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ABSTRACT
Integrating incomplete and possibly inconsistent data from various
sources is a challenge that arises in several application areas, es-
pecially in the management of scientific data. A rising trend for
data integration is to model the data as axioms in the Web Ontol-
ogy Language (OWL) and use inference rules to identify new facts.
Although there are several approaches that employ OWL for data
integration, there is little work on scalable algorithms able to han-
dle large datasets that do not fit in main memory.

The main contribution of this paper is an algorithm that allows
the effective use of OWL for integrating data in an environment
with limited memory. The core idea is to exhaustively apply a set of
complex inference rules on large disk-resident datasets. To the best
of our knowledge, this is the first work that proposes an I/O-aware
algorithm for tackling with such an expressive subset of OWL like
the one we address here. Previous approaches considered either
simpler models (e.g. RDFS) or main-memory algorithms. In the
paper we detail the proposed algorithm, prove its correctness, and
experimentally evaluate it on real and synthetic data.

1. INTRODUCTION AND MOTIVATION
In many application areas there is a need to integrate or cu-

rate incomplete data using expressive rules whose evaluation can-
not be easily accommodated in relational databases. Representa-
tive examples often arise in the field of scientific data manage-
ment. The state-of-the-art practice for addressing such problems is
to model the data with the Web Ontology Language (OWL) [9], a
standard of W3C. OWL extends the Resource Description Frame-
work Schema (RDFS) [8] and allows the definition of assertions,
constraints, classifications and taxonomies in the form of axioms
which are amenable to automated reasoning procedures. Through
the latter, one can extract new facts and dependencies or even iden-
tify inconsistencies. Over the last few years, OWL has been the ba-
sis for a multitude of scientific ontologies like SNOMED CT [14],
GALEN [12], FMA [11], NCI Thesaurus [13], etc., most of which
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are actively maintained and widely used by practitioners and re-
searchers in the respective fields.

Our work focuses on the efficient evaluation of complex infer-
ence rules on large sets of OWL axioms that cannot fit in main
memory. Axioms in this setting describe the data and their schema,
whereas the inference rules define recursive procedures that infer
additional facts. For example, assume that the information “John
is infected with virus A” is stored in one data source, and in an-
other source there is the information that (i) “John is infected with
virus B” and (ii) “Those that are infected with both virus A and
B become ill”. If we integrate data from both sources, we should
also be able to infer, and add to the final dataset, that “John is ill”.
OWL enables users to specify such axioms, and facilitates data in-
tegration by offering reasoning mechanisms for extracting implicit
facts. Given an initial set of axioms and a set of inference rules, the
identification of all valid axioms with respect to the rules is known
as completion or saturation of the ontology.

Reasoning with expressive rules on large and complex OWL on-
tologies is attracting significant interest in data management. OWL
is already being used as a tool for integrating data of any type
[23], including relational data [41]. The adoption of OWL as a
mechanism for data integration has been further motivated by the
spread of Linked Data and the support of OWL entailments in the
SPARQL language [10]. This trend implies that OWL reasoning is
not only needed for scientific ontologies which may be small in size
(and relatively static), but it has to be performed also on huge vol-
umes of operational data from various sources. The previous need
is clearly reflected in the increasing support of OWL features by
commercial RDBMSs like Oracle [5, 44, 31] and IBM [26]. In this
context, the inference tasks must be performed in an I/O-aware en-
vironment where main memory is not infinite. Unfortunately, the
state-of-the-art systems with adequate inference capabilities from
the areas of logic programming, deductive databases and semantic
web, e.g., YAP [7], DLV [3], LogicBlox [4], OWLIM [21], Jena
[1], etc., are either memory-oriented (and, hence, they cannot scale
to large collections of axioms) or they focus on the evaluation of
(partially) bounded queries, i.e., queries that retrieve information
associated with a specific entity in the data, e.g., “Find all medical
conditions associated with John”.

The contributions of the paper are summarized in the following:

1. We model the saturation problem as a reachability problem
on a graph that represents the axioms of the ontology. Based
on this model, we propose a semantically oblivious storage
scheme that facilitates the in-bulk application of different in-
ferences within the same I/O operations. The core idea be-
hind our approach is to establish a rule-independent pattern
for accessing the data and decide on the fly which rule to
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perform.

2. We develop a novel method that operates efficiently under
a limited memory budget and performs the saturation of the
ontology within a series of simple database operations like
sort, merge and join. We also show how logical and physical
optimizations can be incorporated in our evaluation scheme.

3. We provide a proof of correctness for the proposed algorithm
and its optimizations.

4. We evaluate our techniques using real and synthetic datasets.

2. PROBLEM DEFINITION
OWL, in its complete form, is very expressive and many impor-

tant reasoning tasks have exponential complexity with respect to
the size of the data. For this reason, most datasets are expressed
in tractable subsets of the language, namely OWL2-EL, OWL2-
RL and OWL2-QL, that have “good” computational properties. In
this work, we focus on a large subset of OWL2-EL, the nominal-
safe SROEL [33]. SROEL supports all features of OWL2-EL
except admissible range restrictions, keys and datatypes. We do
not address the previous features here since they are not popular in
practice.

For the ease of presentation, the syntax we use is that of De-
scription Logic (DL) [18], i.e., the logical formalism behind OWL,
and not the syntax of OWL itself. The notation employed in the
paper is depicted in Table 1. Individuals represent the actual data
(instances) and classes have the usual semantics of collections of
individuals. Roles (also known as properties) are relations that as-
sociate individuals. The existential restriction on a class C with
a role R (denoted with ∃R.C) is a class itself; ∃R.C stands for
the class of all individuals which are associated with role R to at
least one individual of class C. We refer to C1 u C2 and ∃R.C as
complex classes. The ∃R.Self denotes the class of all individuals
which are related through role R with themselves and it is used to
express reflexivity.

1.C1 v C2 2.C1 u C2 v C3 3.C1 v ∃R.C2 4.∃R.C1 v C2

5.{a} v {b} 6.{a} v C 7.C v ∃R.Self 8.∃R.Self v C

9.> v C 10.C v ⊥ 11.R1 v R2 12.R1 ◦R2 v R3

Figure 1: Normal Forms of Axioms

Ontologies in SROEL are finite collections of inclusion axioms
depicted in Fig. 1. Axioms of types 1-4 model the inclusions be-
tween simple and complex classes. An axiom of type 5 expresses
equality between individuals, i.e., the nominal class {a} is a sub-
class of {b} (and the reverse) iff a = b. An axiom of type 6 is
used to model class assertions, i.e., a class assertion is expressed as
an inclusion of the form {a} v C. Similarly, a property assertion
that associates a with b through role R is equivalent to the axiom
{a} v ∃R.{b} (type 3). Axioms of types 7 and 8 model inclu-
sions involving the reflexive class of individuals, whereas axioms
of types 9 and 10 model inclusions involving the top and bottom
(empty) class. The bottom class is used to declare disjoint classes
as C1uC2 v ⊥ and inconsistencies as {a} v ⊥ (which often arise
through the inference). Finally, axioms of types 11 and 12 denote
the inclusions between roles. Note that a class C can be a nominal
class in the axioms of Fig. 1 but not when it appears on the right
side of an axiom; the right part of an inclusion can be a nominal
{a} only when the left part is also a nominal (type 5). Ontologies

Name Symbol Meaning

Top > The class that contains
all individuals of the ontology

Bottom ⊥ The empty class
Class

C1 u C2

The class that contains
Conjuction all individuals that belong

to both C1 and C2

Existential
∃R.C

The class that contains all
Restriction individuals related with an individual

of class C through property R

Reflexivity ∃R.Self
The class that contains all
individuals related with

themselves through property R

Nominal {a} The class that contains
only the individual a

Class Inclusion
C1 v C2

If an individual is of type C1

(SubClassOf) then it is also of type C2

Property Inclusion R1 v R2

If two individuals are related
through property R1 then they

are also related through property R2

Complex

R1 ◦ R2 v R3

If an individual a is
Property related with b through R1 and b
Inclusion is related with c through R2

then a is related with c through R3

Table 1: Symbols and Terminology

Source A 1. InfectedWithVirusA u NotVaccinated v Ill
Source A 2. ∃Vaccinated.VaccineTypeX v NotVaccinated
Source A 3. {va} v VaccineTypeX
Source B 4. {john} v Vaccinated1994
Source B 5. {john} v InfectedWithVirusA
Expert 6. Vaccinated1994 v ∃Vaccinated.{va}

Figure 2: Integration example

with this restriction are found in the literature as nominal-safe [29].
The reason we distinguish axioms of types 5 and 6 from those of
type 1 is because there are inference rules that apply specifically on
them (we explain this below).

Let us consider the small ontology of Fig. 2. NotVaccinated, In-
fectedWithVirusA, Ill, VaccineTypeX and Vaccinated1994 are sim-
ple classes, InfectedWithVirusAuNotVaccinated, ∃Vaccinated.{va}
and ∃Vaccinated.VaccineTypeX are complex classes, Vaccinated is
a role, and john and va are individuals (expressed as nominals). As-
sume that axioms 1, 2, and 3 come from a data source A which con-
tains a series of scientific facts. Axiom 1 states that patients who are
infected with Virus A (InfectedWithVirusA) and are not vaccinated
(NotVaccinated) are ill (Ill). Axiom 2 states that all those who have
been vaccinated with an insufficient vaccine of type VaccineTypeX
(∃Vaccinated.VaccineTypeX) should be treated as not vaccinated.
Finally, axiom 3 denotes that the vaccine va is of type Vaccine-
TypeX. Now consider that axioms 4 and 5 come from a data source
B that has the medical history of patients and states that john be-
longs to a group of people who have been vaccinated in 1994 (Vac-
cinated1994) and that he is infected with virus A. Axiom 6 is added
by an expert and states that all people who had been vaccinated in
1994 where vaccinated with vaccine va. From the previous exam-
ple it is easy to see that additional data can be inferred and added
into the integrated dataset; from the data of the two sources we can
infer that John is ill, since he has been infected with virus A and he
has been vaccinated in 1994 when everyone was vaccinated with
the insufficient vaccine va of type VaccineTypeX. The detection of
all such additional data or the existence of possible inconsistencies
and discrepancies between data from different sources is achieved
through the iterative application of a set of inference rules.
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For SROEL, these rules are depicted in Fig. 3. When the ax-
ioms that match the body of a rule (antecedent) are found in a col-
lection of axioms, let D, then the axiom in the head of the rule
(consequent) is true and can be added to D. The exhaustive appli-
cation of the rules until no additional axioms can be produced, i.e.,
until no axioms that are not already in D are inferred (fix-point), is
known as completion or saturation. The result of this process is a
dataset D′ such that D ⊆ D′.

Rules like IR1, IR3 and IR11 define (generalized) transitive clo-
sures [28], and if the logical inferences were limited to them, exist-
ing evaluation methods from database research would be sufficient
to address the problem [43]. The complexity of the task we de-
scribed is increased by the fact that the majority of the rules are
mutually recursive [20], either directly (when a rule creates axioms
that participate in the body of another rule and vice versa, e.g, IR3
and IR4), or indirectly (when a rule affects another through a third
rule and vice versa, e.g., rules IR1 and IR6 through IR3 and IR4).
In addition, rules like IR2 introduce more complex dependencies.
IR2 states that if a class C1 is a subclass of C2 and C3, and the in-
tersection of C2 and C3 is a subclass of C4, then C1 should also be
a subclass of C4. Due to space restrictions, we refer the reader to
[35] for a detailed description of each rule. Although simple tran-
sitive closure can be evaluated in a single pass over the data [15],
such complex reasoning operations incur multiple passes; hence,
for large-scale ontologies with millions of axioms (implicit or ex-
plicit), the problem becomes I/O-bounded.
Discussion. This work focuses on the saturation of a SROEL on-
tology under the rules of Fig. 3, and in the rest of the paper we
only discuss its efficient evaluation in an environment with limited
memory. Still, the rules we present here are tightly associated with
a very important reasoning task in OWL which is known as classi-
fication [18, 17]. Classification amounts to the identification of all
direct inclusions between the named classes of the ontology, e.g.,
NotVaccinated, InfectedWithVirusA, Ill, VaccineTypeX, and Vacci-
nated1994 in the example of Fig. 2. Besides the actual saturation,
classification requires two more steps in order to be performed cor-
rectly: a) the normalization of the input axioms that is performed
before applying the rules, and b) the final reduction phase that ex-
tracts the direct class inclusions from the saturated axioms. The
most expensive part of classification is by far the saturation, hence,
the results of our work can be also exploited in this setting. To
this end and because the rules of Fig. 3 are complete with respect
to classification only when the dataset is normalized, we bring the
input axioms in normal form before applying the rules. In fact,
Fig. 1 depicts the normalized axioms, i.e., each symbol Ci refers
to a class name (and not a complex class) like in the example of
Fig. 2. For more details about the normalization and the transitive
reduction phases, see [32] and [30].

3. DATA MODELING
Our approach adopts a semantically oblivious representation of

the ontology based on a graph model. A collection D of axioms
in the normal forms of Fig. 1 is modeled as a graph with a small
collection of metadata, and then the edges of this graph are stored in
a relational table. Specifically, the majority of axioms in D, i.e., all
axioms except those of type 2, 11 and 12, are modeled as a directed
labeled multigraph G(V,E, lV , lE), where:

• V is the set of nodes. There is one node for each class in D,
including > and ⊥. We also consider a special node having
the label Self.

• E is the set of edges. There is one edge for each (different)
axiom in D except for axioms of type 2, 11 and 12.

IR1 C1 v C3 ← C1 v C2 ∧ C2 v C3

IR2 C1 v C4 ← C1 v C2 ∧ C1 v C3 ∧ C2 u C3 v C4

IR3 C1 v ∃R.C3 ← C1 v C2 ∧ C2 v ∃R.C3

IR4 C1 v C4 ← C1 v ∃R.C2 ∧ C2 v C3 ∧ ∃R.C3 v C4

IR5 C1 v ∃R2.C2 ← C1 v ∃R1.C2 ∧ R1 v R2

IR6 C1 v ∃R3.C3 ← C1 v ∃R1.C2 ∧ C2 v ∃R2.C3 ∧ R1 ◦ R2 v R3

IR7 C1 v ⊥ ← C1 v ∃R.C2 ∧ C2 v ⊥
IR8 C1 v ∃R3.C2 ← C1 v ∃R1.Self ∧ C1 v ∃R2.C2 ∧ R1 ◦ R2 v R3

IR9 C1 v ∃R3.C2 ← C1 v ∃R1.C2 ∧ C2 v ∃R2.Self ∧ R1 ◦ R2 v R3

IR10 C v ∃R3.C ← C v ∃R1.Self ∧ C v ∃R2.Self ∧ R1 ◦ R2 v R3

IR11 C1 v ∃R.Self ← C1 v C2 ∧ C2 v ∃R.Self
IR12 C1 v ∃R2.Self ← C1 v ∃R1.Self ∧ R1 v R2

IR13 C1 v C2 ← C1 v ∃R.Self ∧ ∃R.Self v C2

IR14 C1 v C3 ← C1 v ∃R.Self ∧ C1 v C2 ∧ ∃R.C2 v C3

IR15 {a} v ∃R.Self ← {a} v ∃R.{a}
IR16 {b} v {c} ← {a} v {b} ∧ {a} v {c}

Figure 3: Inference Rules (∧ stands for logical AND)

• lV = NC∪NI∪ {Self}∪{Top}∪{Bottom} is the set of node
labels. NC and NI are the sets of class and individual names
in D. Top and Bottom are the labels of the nodes referring to
the classes > and ⊥ respectively.

• lE = NR− ∪NR+ ∪ {subClassOf} is the set of edge labels.
N+

R is a set of labels produced by the concatenation of a
property name with the symbol +. Such labels are created for
each property R appearing in an axiom of type 3 or 7. NR− is
produced similarly for the properties appearing in axioms of
type 4 or 8. The use of subClassOf label is explained below.

Intuitively, for each class that appears in D, we create a node in
G whose label is the name of the class. Then, for each axiom, we
add an edge to G depending on the axiom type (Tx) as follows:

T1 C1 v C2 is represented by a subClassOf edge from node C1

to node C2.

T3 C1 v ∃R.C2 is represented by an edge from node C1 to
node C2, marked with label R+.

T4 ∃R.C1 v C2 is represented by an edge from node C1 to
node C2, marked with label R−.

T5 {a} v {b} is represented by a subClassOf edge from node a
to node b.

T6 {a} v C is represented by a subClassOf edge from node a
to node C.

T7 C v ∃R.Self is represented by an edge from node C to the
unique node Self, marked with label R+.

T8 ∃R.Self v C is represented by an edge from the unique
node Self to C, marked with label R−.

T9 > v C is represented by a subClassOf edge from the unique
node Top to node C.

T10 C v ⊥ is represented by a subClassOf edge from node C to
the unique node Bottom.

Axioms of type 2, 11 and 12 are not modeled directly in the
graph; they are kept separately as metadata since their semantics
are very different from those of the rest of the axioms and they
cannot be represented in an intuitive way on the graph.

The graph for our running example is provided in Fig. 4. The
metadata (axioms of type 2, 11 and 12) are depicted on the upper
right corner. Each non-dashed edge corresponds to an explicit ax-
iom, i.e., an axiom that exists in D from the beginning. The edges
(axioms) added by the inference are shown with dashed lines. Next
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Figure 4: Graph of running example

to each such edge we also denote the inference rule that created
it. Each axiom of the example, except axiom 1 which is repre-
sented in the metadata, introduces an edge between the nodes of
the graph. Axioms 3, 4 and 5 introduce subClassOf edges, while
axiom 2 introduces a Vaccinated− edge (since Vaccinated appears
on the left side of the inclusion in axiom 2). Axiom 6 introduces a
Vaccinated+ edge. Using IR4 on axioms 6, 3 and 2 we get a new
axiom Vaccinated1994 v NotVaccinated, which is represented by
a dashed edge on the graph. This axiom, together with axiom 4,
satisfies IR1, so an additional axiom {john} v NotVaccinated is
added. This last axiom, along with axioms 1 and 5, satisfies IR2,
so a final axiom {john} v Ill is added to the original data. We point
out that each inference rule can only add edges to the graph G, so
the set V of nodes remains the same and no additional axioms are
added to the metadata.

Within our model, most inference rules of Fig. 3 can be evaluated
by considering only: (i) the incoming and outgoing edges of each
node, (ii) the source and end nodes of these edges, and (iii) the
metadata of G (depicted on the upper-right part of Fig. 4). In other
words, rule application is reduced into examining at most 2-hop
paths in G. For instance, IR6 requires two hops: from C1 to C2

through R1 and from C2 to C3 through R2 (the axiom R1 ◦R2 v
R3 of type 12 belongs to the metadata). The only exception is
rule IR4 which requires 3 hops: from C1 to C2 through R, from
C2 to C3 through subClassOf, and from C3 to C4 through R−.
The aforementioned property is crucial for the design of an I/O-
aware algorithm; it implies that, if we traverse the graph G node
by node (i.e., retrieve all edges associated with a specific node), we
can correctly produce all axioms implied by the rules of Fig. 3 in
this part of the graph. In other words, a single application of all
inference rules on the dataset can be consistently performed within
the same scan of G, provided that this scan proceeds node by node.
To perform the saturation, the new edges have to be added to G and
the process must be repeated until no new edges are created.

3.1 Storage Scheme
The graph G and its metadata are stored in five relations:

RG Relation RG contains all edges that comprise the graph G
except those that correspond to axioms of type 4 and 8. RG

has four fields: (i) R which contains the edge label, (ii) C1

which stands for the source node, (iii) C2 which stands for
the target node, and (iv) a 4-bit field T which contains addi-
tional information about the edge. The three less important
bits (23=8) in T are used for denoting the type of the axiom
the edge corresponds to, whereas the more important bit is
used by the algorithm as we explain in the following sec-

           ⋈ eℓ 

i+1 i+1

.

.

.

i i∆RG 

RG RG 

´ 

´ 

´ 

∆RG 

∆RG ∆RG 

Static Relations

C1 R C2

1 8 11

6 6 7

… … …

R1 R2

0 3

3 4

… …

C1 C2 C3

7 8 14

9 2 5

… … …

R1 R2 R3

1 11 4

15 3 12

… … …

R48 

R12 

R11 

R2 

The Schema Σ

T C1 R C2

0001 7 2 8

1011 9 4 11

… … … …

T C1 R C2

1111 1 0 6

0110 13 2 7

… … … …

T C1 R C2

1101 1 2 5

1101 13 2 3

… … … …

T C1 R C2
1011 25 43 12

1001 4 2 14

… … … …

Figure 5: Data model for D

tions1. In practice, relation RG contains the largest part of
the data. It is also the only relation that is expanded with
new tuples during the saturation.

R2 Relation R2 contains all axioms of type 2 (C1uC2 vC3). It
has three fields, one for each class that appears in the axiom:
(i) C1 for the first conjunction class, (ii) C2 for the second
conjunction class, and (iii) C3 for the subsumer class.

R11 Relation R11 stores all axioms of type 11 (R1 v R2) and
has two fields: (i) R1 for the subsumee, and (ii) R2 for the
subsumer property.

R12 Relation R12 stores all axioms of type 12 (R1◦ R2 v R3)
and has three fields: (i) R1 for the first property in the chain,
(ii) R2 for the second property, and (iii) R3 for the subsumer
property.

R48 Relation R48 stores all edges corresponding to axioms of
type 4 and 8, i.e., ∃R.C1 v C2 and ∃R.Self v C. It
has three fields: (i) R which is the edge label, (ii) C1 which
is the source node (for axioms of type 8 this is the Self node),
and (iii) C2 which is the target node.

The overall schema Σ is illustrated in Fig. 5. Note that classes
in all tuples are represented by integer IDs. The relation R′G is a
temporary copy of RG and it is created by the algorithm we present
in Section 4. The schema of Fig. 5 is a 1-1 representation of the
axioms in Fig. 1. This is straightforward for axioms of types 2,
11 and 12 which get separate tables. For axioms of type 4 and 8,
the homogenous representation in table R48 leads to a 1-1 mapping
since all these axioms are syntactically the same. For the rest of the
axioms stored in RG, the T attribute (which encodes the type of the
axiom) guarantees that the mapping is 1-1.

The main motivation behind the algorithm we present in Section
4 and the proposed storage scheme is to reduce the I/Os and, es-
pecially, the random I/Os. Our goal is to access the data on disk
as few times as possible and to perform these accesses mainly with
sequential scans of the underlying relations. In Section 3, we noted
that the inference rules can be completely evaluated by “looking”
only in a neighborhood of the graph G. Specifically, we observed
that if we cluster all axioms that contain a certain class (i.e., all in-
coming and outgoing edges of a node in the graph), then we can
evaluate most inference rules of Fig. 3 consistently. To this end,
we propose storing most of the axioms represented by the graph in
a single relation RG which is sorted on the class IDs (RG is sorted
1Note that we only need 3 bits for the axiom types since four types
of axioms in Fig. 1 are stored in seperate relations.
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on C1 whereas its copy R′G is sorted on C2 - cf. Fig. 5). This
enables us to efficiently retrieve all edges that are associated with
a class (i.e., a node) and perform on them all applicable rules in
bulk. The previous property is exactly what we exploit in our ap-
proach; the algorithm we present in Section 4 retrieves tuples from
the sorted RG (and its copy R′G) in contiguous blocks (as many as
the input buffers allow), and minimizes the random I/Os because all
these blocks (probably except the first one) are fetched in memory
with sequential accesses on disk. Moreover, note that the axioms
we store in RG (and R′G) are those appearing in the head of at least
one rule (the remaining axioms are kept in separate relations). In-
tuitively, this means that the algorithm will update only these two
relations at each step of the iteration (with the use of deltas), mini-
mizing in this way also the random writes to disk.

Still, some rules are not completely evaluated by accessing only
RG and R′G. The rest of the relations in the schema of Fig. 5 (R2,
R48, R11 and R12) have to be accessed to retrieve axioms of types
2, 4, 8, 11 and 12. The reasons these axioms are kept in separate
relations are the following:

• Rules IR2, IR4, IR6, IR8, IR9, IR10 and IR14 have three
predicates in their bodies and their evaluation requires a 3-
way join. Thanks to the additional static relations, the 3-way
joins required by the previous rules are evaluated by perform-
ing only 1 join between the large relations RG and R′G; the
additional join is always with one of the other small relations.

• Axioms stored in R2 (C1 u C2 v C3), R11 (R1 v R2) and
R12 (R1 ◦ R2 v R3) are not represented as edges in the
graph, hence, they participate in joins which have very dif-
ferent join conditions from the joins between the rest of the
axioms. All other axioms contain two classes (one on each
side ofv) on which the relations R′G and RG are sorted. Ax-
ioms of R2, R11 and R12 cannot benefit from such sorting,
so inserting them in RG and its copy R′G would only make
their retrieval more expensive.

• The axioms of type 2, 4, 8, 11 and 12 do not appear in
the head of any rule. This means that keeping them sepa-
rately from the rest of the axioms will not introduce addi-
tional random disk writes because the corresponding rela-
tions are static, i.e., they are not updated by the inference.

Note that traditional algorithms, which evaluate each rule of Fig.
3 independently, access the underlying database on a per-rule basis
and cannot benefit from the previous schema. At each iteration
step, these algorithms examine only axioms that are related to a
specific rule. In case they encounter other types of axioms in the
relation they scan, they simply omit them. Hence, storing different
types of axioms in the same relation (like in RG) will only result in
redundant I/Os for them.

4. OVERVIEW OF THE ALGORITHM
The salient feature of our approach is that the rules of Fig. 3 are

evaluated in bulk on the schema Σ of Fig. 5. The proposed Batch
Rule Application (BRA) algorithm is equivalent to a semi-naive
evaluation [43] of each rule in isolation, i.e., the combinations of
tuples which have been considered in a previous step of the iteration
are never checked again under the same rule.

As mentioned in Section 3, applying the rules of Fig. 3 on G re-
quires the examination of at most 2-hop paths (3-hop for IR4) and
a lookup in the metadata. On the schema Σ, this can be done by
performing (i) a self join of the form RG 1C2=C1 RG (for iden-
tifying the 2-hop paths), and (ii) a subsequent join of the interme-
diate tuples with one of the static relations R2, R11, R12, and R48

Algorithm: BRA
Input : The schema Σ={RG, R2, R11, R12, R48} populated with

the initial tuples;
Output : The saturated ontology under the rules of Fig. 3;

1 initialize relations ; //here we create a copy R′G of RG

2 let ∆R′iG be the left delta relation and ∆Ri
G be the right delta relation

at step i (see also Fig. 5);
3 i = 0;
4 R′iG 1el R

i
G ; //output sent to ∆Ri+1

G and ∆R′i+1
G

5 while |∆R′i+1
G | ! = 0 or |∆Ri+1

G | ! = 0 do
6 i++;
7 sort the right ∆Ri

G on C1 and remove duplicates;
8 sort the left ∆R′iG on C2 and remove duplicates;

//remove old tuples from the right delta

9 ∆Ri
G ←− ∆Ri

G\ R
i−1
G ;

//remove old tuples from the left delta

10 ∆R′iG ←− ∆R′iG\ R
′i−1
G ;

11 R′i−1
G 1el ∆Ri

G; //output sent to ∆Ri+1
G and ∆R′i+1

G

12 merge ∆Ri
G with Ri−1

G into Ri
G so that the relation remains

sorted on C1;
13 ∆R′iG 1el R

i
G ; //output sent to ∆Ri+1

G and ∆R′i+1
G

14 merge ∆R′iG with R′i−1
G into R′iG so that the relation remains

sorted on C2;
15 return Ri

G

(depending on the particular rule). To reduce the number of disk
page accesses during the evaluation, we adopt the following strat-
egy. First, we ensure the semi-naive evaluation by keeping the new
tuples in a temporary relation ∆RG. Instead of inserting ∆RG into
RG and then perform a self join on RG as a naive algorithm would
do at each step of the procedure, we join ∆RG with RG and merge
these two relations afterwards. Second, the join between ∆RG and
RG is designed so that all rules are checked when a node neigh-
borhood of G is fetched from disk. This means that the rules are
applied in bulk within each scan of the dataset and we do not have
to perform different scans for applying different rules. We provide
details on this in Section 4.1. The overall procedure is depicted in
Algorithm BRA. In the following we describe its high-level steps.

Initialization. The algorithm assumes a limited space of size
M in main memory. First, it creates a copy R′G of RG on disk.
This allows to avoid the expensive self join on RG and instead of it
to perform an initial join between R′G and RG. As we show later
on, the same replication is followed for the delta relation, that is,
at each step of the iteration we have a copy of ∆RG denoted as
∆R′G. In order to enable efficient merge-joins, R′G is sorted on the
attribute C2 whereas RG is sorted on C1. Finally, a hash index is
created for each static relation: R2 is hashed on C1, R11 on R1,
R12 on R1, and R48 on C1 (these attributes are highlighted in Fig.
5). Each one of the previous operations utilizes the entire available
memory M . When the initialization is completed, M is used by the
algorithm for fetching tuples of the relations in Fig. 5 (all of which
are disk resident) and for the output buffers.

Evaluation. The first step of the algorithm is to join the relations
RG and R′G (line 4) according to the operator 1el that applies all
inference rules together. We term this join el-join and describe its
details in Section 4.1. The new tuples created by the application
of the rules are stored in ∆RG (which is sorted on C1) and ∆R′G
(which is sorted on C2). In the baseline version of our algorithm,
∆RG and ∆R′G contain exactly the same tuples (sorted in a dif-
ferent order), but in Section 5 we show how we can prune tuples
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from the deltas. After the initial creation of ∆RG and ∆R′G in line
4, the algorithm starts its main loop (lines 5-14) which terminates
when no new tuples are produced (condition in line 5). Since the
main relations are updated at each iteration, we use Ri

G and R′iG to
denote the relations RG and R′G at the i-th step of the algorithm.
Similarly, ∆Ri

G and ∆R′iG are used for ∆RG and ∆R′G.
Each step of the algorithm breaks into a sequence of simple

database operations: (i) sorting, (ii) set difference, (iii) join, and
(iv) merging as in a typical semi-naive evaluation. At step i ≥ 1,
Ri−1

G and R′i−1
G are already sorted in the previous step (i − 1),

so we only need to sort ∆Ri
G and ∆R′iG. The latter are sorted on

the attributes C1 and C2 respectively2, and their duplicates (with
respect to all attributes) are removed during this process (lines 7-
8). Then, two set-difference operations are performed in order to
remove the “old” tuples existing in the deltas: one between ∆Ri

G

and Ri−1
G (line 9), and another one between ∆R′iG and R′i−1

G (line
10). After that, ∆Ri

G is joined with R′i−1
G (line 11), and then it is

merged with Ri−1
G into the relation Ri

G (line 12) so that the latter
remains sorted on C1. Analogously, ∆R′iG is joined with Ri

G (line
13), and then it is merged with R′i−1

G into the relation R′iG (line 14)
so that the latter remains sorted on C2. Note that ∆R′iG is joined
with Ri

G, not Ri−1
G , which implies a join of ∆R′iG with both Ri−1

G

and ∆Ri
G (see also Fig. 5). All tuples produced by the two el-joins

are stored in the relations ∆R′i+1
G and ∆Ri+1

G which are used in
the next step. When the loop is over, the saturated collection of
axioms is contained in RG.

4.1 The el-join operator
The el-join is the core of the algorithm we propose. It is a com-

plex operator which breaks the evaluation of each rule into smaller
operations shared with other rules. Following a multi-query opti-
mization paradigm [40], the common join predicates in the bodies
of the rules are batched and evaluated all together in groups, so
that a significant number of redundant I/Os is avoided. Conceptu-
ally, the application of a rule in this setting may be postponed till
other rules are evaluated, and continue again later on as we scan
the dataset. This aspect is very similar to the notion of eddies [16],
however, the latter focus on join re-ordering whereas in our case the
dynamic scheduling of the rules is simply determined by the type
of the tuples fetched from disk.

The basic operations in the evaluation of the rules are the joins
between the different relations. The most expensive joins are those
involving RG and R′G. We have two types of such joins. The first is
R′G 1R′

G
.C2=RG.C1∧R′G.T=f(RG.T ) RG and the second is the self

join RG 1RG.C1=RG.C1∧RG.T=f(RG.T ) RG, where f is a match-
ing function that decodes the attribute T in order to determine the
applicable rule. Intuitively, the first type of join creates pairs of in-
coming and outgoing edges of a node C1, whereas the second type
combines all outgoing edges of a node C1. Based on the common
operations in different rules, the el-join partitions the rules into the
following classes:

- Class 1 contains the rules IR5, IR12 and IR13. To evaluate
these rules, we need to examine (i) every edge labeled with a role
R on the graph, and (ii) the metadata of G. This is translated into a
join between RG and the static relations R48 and R11.

- Class 2 contains the rule IR15 that only needs to examine each
node separately, so we only have to scan RG.

- Class 3 contains rules IR2, IR8, IR10 and IR14. These rules
require examining all pairs of outgoing edges for each graph node

2In fact, the attributes C1 and C2 are only the primary attributes
of sorting. Since we need to remove the duplicates as well, the
remaining attributes of the relations are also taken into account in
sorting but we omit them here to simplify the presentation.

Algorithm: el-JOIN
Input : relations S, P,R2, R11, R12, R48;
Output : relations ∆Ri+1

G and ∆R′i+1
G ;

vars : U , Q: buffers;

1 let U and Q be the memory buffers for S and P respectively;
2 while there are tuples to join on S.C2 = P.C1 do
3 identify the minimum C1 value in Q, let minQ;
4 for each unconsidered tuple t ∈ Q:t.C1 = minQ do
5 trigger active rules of Class 1; //IR5, IR12, IR13

6 apply active rules of Class 2; //IR15

//self join on P
7 for each unconsidered pair of tuples (t1, t2):t1, t2 ∈ Q and

t1.C1 = t2.C1 = minQ do
8 trigger active rules of Class 3; //IR2,IR8,IR10,IR14

9 apply active rules of Class 4; //IR16

//join S and P
10 for each unconsidered pair of tuples (t1, t2):t1 ∈ U, t2 ∈ Q and

t1.C2 = t2.C1 = minQ do
//read as many blocks of S and P needed

11 apply rules of Class 5 ; //IR1, IR3, IR7, IR11

12 trigger rules of Class 6; //IR4, IR6, IR9

13 if no unconsidered tuples exist in U and Q then
14 if Q has to be reloaded and there are active rules in Classes

3 or 4 then
15 shift tuples in Q with the maximum C1 value to the

beginning of the buffer;

16 remove from U and Q all considered tuples except the
shifted ones (if any);

17 reload U and/or Q with the next blocks of tuples;

18 if there are active rules in Classes 1, 2, 3 or 4 then
19 while P is not exhausted do
20 repeat lines 3-9;
21 if there are active rules in Classes 3 or 4 then
22 shift tuples in Q with the maximum C1 value to the

beginning of the buffer;

23 remove from Q all tuples except the shifted ones (if any);
24 reload Q with the next blocks of tuples;

C1 and also the metadata. This is reflected in a self join of the
second type and joins with the static relations.

- Class 4 contains rule IR16 that requires examining all pairs of
outgoing edges for each node, but not the metadata.

- Class 5 contains rules IR1, IR3, IR7 and IR11 which require
examining every pair of incoming and outgoing edges for each
node C1. This is translated into a join of the first type between
R′G and RG.

- Class 6 contains the rules IR4, IR6 and IR9. IR4 requires
examining paths of three edges in the graph where the last edge is
of type 4 (∃R.C1 v C2) that is stored in R48. IR6 and IR9 require
the examination of all pairs of incoming and outgoing edges for
a node and also the examination of the metadata for role chains
(R1 ◦ R2 v R3). In all cases, the evaluation requires a join of the
first type between R′G and RG, and a join of the results with the
static relations; with R48 for IR4, and with R12 for IR6 and IR9.

The way the operator works is depicted in the Algorithm el-
JOIN. The input relations S and P refer to the left and right rela-
tions in lines 4, 11 and 13 of the Algorithm BRA. Hence, S stands
for one of R′0G , R′i−1

G and ∆R′iG, whereas P for one of R0
G, ∆Ri

G
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Figure 6: The el-join operator (U and Q amount to the “sliding windows” over S and P respectively)

and Ri
G. The output of the operator are the relations ∆R′i+1

G and
∆Ri+1

G . Let U and Q be the in-memory buffers for the relations S
and P respectively. In sum, the el-join applies the rules within a
carefully designed merge-join between S and P (lines 2-17), and
completes the evaluation with interleaving joins between streams
of tuples and the static relations of the schema Σ. Recall that the
relations S and P are already sorted on the join attributes C2 and
C1. The term trigger is used in the pseudocode of el-JOIN for all
rules that include an “external” join with the static relations (R2,
R11, R12, R48). Triggering a rule means that the respective tu-
ples are pushed to the sub-operators that perform the external joins.
This is done directly as we scan relation P (for rules of Class 1) or
after partially applying a rule of Class 3 or 6. In the former case,
the tuples sent to the sub-operators come from P , whereas in the
latter case they are intermediate tuples produced by the partial ap-
plication of the rules. A rule is applied partially when some (and
not all) of the axioms in its body are checked. For example, we
say that IR6 is partially applied when we perform only its first join
(C1 v ∃R1.C2 ∧ C2 v ∃R2.C3) as shown in Fig. 3. The re-
maining rules (Classes 2, 4 and 5) are evaluated as a whole within
the main merge-join.

The operator starts by filling the buffers U and Q with tuples
from S and P . It works on groups of tuples having a common
value for the Q.C1 attribute (minQ) and proceeds as follows. First,
it checks whether a rule of Class 1 should be triggered and applies
the rules of Class 2 (lines 4-6). Then, it applies the rules of Class 3
(partially) and also the rules of Class 4 by performing a self join on
Q.C1 (lines 7-9). Joins of the form P 1P.C1=P.C1∧P.T=f(P.T ) P
are evaluated here and the intermediate tuples (for the rules of Class
3) are pushed to the sub-operators as we mentioned before. In the
next step, it checks for rules of Class 5 and 6 (lines 10-12), so it
evaluates the join patterns of the form S 1S.C2=P.C1∧S.T=f(P.T )

P . Rules of Class 5 are applied as a whole, whereas those of Class
6 are applied partially (like the rules of Class 3) and the interme-
diate tuples are sent to the sub-operators. Similarly to a typical
merge join algorithm, in lines 10-12 we may need to read additional
blocks of S and P in order to ensure that there are no more pairs of
tuples (t1, t2) for which the condition t1.C2 = t2.C1 holds. The
only difference from a typical merge join algorithm lies in the way
the blocks of the two relations S and P are fetched from disk (lines
14-15); some tuples of P remain in the buffer (shifted to the be-
ginning) even after a subsequent load operation is performed in Q.
This happens only for the tuples with the maximum Q.C1 value,
and only when there are active rules that require a natural join on
Q.C1 (Classes 3 and 4), so that the operator can consistently apply

this join as a self join on the “sliding window” over P while the
main merge-join proceeds as usual (no additional I/Os occur). We
clarify the shifting operation in the example provided below. The
activation/deactivation of the rules is needed to avoid naive evalu-
ation, i.e., checking previously checked axiom combinations. For
instance, rules of Class 1 must be evaluated only on the new tuples
in P . To this end, they are active only in the initial join of the Al-
gorithm BRA (line 4) and also in the join R′i−1

G 1el ∆Ri
G (line

11). A similar optimization is used for the rules of Class 2, 3 and 4.
When the main loop of the merge join is completed, unread tu-

ples from P that need to be checked under the rules of Classes 1,
2, 3 or 4 are handled in lines 18-24. There, the remaining blocks
of P are fetched from disk with sequential scans and the procedure
in lines 3-9 is repeated till the relation is exhausted. We emphasize
that despite the predefined order for checking the different classes
of rules in BRA, the rules are actually applied according to the
types of the tuples in the buffers U and Q. Thus, the order of ap-
plying the rules, as we scan S and P , is dynamic and driven by the
underlying data.

External joins with the static relations of Σ are only needed in
the rules of Classes 1, 3 and 6, hence, these joins occur in lines 5, 8
and 12 of el-JOIN. Each such join is performed between a stream
of tuples and one of the relations R2, R11, R12, and R48. Streams
for rules of Class 1 are populated with tuples from P in line 5.
The respective streams for the rules of Class 3 and 6 are produced
by the self join on P.C1 (line 8) and the join S 1S.C2=P.C1 P
(line 12). Obviously, after a join is performed in the previous two
cases, attributes which are no longer needed for producing the final
tuples are discarded. A static relation is associated with exactly one
stream, so the latter may contain tuples belonging to the workload
of different rules. This amounts to a conceptual re-grouping of the
rules at a second level, based on the common join patterns that
involve a static relation. When an external join is performed, the
final tuples are sent to the deltas.
Example. The way the rules are applied is highlighted in the fol-
lowing example. Recall that the last 3 bits of the T attribute in each
tuple denote the type of the axiom. Assume a specific point of the
evaluation where the buffers U and Q contain the tuples shown in
Fig. 6. As implied by their types, these tuples must be checked
under the rules IR1, IR2, IR5, IR6, IR9, IR10, IR12 and IR13.
Note that the previous rules involve all join patterns we have men-
tioned so far. The operator starts by identifying the tuple with the
minimum value for Q.C1 (minQ = 4). It triggers rule IR5, that is,
it pushes the tuple 〈(T=3), 4, 9, 15〉 to the stream of R11. Then, it
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partially applies rule IR6 between the tuples 〈(T=3), 2, 3, 4〉 and
〈(T=3), 4, 9, 15〉 (C1 v ∃R1.C2 ∧C2 v ∃R2.C3), and pushes the
intermediate tuple to the stream of R12. Proceeding with the next
minQ value, it pushes 〈(T=7), 10, 14, 6〉 to the streams of R11

and R48 so that IR12 and IR13 are applied, and partially applies
IR9 between the tuples 〈(T=3), 19, 7, 10〉 and 〈(T=7), 10, 14, 6〉
(C1 v ∃R1.C2 ∧C2 v ∃R2.Self ). The intermediate tuple is sent
to the stream of R12 just like in the case of IR6 before. Now, the
next minQ value is 11 and there are two tuples with this value in Q
(both are of type 1). el-join partially applies IR2 on these two tu-
ples (i.e., the join C1 v C2∧C1 v C3) and sends the intermediate
tuple to the stream of R2. It also applies IR1 between these tuples
and the tuple 〈(T=1), 3, 2, 11〉 of U . The output of IR1 is directly
sent to the deltas. Finally, let the last tuples of Q are 〈(T=7), 16, 1,
6〉 and 〈(T=7), 16, 5, 6〉, both of type 7 and with a common value
for the C1 attribute. This pair of tuples belongs to the workload
of IR10. After the rule is applied, there are no more unconsidered
tuples in Q so the buffer must be loaded with the next tuples from
P . Note that the next (disk-resident) tuple from P in the example
is 〈(T=7), 16, 7, 6〉 which is also of type 7 and must be checked
under IR10 with both 〈(T=7), 16, 1, 6〉 and 〈(T=7), 16, 5, 6〉 (for
the join C v ∃R1.Self ∧ C v ∃R2.Self ). For this reason, the
last two tuples are not discarded from Q during the load operation;
they are shifted to the beginning of the buffer to ensure that IR10
is evaluated correctly in the next step and with no additional I/Os.

5. ALGORITHM OPTIMIZATIONS
This section presents the logical optimizations in the algorithm

BRA. The effectiveness of these techniques is highlighted in the
experimental section.

The basic optimization we perform in BRA focuses on pruning
tuples from the deltas. This optimization works as follows. In the
general case, to guarantee that a rule has considered every combi-
nation of old and new axioms, the axioms have to be inserted into
both ∆Ri

G and ∆R′iG. Intuitively, new axioms are additional edges
to the graph of Section 3, and by adding them to both deltas we en-
sure that all valid hops will be explored. Still, not every node and
edge in the graph is the same; by closely examining the rules we
can decide that some of the new edges do not need to be included in
both deltas. This applies to edges corresponding to axioms of type
7 (C v ∃R.Self ). These axioms are only considered with other
axioms that share a common C value. Based on this observation
we can state the following Lemma (proof is given in [35]):

LEMMA 1. The axioms produced by rules IR11, IR12 and IR15
can be omitted from R′G and ∆R′iG without altering the final result
of the algorithm.

Moreover, the rule IR1 describes a typical transitive property,
thus, it can be evaluated in a left- or right-linear fashion [43]. In
our setting where all rules are evaluated together, this optimization
requires special treatment because the tuples produced by IR1 are
actually updates in the workload of other rules; still, we prove in
Section 6 that the following Lemma holds:

LEMMA 2. The axioms produced by rule IR1 can be omitted
from ∆R′iG without altering the final result of the algorithm.

In other words, axioms of type 1 (C1 v C2) are initially repli-
cated to RG and R′G but, in the subsequent iterations, the axioms
of type 1 that are produced by IR1 are only inserted in the right
delta (∆Ri

G).
Finally, we manage an additional minor optimization by apply-

ing the rules of Classes 1, 2, 3 and 4 in the merge phase of BRA.
We refer the interested reader to [35] for further details.

6. THEORETICAL PROPERTIES
In this section we present the theoretical properties of our algo-

rithm and provide the respective proofs. The two basic properties
we discuss are: (i) its correctness and (ii) its efficiency. In the for-
mer case we show that BRA produces all valid tuples with respect
to the rules of Fig. 3, and in the latter we prove that it follows a
semi-naive evaluation strategy, i.e., it does not produce the redun-
dant intermediate results of a naive evaluation.
Correctness. The proposed algorithm and its optimizations pro-
duce the correct result with respect to the inference rules. To show
this, we have to show that (i) a complete evaluation of the el-join
is equivalent to the application of every rule in isolation, and (ii)
the pruning optimizations of Section 5 do not affect the final result.
To prove point (i), we have to show that el-join applies each rule
once on the input data, and also that the exhaustive application of
each rule leads to the same result with an alternative algorithm that
applies the rules sequentially. We have the following Lemma:

LEMMA 3. The algorithm BRA will terminate after producing
exactly the same result with an algorithm that applies each rule of
Fig. 3 sequentially.

The above Lemma is proved by showing that BRA produces (i)
all correct axioms and (ii) no additional axiom. The detailed proof
can be found in [35]. The proof of correctness for the punning
optimizations is actually the proof of Lemmas 1 and 2. The proof
of Lemma 1 is straightforward and we omit it for the interest of
space (it can be found in [35]). The proof for Lemma 2 follows:

PROOF. LEMMA 2. (Sketch) Tuples of type 1 (C1 v C2) are
needed by the rules IR1, IR3 and IR11 on the left side, i.e., on R′G
and ∆R′G. When considering each rule in isolation, it is known
that IR1 can be evaluated correctly in a right-linear fashion, so the
new tuples can be appended only to ∆RG [43]. What remains is to
prove that the same holds for rules IR3 and IR11 when all rules are
evaluated together. Let E = {t1, t2, t3, ..., tn}, n ≥ 2, be a set of
tuples of type 1 such that ti.C2 = ti+1.C1, 0 < i < n. Intuitively,
these tuples define a “path” between the nodes t1.C1 and tn.C2.
Let also tp be a tuple that is created by the recursive application of
IR1 on E such that tp.C1=t1.C1 and tp.C2=tn.C2. Now, consider
a tuple t of type 3 such that tn.C2 = t.C1. According to IR3, tuples
tp and t must be joined in order to produce a new tuple t′ such that
t′.C1 = t1.C1, t′.R = t.R, and t′.C2 = t.C2. In case tp is appended
only to ∆RG, the Algorithm BRA is not going to perform this
join. However, the same tuple t′ can be created by the recursive
application of IR3 on the tuples of E as follows. First, we apply
IR3 on the pair of tuples (tn, t) and produce the tuple u1, then we
do the same on the pair (tn−1, u1) and produce the tuple u2, then on
the pair (tn−2, u2) and so on till the tuple t′ is produced. Algorithm
BRA will correctly perform the previous recursive application of
IR3 if and only if (i) each tuple of type 3 exists on the right side,
and (ii) the set E of tuples exists on the left side. The former is
true since every tuple is appended by el-JOIN to the right delta.
Regarding the latter, we have to distinguish three cases:
1. All tuples in E exist in RG from the beginning. In this case, the
tuples exist on both sides since they are copied from RG to R′G in
initialization.
2. A tuple in E is produced by a rule other than IR1. In this case
the tuple exists on the left side because all tuples of type 1 which
are produced by a rule other than IR1 are appended to both deltas.
3. A tuple in E is produced by IR1 (transitive closure). In this
case, the tuple was produced (and, hence, it can be substituted) by
a chain of tuples that form a path in G, like the path represented by
E. By inductively applying the same substitution process to each
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tuple produced by IR1 in this chain, we result with a set of tuples
that define the needed path and exist on the left side (R′G) due to 1
or 2. The proof for IR3 can be easily adapted for IR11.

Semi-naive Evaluation. The perforance of BRA heavily depends
on the semi-naive evaluation of the inference rules. We have the
following Lemma:

LEMMA 4. The algorithm BRA is equivalent to a semi-naive
evaluation of each rule of Fig. 3 in isolation.

A detailed proof for Lemma 4 can be found in [35]. Here we only
highlight the basic idea. For the rules of Classes 5 and 6 that include
a join between the left (R′G) and the right (RG) relation of Fig.
5, the semi-naive evaluation is ensured with the use of the deltas.
However, for the rules of Class 3 and 4, e.g., IR2, that require
a self join on RG.C1, the deltas are not adequate for semi-naive
evaluation. The join on RG.C1 is applied by scanning RG when it
has already been merged with ∆RG. In this case, the unconsidered
pairs of tuples in el-join are distinguished with the use of the left-
most bit of the T attribute of each tuple (denoted with red colour in
Fig. 5 and 6). If this bit is set, it means that the tuple is produced in
the previous step of the iteration, thus, it is a “new” one; otherwise
it is an “old” one. Tuples having these bits unset are never re-joined
one another under the same rule. A similar idea is also employed
for the semi-naive evaluation of the remaining rules (Classes 1 and
2).

7. PERFORMANCE EVALUATION
In this section we present an experimental evaluation of BRA

on real and synthetic ontologies. Our algorithm is compared with
an alternative bottom-up algorithm, termed ORT , that applies the
rules sequentially, and also with the state-of-the-art inference algo-
rithms from the related work.
Experimental setting. We compared BRA with the state-of-the-
art systems in two areas of related work: Prolog-based systems
(YAP [7] and XSB [6]), and Deductive databases (DLV [3] and
LogicBlox [4]). These tools are the most actively maintained and
mature implementations in the respective fields [36]. The Prolog-
based systems follow a top-down evaluation strategy whereas DLV
and LogicBLox are bottom-up Datalog engines. All these systems
operate only in main-memory and they were allowed to use the
entire memory of the machine. Since none of these systems offer
built-in support for the fragment of OWL2-EL, all inferences rules
of Fig. 3 were defined manually.

To provide a better understanding on the benefits of BRA and
since the implementation details of the aforementioned systems are
not always transparent, we implemented an ORT (One Rule at
a Time) algorithm which applies each rule independently as de-
scribed in [24]. In the experiments below, ORT operates on the
most favorable storage scheme for its evaluation strategy, that is, a
scheme with one separate relation per type of axiom as explained
in Section 3.1. The ORT algorithm applies the rules as follows.
First, IR1 and IR2 are interchanged: IR1 is applied exhaustively,
then followed by IR2 which is applied once, and this procedure
is repeated until no new axioms are created. After this, it applies
all other rules in a round-robin fashion, i.e, each one of the re-
maining rules is applied once, and the algorithm returns to the first
step. The whole process repeats until no more axioms are pro-
duced. This version of ORT (first IR1 and IR2 exhaustively, and
then the rest) outperformed the completely naive approaches where
all rules are applied only once at each step of the iteration. Just like
BRA, ORT applies each rule in a semi-naive fashion; previously

examined combination of axioms are ignored and only new ones
are considered at each step of the procedure.

BRA operates on 5 base relations (schema of Fig. 5), which are
stored in 5 files. To demonstrate the effectiveness of the optimiza-
tion heuristics, we also implemented a simplified version of BRA,
namely SN (from semi-naive), which is basically BRA without
any optimization heuristic of those discussed in Section 5. More-
over, to highlight how BRA can exploit modern hardware with a
large amount of memory, we created a main-memory version of
BRA, denoted as BRA-M . BRA-M operates like BRA but,
given enough memory, it caches the base relations, creates a hash
index on R′G.C2 and another one on RG.C1, and performs hash
joins instead of sort-merge joins. We emphasize that BRA-M is
not proposed as a state-of-the art main-memory algorithm, not even
as a contribution of this work; we only use it to demonstrate how
BRA can exploit a very large cache. Finally, to clearly assess the
impact of the storage scheme on BRA, the latter is applied on the
schema used for ORT (one relation per type of axiom) and report
the results for this version as BRA-A.

For a fair comparison, we always give BRA, BRA-A, ORT
and SN the same total amount of memory buffers (default setting
is 40MBs). In BRA, BRA-A and SN , the given memory is used
for performing the steps described in Section 4. Note that, even
with this small amount of memory, the static relations of Fig. 5
can be completely cached (after the first step of the iteration), still,
leaving enough memory for BRA to operate. A small amount of
memory is also kept for the output buffers. In the case of ORT ,
the static relations can also be completely cached (after the first
step of the iteration), and the rest of the cache is used for (i) the
joins between the different relations, (ii) the external sortings dur-
ing the iterations, (iii) the set difference operations, and (iv) the
output buffers.
Datasets. We used two large ontologies from the biomedical do-
main, namely SNOMED CT [14] and GALEN8 [12] which are
used in various clinical studies. SNOMED CT has 379692 classes,
61 roles, 623999 class inclusions and 11 role inclusions. GALEN8
has 125391 classes, 995 roles, 280693 class inclusions and 1387
role inclusions. Both ontologies have many class inclusions with
complex dependencies and, thus, they have become the “standard”
ontologies in all published benchmarks for OWL reasoners. Their
complexity is reflected in the large number of new (implicit) ax-
ioms produced by the inference (more than 11M for SNOMED CT
and 30M for GALEN8). Using these real-world data, we also cre-
ated synthetic data of various sizes in order to evaluate the scala-
bility of our approach. The synthetic data are multiplications of the
original in two ways. First, we kept the same forms of axioms but
added copies of each axiom by replacing the IDs of the classes ap-
pearing in it. In this case, the resulting dataset represents multiple
graphs which are isomorphic to the original. Second, we kept the
number of classes (nodes) constant and multiplied the number of
properties (labeled edges in the graph of Section 3). This way, we
essentially multiply the number of axioms of type 3, 4, 7 and 8 as
well as the related property axioms (i.e., the axioms of type 11 and
12). Intuitively, the second method results in a graph with larger
node degree; it is applied only to GALEN8 because SNOMED CT
contains no axioms of type 12 and very few of type 11.
Implementation details. All our algorithms were implemented in
C++ (g++ 4.6.3). The experiments were conducted on a machine
running Linux Ubuntu (3.5.0-40) with a CPU at 3.60GHz, 64Gb
of RAM, and a 750Gb SATA hard disk. In order to present ac-
curate results about memory utilization and the exact performance
of each algorithm under a limited memory budget, all disk-based
implementations (SN , BRA, BRA-A and ORT ) bypass the ker-

2001



 0

 200

 400

 600

 800

 1000

 1200

 1400

BRA ORT BRA-M YAP XSB DLV LBOX

IO CPU

 0

 1000

 2000

 3000

 4000

 5000

 6000

BRA ORT BRA-M XSB

IO CPU

 0

 1000

 2000

 3000

 4000

 5000

 6000

SN BRA ORT BRA-A SN BRA ORT BRA-A

IO CPU
GALEN8SNOMED CT

 0

 1e+007

 2e+007

 3e+007

 4e+007

 5e+007

 6e+007

 7e+007

 8e+007

 9e+007

SN BRA ORT BRA-A SN BRA ORT BRA-A
GALEN8SNOMED CT

(a) (b) (c) (d)
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Figure 8: Scaling with the dataset size (time in secs)

nel’s caching mechanism by performing the I/O operations with
the Linux O DIRECT flag. Note that the reported results do not in-
clude the time of normalization (cf. Section 2) which is very small
(11 seconds for SNOMED CT and 29 seconds for GALEN8) and
is needed by all algorithms, including the competitors.
Comparison with other methods. We compare all algorithms in
terms of running time, and also in terms of disk page accesses for
disk-based methods (each page is 4KB in all experiments). The
running time for disk-based methods is split into the CPU time (de-
noted with black colour) and the I/O time (denoted with light grey
- it is estimated as the total time minus the CPU time). The results
are depicted in Fig. 7.a (SNOMED CT) and in Fig. 7.b (GALEN8).
Amongst all the systems we tested, only XSB managed to termi-
nate on GALEN8; the rest either crashed or did not terminate after
running for more than three hours. We observe that BRA outper-
forms all competitor systems (except YAP and XSB on SNOMED
CT) even if they perform in main memory. BRA-M slightly out-
performs YAP even for SNOMED CT (60 secs for BRA-M vs 68
secs for YAP). The inferior performance of BRA on SNOMED CT
compared to YAP and XSB (although slightly worse than XSB) is
a result of the trade-off it provides between the memory require-
ments and the evaluation time. YAP and XSB are main-memory
systems and the only I/Os they perform (as all main-memory com-
petitors) are those needed for loading the input axioms from disk
(these I/Os are negligible). On the other hand, BRA is a disk-based
algorithm and its performance is dominated by the I/O time; when-
ever the buffers are full, it has to write the data back to disk (and
read them again in a subsequent step). The memory requirements
of all competitors are significant: for SNOMED CT, YAP needs
2.2G, XSB 1.8G, DLV 3.6G and LogicBlox 18G of memory. This
amounts to an increase of x14, x12, x24, x121 compared to the size
of the input dataset (148MB in OWL/XML format). For GALEN8,
XSB needs 5.3G (x19 increase - the initial dataset size is 274MB in
OWL/XML format). Note that the previous results correspond to
the maximum memory allocated by the process that performed the
inference. Finally, we tried to compare BRA with OWLIM [21]
and Jena [1], but these systems failed to operate on both datasets
(they operated for more than 24 hours without any result).
Understanding BRA’s performance factors. To understand the
impact of (i) the logical optimizations and (ii) the storage scheme in
the overall performance of the algorithm, BRA was compared with

the basic semi-naive strategy SN and also with BRA-A. The re-
sults are depicted in Fig. 7.c and Fig. 7.d in terms of time and I/Os
respectively. The optimizations we propose give a 28% speedup
to BRA with respect to SN (on both datasets) whereas the stor-
age scheme of Fig. 5 results in a significantly faster evaluation
for BRA, that is, 30% faster on SNOMED CT and 20% faster on
GALEN8 with respect to BRA-A. Note that the performance time
of SN is worse than that of BRA (due to the lack of optimiza-
tions - cf. Section 5), still, it is much better than that of ORT (in
terms of both time and I/Os). On the other hand, BRA-A performs
worse than BRA because it incurs an increased number of random
I/Os. Since it has to scan more than two relations at each step of
the iteration (not only R′G and RG), it cannot fetch as large blocks
with sequential scans as BRA; the input buffers in BRA-A must
be split according to the base relations and, hence, each relation is
assigned with a smaller buffer. Finally, BRA needs around 34%
of the ORT time on both datasets, and this performance gain is
reflected in the total number of I/Os each algorithm performs.
Scaling with the dataset size. Fig. 8 and 9 demonstrate how
BRA and ORT scale with the dataset size. ORT did not ter-
minate within a reasonable time for GALEN8 due to the increased
number of I/Os, so it is omitted from the respective figures (Fig.
8.b, 8.c, 9.b and 9.c). In Fig. 8.a and 8.b we see results when the
dataset size increases. The datasets in these two experiments have
been created by multiplying SNOMED CT and GALEN8 respec-
tively according to the first method we described previously. The
x-axis traces the multiplication factor (e.g., in Fig. 8.a, for x = 1
we have the original SNOMED CT, for x = 2 we have a dataset
that is double the original SNOMED CT and so on). The y-axis
traces the performance in seconds. We can see that BRA scales
linearly as ORT but with a significantly smaller slope. We also
note that the optimization heuristics present the same behaviour,
hence, by improving the performance of the algorithm in each it-
eration, they reduce the scaling slope even more. Finally, in Fig.
8.c we see how BRA behaves as the number of edges grow ac-
cording to the second multiplication method. Again the behavior
is linear, but we notice that the effect of the pruning heuristics is
more substantial. The reason behind this lies in the number of du-
plicated tuples produced by IR3. In GALEN8, IR6 produces too
many tuples of type 3 which, in combination with tuples of type
1 and rule IR3, produce even more tuples of type 3. By pruning
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tuples of type 1 from the left delta (Section 5), IR3 produces sig-
nificantly less duplicated tuples at each step of the iteration and,
hence, both the CPU time and the total I/Os are reduced. The I/Os
performed in each one of the experiments of Fig. 8.a, 8.b, and 8.c
are given in Fig. 9.a, 9.b, and 9.c respectively. Note that the impact
of the heuristics is more profound in terms of execution time, since
pruning significantly reduces CPU time as well.
Summary. The performance gains of BRA stem from the batch
application of the rules as described in Section 4. This is high-
lighted by the superior performance of BRA with respect to ORT .
The storage scheme we propose in Section 3 improves the perfor-
mance of BRA with respect to BRA-A by reducing the random
I/Os (for reading and writing) during the evaluation of the inference
rules. In addition, the logical optimizations of Section 5 further
improve the performance of BRA with respect to SN by reducing
the number of duplicated tuples at each step of the iteration. As
a final comment, there are no I/O-aware methods for performing
saturation in SROEL, and even the approaches that can solve the
problem in main memory cannot outperform BRA in most cases
(the only exceptions are YAP and XSB on SNOMED CT).

8. RELATED WORK
Artificial Intelligence. Regarding the fragment of OWL2-EL,
the rule-based reasoning approach we highlighted in Section 2 was
introduced in [17, 19]. All widely-used reasoners (also known as
EL classifiers) [25] work in main memory and use a variation of
the algorithm presented in [19]. Highly-optimized versions of this
algorithm can be found in [30] and [2]. Despite their particular
differences, all approaches rely on creating dynamic lists for each
class of the dataset (in main memory) and keep track of the axioms
that contain it. Inference rules use the lists to detect axioms that
contain a class and update them with the new axioms they infer.
The design of the in-memory algorithms is based on the assumption
that the cost of lookups and updates in the lists is negligible (which
is true for main-memory systems where the lists are implemented
as a hash map). Using these methods for disk-based evaluation
is clearly inefficient since they would perform a huge number of
random I/Os, hence, they are unsuitable for our problem setting.
Deductive Databases and Prolog-based Systems. Research in
deductive databases and Prolog-based systems focuses mainly on
the logical optimization of queries with at least one of the variables
bounded. In our particular problem, such a query would be the
query “subClassOf(c,X)?” where c is the ID of a specific class in
the ontology and X is a variable. Intuitively, this query asks for all
superclasses of c. The problem we address here requires the an-
swers to queries of the form “subClassOf(X,Y)?” which have no
bounded variables. Regardless the existence of free or bounded
variables in a query, Prolog-based systems will always evaluate it
following a top-down strategy. A top-down algorithm starts from
the given query (goal), it substitutes this goal with its subgoals (i.e.,
with the predicates found in the body of a rule where the initial

goal appears as head), then it recursively substitutes all these sub-
goals with their respective subgoals and so forth. When the query
is bounded, the approach we described can limit the search space
and avoid inferring axioms that are irrelevant to the query [20].
However, in the saturation process all facts are relevant, hence,
the evaluation cannot benefit from the pruning power of the top-
down strategy. At the same time, the substitution of goals with
subgoals adds significant overhead (both in time and space) and it
has also the problem of entering in infinite loops (although the lat-
ter is avoided with the use of Tabling [42]). On the other hand, a
bottom-up strategy for a query “subClassOf(X,Y)?” will exhaus-
tively evaluate each rule of Fig. 3 (in a semi-naive fashion), and
terminate when there are no new tuples to produce. This simple
logic proves more efficient for saturation, i.e., when the algorithm
has to compute “everything”. The algorithm BRA we described
in Section 4 follows a pure bottom-up semi-naive evaluation. The
only difference of BRA from a typical bottom-up algorithm is that
BRA applies all rules in batch and within the same I/O operations
whereas the existing algorithms apply the rules sequentially. As a
final comment, the well-known Magic Sets optimization [38, 20]
has been proposed for reducing the irrelevant facts in a bottom-up
evaluation of a (partially) bounded query, hence, a saturation algo-
rithm cannot benefit from it.

An interesting db-oriented approach for ontology management is
recently presented in [22, 27]. This work extends Datalog in order
to express axioms like those of Fig. 1 as rules. Note that some ax-
ioms in OWL are not interpretable into safe Datalog rules without
this extension. The theoretical framework presented in these papers
is targeted to query answering and it is not optimized for saturation.
Relational Databases. Recursive queries in relational databases
can be expressed up to some extent with the Common Table Ex-
pressions (an SQL standard) or the proprietary features of some
systems like Oracle’s CONNECT BY. The main drawback of such
approaches is that the inference rules of Fig. 3 cannot be expressed
in a single SQL query and, thus, they can only be evaluated sequen-
tially, i.e., one rule (query) after the other in a predefined order. As
a result, the disk-resident relations are accessed on a per-rule ba-
sis that is extremely inefficient in terms of both CPU and I/O cost.
ORT algorithm follows exactly this approach and its performance
drawbacks with respect to BRA are highlighted in Section 7.

Work in [26] performs the inference tasks with a main-memory
OWL reasoner and uses the database mainly as a backend. On the
other hand, [34] and [24] take advantage of the RDBMS’s built-in
features and employ User-Defined Functions (UDFs) to express the
recursive rules. Still, they apply each rule independently from the
others like ORT . A recent approach in the field is Oracle’s Seman-
tic Graph [5], a disk-oriented platform for reasoning with various
OWL fragments. In this system, the application of the inference
rules is provided as a single database operator.
Multiple-query Optimization. The multiple-query optimization
paradigm we adopt has been extensively studied in the database
community [39, 40]. These works differ from ours in the following.
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First, they are general in that they can handle queries arbitrarily
given by the user. Here the recursive rules are predefined which
allows for custom optimizations. Second, their main focus is on
reusing the intermediate query results. Here we use the common
parts of the rules as a pattern to access the data and save I/Os.
Semantic Web Systems. Recently, there is an increasing interest
in the management of incomplete RDF knowledge bases. To this
end, the new specification of SPARQL [10] incorporates similar
reasoning tasks to those we presented here so that the evaluation
of queries on top of RDF graphs can capture the “hidden” relation-
ships (edges) implied by the semantics of RDFS and OWL. [37]
and [45] are motivated by this principle, however, from a different
perspective. They support general user-defined rules and they do
not address any of the multi-query optimizations we consider here.
Other triple stores with inference support are Jena [1] and OWLIM
[21]. These tools are designed for storing and querying RDF data,
hence, every OWL axiom is internally represented as an RDF triple
or a set of RDF triples depending on how complex it is. This design
leads to a significantly more verbose representation of the axioms
compared to the one of Section 3 and, hence, more complicated
(n-way) joins are required for applying the rules. These systems
offer generic rule engines where the OWL2-EL rules can be de-
fined manually. Jena supports top-down and bottom-up evaluation
whereas OWLIM has a pure bottom-up engine.

9. CONCLUSIONS
In this paper we proposed an I/O-aware algorithm that can ef-

ficiently saturate large OWL2-EL ontologies under a set of com-
plex inference rules. The salient feature of our approach is that
we model and store the ontology axioms in a homogeneous way
so that different inference rules are evaluated in bulk and within
the same I/O operations. We demonstrated experimentally that our
algorithm outperforms existing strategies and scales very well to
large datasets. A future research direction is to extend our work in
other fragments of OWL, e.g., OWL2-RL.
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