and min, we have the fol-
lowing distribution rules for tuple insertion.

kGmin(m) (T � ΔT ) =

kGmin(m) (T ) minm kGmin(m) (ΔT )

kGmax(m) (T � ΔT ) =

kGmax(m) (T ) maxm kGmax(m) (ΔT ).

However, attention should be paid to the case of tuple deletion;
kGmin(m) (T \ ΔT ) (or kGmax(m) (T \ ΔT )) can be computed
incrementally only if the minimum (or maximum) value in ΔT is
not equal to that in T .

EXAMPLE 3.2 (TOWARDS INCREMENTAL k-MEANS). As a
simple example, consider the following query pattern (a group-by
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after a selection):

kGsum(m) (σ∗
n:=f(n,T1)(T2))

where σ∗
a:=v(R) is introduced as an extension of the standard se-

lection operation in that if the value of attribute a equals v, the tuple
will be selected, otherwise the tuple will be updated with v being
the value for the attribute a. We can apply the above distribution
rules to incrementalize the query with the observation that

σ∗
n:=f(n,T1)(T2)

is equivalent in form to tuple insertion and deletion:

T2 � ΔT+ \ ΔT− .
This observation is based on the following decomposition rule

σ∗
a:=v(T ) = T � σ∗

a:=v(T
′) \ T ′

where T ′ = σa �=v(T ) consists of all tuples (in T ) with their a
values changed.

Note that we can realize incrementalization of the k-means query
similarly. Recall the query for k-means clustering in Figure 6. We
may start by rewriting the body of the step query in terms of rela-
tional algebra. By defining cidF as

cidF(p,Centroid) =

select c.id

from Centroid as c

order by distance(c,p)

limit 1

we can turn the step query into the following:

set Centroid = cidGavg(pos) (σ∗
cid:=cidF(p,Centroid) (Point))

which is similar in form to what we saw at the beginning of the
example, and can be automatically incrementalized.

4. MAPREDUCE IMPLEMENTATION
We extend Hive [27], a query engine built on MapReduce, to

evaluate iterative queries with convergence conditions and to inte-
grate it with the query optimization of OptIQ.

The Hive query compiler is extended to parse queries written in
the syntax for iterative queries in Figure 2 and to produce iterative
query plans with convergence tests. For OptIQ extension, the query
compiler extracts invariant and variant views and produces query
plans that materialize the invariant views before iterations and that
incrementally evaluate the variant view.

4.1 Iterative query processing
A query is compiled into a query plan consisting of a sequence

of MapReduce jobs. Expressions in initialize clause, iterate clause,
and return clause are compiled into MapReduce jobs. Step queries
in iterate clause are repeatedly evaluated until convergence. The
convergence condition is expressed by comparing new tuples and
old tuples of update table and is tested at the end of every iteration.
The comparison is made by joining the update table in the previous
iteration with that in the current iteration, since the new and old
tuples are related by the key. The new tuples are kept in a DFS
(distributed file system) in each iteration, and then read as old tuples
in the next iteration. Remember that there are two types of step
queries specified by let/set statements. Since tables specified by
the set statement are iteration global, they are also stored in DFS
and read from MapReduce jobs in the next iteration.

4.2 View materialization
We extend the query compiler by applying the view materializa-

tion technique in Section 3.1; the queries for materializing invariant
views are extracted and the materialized views are put on DFS and
reused in subsequent iterations.

In MapReduce level, we also optimize the partition key of invari-
ant views for efficient group-by and/or join operations on MapRe-
duce. If invariant views are used for group-by/join operations in
iterations, we partition the views by the key of the group-by/join
operations, so that the group-by/join operations are computed in
map tasks by applying map-side join [16]. The map-side join is a
join technique on MapReduce that makes joins without shuffle by
pre-partitioning the join tables by the join key. We can also apply a
similar technique to group-by operations.

In the PageRank example in Figure 5, IT CNT is materialized and
partitioned by src. The join between IT CNT and Score by src is
efficiently made by applying map-side join.

4.3 Incrementalization
We apply the automatic incrementalization technique in Section

3.2 to the query compiler. The implementation consists of
three parts; 1) the query compiler generates incremental query
plans when the operators are distributive, otherwise it generates
non-incremental query plans. 2) incremental query plans take delta
tables as input and they output both delta tables and original tables.
3) delta tables are stored in DFS so they can be accessed from
different iterations.

As we have seen in Section 3.2, the aggregation functions may
not be incrementally computed, so the query compiler generates
query plans, trees of operators, depending on whether the operators
are incrementally computed. When the operators are distributive,
they are incrementally computed by inputting delta tables and out-
putting both the original tables and their delta tables. Otherwise the
operators are computed in non-incremental manner. At the MapRe-
duce level, delta tables kept on DFS are obtained as follows. In the
first iteration, delta tables are obtained by joining the old and new
update tables and comparing new and old values of the modified
attributes. Remember that the modified attributes are detected at ta-
ble decomposition. After the first iteration, delta tables are obtained
as the result of executing delta-based query plans by inputting the
delta tables of the previous iteration.

In the PageRank example in Figure 5, score is a modified at-
tribute so the delta table for Score(dest, score) is extracted by
comparing the old and new values of Score table. Since the con-
vergence condition computes the difference between old and new
values of Score, the delta table extraction is optimized by being
shared with the convergence test. The query plan inputs the delta
table of Score and outputs both Score and its delta table.

The incremental computation of the k-means clustering in Figure
6 works as follows. In the first iteration, ΔCentroid is extracted
by comparing the old and new values of modified attribute pos in
Centroid. After the first iteration, ΔVT is obtained by inputting
ΔCentroid in the previous iteration to the first step query. Then
the new ΔCentroid is obtained by inputting ΔVT to the second
step query. Notice that the inner query of the first step query, which
locates the centroid in Centroid that is the closest data point in
IT, is rewritten into a query by using min operation. That is

IT.idGmin(distance(c.pos,IT.pos)) (Centroid).

Then, this query is incrementally evaluated except the following
case. For every tuple in IT , if ΔCentroid is removed from
Centroid and the minimum value in the previous iteration is
obtained from a centroid in ΔCentroid, the above query is not
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incrementally computed and the query executer falls back to
non-incremental query processing.

4.4 Other optimizations
In addition to the query optimization of OptIQ, we employ de-

sign patterns for SQL processing on MapReduce, map-side join
and memory-backed join in [16], and generate efficient MapRe-
duce jobs.

For the PageRank in Figure 5, the iterate clause of the query
is compiled into a single MapReduce job. As described before,
IT CNT is materialized and partitioned by src so the join between
IT CNT and Score by src is efficiently made by map-side join.
The join result is shuffled by ic.dest for group-by operation. The
reduce tasks computes the group-by operation and tests the con-
vergence condition. The shuffled result is aggregated to compute
sum(sc.score/ic.count) generating new Score and, then it is
joined with the old Score for the convergence test. This join is
computed only in the reduce tasks by employing the same idea of
the map-side join, since the new and old Score are partitioned with
the same key.

The iterate clause of the k-means clustering in Figure 6, which
consists of two step queries, is implemented in a single MapRe-
duce job. The first step query is compiled and optimized to apply
memory-backed join to every tuple in IT to locate the closest cen-
troid in Centroid, when the number of clusters are small. This
optimization is efficient because Centroid can be kept in memory
of map tasks. Then, data points are shuffled by the closest centroid
for the group-by operation in the second step query; this aggregates
a new position for each centroid in reduce tasks.

5. EXPERIMENTS
We demonstrate the effectiveness of OptIQ by removing redun-

dant computations from the running examples, PageRank compu-
tation and k-means clustering. We compare the performance of
OptIQ and Spark [29]. In addition, to avoid the overhead of access-
ing DFS between iterations in MapReduce, we also validate the
efficiency of the view materialization and the incrementalization
techniques implemented on top of Spark without implementing the
query compiler: we manually implement Spark version programs
for the running examples.

5.1 Hardware and Software Settings
The experiments were made on an 11-node cluster, a single mas-

ter and 10 worker nodes. Each node has a single 2.80 GHz Intel
Core 2 Duo processor running 64-bit CentOS 5.6 with 8GB RAM
and 1TB SATA hard disk. According to hdparm, the hard disks de-
liver 3.7GB/sec for cached reads and 97MB/sec for buffered reads.
The machine nodes are connected via a Fujitsu SR-S324 switch.

We implemented OptIQ on Hive 0.9 with Hadoop 1.0.3 and Or-
acle JDK 1.6.33. We used Spark 0.7.0. Hadoop uses a central job
tracker and a master daemon for a distributed file system (HDFS)
to coordinate node activities. To ensure that these daemons did not
affect the performance of worker nodes, we executed both of these
additional framework components on a master node in the cluster.
We deployed the system using the default configuration settings,
except for the changes indicated below by following the perfor-
mance tuning method written in [22]: 1) the sort buffer size is set
to 256MB instead of the default 100MB, 2) the JobTracker ran on
JVM with maximum heap size of 4096MB, and the NameNode/-
DataNode/TaskTracker ran on JVMs with maximum heap size of
1024MB. In addition, we configured the system to run two map
tasks and two reduce tasks concurrently on each node, so as to ef-
ficiently use the dual cores of the nodes. For Spark, we configured

Table 1: Statistics of datasets
dataset data # of # of file

type nodes edges size
wikimedia graph 9.4M 215M 2.05GB

webbase-2001 graph 118M 1020M 18.1GB

dataset data # of vector file
type vectors length size

US Census vector 2.5M 68 0.7GB
mnist8m vector 8.1M 784 16.8GB

the system to work similar to Hadoop, but set the memory size per
machine to 6GB. The distributed file system used HDFS to store
all input and output data. We also followed the performance tuning
method written in [22]: 1) data is stored using 256 MB data blocks
instead of the default 64MB, 2) with single replica, and 3) with-
out compression. We used the sequence file format, which is more
efficient than the text file format.

5.2 Workload
We used iterative queries of PageRank and k-means clustering.

We also made experiments on RWR queries and found that the re-
sults were similar to those of PageRank, so we omit them in this
paper. The damping factor for PageRank is set to 0.85 and ε is set
to 1% of the initial PageRank node score3. For k-means clustering,
the number of clusters, k, is set to 500 and ε is set to 0.14.

We used four datasets, two graph datasets for PageRank and two
vector datasets for k-means clustering. The statistics are shown in
Table 1. The graph datasets are wikimedia dump on 201206015 and
webbase-2001, a web graph6 crawled by Stanford Webbase project.
The vector datasets are US Census Data available at UCI machine
learning repository7 and mnist8m, handwritten digits data, which
is the largest dataset in LIBSVM data collection8.

5.3 Results
We measured the total response time, the time elapsed for each

iteration, and the number of converged data over iterations using
the above workload. The total response time is the response time
of each whole query. To evaluate the effectiveness of the view ma-
terialization and incremental view evaluation, we used three set-
tings, default, view, and view+incremental both on MapReduce and
Spark. The default setting is without OptIQ, the view setting is with
the view materialization technique of OptIQ, and view+incremental
setting is with both the view materialization and incrementalization
techniques of OptIQ. We utilize the filtering function in the incre-
mentalization technique.

5.3.1 PageRank
Figure 9 shows the results on the graph datasets, wikimedia and

webbase-2001. Overall, the incremental evaluation contributes sig-
nificantly to the total response time on MapReduce and Spark as
depicted in (a) and (d) in the figure. The combination of view mate-
rialization and incremental evaluation improved the total response
time by up to five-fold compared to the default setting. In detail,

3Both are the same settings used in REX [19].
4ε=0.1 is small relative to the diameter of the vector space; 74K in
US Census and 38M in mnist8m datasets.
5http://dumps.wikimedia.org/enwiki/20120601
6http://law.di.unimi.it/datasets.php
7http://archive.ics.uci.edu/ml
8http://www.csie.ntu.edu.tw/˜cjlin/libsvm
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(f) webbase-2001: convergence
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Figure 9: PageRank results (SP and incr. indicate Spark and incremental, respectively.)

(b) and (e) depict the response time over iterations. As expected,
the response time of the incremental evaluation decreases with the
number of non-converged nodes as shown in (c) and (f). The view
materialization without incremental evaluation reduced the total re-
sponse time by around 30%. Note, Spark runs faster than MapRe-
duce for wikimedia because Spark keeps data in-memory so DFS
is not accessed between iterations. However, it runs out of memory
in webbase-2001 since the data size of webbase is larger than wiki-
media. We also found that the combination of view materialization
and incremental evaluation on MapReduce is faster than the default
setting of Spark.

Note that the incremental setting requires fewer iterations to con-
vergence than the other settings. This is caused by the filtering
function that changes the accuracy of the result as we discussed
in Section 3.2.3. The filtering function additionally tests the con-
vergence on every node and if the score of the node satisfies the
convergence condition, it does not distribute its delta scores to the
neighbors. In contrast, the default setting always distributes the
scores of all nodes to the neighbors, so it requires more iterations.
How much error is caused by the filtering function? We measured
the average error rate of all nodes and found that it was close to ε
(Remember ε is set to 1% of initial node score); 1.3% in webbase-
2001 and 0.60% in wikimedia to the correct scores. We also con-
ducted experiences where ε was set to 0.1% of the initial node
score. The result showed that the response time of the incremen-
tal evaluation was slightly worsened (less than 3%), while the av-
erage error rate is improved five-fold to 0.20% in webbase-2001
and 0.16% in wikimedia. In addition, we evaluated ranking errors
caused by changing ε both in default and incremental settings. We
measured the ranking error of the top-1000 nodes when ε was set to
0.1% of the initial node score by assuming that the obtained rank-
ing is correct when ε is set to 0.01% of the initial node score in the
default setting. The ranking error is computed by using Spearman’s
rank correlation coefficient. The result showed that the default and
incremental settings provide seven nines and five nines of precise-
ness, respectively against wikimedia, and six nines and three nines

of preciseness, respectively against webbase-2001. This result in-
dicates that it is impossible to remove errors in PageRank computa-
tions by the iterative method. The incremental technique provides
users with high efficiency while permitting minor errors.

5.3.2 k-means clustering
Figure 10 shows the results on the vector datasets, US Census

and mnist8m, where the number of clusters, k = 500. Overall, the
results are similar to PageRank except the view setting. The in-
cremental evaluation significantly contributes to the total response
time as depicted in (a) and (d) in the figure; the total response time
was less than that of the default setting in both datasets. The re-
sponse time of the incremental evaluation in (b) and (e) decreased
with the number of non-converged nodes as shown in (c) and (f).
Spark runs three times faster than MapReduce on US Census but
runs out of memory on mnist8m due to the large data size. The
incremental setting requires fewer iterations to convergence than
the default setting. The reason is the same as for the PageRank ex-
ample. The average error of centroids was very small; it was 2.1
and 1.2 in US Census and mnist8m datasets, respectively, while the
diameter of the vector space was 74K and 38M for each.

We observed that the view setting does not improve the response
time compared to the default setting. We found that even if the
view materialization removes redundant computations by minimiz-
ing the write IO cost, it may increase the read IO cost. Compare the
original query for k-means clustering in Example 2.2 and the opti-
mized query in Figure 6. The write IO cost in the optimized query
is minimized by removing the redundant update on Point′.pos at-
tribute, however an additional join is required between VT and IT

in the second step query. Future work includes applying cost-based
query optimization to obtain more efficient queries with minimized
read/write IO cost.

5.4 Applicability of incrementalization
Incrementalization is applicable to queries written in our lan-

guage when the queries are distributed, that is, the distribution rules
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Figure 10: k-means clustering results (k=500. SP and incr. indicate Spark and incremental, respectively.)

shown in Figure 7 are applicable to the queries. Actually, our lan-
guage is powerful enough to implement the variations of PageRank
algorithms (personalized PageRank and RWR) and iterative clus-
tering algorithms such as k-means clustering and NMF. The ef-
fectiveness of incrementalization depends on the queries and input
datasets. For PageRank, the benefit of incrementalization comes
from the fact that PageRank scores of most nodes converge early.
This is caused by the power-law distribution found in real datasets,
web and social graphs [11]. For k-means, vector datasets in the
real world usually have large dependencies between dimensions
and there are separate clusters in different size. Since the change
of centroids has a local effect (only to neighbor clusters), the ma-
jority of clusters tend to converge in early iterations. Furthermore,
for NMF, one of popular methods is the multiplicative update rule
[14] that iteratively updates two matrixes and the computation can
be expressed in our query language. NMF also benefits from in-
crementalization; most elements of the two matrixes obtained from
real datasets converge early because of the power-law distribution.

6. RELATED WORK
This work is unique in its novel language-based approach (pro-

gram analysis and program transformation) to fully automatic opti-
mization of high-level iterative queries. It is strongly related to the
work on runtime extensions and new language constructs for sup-
porting iterative MapReduce processing, and was inspired by the
success of declarative languages and optimization frameworks for
MapReduce programming.

Iterative MapReduce Runtime Systems

There has been lots of work on iterative MapReduce runtime
systems for distributed memory architectures. For instance,
Twister [6], together with its extension Twister4Azure [23], is an
enhanced MapReduce runtime with an extended programming
model that supports iterative MapReduce computations efficiently.
It supports map/reduce tasks operating with both static and variable
data by introducing the configure phase to guide the map and

reduce the tasks that load (read) any static data while avoiding the
necessity of reloading static data in each iteration. Different from
these lower-level runtime support tools, our work focuses on a
high-level declarative programming framework for the automatic
construction of efficient iterative MapReduce programs.

Iterative MapReduce Programming Models

HaLoop [3] provides a set of new APIs for dealing with data
caching explicitly. It realizes the join of static data and state data
with an additional MapReduce job, and implements a flexible
task scheduler and caching techniques to maintain local access to
static data. In contrast to our work, HaLoop is not intended as a
high-level declarative language for expressing iterative queries;
rather, it focuses on efficient basic APIs for iterative MapReduce
programs.

iMapReduce [30] proposes the unique concept of persistent tasks
to avoid repeated task scheduling, and facilitates asynchronous ex-
ecution of map tasks within the same iteration to break the syn-
chronization barrier among MapReduce jobs. Spark [29] proposes
the concept of resilient distributed datasets (RDDs), which is a
read-only collection of objects maintained in memory across itera-
tions that supports fault recovery. Unlike iMapReduce and Spark,
which require explicit specification of persistent tasks or resilient
distributed data, we make full use of the techniques of program
analysis and program transformation to automatically detect static
data and persistent tasks (and thus simplifying iterative MapReduce
programming.)

To ease the automatic parallelization of iterative computations on
large-scale graphs, some graph-parallel abstractions (specific com-
putation patterns) have been introduced to encode computation as
vertex-programs that run in parallel and interact with each other.
Examples include the bulk synchronous message passing style of
Pregel [18], the GAS (gather, apply, and scatter) computation pat-
tern of GraphLab [17], and matrix multiplication of PEGASUS
[12]. In comparison, our automatic parallelization method targets
arbitrary queries and aims to deal with general computations on
large-scale graphs.
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Declarative MapReduce Programming

Our work was greatly inspired by the success of many studies on
high-level languages for making MapReduce programming easy.
HiveQL [27] provides a high-level query language that allows users
to write declarative queries, which are optimized and translated into
MapReduce jobs that are executed using Hadoop. Pig [8] resem-
bles Hive as it provides a user-friendly query-like language, called
PigLatin [20], on top of MapReduce. HadoopDB [1] adopts a hy-
brid scheme between MapReduce and parallel databases to gain
the benefit of both systems. It is interesting to see that an au-
tomatic optimization framework can be made to support general
SQL-like map-reduce queries [7] in MRQL. Unfortunately, none of
them support iterative MapReduce processing or its optimization,
which motivated us to investigate to what extent we may extend
these high level language frameworks (with effective optimization)
to iterative MapReduce computation.

Query Optimization in MapReduce

Comet [10] is a cost-based optimizer which shares computations
to remove redundancies both at the SQL level (shared SQL opera-
tions) and at the MapReduce level (shared scan and shuffling). YS-
mart [15] is a rule-based optimizer that exploits correlations among
input tables and operators that have the same partition key. All of
them are general query optimizers that pay no special attention to
iterative queries.

For incrementalization, REX [19] explicitly handles pro-
grammable deltas, where changes can be propagated from iteration
to iteration. However, programmable deltas rely on explicit
designation of table deltas, and require users to write SQL or Java
code to handle change propagation. Our incrementalization is fully
automatic.

7. CONCLUSION
We proposed OptIQ, a fully automatic query optimization ap-

proach for iterative queries with convergence property. OptIQ re-
moves redundant computations among different iterations and con-
sists of two techniques. The view materialization technique re-
moves redundant computations on unmodified attributes among it-
erations by introducing table decomposition and query lifting. The
incremental evaluation technique removes redundant computations
on unmodified tuples. We formalized delta table extraction and
derived incremental evaluation for iterative queries. In addition,
we described how iterative queries are compiled and OptIQ is im-
plemented in the MapReduce environment. Experiments on real
datasets showed that OptIQ achieves high efficiency.
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