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ABSTRACT
The First Law of Geography states “Everything is related to ev-
erything else, but near things are more related than distant things”.
This spatial significance has implications in various applications,
trend detection being one of them. In this paper we propose a new
algorithmic tool, GeoScope, to detect geo-trends. GeoScope is a
data streams solution that detects correlations between topics and
locations in a sliding window, in addition to analyzing topics and
locations independently. GeoScope offers theoretical guarantees
for detecting all trending correlated pairs while requiring only sub-
linear space and running time. We perform various human valida-
tion tasks to demonstrate the value of GeoScope. The results show
that human judges prefer GeoScope to the best performing base-
line solution 4:1 in terms of the geographical significance of the
presented information. As the Twitter analysis demonstrates, Geo-
Scope successfully filters out topics without geo-intent and detects
various local interests such as emergency events, political demon-
strations or cultural events. Experiments on Twitter show that Geo-
Scope has perfect recall and near-perfect precision.

1. INTRODUCTION
Geography plays an important role in various aspects of our lives.

As the first law of geography states “Everything is related to every-
thing else, but near things are more related than distant things” [33].
With the advent of the Web and later online social networks, the
“virtual” distance between Web users has dramatically decreased.
Yet, research shows that geographical locality still matters in our
choice of friends [35], our use of language and sentiment [26], as
well as topical interests [14].

Geographical signals can also be used to extract relevant infor-
mation from the public for crisis management [20]. Therefore, it
is critical to develop social network analysis tools that have a geo-
graphical focus. Most research in this area is restricted to offline ge-
ographical measurements [5, 26]. Recently, there has been effort in
online analysis of geo-trends [20, 31]. However, these works focus
on defining frameworks in which data is simply geographically cat-
egorized while the task of discovering geo-intent by considering the
correlation between locations and topics is not addressed. Given
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the large scale of data shared through online social networks, there
is need for algorithmic solutions that capture geo-intent and detect
informational trends in a scalable fashion. Our goal in this paper
is to provide such an algorithmic tool that uses sublinear space and
running time with approximation guarantees.

We aim to detect trends of true geographical nature rather than
simply identifying frequent elements in various locations. Global
trends, which incidentally would be trending in various locations,
carry no geographical significance and are irrelevant from the per-
spective of our study. In order to distinguish from such topics, we
focus on the challenging problem of identifying correlations of in-
formation items with different geographical places in an efficient
manner.

We propose GeoScope; an algorithmic tool for detecting geo-
trends in online social networks by reporting trending and corre-
lated location - topic pairs. GeoScope also captures the temporality
of trends by detecting geo-trends along a sliding window. The use
of different window sizes can also allow trends of different time
granularity to be detected. To the best of our knowledge, this is
the first work that detects spatial information trends in social net-
works by capturing correlations in a multi-dimensional data stream.
GeoScope has provable accuracy guarantees even though it requires
sublinear memory and amortized running time. Such a scalable al-
gorithmic tool can be used in real large-scale social networks to
provide reliable and online detection of local interests or even cri-
sis events. Our analysis on a Twitter data set shows that GeoScope
detects significant events ranging from emergency events to politi-
cal demonstrations to concerts and sports events. The fast detection
of emergency events such as the March 11 Japan earthquake indi-
cate the possible value of GeoScope in crisis management [30].

In §2, we start by summarizing related work. In §3 we introduce
the characteristics that an ideal geo-trend detection tool should have
and show that an exact on-line solution is not scalable. In §4, we
propose an approximate solution, called GeoScope, and provide
proofs of its accuracy and efficiency. Next, GeoScope is experi-
mentally evaluated in §5. Finally, §6 concludes the paper.

2. RELATED WORK
Here we provide an overview of studies in social networks and

data streams research that relate to the problem studied in our paper.
Social Networks Analysis: Trend detection in social networks

has been an important research area in the recent years [13, 17, 19,
2]. Kwak et al. [17] study trending topics reported by Twitter and
compare them with trends in other media, showing that the major-
ity of topics are headlines or persistent news. In [19] Leskovec et
al. study temporal properties of information by tracking “memes”
across the blogosphere. Teitler et al. [31] collect, analyze, and dis-
play news stories shared in Twitter on a map interface. Hong et
al. [14] focus on user profiling from a geographical perspective by
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modeling topical interests through geo-tagged messages in Twitter.
MacEachren et al. [20] aim to identify significant events in different
localities for crisis management. Another framework for detecting
spatiotemporal topics has been introduced in the context of online
blogs [7]. These studies provide high level frameworks while we
provide an efficient algorithmic tool with accuracy guarantees.

Geo-tagging social content is an important sub-task in our study
[5, 36, 9]. Cheng et al. [5] develop a probabilistic framework to
identify city-level user locations based on tweet content. However,
this solution requires a large number of tweets per person for high
accuracy. It is also a batch process while our goal is to detect trends
in a streaming fashion requiring geo-tagging to be performed in
an ad-hoc manner. Other studies [36, 9] give accurate aggregate
results but have low performance per user. Instead of such Bayesian
models with large error margins, we use simple methods to extract
place names from tweets and user profiles.

Data Streams and Detecting Significant Co-occurences: Al-
gorithms for answering frequent elements queries (heavy-hitters)
are broadly divided into two categories: sketch-based and counter-
based. In the sketch-based techniques [4, 6, 16], the entire data
stream is represented as a summary sketch which is updated as the
elements are processed. The counter-based techniques [24, 21, 8]
monitor a subset of the stream elements and maintain an approx-
imate frequency count. Although our method relies on frequent
element detection, it necessitates frequent element detection in the
multidimensional space. Therefore, we cannot directly apply ap-
proaches developed in the context of heavy-hitters.

There has been some effort in multi-dimensional data streams [18,
25, 37]. The closest study to our paper is presented in [25] which
addresses the problem of fraud detection in Internet advertising.
The proposed solution, SLEUTH, models single-publisher attack
discovery as a problem of finding correlations in multidimensional
data consisting of two dimensions; the publisher, and the IP address
of a machine. They detect correlated publisher-IP pairs to detect
fraudulent behavior. SLEUTH does not support deletions and there-
fore extracts correlated items from the entire data stream. Unlike
SLEUTH [25], GeoScope is a sketch based solution that allows for
a sliding window implementation. Moreover, SLEUTH makes the
assumption that the traffic characteristics of non-fraudulent pub-
lishers and IPs are stable. Such an assumption is not applicable in
online social networks where trends are highly temporal. Lappas et
al. [18] study burstiness in documents in a spatiotemporal manner.
While their methodology also captures the notion of geography and
time, it focuses on data burstiness and not geo-intent. In [37], the
authors consider correlations between time series in a sliding win-
dow and solve this problem through Discrete Fourier Transforms
and a three level time interval hierarchy. This study detects corre-
lations between time series rather than data items.

Identifying significant co-occurrences is also an important prob-
lem for the data mining and information retrieval communities [27,
37, 22]. In [27], the authors detect emerging concepts in textual
data mining and identify related concepts through a co-occurrence
computation. This task is performed through an expensive full ma-
trix computation, making this technique impractical to apply on on-
line trend detection problems. [22] assesses the co-occurrences of
keywords in recent tweets to group them together. For this purpose,
a small list of recent tweets is retrieved for each bursty keyword and
keywords that are found to co-occur in a relatively large number of
recent tweets are placed in the same group. Unfortunately, the au-
thors do not provide the details of their algorithm. BlogPulse [12]
is another service that discovers trends from blogs on a daily basis.
It combines a number of statistical techniques for finding trend-
ing phrases based on their frequency of appearance in relation to

other phrases. Then, a clustering technique is applied on the trend-
ing phrases to build clusters that are characterized by phrases that
frequently co-occur in blogs. Note that, similar to [27], this study
presents an expensive solution based on full matrix computations
while our goal is to approximately solve this problem. [1] consid-
ers the correlation between two items as their mutual information.
The authors use a random sample of relevant documents along with
the precomputed IDF values to approximate the mutual informa-
tion for two keywords. Note that the precomputation of IDF values
eliminate the possibility of a streaming solution.

3. DETECTING GEO-TRENDS
In this section, our goal is to identify the characteristics that com-

prise a useful geo-trend detection tool. We aim to define which lo-
cations, topics and correlations are necessary and sufficient to pro-
vide a rich geo-trend detection tool. These characteristics lead to
the three main premises of our algorithmic design.

We denote the set of all topics as T = {t1, t2, ...,} and the set of all
locations as L = {l1, l2, ...}; |T | and |L| denote the number of topics
and locations. We refer to the stream of location-topic pairs of the
form (li, t j) as S. Note that various social networks can easily be
mapped to this generic framework. By introducing GeoScope under
such a framework, we aim to provide a trend detection tool that has
wide applicability. In the following sections we will assume that
the number of distinct topics and locations are known in advance
and do not change. However, our solution also works for such cases
by simply creating larger sketches as the data range grows [16].

3.1 Geo-Trend Basics
A basic geo-trend detection tool should provide a high level over-

view of the popularity of locations and topics. Such a tool should
answer queries such as “What fraction of the mentions in the cur-
rent time window are about topic tx (or from location li)?” effi-
ciently and accurately. This notion can be formalized by the fol-
lowing premise:

PREMISE 1. The frequency of any topic tx and any location li
in the current time window should be reported in an accurate and
timely fashion.

As Premise 1 states, we focus on detecting trends in the current
time window; therefore the solutions that will be introduced from
now on are based on a sliding window notion. The size, either
defined as a maximum number of (li, tx) to keep track of or a time
period such as a day or an hour, is set by the user. This premise
ensures tracking global trends in the social network. Not only can
one identify the interesting topics but also keep track of most active
geographical locations in the network. This task can be achieved by
traditional heavy hitters approaches and has already been addressed
to a large extent in recent research. In this paper, we aim to reach
beyond that and identify geo-trends that provide the link between
the topics and locations by capturing the correlation between the
two. Consider a stream consisting of pairs (li, tx) where li is the
geo-origin of a tweet and tx is the topic of the tweet. In this context,
geo-trends can be captured through the following premise:

PREMISE 2. All significantly correlated location-topic pairs in
the current time window can be retrieved at any particular time in
an efficient and accurate manner. A location-topic pair (li, tx) is
significantly correlated if at least φ fraction of all mentions from
location li are about topic tx and at least ψ fraction of all mentions
about topic tx are from location li.

Here φ captures the dominance of topic tx in location li and ψ cap-
tures the support of location li for topic tx. Assume the following
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list of location-topic pairs: {(l1, t1), (l2, t1), (l3, t1), (l1, t2), (l1, t3),
(l2, t3), (l2, t3)} and that φ=ψ= 0.5. The only correlation reported
based on Premise 2 is (l2, t3). Correlation (l1, t2) is not reported
even though l1 has enough support for t2 since t2 is not dominant
in l1. A similar filtering can be observed for the correlation (l3, t1)
since t1 is a global trend, appearing equally in all three locations
and hence, l3 lacks support for t1. Through this premise, the geo-
trend detection tool captures the interests in different localities and
provides means for serving important applications such as crisis
management.

We rely on the dominance (φ) and support (ψ) parameters rather
than just statistically significant correlations. Statistical analysis
can compute the association strength between a pair of location
and topic by comparing their expected and observed frequencies.
The χ2 statistic is a classical method commonly used for this type
of analysis. While, the notion of statistical significance [11] is an
interesting concept, the application of statistical methods such as
χ2 test would reject most null hypotheses, i.e. a location-topic pair
not being correlated, due to the large sample size [3]. This would
result in unmanagable or even meaningless correlations being de-
tected. Therefore, we believe leaving the choice of φ and ψ to be
determined based on the specific application is more practical and
useful compared to the detection of statistically significantly corre-
lated location-topic pairs.

One other important characteristic of a useful trend detection tool
is its ability to filter out insignificant information. Given the large
number of locations and topics and their Zipfian distribution of pop-
ularity, a scalable and useful trend detection tool should also filter
out unpopular correlations. Consider a hypothetical location li con-
sisting of only one user who is interested in a highly uncommon
topic tx. If there are no restrictions on the significance of loca-
tions, the pair (li, tx) would be reported as a correlated pair. Given
the Zipfian nature of popularity of locations and topics, it is easy
to see that the list of correlations involving such locations would
grow large. In order to avoid reporting an unmanageably large list
of location-topic correlations, there should be a lower bound on the
importance of a given location for it to be reported by the geo-trend
detection tool. This leads us to the final premise of our algorithm:

PREMISE 3. Geo-trend detection should identify a list of “all”
and “only” the locations that are at least θ-frequent in the current
time window and limit the reported correlations to such locations.

A θ-frequent location in a window of N elements is a location that
occurs at least θN times where 0 ≤ θ ≤ 1. Through this premise,
geo-trend detection is guaranteed to capture significant locations
while also keeping the number of reported locations at a manage-
able size. Such a requirement also filters out locations for which
there is not enough data to infer any geographical interest. Given
that Premise 2 dictates a correlation to be reported only if both the
location and the topic are heavy-hitters for each other, Premise 3
also ignores unpopular topics by eliminating unpopular locations.
This is because unpopular topics cannot be frequent for popular
locations; the only locations tracked for correlations.

So far we defined geo-trends where locations represent the geo-
origin of information. A similar definition could be constructed to
detect the correlations in a stream of pairs (ly, ty) where l j is the
geo-focus of the shared content and ty is the topic. In this case,
the location-topic pair (ly, ty) is significantly correlated if at least φ

fraction of all mentions about location li are also about topic tx and
at least ψ fraction of all mentions about topic tx are about location
li. Again, the correlations are filtered due to Premise 3, meaning
no correlation whose geo-focus is a location with less than θ ∗N
occurrences in a window of N elements gets reported.

Next, we will provide the formal problem definition that ad-
dresses the three premises introduced above.

3.2 Problem Definition
Given a stream S of location-topic pairs of the form (li, t j) and

three user defined frequency thresholds θ, φ, and ψ in the interval
[0, 1]; our goal is to keep track of (i) the frequencies F(li) (F(tx))
of all locations li (topics tx) and (ii) all pairs (li, tx) s.t. F(li) >
dθNe, F(li, tx) > dφF(li)e, and F(li, tx) > dψF(tx)e in the current
time window. Here F(li, tx) is the number of pairs on topic tx from
location li; F(li) is the number of the pairs from li in the current
time window; and F(tx) is the number of pairs on tx. The window
size can be set in terms of the number of elements or an actual
time window. In the former case, the number of elements N in
the current window is defined by the user. Since the frequency of
each topic and location is tracked, Premise 1 is satisfied. As all the
correlated pairs are determined, Premise 2 is captured by definition.
Finally, by setting F(li)> dθNe we ensure Premise 3.

3.3 Exact Solution
An exact solution that solves the problem described in Section

3.2 requires keeping track of all possible pairs in a given window.
We will prove this statement, by focusing on Premise 2 alone. The
full solution that also satisfies Premises 3 and 1 is at least as hard.

THEOREM 3.1. Any exact solution for the problem of detecting
geo-correlated trends in a sliding window requires keeping exact
and complete information about all pairs in the given window.

PROOF. Given a stream S= {..., ti+1, ti+2, ..., ti+m, ...} and a win-
dow size m, construct a 2-dimensional stream as follows, S′ =
{...,(l1, ti+1),(l1, ti+2), ...,(l1, ti+m), ...}, by appending some loca-
tion l1 as the first value of every pair. An answer to the query about
correlations at time step i+m in the constructed stream with thresh-
olds φ and ψ = 1− 1

m and θ = 1 can be directly translated into an
answer to a query about frequent elements in the original stream
with threshold φ. Therefore, answering the correlated geo-trend
query in S′ is equivalent to answering the frequent elements query
in S which requires complete information about all elements.

Given Theorem 3.1, the large number of distinct topics and loca-
tions that are usually encountered on online social networks create
significant challenges. For instance as we later discuss in Section
5.1, there are over 50K cities and over 2.3M unique topics in our
dataset which results in over 115 billion different possible pairings.
The rate at which information is shared introduces yet another chal-
lenge. For instance, there are on average 400 million tweets shared
on Twitter per day [34]. Due to such challenges, the exact solu-
tion of keeping track of all possible pairs of locations and topics
becomes infeasible. To address this we propose an approximation
method with sub-linear memory and processing requirements.

4. GeoScope
Given the infeasibility of the exact solution, we now propose

GeoScope that requires sublinear memory and amortized running
time while still providing accuracy guarantees. The main idea be-
hind GeoScope is to limit the number of monitored locations by
tracking those that are at least θ-frequent and to further limit the
number of monitored topics by tracking a topic tx only if tx is φ-
frequent for at least one location and then only track ψ-frequent
locations for each such topic. Given that there can be at most d 1

θ
e

θ-frequent locations at a given time, each of which can have up
to d 1

φ
e topics that are φ-frequent, the number of elements to track

can be bounded by a small number. As we will demonstrate later
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Figure 1: Overview of GeoScope Data Structures: Location-StreamSummary-Table (on the left) keeps track of φ-frequent topics for
θ-frequent locations. Topic-StreamSummary-Table (on the right) keeps track of ψ-frequent locations for each topic that is φ-frequent
for at least one location. Here the third most important topic for Loc1 is T1 and the second most important location for T1 is Loc1

on, in order to provide accuracy guarantees, GeoScope relaxes the
number of locations to track from d 1

φ
e to d 1

φ−ε
e where ε� θ.

4.1 GeoScope Data Structures
An overview of GeoScope ’s structure is provided in Figure 1. In

this section we briefly describe GeoScope and its subcomponents.
As it can be seen in Figure 1, GeoScope consists of two main com-
ponents. The first component, Location-StreamSummary-Table, con-
sists of a hashtable and a sketch structure. The sketch structure is
required to enable deletions, something necessary for a sliding win-
dow solution. It keeps track of frequencies of locations by allowing
both insertion and deletion operations and guarantees that the real
frequencies are never underestimated [16]. The second subcom-
ponent of Location-StreamSummary-Table is a hashtable that con-
tains a StreamSummaryli structure for each location li that has a
current estimated relative-frequency of at least θ. Given the nature
of the sketch structure, the estimated relative-frequency is never
an underestimation, therefore all locations with at least θ relative-
frequency are guaranteed to be in Location-StreamSummary-Table.
StreamSummaryli monitors the φ-frequent topics for location li.
Since deletions need to be supported to maintain the list of φ-frequ-
ent topics for locations, this summary structure is also maintained
thro-ugh a sketch-based solution. Consider a case where a pair
(li, tx) that expired is to be deleted from the data structures. Stream-
Summaryli should only be updated to reduce F(li, tx), if (li, tx) oc-
curred after StreamSummaryli was created. Therefore, Stream-
Summaryli also includes a time-stamp T Sli recording the time it
was created. In the case where the window size is set based on the
maximum number of elements rather than real time, the timestamp
will be based on the sequence number of pairs in S.

The second component given in Figure 1 is the Topic-StreamSum-
mary-Table, a hashtable that monitors the topics that are potentially
correlated with at least one location and a sketch structure to keep
track of the topic frequencies. Through such an implementation,
Premise 1 can also be addressed. The topics in this table are deter-
mined by the topics that appear in at least one StreamSummaryli for
location li that is θ-frequent in the current window. For each such
topic tx in Topic-StreamSummary-Table, there is a data-structure
pair <Counttx ,StreamSummarytx > where countx is the number of
locations tx is φ-frequent for and StreamSummarytx monitors the
ψ-frequent locations for topic tx. StreamSummarytx will be main-
tained as long as countx is positive. As soon as this number reaches

0, the structure StreamSummarytx is deleted freeing the space used
by <Counttx ,StreamSummarytx >. Similar to the stream summary
structure for locations, StreamSummarytx includes a time-stamp
T Stx of when StreamSummarytx was created.

An important sub-component of GeoScope that is leveraged in
both Location-StreamSummary-Table and Topic-StreamSummary-
Table is the sketch structure. This structure consists of a hashtable,
S[m][h], along with h hash functions. Given a range of elements
from 1 to M, an item k in this range has a set of h associated coun-
ters and these counters are increased (or decreased) when encoun-
tering an insert (or delete) operation of element k. Clearly, the val-
ues for m and h should be set such that the collisions are minimized
and guarantees can be given for bounds on overestimation. It has
been shown that, e

ε
. ln(−M

ln p ) counters are needed to estimate each
item with error no more than εN in a window of size N with prob-
ability p by setting m = e

ε
and h = ln(−M

ln p ) [16].
Given that the φ-frequent topics for a given location li are tracked

only after li becomes θ-frequent and a topic tx is tracked only after it
becomes φ-frequent for at least one location, we need to show how
GeoScope satisfies Premises 3, 1 and 2. To this end, we first give
the intuition as to how these premises are still satisfied under our
approximation. Premises 3 and 1 are relaxed to allow for a small
error ε and to be guaranteed probabilistically. For this purpose,
GeoScope requires two additional parameters ε and p in addition to
the parameters θ, φ and ψ as described in Section 3.2. The parame-
ter ε captures the allowed error rate while p captures the probability
of remaining within this error rate.

In reference to Premise 1, instead of guaranteeing to capture the
relative frequency of each topic and location exactly, GeoScope
guarantees that for any topic tx and any location li, its true rela-
tive frequency is overestimated by no more than ε with probability
p but never underestimated. Note that theoretically, the ε and p
values used to determine the error for locations and topics could
potentially be distinct values. For ease of presentation we choose
the same ε and p values for locations and topics. Also, in refer-
ence to Premise 3, even though an exact counter for each location
is not kept, through the use of the sketch structure in Location-
StreamSummary-Table, GeoScope guarantees detecting all locations
li s.t. F(li)≥ θN. It also guarantees that no location l j s.t. F(l j)<
(θ− ε)N is reported. Lastly, the relative frequencies of locations
can be overestimated by no more than ε with probability p but never
underestimated.
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In reference to Premise 2, GeoScope guarantees capturing all
trending correlated pairs of locations and topics rather than all cor-
related pairs. Here the notion of trending refers to a non-decreasing
significance. Most importantly, GeoScope satisfies this premise de-
terministically which guarantees perfect recall values. While it is
important to capture correlations in general, the really important
task is to detect trending correlations, i.e. correlations that have an
increasing value over time. For instance, consider two hypotheti-
cal correlations (Los Angeles, 405 Traffic) and (Los Angeles, earth-
quake). Traffic in freeway 405 in Los Angeles is a general topic
of interest resulting in a stable interest in the topic. In contrast, a
recent hypothetical earthquake would result in increasing interest
and therefore increasing value of correlation. While capturing both
cases is important, it is crucial to guarantee capturing the latter.
Even though GeoScope is only guaranteed to capture the trending
correlations, as we will demonstrate in Section 5 it in fact captures
all correlated pairs for various θ,φ and ψ settings. Similarly, even
though there are no guarantees on the precision performance, as we
show in Section 5, GeoScope provides near-perfect precision.

4.2 GeoScope Operations

Algorithm 1 Insert (li, tx, ts)
1: F(li)← F(li)+1
2: if li turned θ-frequent then
3: Create StreamSummaryli with timestamp ts for location li
4: if li is θ-frequent then
5: Fli(tx)← Fli(tx)+1
6: if tx turned φ-frequent for li then
7: StreamSummaryli = StreamSummaryli ∪{tx}
8: Increase Counttx
9: for all l j turned θ-infrequent do

10: for all ty ∈ StreamSummaryl j do
11: Decrease Countty
12: Delete StreamSummaryl j

13: for all ty turned φ-infrequent for location li do
14: StreamSummaryli = StreamSummaryli \{ty}
15: Decrease Countty
16: F(tx)← F(tx)+1
17: if tx ∈ Topic-StreamSummary-Table then
18: Ftx(li)← Ftx(li)+1
19: if li turned ψ-frequent for tx then
20: StreamSummarytx = StreamSummarytx ∪{li}
21: for all l j turned ψ-infrequent for tx do
22: StreamSummarytx = StreamSummarytx \{l j}

There are three operations that are allowed at a given point: in-
sert, remove and report. Each incoming stream element of the form
(li, tx) needs to be inserted into the data structure. As the sliding
window moves along, expired mentions should be removed. Note
that a sliding window can be set either in terms of number of el-
ements to be maintained or the period of time defined in terms of
minutes, hours, days etc. The pseudo-code for insert and remove
operations is provided in Algorithms 1 and 2. Due to space limi-
tations, we omit the pseudocode for the report algorithm that goes
through the structures and reports correlated pairs.

In Algorithm 1, lines (1-15) perform updates due to the occur-
rence of li. Lines (1-8) capture the steps that need to be taken to
incorporate the addition of the new mention in location li. In line
1, F(li)← F(li)+1 entails updating the sketch structure that keeps

track of location frequencies. Similarly, Fli(tx) ← Fli(tx) + 1 (as
given in line 5) entails updating the sketch structure in StreamSum-
maryli to increase the value of tx for location li. If tx becomes φ-
frequent for location li after this insertion, Topic-StreamSummary-
Table needs to be updated to increase the number of locations tx
is trending for. If this count was zero before this operation, a new
StreamSummarytx will be created with timestamp ts and counter
1. Since the number of items increase with an insert operation, it
is possible that a location whose frequency has not changed be-
comes θ-infrequent. Lines (9-12) remove such items and update
the Topic-StreamSummary-Table for topics that were φ-frequent for
such locations. Decreasing Countty also entails removing Stream-
Summarytx if the counter becomes 0. Similarly, since the number
of mentions in location li increases, there could be topics whose
frequency has not changed and yet became φ-infrequent. Such
cases are handled through lines (13-15). Starting from line 16, the
changes to Topic-StreamSummary-Table are performed to capture
the mention about topic tx. First, the value of tx is increased to sat-
isfy Premise 1 as given in line 16. This entails updating the main
sketch structure of Topic-StreamSummary-Table. Next, if tx is al-
ready being tracked, StreamSummarytx is updated to capture the
new mention from location li.

In Algorithm 2 we present the steps that need to be taken for a
remove operation. Here Lines (1-11) incorporate the reduction in
the mentions from li while Lines (12-17) perform the deletion of
tx. Note that when an element is deleted the total number of el-
ements in the given window decreases. In this case, there could
potentially be a location l j whose frequency is stable yet becomes
θ-frequent. In order to avoid checking the frequency of each cur-
rently θ-infrequent location with every remove operation which
would hurt the efficiency of GeoScope, we omit the creation of such
StreamSummaryl j . Even if such a summary were to be created, the
set of topics in it would be empty. Therefore there is no penalty
in omitting this action, the next time there is a mention from l j,
this stream summary will be created. The same is true for topics
becoming φ-frequent for li, or locations becoming ψ-frequent for
tx. All such operations are omitted for efficiency purposes, while
preserving precision guarantees.

Algorithm 2 Remove (li, tx, ts)
1: F(li)← F(li)−1
2: if li is θ-frequent then
3: if T S(StreamSummaryli)≤ ts then
4: Fli(tx)← Fli(tx)−1
5: if tx turned φ-infrequent for li then
6: StreamSummaryli = StreamSummaryli \{tx}
7: Decrease Counttx
8: if li turned θ-infrequent then
9: for all ty ∈ StreamSummaryli do

10: Decrease Countty
11: Delete StreamSummaryli

12: F(tx)← F(tx)−1
13: if tx ∈ Topic-StreamSummary-Table then
14: if T S(StreamSummarytx)≤ ts then
15: Ftx(li)← Ftx(li)−1
16: if li turned ψ-infrequent for tx then
17: StreamSummarytx = StreamSummarytx \ li

4.3 Running Time and Memory Requirements
Memory Requirements: A feasible geo-trend detection solu-

tion should be sub-linear in its space usage given the large scale of
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data. In this section we provide proofs that GeoScope is sub-linear
in both the number of locations and topics.

THEOREM 4.1. GeoScope requires

O( e
ε∗(θ−ε)

(ln(− |T |
ln(p) )+

ln(− |L|
ln(p) )

φ−ε
)+ 1

(θ−ε)(φ−ε)(ψ−ε)
) memory.

PROOF. There are two main substructures: location table and
topic table. The location table consists of the main sketch struc-
ture that tracks occurrences of locations in the window and re-
quires ml ∗ hl counters. In order to fulfill Premise 3 that entails
estimating the frequency of locations with error no more than εN
with probability p, these values should be set as ml =

e
εl

and hl =

ln(− |L|ln pl
) [16]. At a given time there are up to d 1

θ−εl
e locations be-

ing tracked for which a list of top topics should be maintained. For
each of these d 1

θ−εl
e locations, mlt ∗ hlt counters are required for

the sketch structure s.t. mlt =
e

εlt
and hlt = ln(− |T |ln plt

) since pairs
also need to be maintained to satisfy Premise 2. For each location,
up to d 1

φ−εlt
e topics are tracked.

The second main substructure is for keeping track of important
topics. The topics table consists of the main sketch structure that
tracks occurrences of topics in a given window and requires mt ∗ht
counters. In order to fulfill Premise 1 that entails capturing topic
frequencies correctly, these values should be set as mt =

e
εt

and

ht = ln(− |T |ln pt
). For each tracked topic, a list of locations needs to

be tracked. Since there are at most d 1
θ−εl
e locations tracked and

for each location there are at most d 1
φ−εlt
e topics tracked, there

are at most d 1
θ−εl
ed 1

φ−εlt
e distinct topics in the topic table. For

each of these topics, mtl ∗ htl counters are required for the sketch
structure s.t. mtl =

e
εtl

and htl = ln(− |L|
ln ptl

) since pairs also need
to be maintained to satisfy Premise 2. In addition, there are at
most d 1

ψ−εtl
e locations tracked for each topic. Adding all these

together, and simplifying the system by setting all ε{l,t,lt,tl} = ε

and p{l,t,lt,tl} = p, in total, the memory requirement sums up to

O( e
ε∗(θ−ε)

(ln(− |T |
ln(p) )+

ln(− |L|
ln(p) )

φ−ε
)+ 1

(θ−ε)(φ−ε)(ψ−ε)
).

Running time requirements: There are two possible update op-
erations at a given time: an insert or a remove of a location-topic
pair. Both of these operations have amortized log-linear running
time. Due to space limitations, we skip the proof for the remove
operation and note that it is very similar to the proof provided for
the insert operation as provided below:

THEOREM 4.2. The amortized running time for an insert oper-
ation in GeoScope is O(log(− |T |

log(p) )+ log(− |L|
log(p) ))

PROOF. The steps that need to be taken for an insert are given in
Algorithm 1. Line 1 requires updating the sketch structure which
entails h = log(− |L|

log(p) )) operations. Lines 2-3 create an empty
stream structure if li becomes θ-frequent with the insertion of the
new item. This clearly is a constant time operation. In the case
where li was (or became) θ-frequent (Lines 4-8), StreamSummaryli
needs to be updated to include the addition of tx. This entails up-
dating StreamSummaryli and possible insertions/deletions of the
φ-frequent topics for li. Even with a conservative setting for the
sketch structure that assumes all topics can be mentioned at a given
location, the sketch update requires h = log(− |T |

log(p) ) operations
and the updates to the substructure is amortized-constant time. For
the locations that have become θ-infrequent (Lines 9-12), the dele-
tion operation is also constant time, however, with a non-constant

number of such topics, the number of operations can become quite
large. Since a location can only be deleted as many times as it is
inserted to the stream summary and since by construction, a lo-
cation l j is inserted into the summary only when there is a tuple
(l j, ty), we can conclude that the deletion operation has amortized
constant time. Lines (13-15) requires amortized constant time for
the same reason. In order to keep track of frequent global-level
topics, sketch structure for topics is updated regardless of the topic
being tracked or not requiring h = log(− |T |

log(p) ) operations (Line
16). If topic tx is being tracked (Lines 17-22), StreamSummarytx
has to be updated which entails updating the sketch structure for
tx (Line 18: h = log(− |L|

log(p) ))), adding li to StreamSummarytx if
it became ψ-frequent (constant time) and deleting locations that
became infrequent for tx (amortized constant time). Adding all
those operations together, amortized processing time for an insert
is O(log(− |T |

log(p) )+ log(− |L|
log(p) )).

4.4 GeoScope Accuracy Guarantees
Although GeoScope monitors the traffic of locations and top-

ics approximately, its accuracy is very high. Here, we prove that
GeoScope has guaranteed perfect recall in detecting trending cor-
related pairs where trending is defined based on non-decreasing
relative frequency. The accuracy is defined w.r.t. the exact cor-
related pair computation. Before we delve into the proof of this
statement, we introduce the notion of trending correlation.

DEFINITION 1. A topic tx is trending for location li if and only
if G[ts′,ts](li, tx)≤ G[ts−w,ts](li, tx) where ts−w≤ ts′ ≤ ts and

G[ts1,ts2](li, tx) =
F[ts1 ,ts2 ](li,tx)
F[ts1 ,ts2 ](li)

, F[ts1,ts2](li, tx) denotes the number of

occurrences of the tuple between the time frames ts1 and ts2 and
F[ts1,ts2](li) denotes the number of occurrences of location li.

DEFINITION 2. A location li is trending for topic tx if and only

if H[ts′,ts](li, tx)≤H[ts−w,ts](li, tx), where H[ts1,ts2](li, tx)=
F[ts1 ,ts2 ](li,tx)
F[ts1 ,ts2 ](tx)

,

F[ts1,ts2](li, tx) denotes the number of occurrences of the tuple be-
tween the time frames ts1 and ts2 and F[ts1,ts2](tx) denotes the num-
ber of occurrences of topic tx.

Next, we define a trending correlated pair as follows:

DEFINITION 3. A location-topic pair (li, tx) is a trending cor-
related pair if and only if tx is a trending topic for li and li is a
trending location for tx.

Finally, we prove that GeoScope has perfect recall guarantee un-
der the definition of trending correlated pairs. Although only trend-
ing correlations are guaranteed to be captured, we show in Section
5 that in practice GeoScope succeeds in detecting all correlated
pairs. It also has a near perfect precision.

THEOREM 4.3. At any given time ts, all trending correlated
pairs in the time window ending at ts are reported by GeoScope.

PROOF. Consider a particular time window that spans over the
period [ts−w, ts], where ts is the end of the window and w is the
time window size and includes N tuples. Since (li, tx) is a trend-
ing correlated pair, by definition F(li) ≥ θN and therefore li is
guaranteed to be tracked. Let the time li starts being tracked be
denoted by tsli s.t. 0 ≤ tsli ≤ ts. Given the trending property,
G[tsli ,ts]

(li, tx)≥G[ts−w,ts](li, tx)≥ φ∗F[ts−w,ts](li). Therefore, topic
tx will also be tracked at a time tslt ≤ ts which means tx is guar-
anteed to be captured in the topics table. Since H[tslt ,ts](li, tx) ≥

234



H[ts−w,ts](li, tx) ≥ ψ ∗F[ts−w,ts](tx), location li will also be tracked
for topic tx. Given the trending property, such frequencies will only
increase in time guaranteeing that by ts, the pair will sustain its
correlated property.

5. EXPERIMENTS
Here, we first introduce the data set used in this study and pro-

vide a high level analysis. Next, we demonstrate the value of geo-
correlated trends by focusing on the types of topics and locations
that are detected by GeoScope. Finally, we evaluate the effect of
parameters θ,φ,ψ as well as the window size on the accuracy and
efficiency of GeoScope . Throughout the experiments we chose
ε = 0.0004 and p = 0.99 to allow for small error.

5.1 GeoScope Case Study: Twitter
Given the widespread use of Twitter, we demonstrate the use-

fulness of GeoScope on the Twitter platform. Since tweets are re-
stricted to at most 140 characters long, Twitter users use hashtags
to convey their thoughts in a compact manner [29]. Therefore, we
choose hashtags to capture topics. As for the definition of loca-
tions, we focus on cities since this resolution is large enough to
capture local interests and not too small to result into meaning-
less correlations. It also results in interpretable results that map to
real events happening in different cities of the world. We note that
GeoScope can easily be adapted to other topic definitions such as n-
grams, urls and named entities. Similarly, locations can be defined
as states or arbitrary bounding boxes. We skip such analysis due
to space limitations and leave such a broad exploration as future
work.

For our experiments we used Twitter statuses (tweets) from Febru-
ary 1st to June 18th 2011. The data is extracted through Twit-
ter’s public API (GardenHose) and constitutes∼ 10% of the overall
Twitter statuses of that time period. The average number of tweets
per day is 14.2M (with a total of 2 billion for the whole period). Af-
ter geo-tagging, a procedure described below, we obtained a total
of 378,941,219 labeled datapoints, out of which 63M also include
a hashtag. The number of unique users in our data set is 46M. The
geographical data was obtained from [23], which contains complete
hierarchical information and coordinates for approximately 50,000
cities from all the countries and regions of the globe.

Geo-tagging Twitter Content: There are two types of geo-
graphical information that can be associated with a given tweet:
the location the tweet is shared from (geo-origin) and the location
the tweet is about (geo-focus). Our trend detection solution can be
applied to both cases. In this paper, we focus on geo-trends when
location is based on geo-origin and skip the analysis of geo-focus
due to space limitations. To identify the geo-origin of a tweet, we
utilize two signals: tweet and user location. Tweet location is pro-
vided explicitly by the Twitter API in the form of a latitude and
longitude pair. However, only 1.5% of tweets’ geo-origin are iden-
tified through this method. The second signal, user location, is a
user provided free-form text that carries more noise [36]. We ex-
tract this information by parsing the location string and identify-
ing pairs of (longitude, latitude), (city-name, region-abbreviation),
(city-name, region-name), (city-name, country-abbreviation) and
(city-name, country-name). In cases of city name ambiguity, we
choose as the best match the one with the largest population. After
obtaining the location of a user, all her untagged tweets are tagged
with this location, which increases the percentage of tagged tweets
according to their geo-origin to 13%.

Geographical Distribution of Twitter Updates: We provide
heat maps of locations that tweets originate from (Figure 2(a)) and
locations tweets are about (Figure 2(b)) to provide an overview of

(a) Tweets in Cities

(b) Tweets about Cities

Figure 2: Heat Map for # of tweets in/about cities of the world

the geographical characteristics of our data set. In both maps, we
plot every city associated with more than 10 tweets using the Ge-
oMap tool of Google Charts. The color and size of cities are pro-
portional to the number of tweets. The two figures resemble each
other but there are certain distinctions. For instance, Japan is denser
in Figure 2(b) due to the Japan earthquakes that took place within
the time period captured in our data set. On the contrary, a drop in
significance can be observed for countries such as Indonesia when
comparing the tweets in cities to tweets about cities. This differ-
ence is due to the fact that Indonesia is a highly active country
in Twitter [15], while there are no events with global implications
taking place in its cities. Note that we also analyzed the number of
users per location and the results were similar to Figure 2(a) and
are omitted due to space limitations.

5.2 Effectiveness of GeoScope
We evaluate the effectiveness of GeoScope through various hu-

man validation tasks. We compare our solution to three baselines:
Traditional Heavy-Hitters Approach (THHA): Detects the most
popular topics in the entire stream.
Geographical Heavy-Hitters Approach (GHHA): Simply reports
the φ-frequent topics for all θ-frequent locations. Unlike GeoScope,
GHHA does not filter pairs where the location is not significant for
the topic (no ψ parameter).
Statistically Significant Topic-Location Detection (SSTLD): De-
fines the association strength between a location and a topic by
comparing their expected and observed frequencies. For this pur-
pose, we compute the χ2 statistic for each topic-location pair.

Given these three baseline approaches, our goal is to evaluate the
geographical significance of topics they detected. We focus on two
high level characteristics:
1. Information Overload: This notion refers to a state in which
the overwhelming amount of information leads to communication
inputs not being processed and utilized [28]. Therefore, it is impor-
tant not to overwhelm users by reporting too many topic-location
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THHA vs. GHHA vs. SSTLD vs.
GeoScope GeoScope GeoScope

fraction of 0.94 0.74 0.89
GeoScope hashtags
Fleiss Kappa 0.64 0.51 0.65
# of judges 10 10 9

Table 1: Human Validation Results

pairs. Our experiments reveal that there are approximately 17, 23,
and 150000 pairs that would be reported by GeoScope, GHHA and
SSTLD respectively when the parameters are set as θ = 0.005,φ =
ψ = 0.05 and the sliding window is set to 24 hours. Clearly, Geo-
Scope provides the most manageable list with the smallest number
of pairs to inspect, reducing the effects of information overload.
2. Information Quality: Having established the superiority of Geo-
Scope along the information overload dimension, we now focus
on information quality. Our goal is to identify the likelihood of a
user preferring a topic reported by GeoScope to one that would be
reported by each of the baseline methods w.r.t. geographical sig-
nificance. For this purpose, we use human judges. Each judge is
presented an online questionnaire. Each question presents the judge
with two hashtags h1 and h2 and asks her to identify the one that
carries the most geographical significance. The judge is not pro-
vided any context as to how the hashtags are chosen. We created
3 questionnaires to compare: {THHA vs. GeoScope}, {GHHA vs.
GeoScope}, and {SSTLD vs. GeoScope}. The set of h1,h2 hash-
tag pairs to include in the questionnaire is selected as follows: We
consider the most commonly reported topics (hashtags) for each
baseline and GeoScope and retrieve the top 100 topics from each
list. We first eliminate the common topics between the two meth-
ods being compared and randomize the order of topics reported by
each method. Next, we randomize the order in which h1 and h2
are presented such that with 0.5 probability the hashtag identified
by GeoScope is presented as the first (or second) option. Through
such randomization, we make sure that the only information the
judges process in making a decision is inherent to the topic itself.

We launched the 3 questionnaires online and requested partici-
pation from computer science graduate students and faculty. Our
findings are represented in Table 1. The three columns correspond
to the three tasks. The first row reports the fraction of questions for
which the majority vote selected the GeoScope hashtag as the hash-
tag with more geographical significance. For two indistinguishable
methodologies this fraction should lie around 0.5. We can see that
the judges prefer GeoScope to all of the 3 baselines by a large mar-
gin. The closest approach is GHHA. Even in this case, the judges
prefer GeoScope to GHHA approximately 4:1. We also computed
the inter rater reliability measures for each of the tasks using Fleiss
Kappa (FK) [10]; a statistical measure commonly used for assess-
ing the reliability of agreement between a fixed number of judges
when assigning categorical ratings. We report our findings on the
inter rater reliability measure on the second row of Table 1. The
Fleiss Kappa measure ranges from 0 to 1 and higher values indi-
cate better agreement. Kappa measure of ≥ 0.6 and 0.4− 0.6 are
considered to capture substantial and moderate agreement respec-
tively. Therefore we conclude that the distinction between method-
ologies, or the topics detected by them, is clear.

Figure 3 provides more insights into the distinction between Geo-
Scope and GHHA. Figure 3(a) displays the GHHA results in the city
of Santiago, Chile for a period of 5 days (March 19-23 2011). The
y-axis represents the popularity of a particular hashtag that is men-
tioned. We restrict this timeline to 5 days and the top-3 topics due to

(a) GHHA

(b) GeoScope

Figure 3: Trends detected in Santiago using two methods

the large number of topics detected using the simple GHHA. Figure
3(b) provides the list of topics which are detected by GeoScope as
correlated with Santiago for the setting of θ = 0.005,φ = 0.05 and
ψ = 0.05. Here the y-axis is the number of times the topic is de-
tected as correlated in this particular location (reporting frequency
of 15 minutes). The difference between the two Figures demon-
strates a number of interesting characteristics. For one, GHHA re-
ports an overwhelmingly large number of topics even when report-
ing up-to 3 topics in each day. Second, topics with no geo-intend
like #ff, #fb, #100factsaboutme are not reported by GeoScope. We
omit similar graphs which compare GeoScope to THHA and SSTLD
since these two techniques showed poor performance as demon-
strated in Table 1.

5.3 GeoScope topics and locations
Here, we address the following two questions through analysis

enabled by GeoScope: Are there topics that carry a higher geo-
significance? and Are there locations that exhibit local topical in-
terests? To address the first question, in Figure 4(a) we show the
relation between the geo-significance of topics and the total number
of times they are mentioned in the data set measuring their global
importance. The geo-significance of a topic is measured in terms
of the fraction of all the correlated pairs it appears in the entire
stream. We chose a time window of 24 hours in this experiment
and set θ = 0.005,φ = ψ = 0.05. GeoScope provides means for re-
porting correlated pairs at any given time. For this experiment we
chose 10 minutes as the reporting frequency. Note that the report-
ing frequency and the time window are two distinct values. The
time window refers to the length of the sliding window while the
reporting frequency reflects how frequently the report operation is
called to determine the current list of correlations.

For ease of viewing, we eliminated all hashtags that had no cor-
relations reported, which reduced the number of data points drasti-
cally from over 2 million to approximately 250. This indicates that
even though there is a large number of topics discussed in social
networks, there is only a small number of topics that carry signif-
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(a) Hashtags

(b) Cities

Figure 4: Geo-significance vs. trendiness of hashtags and cities

icance in different localities. There are various hashtags that have
high global significance while being much less important as geo-
graphical trends such as #ff, #np, #jobs (represented by squares in
Figure 4(a)). For instance, #ff refers to “follow friday” and is a pop-
ular hashtag used in Twitter. Similarly, #jobs, referring to issues
related to jobs, is a common hashtag that is of interest to Twitter
users in the global scale. Unlike these topics that are of interest to
the entire network, hashtags such as #jan25, #egypt, #googlenewsjp
(represented by stars in Figure 4(a)) are a lot more significant as a
geographical trend. The first two of these hashtags relate to recent
uprisings in Egypt while #googlenewsjp is mostly used to discuss
issues about the Fukushima earthquake in April 2011.

We performed a similar analysis to capture which cities carry
geo significance, i.e. cities whose residents are interested in local
topics. For this purpose we plot the number of correlations a given
city appears in versus the number of tweets originating from that
particular city. As can be seen from Figure 4(b), the static repre-
sentation of a city measured by the number of tweets originating
from it, is not representative of the geo-significance of that place.
For instance, there is a relatively small number of tweets originating
from Cairo but due to those tweets being mostly about local events
(the recent political uprising) they have high geo-significance. An-
other city with a large number of geo-correlations is Santiago. Ex-
amples of detected correlations for this city include sports related
hashtags (e.g. #bielsa) and cultural events and TV programs (e.g.
#wewantsupershowinlatinoamerica). On the contrary, we see that
Jakarta, a city where a large number of identified users reside, does
not appear in a large number of correlations, meaning that users
from this area are in general less concerned about local events.

The analysis provided so far focused on the cumulative geo-
significance of topics and locations, but GeoScope provides a more
useful tool that can capture geo-significance of topics or locations
along a temporal dimension as well, by detecting correlations along
a sliding window. There is a large number of interesting topics de-
tected at particular points in time but do not appear in Figures 4(a)
or 4(b) due to their short lived activity. A few examples include:
Iwaki aftershock on April 11, as well as the main Japan earthquake
on March 11. On these days the hashtag #earthquake is detected
to be correlated with Tokyo due to a large number of Twitter users
from Tokyo mentioning this topic. Such behavior indicates that
GeoScope can be used in crisis management as it detects emergency
events in a fast and automated manner. However, local interests de-
tected by GeoScope are not only limited to emergency events. Not
only can the political interests of a population be captured as in the
case of correlated pairs, such as (Cairo, #Jan25), but it can also
capture other, more casual interests. For instance, a large number
of correlated pairs involving Soccer teams appear in British cities,
especially compared to other cities of the world, indicating a high
British interest in this sport. Examples of this type of correlations
include (Nottingham, #NewCastle) or (Liverpool, #lfc).

Local and short lived events, such as political demonstrations
and cultural events, are also among the topics captured by Geo-
Scope. As an example, the correlated pair (Madrid, #11m) is cap-
tured due to the demonstrations in Madrid on the anniversary of
bombings that happened on March 11 2004, killing 191 people.
Examples of detected cultural events include the correlated pair
(Austin, #sxsw) that is due to the SXSW festival on March 16 2011
in Austin. Other correlation pairs appear in the general form of
(city, #city). This is due to the fact that Twitter users use hash-
tags to geo-tag and organize important information, especially in
the case of emergencies [32]. Note that the correlations detected
are currently restricted by the use of hashtags as topics. As future
research direction, we aim to investigate determining significant
keywords in tweets and using them as topics as well.
Geo-Origin vs. Geo-Focus: As stated before, GeoScope provides
a flexible framework, allowing for various definitions of locations
(cities, states or arbitrary bounding boxes) as well as topics (hash-
tags, named entities or n-grams). In addition, locations can refer
to where the social content is created (geo-origin) or what location
the social content is about (geo-focus). While space limitations
prevent us from presenting findings for the entire spectrum of such
settings, we provide some high level findings from our analysis of
the application of GeoScope where the location is defined based on
geo-focus. Identifying the geo-focus of a tweet requires detecting
locations mentioned in the tweet content in a fashion similar to de-
tecting user locations from the location field. The percentage of
tweets whose geo-focus we identified through this method is 8%.

Figure 5 presents the distinction between the geo-origin and geo-
focus analysis. The analysis reveals various interesting distinctions.
For instance, as seen in Figure 5(b), cities such as Jakarta and Ban-
dung that commonly talk about local topics (high geo-origin sig-
nificance) have low geo-focus values indicating low international
recognition. We see a boost in significance for cities such as Tokyo
which can be attributed to the international interest in the Japan
earthquake. Similar characteristics can be observed from Fig 5(a).
Hashtags on globally important yet local events (e.g. #japan) and
hashtags that report on local events (#jobs for reporting job open-
ings in various cities) see a boost in significance in geo-focus. Top-
ics that attract both significant attention from the location they orig-
inate as well as the rest of the world (#jan25) have similar geo-focus
and geo-origin significance.
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Figure 5: Geo-Origin vs. Geo-Focus importance of hashtags
and cities

5.4 The Accuracy of GeoScope
Here, we investigate the accuracy of GeoScope w.r.t. the exact

method introduced in §3.3. We first start by examining the num-
ber of correlated pairs detected with varying values of φ and ψ. As
can be seen in Figure 6, increasing φ and ψ drastically decreases
the number of correlated pairs. To evaluate the effect of changing
φ, the other two parameters were set as θ = 0.005 and ψ = 0.05,
while varying φ between 0.005-to-1. Similarly, evaluating the ef-
fect of changing ψ, the other parameters were set as θ = 0.005 and
φ = 0.05 while varying ψ between 0.005-to-1. The difference is
more significant for small φ values, which indicates that it is less
likely for the entire population to be interested in only one topic,
while it is far more likely that there is only one (or few) location(s)
that is interested in a given topic. Note that this artifact is some-
what created by design; the limitation on θ filters extremely in-
active locations with few users whose interests can be extremely
focused. These experiments provide a guide to the right choice of
dominance(φ), support(ψ) and θ values since one can make pa-
rameter choices based on the number of correlations that they aim
to capture at a given time. However, we would like to point out
that the proper settings for these values are dependent on the so-
cial network studied as well as the specific application. Therefore,
our goal is to provide a general framework that can meet differ-
ent needs rather than defining one set of parameter settings that is
globally optimal.

Next, we examine how varying φ and ψ affects the recall and pre-
cision of GeoScope. As stated in Theorem 4.3, GeoScope is guar-

anteed to capture all the trending correlated location-topic pairs,
where trendiness is defined based on a non-decreasing frequency
function. We now show two important findings: first, GeoScope
succeeds in capturing correlated location-topic pairs that do not
necessarily follow this strict distribution and second, in addition
to recall, GeoScope ’s precision is very high. As shown in Figures
6(c) and 6(d), GeoScope has a perfect recall rate over various set-
tings for φ and ψ values while the precision rate is slightly affected
by increasing φ. The results in Figure 6(c) are obtained by setting
the time window to 24 hours, θ = 0.005, ψ = 0.05 and varying φ.
Similarly, the results provided in Figure 6(d) are obtained by setting
the time window to 24 hours, θ = 0.005 and φ = 0.05 and varying
ψ. Due to space limitations we omit the figures showing the behav-
ior of GeoScope with varying θ values. The analysis shows that the
number of correlated pairs drops drastically with increasing θ.

5.5 Space and Time Efficiency of GeoScope
Space Efficiency of GeoScope: In Figure 7(a), we provide a

comparison between the exact solution and GeoScope. The space
comparison is based on the number of counters used by the two
methods. For the exact solution this value would be equivalent to
the number of unique elements while for GeoScope it captures the
number of elements maintained in the trending lists as well as the
memory used for the sketches. Results provided in Figure 7(a) are
based on the settings θ = 0.05, φ = ψ = 0.1 but we note that the
general trend is similar for various other settings as well. GeoScope
provides means for defining the window size in terms of actual time
or the number of elements to be maintained. For the purpose of
this experiment, as our goal is to capture how well the algorithms
scale, the window size is defined based on the number of elements.
The recent numbers published by Twitter claim an average of 400
million tweets per day [34]. Therefore a geo-trend detection mech-
anism that aims to capture daily trends should process 400 million
elements on average. We performed experiments setting the win-
dow size to 1, 2.5, 5, 7.5, 10, 15 and 20 million respectively. The
results can be seen in the inner subfigure in Figure 7(a). Here the
X-axis represents the window size while the y-axis represents the
number of counters needed to execute each method. This figure
shows that the memory requirement of the exact method increases
with window size while it remains constant for GeoScope.

Given the outcome of these experiments we extrapolate the mem-
ory requirements when this number reaches 400 million. Note that
we tried both linear and logarithmic fit for the increase in memory
requirements and determined the best fit according to the R2 mea-
sure. R2 statistic takes on values between 0 (poor fit) and 1 (good
fit) and indicates how closely values obtained from fitting a model,
match the dependent variable the model is intended to predict. The
R2 measure for the memory requirements of linear regression is
0.9956, while this number is 0.8870 for logarithmic fit, showing
that a linear increase best describes the trend. Given this result, we
demonstrate the memory needed to process 400 Million tweets in a
given time window in Figure 7(a) by a vertical dashed line. Mem-
ory usage of the exact solution is larger than GeoScope even for
small window sizes. However, the difference is more pronounced
as the window size gets larger since the memory requirement of the
exact solution increases while GeoScope is unaffected.

Time Efficiency of GeoScope: In satisfying Premises 3, 1 and
2, GeoScope answers three types of queries at any particular time:
reporting on frequencies of locations (Premise 3), frequency of top-
ics (Premise 1) and reporting on correlated pairs (Premise 2). The
efficiency of GeoScope in answering queries relating to Premises
3 and 1 can be directly inferred from the results of heavy-hitters
approaches and more specifically the sketch based method we use
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(a) Effect of φ on # pairs (b) Effect of ψ on # pairs (c) Effect of φ on accuracy (d) Effect of ψ on accuracy

Figure 6: Effect of φ and ψ in the average number of correlated pairs detected by GeoScope and accuracy measures

as a building block [16]. Due to space limitations, we omit such
analysis and focus on the efficiency of GeoScope in reporting cor-
related pairs. The three types of operations of interest are; insert,
remove and report. In Figure 7(b), we present a similar analysis to
the one presented for the space usage with identical settings for the
parameters (θ = 0.05,φ = ψ = 0.1), while we note that the results
are similar for other settings. We present both the results of run-
ning timing experiments for window size to 1, 2.5, 5, 7.5, 10, 15
and 20 million (the inner subfigure in Figure 7(b)) as well as the
timing requirements for when the window size is extrapolated to
400 million (the main figure in 7(b)). Note that we used getCur-
rentThreadUserTime method in ThreadMXBean class in Java for
recording time, which does introduce a certain level of noise.

As the number of elements in the time window increases, the
time required to report on the correlated pairs increases linearly for
the exact solution while GeoScope is not affected. Similar to Figure
7(a), we mark the 400 million point that corresponds to the average
number of tweets per day. The results show that the exact solution
does not scale. Also note that this linear fit is under the assumption
of limitless memory. In reality as the number of elements increase
in the given window, the memory required for the exact solution
increases drastically. Implementing the exact solution in a real sys-
tem with memory limits would result in thrashing which in turn
increases run time drastically. Similar analysis was performed to
test the efficiency of the insert and remove methods. Unlike with
the report method, these methods scale nicely with increasing win-
dow size for both exact solution and GeoScope. As the window
size increases, update methods involve updating already existing
structures more often than creating and destroying counters, result-
ing in such a performance. In general, our experiments show that
the update performance of GeoScope is comparable to the exact so-
lution, but for certain parameter settings the exact solution slightly
outperforms GeoScope. Note again, that this analysis is performed
assuming unlimited memory. By decreasing the memory available,
update methods of the exact solution would also result in thrashing
and consequently worse running time, while such limitation does
not affect GeoScope.

6. CONCLUSION
Geography plays an important role in our lives, shaping the friend-

ships we form, and the interests we develop. The significance of
geography in data analysis is clear since “...near things are more
related than distant things” as the first law of geography states.
Such significance incidentally also exists in the virtual extension
of our daily lives; online social networks where users tend to be-
friend people and talk about events that are close-by. However,
studying social networks through geo glasses goes well beyond a
simple intellectual exercise. Recent events have shown that online

(a) Memory Usage (b) Report Running Time

Figure 7: Memory usage and Running Time comparison

social networks can be used in the case of a crisis to first detect the
emergency event and later to deliver important information to inter-
ested users. Due to the large amount of noisy data shared on social
networks, the detection of such significant local events becomes a
non-trivial problem. Therefore, it is critical to provide large-scale
data analysis tools that analyze social networks from a geograph-
ical perspective and detect such local events or interests in an on-
line manner by also capturing the temporal aspects of information
trends. This undertaking is the main focus of our study.

To this end, in this work we studied the online detection of geo-
correlated information trends, i.e. identifying correlated location-
topic pairs along a sliding window in a social data stream. We
showed that the exact solution for such a problem requires keeping
track of all possible pairs of location-topic pairs which is infeasi-
ble due to the large scale of data. Therefore, we introduce Geo-
Scope: an approximate solution that requires only sub-linear mem-
ory and running time while guaranteeing to capture all trending
correlations. We experimentally studied the value, accuracy and
efficiency of GeoScope in Twitter and showed that this tool pro-
vides a manageable list of interesting location-topic pairs including
crisis events such as earthquakes, or local events such as political
demonstrations, concerts or sports events. The experiments show
that GeoScope scales well with increasing amount of data while the
exact solution suffers from such an increase. Moreover, the exper-
iments show that, in addition to perfect recall measures, GeoScope
also has a high precision.

Even though in our experiments we apply GeoScope to detect
trends in Twitter, the tool is generic enough to be used in other
social networks as well. Similarly, the topics, as defined based on
hashtags in this study, or locations, defined based on cities, can be
redefined. In fact, topic detection of information items shared in
social networks is an important open problem which can reshape
how a topic is to be defined in GeoScope. Similarly, locations of
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interests can be regions, countries or simply arbitrary polygons on
a map. GeoScope can easily be used to detect geo-trends in all
these resolutions. An important future work in this context is to
detect hierarchical geo-trends by capturing the right resolution in
which a topic is trending in an online manner. Although multiple
GeoScope structures can be used in parallel to address this problem,
our future goal is to investigate if there are more compact ways in
which hierarchical geo-trend detection can be performed.
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