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ABSTRACT
Urban traffic gridlock is a familiar scene. At the same time, the
mean occupancy rate of personal vehicle trips in the United States
is only 1.6 persons per vehicle mile. Ridesharing has the poten-
tial to solve many environmental, congestion, pollution, and energy
problems. In this paper, we introduce the problem of large scale
real-time ridesharing with service guarantee on road networks. Trip
requests are dynamically matched to vehicles while trip waiting and
service time constraints are satisfied. We first propose two schedul-
ing algorithms: a branch-and-bound algorithm and an integer pro-
graming algorithm. However, these algorithms do not adapt well to
the dynamic nature of the ridesharing problem. Thus, we propose
kinetic tree algorithms which are better suited to efficient schedul-
ing of dynamic requests and adjust routes on-the-fly. We perform
experiments on a large Shanghai taxi dataset. Results show that the
kinetic tree algorithms outperform other algorithms significantly.

1. INTRODUCTION
Urban and metropolitan areas are growing at tremendous rates

and already host more than half of the entire human population.
In an urban city like Shanghai, there are approximately 120,000
road intersections, 40,000 taxis, and more than 400,000 taxi trips
per day (these numbers are derived from our experimental dataset).
Slight changes in weather such as light rain will send the city into a
gridlock. Despite mounting energy, pollution, and congestion prob-
lems, many vehicles continue to travel with empty seats. The mean
occupancy rate of personal vehicle trips in the United States is only
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1.6 persons per vehicle mile [10]. In 1999, if 4% of drivers had
rideshared, it would have offset the increase in congestion in the
68 examined urban areas completely [8]. Large scale private car
or taxi sharing is becoming increasingly popular. Tickengo [23],
founded in 2011, is an open ride system where over 50,000 peo-
ple participate in ridesharing. Uber and Lyft allow for peer-to-peer
ride matching through mobile-phone applications. Other compa-
nies include Didi, Kuaidi, Avego, PickupPal, Zimride, and Zebigo.
For most ridesharing systems today, the main operation modes are:
(1) a driver gives/shares ride to/with a passenger; (2) a small set of
trips with same origin or destination, e.g. airport, are pre-arranged.
A system where multiple passengers/trips can be combined in real-
time with service guarantees has many challenges and has not been
realized; this is the focus of our paper.

Real-time ridesharing [23, 11], enabled by low cost geo-locating
devices, smartphones, wireless networks, and social networks, is a
service that dynamically arranges ad-hoc shared rides. In a real-
time ridesharing with service guarantees on road networks prob-
lem (hereafter referred to simply as ridesharing), a set of servers
travel over a road network, cruising when not committed to any
service and delivering passengers otherwise. Requests for rides are
received over time, each consisting of two points, a source and a
destination. Each request also specifies two constraints, a waiting
time, defining the maximal time allowed between making the re-
quest and receiving the service, and a service constraint, defining
the acceptable extra detour time from the shortest possible trip du-
ration. When a new request is received, it is evaluated immediately
for server matching and scheduling. In order to be assigned to the
request, a server must satisfy all constraints, both those of the new
request and those of requests already assigned to the server. The
goal is to schedule requests in real-time and minimize the servers’
travel times to complete all committed services while meeting ser-
vice guarantees.

However, providing ridesharing service at the urban scale is a
non-trivial problem. The core issue is to devise a real-time match-
ing algorithm that can quickly determine the best vehicle (taxi, cab,
bus) to satisfy incoming service requests. The traditional dial-a-
ride problem [9] aims to design vehicle routes and schedules for
small to medium sized trip and vehicle sets, e.g. a few vehicles
serving tens of requests, focusing on scenarios where requests are
known ahead of time and servers originate and finish at known de-
pots. These approaches are not designed to deal with the enormity
of modern situations. Additionally, the dynamic and en route nature
renders many of these algorithms either inapplicable or inefficient.
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In this paper, we focus on developing fast matching algorithms
for large scale real-time ridesharing. Our algorithms are applicable
to existing services including taxi services, private vehicle shar-
ing, elevator systems, minibus services, and courier services. We
have a demo of our ridesharing system [22] (a demo is available
at: http://hpproliant.cse.unt.edu/noah/) and this paper describes the
core algorithms of the system.

We acknowledge that there are other important factors which
need to be considered for large scale real-time ridesharing, such
as inter-personal, safety, social discomfort, and pricing concerns.
Possible solutions include real-name profiling, reputation, or social
network trust building systems [10]. However, those are beyond
the scope of this paper.

1.1 Problem Definition
A road network G = 〈V,E,W 〉 consists of a vertex set V and

an edge set E. Each edge (u, v) ∈ E (u, v ∈ V ) is associated
with a weight W (u, v) indicating the traveling cost along the edge
(u, v); this traveling cost may be a time or distance measure. As-
suming driving speeds are available, time and distance can typi-
cally be converted from one to the other, and here they are used
interchangeably.

Given two nodes s and e in the road network, a path p between
them is a vertex sequence (v0, v1, · · · , vk), where (vi, vi+1) is
an edge in E, v0 = s, and vk = e. The path cost W (p) =∑
W (vi, vi+1) is the sum of all edge costs W (vi, vi+1) along the

path. The shortest path cost d(s, e) is defined as the minimal cost
for paths linking from s to e, i.e., d(s, e) = minpW (p); the corre-
sponding path with cost d(s, e) is a shortest path from s to e.

DEFINITION 1. (Trip Request) A trip request tr = 〈s, e, w, ε〉
with respect to a road network G = 〈V,E,W 〉 is defined by a
source s ∈ V , a destination e ∈ V , a maximal waiting time w (the
maximal time allowed between making the request and receiving
the service), and a service constraint ε (the extra detour acceptable
in a trip, bounding the overall time from s to e by (1 + ε)d(s, e)).

We consider a unified waiting time w and service constraint ε
for all requests specified by the service provider. However, our
proposed algorithms can be easily generalized to request-specific
constraints. We further assume that G is static over time (e.g., we
do not consider different path costs at different times of the day),
but the algorithms we present can handle the case whereG changes
under a predetermined pattern.

An accepted trip request tr has an assigned server (e.g., a taxi
or private vehicle). The server should pick up the rider at s and
drop off the rider at e while satisfying the constraints; the request
is completed after the rider is dropped off.

To deal with real-time ride sharing, for each trip tri = 〈si, ei, w, ε〉
and its assigned server, we further introduce ri, the server’s loca-
tion when the request is made; and for each server, the server’s
trip set TR = {tr1, tr2, . . . , trm} consists of all trip requests as-
signed to the server (both completed and uncompleted). Given this,
a general trip schedule S for a server with trip set of size m can
be described in a sequence of 3m elements, (x1, x2, · · · , x3m),
where an element xj in the sequence is either a trip source point
(si, where a rider is picked up), a trip destination point (ei, where
a rider is dropped off), or a trip request point (ri, where a request
is received). Furthermore, a server is assumed to travel along the
shortest path in the road network when moving between two con-
secutive points in the trip schedule xi and xi+1. Thus, the trip cost
dT (xi, xj) between any two points (xi, xj) in the trip schedule is
denoted as

dT (xi, xj) = d(xi, xi+1) + d(xi+1,i+2) + · · ·+ d(xj−1, xj).

The overall trip cost is simply dT (x1, x3m).
Figure 1 illustrates a trip schedule for four trip requests where

the four pickups happen to be before any dropoff. Note that each
moving server is associated with a trip schedule at any given time.
A trip request tri is active at time t if the request has been ac-
cepted but not yet completed. Then, each server is associated with
a subset of active trips. For instance, in Figure 1, the active trips
are {tr1, tr2, tr3} at time t1; {tr1, tr2, tr3, tr4} at time t2; and
{tr1, tr2, tr4} at time t3.

Some trip schedules do not meet the service guarantees for each
trip request in the schedule. We thus formally introduce the concept
of a valid trip schedule.

DEFINITION 2. (Valid Trip Schedule) A valid trip schedule
S = (x1, x2, · · · , x3m) for a trip set TR satisfies three condi-
tions:

1. Point order For any trip tri, let xi1 = ri, xi2 = si, and
xi3 = ei. Then, we must have i1 < i2 < i3 (index repre-
sents the position of the points in the trip schedule S), i.e., the
requesting point must happen before the pickup point, which
must happen before its destination point;

2. Waiting time constraint For any trip tri, the distance (wait-
ing time) from the server’s location when the request is made
to the request’s pickup point should be smaller than the wait-
ing time constraint, i.e., dT (ri, si) ≤ w;

3. Service constraint For any trip tri, the actual travel dis-
tance from the pickup point to the dropoff point dT (si, ei)
should not be more than the shortest distance between them
multipled by the service constraint, i.e., dT (si, ei) ≤ (1 +
ε)d(si, ei).

To formally define the real-time ridesharing problem, we further
introduce the augmented valid trip schedule: Assuming at time t,
there are m active trips for a given server, let the current valid trip
schedule be (x1, x2, · · · , x3m), where t is between xc and xc+1.
For a new trip request trm+1 at time t, the augmented valid trip
schedule is (x′1, x

′
2, · · · , x′3m+3), where x′i = xi for i ≤ c, and

x′c+1 = rm+1. In other words, the augmented valid trip schedule
combines a new request with existing requests and shares the same
partial trip schedule before the new request is made at time point t.
Also any augmented valid trip schedule consists of two parts: the
finished schedule (x1, x2, · · · , xc, rm+1) and the new unfinished
schedule (x′c+2, · · · , x′3m+3).

The problem of Real-Time Ridesharing is: Given a set of vehi-
cles on the road networkG and a new incoming request tr, find the
vehicle that minimizes the overall trip cost for the augmented valid
trip schedule.

The scheduling capacity c is a limit on the number of active trips
that can be scheduled to a vehicle. The scheduling workload per
vehicle is the number of active trips that needs to be scheduled by
the algorithm for a vehicle.

Note that since the finished schedule cannot be changed (because
it has already been executed), we essentially need to find the min-
imum trip cost for the unfinished schedule. We also observe that
the minimum cost is useful to determine the best match between an
incoming trip request and the available vehicles in a real-time fash-
ion. The minimum cost, then, is greedy in nature: When additional
new requests come in, the past optimal matching between a trip re-
quest and the server may not be the minimum anymore. However,
in real-time, this type of optimality tends to be the best we can
achieve and can be easily understood and accepted by riders as the
future requests are not available . We choose not to batch process
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Figure 1: Trip Schedule. si: trip starting point; ei: trip ending point; ri server location when request of trip tri comes in.

requests at a fixed time interval and prefer instant feedback to the
users. The batch processing may achieve better system scheduling
but is based on sacrificed user experience, e.g. standing by curb-
side and waiting for 5 minutes to know the results. Furthermore,
our system is user-centered and does not try to violate a user’s ser-
vice constraints in order to improve overall system performance.

Finally, we note that the problem of real-time ridesharing is NP-
hard as the classical Hamiltonian path problem can be reduced to
this problem (assuming all the trips have the same ending points
and requested in almost the same time). For simplicity, the details
of NP-hardness proof is omitted here.

1.2 Challenges
The main challenge in ridesharing is to determine how to han-

dle trip requests as they flow into the system in real-time. From
a server’s point of view, for any new request, the server may have
already selected (and be executing) a trip schedule for its existing
customers. Given this, how can we quickly help it to determine
whether it can accommodate a new request? Note that in order to
respond to such a request, one may have to reshuffle the predefined
schedule and the reshuffled one has to be a valid schedule.

Furthermore, in a large metropolitan area such as Shanghai, the
number of requests can be very large, especially during rush hours.
Clearly, for a trip request tri, servers that are farther than w from
the pickup location are unable to respond to the request. Even
though potential servers can be filtered through a dynamic spatial
indexing structure [21, 18, 15] on the moving servers, the existing
approaches can still be very computationally expensive and result
in low response times.

Most current algorithms are designed for offline computation.
The approaches that use branch-and-bound [16] or integer program-
ing [5] to schedule new requests do not take the dynamic nature of
the problem into consideration. Testing if a new request can be ac-
commodated essentially involves a rescheduling of the unfinished
trips and the new request without reusing the computations in the
previous round. Their calculation time was measured in minutes or
hours while we require millisecond response time.

1.3 Contributions
To deal with the challenges, our idea is based on a simple obser-

vation. For a new valid schedule accommodating the new request
tri, if we simply drop the three points ri, si, ei from the trip sched-
ule, then the resulting trip schedule is a valid trip schedule. In other
words, only a valid trip schedule can be extended to accommodate
a new request. Given this, a potential approach for the ridesharing
problem is to simply materialize every valid trip schedule; then,
when a new request arrives, we can check if any valid trip sched-
ules can be extended to handle the new request. This approach
is promising because its incremental nature saves many redundant
computations: We do not need to recompute the valid trip schedule
completely from scratch on each new request. However, in order to
implement such a strategy, we have to deal with the following chal-
lenges: 1) Would the materialization incur too much memory cost?
In other words, can we store the materialized schedules compactly?

2) How can we efficiently maintain the materialization? Note that
when the server moves, the materialization needs to be updated. 3)
How can the materialization help to test quickly whether a new re-
quest can be handled? 4) How can the materialization be updated
when a new request is accepted?

This paper makes the following contributions:

• We formulate the ridesharing problem in a way that resem-
bles the scenario enabled by current locating and communi-
cation technologies; We first propose branch-and-bound and
mixed-integer programing algorithms for the problem. We
then propose a kinetic tree approach for the problem. The
tree structure lends itself naturally to the dynamic nature of
the problem;

• When the pickup or dropoff locations are close to each other,
any permutation of the locations can be valid, rendering the
constraints ineffective and resulting in a large number of valid
schedules. We propose a hotspot-based algorithm that ig-
nores schedules that are almost duplicates to effectively re-
duce the number of valid schedules while providing a bound
on the error for the solution under certain conditions;

• We compare our approach to the branch-and-bound and mixed
integer programing approaches that are traditionally used,
along with the brute-force algorithm. Experiments on a large
taxi dataset show that the tree approach is several times to a
magnitude faster in response time. We further test tree algo-
rithms on various larger problems to show the performance
and effectiveness of the optimizations proposed.

1.4 Outline
We describe the overall ridesharing framework in Section 2. We

present a branch-and-bound algorithm and a mixed-integer pro-
gramming algorithm for scheduling a request in Section 3. We then
propose the kinetic tree approach in Section 4. In section 5, we
deal with the issue of large trees using a hotspot-based algorithm.
Experiment results are presented in Section 6 followed by related
work in Section 7 and conclusions in Section 8.

2. FRAMEWORK
When a request is submitted to the system, the request is matched

with candidate servers. Because most vehicles will be outside the
waiting time constraint w of a trip request at the time that the re-
quest is received, we will need a low maintenance cost indexing
method to filter out servers outside the waiting time constraint. So,
we use a simple grid-based indexing. A grid of uniform cell size
gr.l is superimposed on the region, and servers are mapped into the
cell corresponding to their current location (the mapping is updated
when a server passes between cells).

When a new trip request tr is received in grid cell g, we first
calculate the cost of assigning the request to each server within
ceil(w·D

gr.l
) grid cells from g along both axes where D is the speed

of server. We then assign tr to the server with the minimum unfin-
ished schedule cost, or permanently reject the request if no server
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can feasibly handle it. Because the user gets instant feedback, the
user may decide to resubmit the request, possibly with relaxed ser-
vice constraints. We can also allow progressively relaxing the con-
straints until the request is satisfied.

To calculate the minimum unfinished schedule cost, an instance
of the scheduling algorithm is associated with each server. An al-
gorithm instance maintains the corresponding data structure as the
server moves along its route in the road network through shortest
paths between consecutive points. The shortest paths are calculated
and recorded for each server.

Computing shortest path on road networks has been widely stud-
ied (see [6] for an extensive review). Recently, Abraham et al. [2]
discovered that several of the fastest distance computation algo-
rithms need the underlying graphs to have small highway dimen-
sion. Furthermore, they demonstrate the method with the best time
bounds is actually a labeling algorithm [2]. We choose to use the
state-of-art hublabeling algorithm - a fast and practical algorithm to
heuristically construct the distance labeling on large road networks.
After the labeling process, each vertex records a set of intermediate
vertices (and distances to them) for the shortest path computation
[1]; and they are packed and stored in an array. To answer the dis-
tance query from one vertex to another, we perform a linear scan of
the labeling arrays of both vertices, and select the minimal distance
using all the intermediate vertices existing in both arrays.

The most challenging problem now is: for a given request and a
candidate server, find the augmented valid trip schedules in order to
find the server with minimum unfinished schedule cost. The algo-
rithms for this problem will be described in the next three section.

3. BRANCH-AND-BOUND AND MIXED IN-
TEGER PROGRAMMING ALGORITHMS

The brute-force algorithm to find the augmented valid trip sched-
ules is straightforward. We enumerate all of the permutations and
then check the constraints. However, this can be expensive. Two
approaches that are often used in solving the related dial-a-ride
problem [9] can increase execution speed: branch-and-bound algo-
rithm [4] and integer programming approach [5]. We first propose
a modified branch-and-bound algorithm for our problem, and then
formulate the problem as a mixed-integer programming problem.

3.1 Branch and Bound Algorithm
The branch-and-bound algorithm systematically enumerates all

candidate schedules and organizes the candidates into a schedule
tree. It estimates and maintains a lower bound of each partially
constructed schedule and stops building candidate schedules that
have lower bounds greater than the best solution found so far. The
algorithm first expands the partial candidate with the lowest lower
bound (best-first search).

Assume at time t, there are m active trips for the given server.
Let the current valid trip schedule be (x1, x2, · · · , x3m), where t
is between xc and xc+1. For a new trip request trm+1, we need
to re-schedule the pickup and dropoff points N = {xc+1, xc+2,
· · · , x3m, rm+1, sm+1, em+1}. Points inN form a complete graph
with edge weights being the shortest path distances between nodes.
We attempt to find the schedule through the graph that passes through
each node once but, unlike a tour, does not return to the first node.
The schedule also has to begin at the location of the server when
request rm+1 is submitted. In Figure 2 (a), when request r2 comes
in, s1 is already picked up. So, only N = {e1, s2, e2} needs to be
scheduled and the schedule must start from r2.

We start with the initial schedule tree ST =< rm+1 >, and
initialize the cost of the optimal schedule to∞. We then iteratively

s1 e2r1 r2 s2 e1

r2

e2

e1

1

2

3

s2

4
57

r2

1

2

1

e1 e2 s2(3,5)

e2

s2

(a)

(b) (c)

s2(5,6)

(6,6)

(5,8)

(10,11)

(4,7)

Figure 2: Illustration of Branch-and-Bound Algorithm. (a)
When request r2 comes, only {e1, s2, e2} need to be scheduled;
(b) Road network distance and minimal incident edge cost; (c)
When (r2, e1, e2, s2) with cost 6 is found, partial schedules with
estimated costs above 6 are terminated.

perform a best-first-search to expand the partial schedule S =<
rm+1, x

′
c+1, x

′
c+2, · · · , x′k >with the minimum lower bound. The

lower bound we use is dT (rm+1, x
′
k) plus the sum of the costs of

the minimum-cost-edges incident to each of the nodes that are not
yet in the partial schedule S.

Figure 2 (b) shows road network costs between two nodes. The
minimal incident edge cost is labeled beside each node. In Fig-
ure 2 (c), for each node x, the two numbers in parentheses indicate
the cost dT (r2, x) of the partial schedule and the lower bound of
the schedule containing the partial schedule as prefix. For (r2, e1),
dT (r2, e1) = 3. Only e2 and s2, both with minimal incident edge
cost of 1, need to be added to the schedule. The minimal incident
edge cost of e1 ismin(2, 7, 3) = 2, so the lower bound of a sched-
ule containing (r2, e1) is dT (r2, e1) + 2 = 5.

We attempt to expand the partial schedule S with minimum lower
bound by another new node to construct S′. If S′ is not valid or re-
sults in a bound greater than the current minimum schedule cost,
we terminate S′. If S′ is a complete schedule, we compare its cost
to that of the best schedule and update if necessary. Once the sched-
ule of cost 6 is found, schedules with lower bounds above 6 can be
pruned (labeled by a gray circle). Note that in the figure we do not
illustrate validity constraints. The complexity of the branch-and-
bound algorithm in the worst case is still exponential.

3.2 Mixed-integer Programming Approach
Mixed integer programing is a popular alternative. In this sec-

tion, we formulate our augmented valid trip schedule problem into
a mixed integer programming problem. Then, we apply traditional
solvers to find the solution.

As in the branch-and-bound algorithm, we are reschedulingN =
{xc+1, xc+2, · · · , x3m, rm+1, sm+1, em+1}. The schedule must
start from rm+1. We divide N into subsets: (1) dropoff locations
of those already picked up but not dropped off; let the size of this
set be k; (2) pickup locations of trips not started yet; let the size of
this set be n; and (3) dropoff locations of trips not started yet; the
size of this set is also n. The problem can be defined on a complete
directed graph G′ = (N,A) where N = D′ ∪ P ∪ D ∪ {0},
D′ = {1, 2, . . . , k}, P = {k + 1, k + 2, . . . , k + n}, D = {k +
n + 1, k + n + 2, . . . , k + 2n}. Because of the nature of the
problem formulation of integer programing, we abuse the notation
of N here: We reshuffle the points in N and assign an integer to
each point in N while node 0 represents the current position ri+1

of the server. For a pickup i in P , its matching dropoff in D is
i+n. Each arc (i, j) ∈ A is associated with a shortest path routing
cost dij . For each arc (i, j), let yij = 1 if the server travels from
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node i to node j. For each drop point i ∈ D′ ∪ D, let Li be the
ride time of the request in this partial route. Then, the problem is,

Min
∑
i∈N

∑
j∈N

dijyij

subject to:

yij ∈ {0, 1}, ∀i ∈ N, j ∈ N (1)∑
j∈N yji = 1, ∀i ∈ N − {0} (2)∑
j∈N y0j = 1 (3)

B0 = 0 (4)
Bj ≥ (Bi + dij)yij , ∀i ∈ N, j ∈ N (5)
Li = Bi −Bi−n, ∀i ∈ D (6)
Bi ≤ wi, ∀i ∈ P (7)
Bi ≤ oi, ∀i ∈ D′ (8)
di−n,i ≤ Li ≤ εi, ∀i ∈ D (9)

where wi is the waiting time left for i ∈ P and oi is the maximal
riding time left for i ∈ D′. Here dii is set to a positive number to
make sure yii = 0.

The objective is to find the schedule that minimizes the total cost
while satisfying the constraints. Constraint (1) simply enforces the
binary nature of yij . Constraint (2) allows exactly one node pre-
ceding another for all nodes but 0. Constraint (3) allows exact one
node following node 0. These two effectively enforce the schedule
structure so that each node is visited exactly once and the schedule
starts from node 0.

Constraints (4) and (5) set the earliest time at which a node can
be reached. Constraints (6) define Li for dropoff nodes, the service
distance. Constraints (7) and (8) enforce the waiting time and ser-
vice constraints for pickup and dropoff nodes where the passenger
has already been picked up. These are grouped together because
both wi and oi are measured from the root node. Constraint (9)
enforces the service constraint for dropoff nodes where the passen-
ger has not yet been picked up, so that the service time does not
exceed εi. The constraint (5) is not linear. It can be linearized by
introducing constants Mij , an approach similar to that in [7].

Bj ≥ Bi + dij −Mij(1− yij),∀i ∈ N, j ∈ N (1)

The validity of these constraints are ensured by setting Mij ≥
max{0, li + dij − ej} where li is the latest time that i needs to be
served and ej is the earliest time that j needs to be served. For i ∈
P , [ei, li] = [d0i, wi]. For i ∈ D, [ei, li] = [d0,i−n + din,i, wi +
di−n,i(1 + ε)]. For i ∈ D′, [ei, li] = [d0i, oi].

Let v be the number of variables in the mixed-integer program-
ming problem, and c be the number of constraints. Then, v =
O(m2) and c = O(m), where m is the total number of requests
that we are optimizing.

4. KINETIC TREE APPROACH
The two approaches above both suffer from one fundamental

problem: they reschedule unfinished pickups and dropoffs with the
new request from scratch, ignoring previous computations. The
structures of the two algorithms make it difficult to adapt them to
the dynamic nature of the problem. In this section, we introduce a
kinetic tree structure that maintains the calculations performed up-
to-now and uses them effectively for new requests. However, when
there are several pickup or dropoff locations close to each other,
the number of feasible schedules increases exponentially. Thus,
we propose a hotspot-based approach in Section 5 that reduces the
search space and approximates the solution with bounds.
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Figure 3: Kinetic Tree for Trip Schedules. Darkened path:
selected schedule to be executed; Dark circled/squared nodes:
finished nodes.

4.1 Basic Tree Structure
We introduce a kinetic tree structure to maintain all the valid trip

schedules with respect to the server’s current location. When the
server moves, a portion of the schedule becomes obsolete. The
root of the tree tracks the current location l of the server. The rest
of the tree records portions of all valid schedules (from the current
location onwards).

For a given w and ε, Figure 3 illustrates the kinetic tree structure
corresponding to the complete trip schedule in Figure 1. The dark-
ened path represents the selected (optimal) schedule to be executed
by the server. Initially, for the first trip request, there is only one
valid trip schedule (Figure 3 (a)). When the second request arrives,
the first customer has already been picked up by the server. Now
assuming the option which drops the first passenger before picking
up the second one is invalid, there are only two valid options for
the server to accept the new request: it needs to first pick up the
second customer, but it can be flexible in dropping off either of the
two passengers. Let us assume it decides to choose the shorter one
which is (l, s2, e1, e2), to drop off the first customer first. How-
ever, on its way to pick up the second customer, the third request
arrives. The server now has the option to pick up either the sec-
ond customer or the third one. Suppose, based on w and ε, that
there are five possible valid trip schedules for the server to handle
the three trip requests (the first trip is already in progress, shown
in Figure 1(c)). Assuming the server decides to move along the
shortest route (l, s2, s3, e2, e3, e1) for now and picks up the sec-
ond customer first, then when the fourth request arrives after the
pickup of the second customer, the entire right sub-tree of r3 in
Figure 1(c) becomes inactive. Let us now assume there are only
two possible schedules to accommodate the remaining trips of all
four customers as shown in Figure 1(d).

Why is such a kinetic tree useful in maintaining the valid trip
schedules? Its advantage is based on the the following key obser-
vation:

LEMMA 1 (VALID SCHEDULES UNDER MOVEMENT). When
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a server reaches a new pickup or dropoff location in the trip sched-
ule, only those valid schedules which contain unfinished trips and
share the same prefix so far (from the first pickup point of all the
unfinished schedules to the current location in the trip schedule)
need to be materialized. All other schedules become inactive and
can be pruned from the tree.

In Figure 3(c), once the server picks up the second customer,
only the schedules in the left sub-tree rooted at s2 remain active.

4.2 Handling a New Request
Now, we consider how to handle a new request trk = (rk, sk, ek).

We assume that we already have a materialized prefix tree of all
valid and active schedules of unfinished trips. We need to extend all
valid and active schedules in the prefix tree to a new valid schedule
to include trk if possible. We do this by generating a new prefix
tree based on the existing one. To deal with the new request, we
will first deal with the pickup location sk and then the dropoff lo-
cation ek. Essentially, we need to scan the tree to determine where
sk can be inserted, i.e., which edges of the tree can accommodate
the insertion of a new pickup node. All schedules that share the
prefix from the root of the tree to the inserted edge will be inserted
into the new tree. Then we insert ek after sk in the new tree. Fur-
thermore, if sk or ek can be inserted at a given location (an edge in
the tree), then we have to find out which trip schedules containing
that edge with an additional node will become invalid (due to con-
straint violation) and thus should be pruned. The problem is how
to determine 1) at which edge sk or ek can be inserted, and 2) how
to quickly prune the invalid trip schedules following that insertion.

Inserting Pickup Location: Here, we focus on whether sk can be
inserted first and ek can be inserted in a similar way later. In order
to insert sk in a tree edge, say (xi, xi+1), we need to deal with the
following situations: (a) only when the distance from the current
location (recorded in the root node l) to the pickup location sk sat-
isfies dT (l, sk) = d(l, x1) + d(x1, x2) + · · · + d(xi, sk) ≤ w,
then sk may be inserted; (b) the additional travel distance (time)
introduced by the detour to sk may invalidate some existing trip
schedule in the sub-tree containing this tree edge (xi, xi+1), i.e.,
d(xi, sk) + d(sk, xi+1) − d(xi, xi+1) should not be too large.
These schedules should be pruned from the sub-tree. Note that
condition (a) is easy to be tested in the existing tree structure.

LEMMA 2. (dT (l, sk) ≤ w) The shortest distance from the
current location to the requested pickup location sk is no greater
than w. Furthermore, given a prefix (partial) trip schedule from
the root node l to a node xj , i.e., (l, x1, x2, · · · , xj), if dT (l, sk) =
d(l, x1)+d(x1, x2)+· · ·+d(xj , sk) > w, then, any edge incident
to any descendant of xj in the tree cannot accommodate sk, i.e., the
customer cannot wait for the server to finish xj before being picked
up at sk.

This lemma suggests that we can perform either a depth first
search (DFS) or breadth first search (BFS) starting from the root
node of the tree to generate all the candidate edge (xi, xi+1) to in-
sert sk. Specifically, during the traversal the visiting will return
once certain depth is reached, i.e., a node has the property that
dT (l, xj) > w, in which case we either will not expand that nodes
(in BFS) or trace back (in DFS).

Now the key problem is how to handle condition (b). The straight-
forward way to perform pruning is to explicitly maintain and check
constraints for each trip request in the subtree of xi. Specifically,
for a trip trj in the sub-tree rooted at xi, there are two criteria:
waiting constraint [rj , sj , w] (dT (rj , sj) ≤ w) and trip tolerance

constraint [sj , ej , ε] (dT (sj , ej) ≤ (1 + ε)d(sj , ej)). At any given
time point t, clearly if we need to test whether the detour meets
the criteria of trip trj , then the request is already issued and re-
sponded, and the entire trip is not yet completed. Furthermore, only
one of the criteria needs to be tested: if the server has not picked
up the customer, then, we need to test the pickup waiting constraint
[rj , sj , w]; once the customer is picked up, we need to test the trip
tolerance constraint [sj , ej , ε]. Thus, at any given point, the “ac-
tive” customers can be partitioned into two sets: S1 records those
customers who need to be picked up and S2 records the on-board
customers who need to be dropped off. When a new location is
reached, we may move customers from S1 to S2 and/or remove
customers from S2. For trip j in S1, we test the first criterion
[rj , sj , w] and in S2, we test the second one: [sj , ej , ε]. Given
this, for the sub-tree rooted at xi, the simple way is to first generate
these two sets S1 and S2. Then, when we insert sk, we need to
ensure each condition associated with S1 and S2 are also satisfied.

Algorithm 1 insertNodes algorithm.
Parameter: root node l, request points P = (x1, x2, ...), current

depth depth
if feasible(l, x1, depth+ d(l, x1)) then

Initialize fail = 0
n = create(l, x1) {Copy feasible child branches under n}
for each c such that edge (l, c) exists do
copyNodes(n, {c}, d(l, n) + d(n, c)− d(l, c))
If copy failed, set fail = 1

end for{Insert remaining request points to n}
if fail = 0 and |P | > 1 then {Detour now begins negative
because we haven’t inserted x2 yet}
insertNodes(n, {x2, ...},−d(x1, x2))
If insert failed, set fail = 1

end if{Now insert request points into children}
for each c such that edge (l, c) exists do
insertNodes(c, P, detour + d(l, c))
If insert failed, delete (l, c)

end for
if fail = 0 then

Add edge (l, n)
else if No nodes c with edge (l, c) exist then

Insert failed, notify caller that this sub-tree is infeasible
else

Insert succeeded
end if

else
Insert failed, notify caller that this sub-tree is infeasible

end if

Algorithm 1 implements the insertion of a new request trk =
(sk, ek) into the tree recursively. The insertion is completed by a
call, insertNodes(root, {sk, ek}, 0). The call to feasible(parent,
node, detour) returns whether or not it is feasible to insert node as
a child under parent in the tree. First, this ensures that the pickup
or service constraint of node is not violated. If min-max filtering is
in place (will be discussed), this will confirm that the detour (third
argument) is tolerable for node.

The copyNodes(node, source, detour) function recursively copies
nodes from a set of nodes, source, to the target node, node. Here,
tolerance of the root’s children in insertNodes is implemented
through calls to feasible with detour of detour. copyNodes will
fail if all of the children of node are along infeasible paths. In this
case, these branches and node will be deleted.

In Figure 4 (a), we use the insertion algorithm to insert the pickup
location s3 into an existing tree, thereby generating a new tree.
s3 will first be inserted directly below l. Then, the branch with
root at s2 will be copied underneath this new s3 node, forming
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Figure 4: Tree Insertion. The insertions of s3 into each edge in tree of (a) result in (b), (c), (d), and (e), assuming the last two insertions
were infeasible.

a new tree of (l, s3, s2, ((e1, e2), (e2, e1))). Let us assume route
(l, s3, s2, e1, e2) is not feasible; then, the branch is pruned from
the tree starting at the leaf node until we reach s2, where we have
an alternate path (l, s3, s2, e2, e1) that is feasible. This pruning oc-
curs in the copyNodes algorithm, which will succeed because s3
falls along at least one (in this case, exactly one) feasible path. The
resulting tree is shown in Figure 4 (b).

Then, the insertion algorithm moves down to s2 and attempts to
insert the pickup location after it. Two paths are formed: (l, s2, s3,
e1, e2) and (l, s2, s3, e2, e1), as a result of the insertion between s2
and e2 and between s2 and e1. Suppose (l, s2, s3, e2, e1) is infea-
sible. The resulting tree is shown in Figure 4 (c). Suppose inserting
s3 between e1 and e2 or between e2 and e1 is infeasible. Then,
we have the tree in Figure 4 (d). To complete the insertion of the
(s3, e3), we now try to insert e3 in the sub-trees that root at a s3
following the same insertion algorithm. Once this completes, we
arrive at the tree shown in Figure 4 (e).

Min-max Filtering using Slack time: Though the above test for
condition (b) is conceptually simple, it is rather computationally
expensive. Now, we introduce a fast approach to simplify and
speedup such test. For any node j, if j is in S1, let δj = w −
dT (rj , sj); otherwise (j is in S2), let δj = (1 + ε)d(sj , ej) −
dT (sj , ej). Then, for the node xj , we associate slack time ∆xj =
min(δj ,maxi∈xj .children ∆i).

Note that ∆xj essentially represents the minimal allowed detour
on the most “lenient” route of the subtree routed at xj . Here “le-
nient” means the route can tolerate the most detour compared to
other routes. Given this, we introduce the following Theorem to
describe the simple condition to determine whether sk can be in-
serted at a given edge.

THEOREM 1. For a trip request trk, if edge (xi, xi+1) does not
satisfy either of the following condition: (a) dT (l, sk) = d(l, x1)+
d(x1, x2) + · · ·+d(xi, sk) ≤ w; or (b) d(xi, sk) +d(sk, xi+1)−
d(xi, xi+1) ≤ ∆(xi,xi+1), then, we can not add the pickup sk be-
tween location xi and xi+1.

After insertion in (xi, xi+1), all nodes under xi of the new tree
will be tested for the constraint δi ≥ d(xi, sk) + d(sk, xi+1) −
d(xi, xi+1) . A branch is pruned from the sub-tree if the constraint
is not satisfied.

Updating ∆ and Tree: After we try to insert a request to all possi-
ble servers, we get a set of new trees. For each tree, we can find the
shortest route and choose the tree that provides the shortest route
among all trees. Only the chosen tree needs to have its ∆ updated.

This can be done through one tree traversal. When a server is mov-
ing, the tree needs to be updated as well. However, the ∆ values are
quiescent to server movement and do not need to be updated. The
tree is updated when a vehicle reaches a new pickup or dropoff lo-
cation; the server drops the inactive portion of the tree accordingly.

Practical concerns: In practice, customers may occasionally wish
to cancel a trip after it has been scheduled. To deal with this, we
can reconstruct the tree from scratch without the canceled trip re-
quest to derive an optimal solution. Alternatively, we can derive an
approximate solution by simply deleting all instances of the can-
celed pickup and dropoff location from the current tree, and se-
lecting the shortest resulting route; while this ignores branches that
become feasible following the deletion, it still produces better solu-
tions than simply deleting the customer from only the current route.

Another practical issue is unexpected traffic conditions. If a ve-
hicle runs into unexpected delay, then although it does still have
to drop off on-board passengers regardless of service constraints,
we can cancel and possibly re-assign the trips that have not started
yet to another vehicle. To determine if constraints are violated, we
simply compare the additional delay encountered to the slack time
along the optimal branch. The trips with waiting time constraint
being violated will be iteratively canceled and re-assigned which
may also lead to better service for on-board passengers.

5. HOTSPOT BASED OPTIMIZATION
The main problem with the basic tree algorithm is the exponen-

tial explosion of the size of the tree when there are multiple pickup
or dropoff locations close to each other. For example, if 8 pick-
ups occur in spatial-temporal proximity, e.g an airport after a flight
lands, any permutation of the pickups may result in a valid sched-
ule. This yields 8! = 40, 320 possibilities, even before considering
dropoff points. We propose an approximation approach with bound
to reduce the search space. The idea is that when the time and space
requirements of computing the best schedule are too high, a server
may decide to reduce the load by only maintaining a representative
subset of the schedules. Since the number of leaves of the kinetic
tree is determined by the number of possible routes, the tree size
is effectively controlled by the approximation and the service con-
straints.

We propose the following hotspot clustering algorithm to deal
with this situation. When we insert a pickup point sk to an edge
(xi, xi+1), we check if d(xi+1, sk) ≤ θ for small θ. If so, sk is
inserted into the node of xi+1. sk and xi+1 are treated as one point
called a hotspot in the tree, and an arbitrary schedule is chosen
between the points in a hotspot. When a hotspot contains more than
one point, a newly inserted point must be within θ to all points of
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Figure 5: Bound for Hotspot. xi, xj , and xk are in one hotspot.
Black lines: optimal schedule Sbest. We can convert Sbest by
connecting xi, xj , xk consecutively first and then thread the
other locations (represented by ovals). The new schedule has
a bounded cost.

the hotspot. A similar procedure can be followed for dropoff points
and mixtures of pickup and dropoffs. Once a point is combined
with any hotspot, we stop trying to insert it to any other edges.

Let us first assume the service constraints are sufficiently large
that all schedules are possible. For a trip set TR, let Sbest be the
optimal schedule. Suppose there is a hotspot hp among the pickup
and dropoff locations of TR. Our hotspot-based method chooses
an arbitrary schedule Ths that goes through the points of the hotspot
in a consecutive manner. We want to prove that the cost of Ths is
bounded.

THEOREM 2. cost(Ths) ≤ cost(Sbest) + (2m+ 1)× θ where
m is the number of points in the hotspot without considering con-
straints.

Proof Sketch:We prove when m = 3 by illustration. For gen-
eral m, the proof is mainly the same. In Figure 5 (a), assume
{xi, xj , xk} has pairwise distance of no greater than θ. The op-
timal schedule Sbest is labeled by black solid and dashed lines. We
can convert Sbest into Ths by connecting xi, xj , xk consecutively
first and then thread the other locations (represented by ovals) in
Sbest as shown by the red lines and black dashed lines. We prove
that (1) cost(Ths) ≤ cost(Sbest)+3θ which is equivalent to prove
a′+ b′+ c′+d′+ e′ ≤ a+ b+ c+d+ e+ 3× θ since the dashed
lines are common in both schedules.

We know d′ ≤ b + c, e′ < d + e. Now we only need to show
a′ + b′ + c′ ≤ a+ 3× θ. As shown in 5 (b), we can easily prove
that c′ ≤ a + θ because the shortest path between xk and xi+1 is
no longer than than the schedule xk, xi, xi+1. Because a′ ≤ θ and
b′ ≤ θ, we know a′ + b′ + c′ ≤ a+ 3× θ.

However, the hotspot algorithm may not use the same order of
xi, xj , xk as in the optimal solution as it is an arbitrary order, we
now prove that (2) for any two hotspot-based schedule Shs and
Shs′ , cost(Shs) ≤ cost(Shs′) + (m + 1)θ where m = 3. With-
out loss of generality, let Shs = . . . , xi−1, xi, xj , xk, xk+1 . . . and
Shs′ = . . . , xi−1, xj , xk, xi, xk+1 . . .. It is obvious that d(xi−1, xi)
≤ d(xi−1, xj) + θ and d(xk, xk+1) ≤ d(xi, xk+1) + θ. Also
d(xi, xj) ≤ d(xj , xk)+θ and d(xj , xk) ≤ d(xk, xi)+θ. Adding
the inequalities together, we have cost(Shs) ≤ cost(Shs′) + 4θ

Putting (1) and (2) together, we have cost(Shs) ≤ cost(Sbest)+
(2m+ 1)× θ where m = 3. 2

Because after we build the whole tree, we select the shortest
schedule with hotspot cost(ShsBest) and it is obvious that cost(ShsBest)
≤ cost(Sbest) + (2m+ 1)× θ.

When we consider the constraints, for Sbest the corresponding
hotspot-based schedule with constraint may violate some constraints
and thus does not exist. However, when the constraints of points
of the best schedule are relaxed, the corresponding hotspot-based
schedule will be found. We have the following theorem.

THEOREM 3. cost(Shs) ≤ cost(Sbest) + (2m+ 1)× θ where
m is the number of points in the hotspot when constraints of all
points in Sbest is larger than mθ.

Proof Sketch:Again we prove for m = 3 because of the ease
of illustration. In Figure 5 (a), if (a, p, b, c, q, d, e) is a valid par-
tial schedule with each node having at least 3θ slack time, then
(a′, b′, c′, p, d′, q, e′) is a valid partial schedule.

For any point on p, the extra delay is a′ + b′ + c′ − a ≤ 3× θ.
For any point on q, the extra delay a′+ b′+ c′−a+d′− (b+ c) ≤
a′ + b′ + c′ ≤ 3 × θ. For xi+1, the extra delay is a′ + b′ + c′ +
d′ + p+ q− (a+ b+ c+ d+ p+ q) which is proven in Theorem
2 as no larger than 3× θ. 2

When θ is sufficiently small, we will likely to find a schedule
that is upper bounded by the best schedule with a small additional
time.

6. EXPERIMENTAL DESIGN
We evaluate the algorithms using a large scale taxi dataset con-

taining 432,327 trips made by 17,000 Shanghai taxis over one
day (May 29, 2009). A trip tp in the dataset has starting time
tp.st, starting location tp.sl, ending time tp.et, and ending lo-
cation tp.el. A simulator generates trip requests from the actual
432,327 trips and submits them to the scheduling system in real-
time. Specifically, for each trip tp, a trip request tr is initialized as
tr = 〈tp.sl, tp.el, w, ε〉, and tr is submitted at time tp.st.

The Shanghai road network is represented by an undirected and
weighted graph containing 122,319 vertices and 188,426 edges.
The starting and ending trip coordinates are pre-mapped to the clos-
est vertex in the graph. The road network is stored in memory in a
simple weighted adjacency list structure.

A vehicle is initialized to a random vertex in the road network.
Vehicles follow a given route when customers are on board or, oth-
erwise, follow the current road segment, choosing a random seg-
ment to follow at intersections. We assume a constant speed D;
specifically, based on the data, we setD to 48 km/hr. Time-distance
conversion is accomplished by multiplying or dividing byD. In our
experiments, the superimposed grid size gr.l is 500 m.

For large scale ridesharing, the shortest path algorithm is called
very frequently. We observe the repeated calling from scheduling
algorithms follows a pattern that preserves locality. We implement
two LRU caches: one storing up to ten million shortest distances
and the other storing up to ten thousand shortest paths. A new short-
est distance/path is calculated when there is a cache miss and will
replace the least recently used one. Both caches are indexed only
by the starting and ending points in a distance or path computation
call; this is accomplished by defining the index for two vertices s
and e as i = id(s) · |V | + id(e), where |V | is the total number of
vertices and id returns an integer representation for a vertex.

The simulation framework is implemented in C++. We run the
experiments on cluster nodes with an Intel Xeon X5550 (2.67GHz)
processor. The simulation implementation is single-threaded, and
memory usage is limited to three gigabytes.

Parameter Tested settings
Scheduling Capacity 4

Constraints 5 min / 10%; 10 min / 20%;
15 min / 30%; 20 min / 40%; 25 min / 50%

Number of Servers 1,000; 2,000;
5,000; 10,000; 20,000

Table 1: Parameters for four-algorithm comparison.
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Figure 6: Four algorithm Comparison. (a) Average RHT with respect to number of servers; (b) Average RHT with respect to con-
straints; (c) Average VST with respect to scheduling workload per vehicle. Default parameters are 10 min / 20% for the constraints,
10,000 servers, and a scheduling capacity of 4.

6.1 Four Algorithm Comparison
We first compare kinetic tree algorithm with the branch-and-

bound, brute-force, and mixed-integer programming algorithms.
We choose three important parameters: scheduling capacity, wait-
ing time and service constraints, and number of servers. We first
establish reasonable defaults for the parameters, and then proceed
to modify the parameters one at a time to evaluate their effect. The
defaults (bolded) and other tested settings are shown in Table 1.
Because only our kinetic tree algorithms respond in real-time for
higher scheduling capacities, the default scheduling capacity is set
at 4 for experiments (which also mimic real-world taxi system) in
this section. We test much larger scheduling capacities for kinetic
tree algorithms in section 6.2. Note that a waiting time constraint
of 10 minutes corresponds to 8,000 meters.

To validate our settings for the number of servers, we run the
simulation first with different numbers of servers and evaluate the
drop rate (i.e., the number of trip requests that are rejected by the
system as a percentage of total requests) at each setting. These re-
sults are shown in Table 2. As can be seen, there is a steep decrease
in the drop rate from 2,000 to 5,000 and again from 5,000 to 10,000
servers, making either 5,000 or 10,000 a good choice for this data
(assuming we want to satisfy most requests). It is also interesting
that drop rates are similar between the two scheduling capacities;
this is because most servers are not filled to capacity.

#servers Scheduling capacity 4 Scheduling capacity 6
500 84.0% 84.2%
1000 72.1% 72.1%
2000 50.4% 51.3%
5000 8.52% 7.02%

10000 < 0.01% < 0.01%
20000 0% 0%

Table 2: Drop rate evaluation. The percentage of unsatisfied
customers (customers whose requests were denied because no
server was available) is shown for constraints of 10 minutes and
20%, and variable number of servers and scheduling capacity.

To evaluate performance, we measure the vehicle scheduling time
(VST): the time needed to attempt to schedule a trip request to a
vehicle given its current state, i.e., to calculate the minimum sched-
ule cost for the active trips and the new request. Depending on

the scheduling workload, the VST can change significantly (for ex-
ample, a taxi with twenty active requests would have forty more
points to be scheduled than one with no assigned requests). Thus,
we show average VST for different scheduling workload.

Because a request will need to be matched to all vehicles within
w to pick the best, we also measure the request handling time
(RHT): the time required to search for and assign the new request
to the vehicle with minimum cost or to reject it (RHT includes VST
for each vehicle searched).

Figure 6 (a) and (b) show the average RHT with varying fleet
size and constraints and Figure 6 (c) shows the average VST with
respect to different scheduling workload per vehicle. Generally,
the brute-force and branch-and-bound algorithms exhibit roughly
the same performance. The mixed-integer programming approach
takes significantly more time, probably because of significant ex-
ecution time used to initialize and preprocess each mixed-integer
programming problem. The tree algorithm outperforms the other
algorithms for all test cases often by orders of magnitude, due to its
incremental approach.

For a small number of taxis and a large scheduling workload,
branch-and-bound outperforms brute-force. The reason is most
likely that the pruning effect of branch-and-bound is more impor-
tant when scheduling more requests. When the problem size is
small, the fast initialization of the brute-force algorithm is prefer-
able.

For the default parameters, the execution time of the branch-
and-bound and brute-force algorithms are almost identical, while
the mixed-integer programming is approximately 20 times slower.
The tree algorithm, on the other hand, is almost two times faster
than the branch-and-bound algorithm. Similar magnitude execu-
tion time differences are seen for other parameters.When examin-
ing the vehicle scheduling time only for computations where the
scheduling workload is 4 (at the capacity), the tree algorithm be-
comes 5 times to several orders of magnitude faster than the other
three algorithms.

6.2 Comparing Tree Algorithms
We further evaluate different versions of our tree algorithm on

parameters that the other algorithms cannot efficiently handle: ba-
sic tree algorithm, the slack time algorithm, and the hotspot clus-
tering algorithm (which also uses slack time).
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Figure 7: Average performance of tree algorithms. (a) RHT with respect to number of servers; (b) RHT with respect to constraints;
(c) VST with respect to scheduling workload per vehicle. Default parameters are 10 min / 20% for the constraints, 5,000 servers, and
a scheduling capacity of 6.

Parameter Tested settings
Scheduling Capacity 3; 4; 5; 6; 7; 8; 12; 16; unlimited
Number of Servers 500; 1000; 2000; 5,000; 10,000

Constraints 5 min / 10%; 10 min / 20%;
15 min / 30%; 20 min / 40%; 25 min / 50%

Table 3: Parameters for Tree algorithm Comparison.

Because only the hotspot clustering algorithm can handle an un-
limited scheduling capacity (results shown in Figure 9), we set a de-
fault scheduling capacity of 6 for comparison. The parameters we
use for evaluating the tree algorithms are shown in Table 3, with the
bold values being the default settings. Also, for the hotspot clus-
tering algorithm, we fix the hotspot combination threshold θ to 50
meters.

Figure 7 shows that slack-time algorithm generally has a higher
performance in request handling time than the basic tree algorithm
for the lower three constraint values tested. This makes sense be-
cause the slack-time algorithm is designed to improve the detection
of infeasible branches; when constraints are tighter, fast detection
is most useful.

Figure 8 presents VST with a scheduling workload of 6. Most
prominent in the graphs is the steep increase in VST for tight con-
straints and large number of servers with the basic and slack-time
tree algorithms. In both of these cases, it is relatively rare for a
server to have six passengers: typically, there would either be an-
other server with less passengers available to handle the request or
the constraints would be too tight to allow so many passengers. So,
when the server is able to get six passengers, it is most likely be-
cause the pickup/dropff points are very close to each other. In these
cases, the short distance between the points creates a large number
of feasible combinations. Although these cases would also appear
for looser constraints and smaller numbers of servers, the VST is
an average, and other six-passenger-cases that do not create a large
number of combinations would be much more common. This also
explains why the hotspot clustering algorithm is not affected by the
trend. In Figure 8 (b), with very high numbers of servers, some
of the clustered trips will be split between servers since it is more
likely that multiple servers will be nearby; although this trend gen-
erally affects non-clustered trips to a greater degree (thus explain-
ing the increase in VST from 2,000 to 5,000 in the first place),
there are few enough cases where we get to the scheduling work-
load of six, that fluctuations in the taxi positions as they are serving
passengers or cruising greatly affect the performance. Slack-time
approach is designed to handle cases where there are many possi-

Figure 8: Tree algorithm comparison for scheduling workload
of 6 only. (a) Average VST with respect to constraints; (b) Av-
erage VST with respect to number of servers. Default parame-
ters are constraints of 10 min / 20% and scheduling capacity of
6 with 5,000 servers.

bilities that can be pruned; when this is not the case it adds unnec-
essary overhead.

In these extreme cases, the slack-time tree algorithm is slower
than the basic tree algorithm; slack time only reduces execution
time when there are many infeasible branches that can be pruned,
but here most of the branches remain feasible. Slack time retains
its usefulness at smaller scheduling workloads, where it is scalable
across other parameters. Since the hotspot clustering algorithm also
utilizes a slack-time based approach, it gets advantages at both low
and high scheduling workloads.

Figure 9 shows RHT for increasing scheduling capacity. The
RHT breaks off for each algorithm when it can no longer finish in
a reasonable time or exceeds the 3GB memory limit. The hotspot
clustering algorithm is the only one that is able to finish and re-
sponse in real-time with a capacity greater than 7, and also for un-
limited scheduling capacity (marked as unlim in the figure).
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Figure 9: Average RHT for different scheduling capacities.
“unlim” indicates unlimited capacity. Only hotspot clustering
algorithm can complete for unlimited capacity. Default param-
eters are 10 min / 20% for the constraints and 5,000 servers.

From this figure, we can see that while the basic and slack-time
tree algorithms are unable to continue processing when the problem
sizes become too large, the hotspot clustering algorithm is scalable
to higher capacities. This also confirms our hypothesis that when
a large number of passengers wish to depart from a single point
(exponential scheduling possibilities), hotspot clustering combines
these points in the tree.

Our experiments above on the Shanghai dataset show that the
maximum number of passengers at unlimited capacity in a single
taxi is 21, while the average is 0.8 (this is with the default parame-
ters, so with 5,000 servers; at 2,000 servers and unlimited capacity,
the average bumps up to 1.7). The average in the top 20% filled
taxis is 2.8 (3.9 with 2,000 servers).

To get an idea of the effect of different θ parameters on the qual-
ity of solutions produced by the hot-spot clustering algorithm, we
test θ = 50, 200, 500 meters. Specifically, we record the percent
increase in average distance travelled by a satisfied trip (ADT) from
basic tree algorithm to hotspot-clustering algorithm; this shows
how much extra distance needs to be covered to satisfy a sim-
ilar amount of requests due to the clustering. Figure 10 shows
that when θ increases, the ADT does not always increase. This
is because along with degraded solution quality, higher θ values
also may fail to satisfy the service constraints exactly as nodes are
merged; so, more customers can actually be satisfied. Still, particu-
larly for higher numbers of servers, the raw trip data shows that the
hotspot-cluster algorithm does yield similar solutions as the other
algorithms with θ = 50 meters.

Figure 10: Percent increase in average distance travelled by
a satisfied trip from basic tree algorithm to hotspot-clustering
algorithm with varying θ and number of servers. Higher num-
bers indicate degraded solution quality.

We additionally conduct an experiment to explore a case where
we never reject customers as shown in table 4. To achieve this, we
modify the algorithms to support request-specific pickup and ser-
vice constraints (this is a simple modification). Then, when a new
request is received, we first attempt to schedule it with the tightest
configured constraints (5 minutes, 10%), then try the next looser
constraint values (factoring the contraints by 1.0, 1.5, 2.0, 2.5, 2.5∗
1.5, and 2.5∗1.52) until the request is scheduled. Table 4 shows the
average constraints across all requests when using this approach.
The results show that, similar to drop rate, there is a significant re-
duction in average constraints from 2,000 servers to 5,000 servers.

Number of servers Pickup constraint Service constraint
500 56.7 minutes 113.4%

1000 45 minutes 90%
2000 35.1 minutes 70.2%
5000 10.6 minutes 21.4%

10000 10 minutes 20%

Table 4: Average constraints across customers when all re-
quests are satisfied by increasing the service constraints until
a server can handle the request.

7. RELATED WORK
Our work is related to nearest neighbor (NN) search on moving

objects over road networks. Early work focuses on data models that
are easy to implement and serve as a foundation for NN queries
[14]. Later research has focused on continuous monitoring of NNs
in highly dynamic scenarios, where the queries and the data objects
move frequently on a road network [19]. A recent paper addresses
the problem of monitoring the k-NN to a dynamically changing
path in road networks. Given a destination where a user is going
to, this new query returns the k-NN with respect to the shortest
path connecting the destination and the user’s current location [3].
Guting et. al. proposed algorithms to find the k-NNs to mq within
D for any instant of time within the lifetime of mq given a set
of moving object trajectories D and a query trajectory mq [12].
NN query in road network is orthogonal to ridesharing scheduling
problem that can help to filter the initial set of candidate taxis.

The trip grouping algorithm [11] groups “closeby” requests us-
ing a set of heuristics. Requests are queued for a waiting time to be
scheduled. The heuristics include grouping requests upon expira-
tion, estimation combination saving using pairwise request combi-
nation gain, and greedy grouping. The grouping algorithm is then
expressed as a continuous stream query and optimized by space
partitioning and parallelization. This method is heuristic-based and
does not provide waiting and riding time service guarantee as our
method does. A recent paper [17] formulated the ridesharing prob-
lem similarly (early online version of our paper is available from
[13]). However, their work focuses on the effect of indexing and
approximate routes on level of ridesharing and satisfaction rate
while ours focuses on efficient and effective algorithms for optimal
scheduling. Particularly, for any taxi, our solution can guarantee to
find the optimal route given the existing requests, while [17] cannot
provide this as their solution consider only one greedy route for the
requests. We have studied both branch-and-bound algorithms and
the novel kinetic tree approach. The matching algorithm in [17]
can be considered as a special case of the kinetic tree approach
where only one branch is recorded.

In operation research, early research on this problem mostly fo-
cuses on a single vehicle and a static scenario where the set of re-
quests are known ahead of time. This is unrealistic for large scale
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and ad-hoc services such as a taxi service. The problem is, unsur-
prisingly, NP-hard. Only problems with small sizes can be solved
to optimality. Exact dynamic programming algorithms have been
developed [20]. However, in our case, since the maximal waiting
time and the service level are two separate constraints, each trip re-
quest cannot be enforced with a fixed completion deadline. Thus,
the dynamic programming approaches can not be applied. We also
note that our problem can be considered more general than the fixed
deadline problem. Given a fixed deadline t, the maximal waiting
time can be defined as w = t− (1 + ε)d(s, e). Thus, our algorithm
can also be used for the fixed deadline problem.

In a dynamic single vehicle DARP problem, requests come in
real time and a server has to make decisions on-line [9]. In the prob-
lems without deadline, the objectives are to minimize makespan
(time to finish the last request) or the average completion time.
Competitive ratio is a standard tool to measure the effectiveness
of a dynamic DARP algorithm. An on-line algorithm A is called
c− competitive if for any instance δ, the cost of A on δ is at most
c times the offline optimum on δ. This is assuming an optimal so-
lution is available which is false for modern large scale scheduling
problem we are addressing .

The state-of-the-art Branch-and-cut (BaC) algorithm [5] formu-
lates the multiple server version of this problem using mixed-integer
programing and a branch-and-cut solution. BaC can find exact so-
lutions for small to medium size instances (4 vehicle and 32 re-
quests on a moderate PC for tens to hundreds of minutes). It as-
sumes all vehicles and requests are available ahead of time which
is not realistic for a dynamic taxi service of thousands of vehi-
cles serving through out the day. Nevertheless, the solution can be
adopted to accommodate the attempts of combining new requests
with existing routes of vehicles. We compare our kinetic tree based
approach to a branch-and-bound approach and a mixed integer pro-
graming approach in this paper.

8. CONCLUSION
In this paper, we formulate and propose a branch-and-bound al-

gorithm, a mixed-integer-programing based algorithm, and a ki-
netic tree algorithm with optimizations to dynamically match real-
time trip requests to servers in a road network to allow ridesharing.
The proposed kinetic tree algorithm outperforms commonly used
approaches including branch-and-bound and mixed-integer program-
ing. Experiments on large taxi datasets show the advantages of
the kinetic tree approach. In the future, we would like to con-
sider uncertainty introduced by traffic and pick-up/drop-off delays
in scheduling; such uncertainty is inherent to ridesharing. A model
that captures and informs users about the uncertain nature of the
scheduling allows users to make appropriate choices based on their
individual needs.
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