
Generating Top-k Packages via Preference Elicitation

Min Xie
Dept. of Computer Science,

Univ. of British Columbia
minxie@cs.ubc.ca

Laks V.S. Lakshmanan
Dept. of Computer Science,

Univ. of British Columbia
laks@cs.ubc.ca

Peter T. Wood
Dept. of CS and Inf. Syst.,

Birkbeck, U. of London
ptw@dcs.bbk.ac.uk

ABSTRACT
There are several applications, such as play lists of songs
or movies, and shopping carts, where users are interested
in finding top-k packages, consisting of sets of items. In re-
sponse to this need, there has been a recent flurry of activ-
ity around extending classical recommender systems (RS),
which are effective at recommending individual items, to rec-
ommend packages, or sets of items. The few recent proposals
for package RS suffer from one of the following drawbacks:
they either rely on hard constraints which may be difficult
to be specified exactly by the user or on returning Pareto-
optimal packages which are too numerous for the user to
sift through. To overcome these limitations, we propose an
alternative approach for finding personalized top-k packages
for users, by capturing users’ preferences over packages us-
ing a linear utility function which the system learns. Instead
of asking a user to specify this function explicitly, which
is unrealistic, we explicitly model the uncertainty in the
utility function and propose a preference elicitation-based
framework for learning the utility function through feed-
back provided by the user. We propose several sampling-
based methods which, given user feedback, can capture the
updated utility function. We develop an efficient algorithm
for generating top-k packages using the learned utility func-
tion, where the rank ordering respects any of a variety of
ranking semantics proposed in the literature. Through ex-
tensive experiments on both real and synthetic datasets, we
demonstrate the efficiency and effectiveness of the proposed
system for finding top-k packages.

1. INTRODUCTION
Recommender systems (RS) have emerged as a popular

paradigm for enabling users to find what they might be in-
terested in, complementing search. They exploit feedback
provided by users, e.g., in the form of ratings, to build a
profile of a user based on users with similar tastes, and use
it to make recommendations [1]. However, classical RS are

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 14
Copyright 2014 VLDB Endowment 2150-8097/14/10.

t1
t2
t3

item

(a)

f1:cost

0.6
0.4
0.2

(b) p1
p2
p3

package items

{t1}
{t2}
{t3}

p4

p5
p6
p7

{t1,t2}

package items

{t2,t3}
{t1,t3}

{t1,t2,t3}

f2:rating

0.2
0.4
0.4

Figure 1: Examples of packages of items.

confined to recommending individual items. There are sev-
eral applications where users are interested in packages, i.e.,
sets of items. Examples include play lists of songs on Last.fm
and of movies on Netflix, as well as shopping carts of cell
phones, accessories, and data plans on Amazon. Since the
potential number of packages is exponential in the num-
ber of items, finding users with similar tastes for packages
is extremely difficult owing to data sparsity. Indeed, cur-
rent package RS are limited to offering simple interfaces on
top of an underlying item RS. E.g., on Amazon, a user has
to manually assemble desirable packages by exploring rec-
ommended items; on Last.fm and Netflix, a user needs to
browse and search packages created by other people. With
an exponential number of possible packages, as well as a huge
number of user-created packages, both approaches for find-
ing packages of interest quickly become tedious for a user.
For a business, this means either lost opportunities to sell
packages or poor satisfaction of users overwhelmed by the
quantity of user-created content. Clearly, it is desirable to
have a system learn users’ preferences and return packages
that are very likely to be of interest to the user.

The database community has approached the capturing
of preferences from a querying point of view [25]. The idea
is to model the utility of an item for a user as a utility
function over features of the item, using it to return items
of highest utility. This notion has been extended to pack-
ages or sets of items [20, 29], where the feature values of
a package are obtained by aggregating the feature values
of the items it contains. For example, Figure 1 shows (a)
three items with two features each, and (b) the seven pos-
sible non-empty packages. Suppose f1 represents cost and
f2 represents rating. For a package p, sum1(p) defines the
total cost of the items in p, i.e., the cost of the package,
and avg2(p) defines the average rating of items in p, i.e.,
the quality of the package. For instance, when purchasing
a package of books or CDs from Amazon, a user may want
the quality of the package to be as high as possible, and
the cost of the package to be as small as possible. Thus,
the utility is U(p) = g(sum1(p), avg2(p)), where function g
is increasing in avg2(p), and decreasing in sum1(p). Similar
examples can be found when reasoning about the utility of
packages on Last.fm and Netflix, where item cost is the price
of a song/movie, and item rating can take the form of any

1941

combination of average rating, number of listens, number of
likes, and number of purchases.

Given this general framework, one way of returning pack-
ages to users is to present all skyline packages [20, 29], i.e.,
packages which cannot be dominated by another package on
every feature. In the above example, a package is a skyline
package if there does not exist another package whose cost is
lower and quality is higher. However, as shown empirically
in [20, 29], the number of skyline packages can be in the
hundreds or even thousands for a reasonably-sized dataset,
so presenting them all to a user is impractical.

Another way to recommend packages is to define hard
constraints on some features, and optimize the remaining
features in the form of a utility function (e.g., see [27]).
For the above example, we could require the total cost of
a package to be at most $500, and then find packages with
maximum average rating, subject to this cost constraint.
Unfortunately, this approach also has the following practical
limitations. Firstly, users often only have a rough idea of
what they want in a desirable package. E.g., w.r.t. the cost
of a package, they may only specify that “smaller is better”.
Thus, hard constraints on a feature may result either in sub-
optimal packages when the budget is set too low, or a huge
number of candidate packages when the budget is set too
high. Secondly, the importance of each feature to the user
is usually unknown. E.g., for some users, monetary budget
may not be so important and they can afford to trade a
“reasonable” amount of money for higher package quality;
other users may be more sensitive to package cost. It is
not realistic to expect a user to know, e.g., that they are
0.8 interested in the overall cost, and 0.2 interested in the
overall quality of a package!

To address the drawbacks of the above two approaches to
package recommendation, we take a quantitative approach to
rank packages, inspired by recent work on multi-dimensional
ranking of items [6, 9, 13]. Specifically, we consider that,
when searching for a package of items, each user u has an
“implicit” linear utility function U , which captures u’s pref-
erence or trade-off among different features for choosing a
desirable package. E.g., for a user u who attaches equal im-
portance to package cost and quality, the utility function
would be U(p) = −0.5sum1(p) + 0.5avg2(p). However, to
account for a user’s lack of precise knowledge about their
utility, we assume that the weights of the utility function
are hidden. We follow a preference elicitation framework
inspired by [6, 9], which explores and exploits a user’s pref-
erences based on feedback received, and learns the hidden
weights of the utility function over time.

Preference elicitation (PE) has been studied extensively
in the AI community [6, 9]. The general idea of PE is to
model users’ preferences using a utility function, and then
learn the parameters of this utility function through user
feedback w.r.t. certain elicitation queries, called gambling
queries. Though use of gambling queries is grounded in de-
cision theory, to date it has only been applied to applications
with extremely small domains. Also the form of the gam-
bling query requires that the user be explicitly asked this
query by the system through protocols such as user surveys.
This limitation makes it unsuitable for deployment in a RS
where user feedback needs to be very lightweight, such as
“like”s or ratings, or be taken implicitly, e.g., from item
click-throughs on web sites.

In this paper, we propose simple package comparison as

the elicitation query. Users are presented with a list of sug-
gested packages whenever they login to the system. These
packages include (i) top packages, w.r.t. the system’s current
knowledge of the user’s utility function, selected according
to a chosen ranking semantics as discussed in Section 2.2,
and (ii) a set of random packages, which are used to explore
the uncertainty in users’ preferences. Users’ clicks on the
suggested packages are logged as implicit signals to the sys-
tem, showing they are more interested in the clicked package
than the other packages (modulo noise in user feedback, dis-
cussed in Section 7). Thus the proposed framework can be
cleanly integrated into existing applications to capture and
update users’ preferences, without any disruption to the user
(e.g., by presenting multiple gambling queries explicitly).

Specifically, our proposed system assumes the utility func-
tion U associated with a user’s search is parameterized by
a weight vector w. The uncertainty in U is captured by a
distribution Pw over the space of possible weight vectors
w. We assume the prior of Pw is a mixture of Gaussians
following [9], which can approximate any arbitrary proba-
bility density function. Given Pw, our system can directly
leverage it to present the user with a small number of rec-
ommended packages, and record the user’s feedback on the
packages. This feedback can then be leveraged to improve
the system’s knowledge about U through the posterior of
Pw. However, a major challenge is that the posterior of
Pw, given user feedback, has no closed form solution, as
we shall see. To circumvent this, we propose a sampling-
based framework which obviates the need for a posterior. In-
stead, package preferences resulting from user feedback can
be translated into constraints on the samples drawn from
Pw. However, this raises the question of how we can obtain
samples satisfying the constraints as efficiently as possible.
A related question is whether previously obtained samples
can be maintained against new user feedback.

We note that following the Bayesian uncertainty-based
framework, the posterior distribution of Pw at any time cap-
tures the current optimal representation of a user’s prefer-
ences over packages, factoring in all observed feedback. We
make the following contributions in this paper.

(1) We propose a system which models user preferences
using a linear utility function, whose weight vector w is gov-
erned by a probability distribution Pw that captures avail-
able information about a user’s preference over packages
(Section 2). (2) Thereto, we use a non-intrusive Bayesian-
based PE framework for eliciting user feedback on recom-
mended packages (Section 2.1). (3) Given user feedback,
the posterior of Pw has no closed form in general, so we
employ various constrained sampling strategies to solve this
problem, showing how these sampling techniques can lever-
age the implicit preference feedback (Section 3). (4) We
show that an approach based on simple rejection sampling
may waste many samples, resulting in poor overall perfor-
mance, whereas more sophisticated strategies such as im-
portance sampling and MCMC-based sampling make better
use of the feedback, and are more efficient (Section 3). (5)
Given the utility function U with uncertainty captured by
Pw, we discuss how top-k packages can be generated w.r.t.
our current knowledge of the user’s preferences, following
different ranking semantics (Section 4). (6) We address the
problem of how to maintain the set of samples generated
when new feedback is received, thus further optimizing the
number of additional samples needed (Section 3.4). (7) We

1942

demonstrate the efficiency and effectiveness of various sam-
pling methods and ranking algorithms in Section 5.

Related work is covered in Section 6. Finally, we discuss
several extensions and conclude in Section 7.

2. PROBLEM SETTING
We assume that we are given a set T of n items, each item

being described by a set of m features {f1, . . . , fm}. Each
item t ∈ T can be represented as an m-dimensional vector
~t = (t1, . . . , tm), where ti denotes the value of item t on
feature fi. For simplicity, when no ambiguity arises, we use
t to denote both an item and its corresponding feature vector
~t. Following [29], without loss of generality, we assume all
feature values are non-negative real numbers. In practice,
different items can be associated with different feature sets,
so some feature values for an item t might be null.

As mentioned in the introduction, users’ preferences over
packages are usually based on aggregations over feature val-
ues of items in a package. E.g., the sum of the costs of
items defines the overall cost of a package, while the av-
erage of the ratings of items defines the overall quality of
a package. Thus we define an aggregate feature profile (or
simply profile) of a package as follows.

Definition 1. An aggregate feature profile (or profile)
is defined as V = (A1, . . . ,Am), where each Ai corresponds
to feature fi, 1 ≤ i ≤ m, and is one of the aggregation
functions min, max, sum, avg or null, where null means
that the corresponding feature fi should be ignored.

Note that we simplify the presentation by assuming one
aggregation per feature, but our algorithms can be easily
extended to handle more than one aggregation per feature.
Given a package p and a profile V , we define the feature
value vector ~p of p w.r.t. V as ~p = (A1(p), . . . ,Am(p)), where
each Ai(p) is the aggregate value of items in p w.r.t. feature
fi. Following the usual semantics of aggregate functions, for
min, max and sum we have Ai(p) = Ai({ti | t ∈ p ∧ ti 6=
null}), and for avg we have avgi(p) = sumi({ti | t ∈ p∧ ti 6=
null})/|p|. Similar to the feature value vector of an item,
when there is no ambiguity, we simply use p to denote both
the package p and its corresponding feature value vector ~p.
Furthermore, we denote each feature value Ai(p) of package
p by pi when profile V is clear from the context.

Note that given a fixed item set T , it is trivial to calcu-
late the maximum aggregate value for a feature that can be
achieved by any package. E.g., for avg1(p), the maximum
average value on f1 that can be achieved by any package is
simply the maximum f1 value of all the items. So we assume
in the following that each individual aggregate feature value
is normalized to [0, 1] using the maximum possible aggregate
value of the corresponding feature.

2.1 Package Utility and Preference Elicitation
Intuitively, the utility of a package p for a user depends on

its feature vector and we wish to learn this utility. The space
of all mappings between possible aggregate feature values
and utility values is uncountable, making this task challeng-
ing. Fortunately, most preferences exhibit an internal struc-
ture that can be used to express the utility concisely, e.g.,
an additive utility function is commonly assumed in practice
[15]. In this work, for a package p and a given profile V , we
assume the utility of p can be specified using an additive
utility function U , which uses a linear combination of the
corresponding (aggregate) feature values in p:

U(p) = w1p1 + · · ·+ wmpm (1)

For simplicity, we use w to denote the weight vector (w1, . . . ,
wm). Without loss of generality, we assume each parameter
wi falls in the range [−1, 1], where a positive (negative) wi
means a larger (resp., smaller) value is preferred for the
corresponding feature.

A framework based on a utility function essentially defines
a total order over all packages, where similar to previous
works such as [24], we assume ties in utility score are resolved
using a deterministic tie-breaker such as the ID of a package.
This differentiates the approach from that of [20, 29] which
aim to return all skyline packages, the number of which can
be prohibitively large, as previously noted.

Despite its intuitive appeal, there are two major chal-
lenges in adopting the utility-based framework in practice.
First, users are usually not able to specify (or even know) the
exact weights wi of the utility function U . Thus, we must
model the uncertainty in U , and elicit user’s preferences by
means of clicks on recommended packages. Second, unlike
[20, 29] which consider packages of fixed size, we allow pack-
age size to be flexible in our framework. We believe this is
natural. E.g., given a system-defined maximum package size
φ of say 20, we consider all possible package sizes ranging
from 1 to 20. Efficient determination of packages of flexible
size that maximize a user’s utility under partial knowledge
about the utility function from elicited preferences is far
more challenging than finding packages of a given fixed size.

One popular way of characterizing uncertainty in U is
through Bayesian uncertainty1 [6, 9], in which for each user,
we assume the exact value of the weight vector w is not
known, but w can be described by a probability distribution
Pw. We assume w follows a mixture of Gaussians: indeed,
it has been shown that a mixture of Gaussians can approx-
imate any arbitrary probability density function [3].

While Pw can be initialized with a system-defined default
distribution, in the long run Pw can be learned by leveraging
the feedback provided by the user. In this work, we assume
user feedback is in the form of clicks on packages from a set of
recommendations presented to them, indicating the clicked
packages are more attractive to the user than unclicked pack-
ages. This form of feedback is known as example critiquing
in conjoint analysis [26] and preference elicitation [21].

For a given user u, let the feedback from u, preferring
package p1 to package p2, be denoted by p1 � p2. This
feedback can be leveraged to update the posterior of Pw

through Bayes’ rule in Equation 2, where P(p1 � p2 | w)
defines the likelihood of p1 � p2 given w. Note that since
each specific w defines a total order over all packages, the
value of P(p1 � p2 | w) is either one or zero. We tenta-
tively assume that every user feedback is consistent, in that
the provided preferences correspond to a partial order, and
discuss in Section 7 how this assumption can be relaxed.

Pw(w | p1 � p2) =
P(p1 � p2 | w)Pw(w)∫

w P(p1 � p2 | w)Pw(w)dw
(2)

However, Gaussian mixtures are not closed under this
kind of update [6], meaning we cannot obtain a closed-form
solution for the posterior as presented in the above equa-
tion. One popular way to deal with such a situation is to
force the posterior to again be a mixture of Gaussians, and
thus the posterior can be learned by refitting a Gaussian

1The other possibility is strict uncertainty, which requires a
set of possible utility functions (down to the weights) to be
known, which is more restrictive.

1943

utility p1

0.35
w

(a)

prob.

0.3
0.4
0.3

values

(0.5,0.1)
(0.1,0.5)
(0.1,0.1)

(c)

(b)
profile

(sum1,avg2)

p2 p3 p4 p5 p6

0.3 0.2 0.575 0.4 0.475
0.31 0.54 0.52 0.475 0.56 0.455
0.11 0.14 0.12 0.175 0.16 0.155
top-2 packages

p4,p6

(d)
w1

w2

w3

p5,p2

p4,p5

w1

w2

w3

w1

w2

w3

Figure 2: Examples of different ranking semantics.

mixture through algorithms such as expectation maximiza-
tion (EM) [3]. However, the cost of refitting through EM is
extremely high, so we take a different approach of represent-
ing the posterior by maintaining both the prior distribution
and the set of feedback preferences received. The details of
our proposal are described in Section 3.1.

2.2 Presenting Packages
While the preference elicitation framework discussed in

the previous section can be exploited to update the knowl-
edge of Pw for any specific user, there is still a remaining
question of how to select and present packages to a user in
order to receive feedback.

In general, given the uncertainty in the utility function,
packages presented to a user serve as a way to explore and
exploit the user’s preferences. I.e., our main goal is to exploit
our current knowledge about a user’s preferences and try to
present to them the best packages possible according to the
current Pw. On the other hand, we also want to explore the
uncertainty in the user’s preferences, and present (random)
packages to them which might not be considered by our cur-
rent knowledge about the user’s preferences. These packages
serve the purpose of correcting bias introduced from the ini-
tial distribution of Pw and combating mistakes and noise
from user feedback. In this paper, we follow a simple way
of presenting to the user, current best packages along with
random packages, so that the current best packages can be
used to exploit our current knowledge about the user, and
the random ones can be used to explore user preferences.

A challenge in picking the best packages is that there is
no universally accepted ranking semantics for packages given
the uncertainty in the utility function. Instead of commit-
ting to a specific package ranking semantics, we consider
alternative semantics studied by different communities, and
discuss how they can be integrated into our framework.

The first ranking semantics we consider is based on expec-
tation (EXP), which has been adopted as the most popular
semantics for ranking items in preference elicitation papers
in the AI community [6, 9]. In the following, by a package
space P , we mean the set of all possible packages formed us-
ing items from T and having size no larger than φ (system
defined maximum package size).

Definition 2 (EXP). Given a package space P and
probability distribution Pw over weight vectors w, find the
set of top-k packages Pk w.r.t. expected utility value, i.e.
∀p ∈ Pk, ∀p′ ∈ P\Pk, Ew(w · p) ≥ Ew(w · p′).

Example 1. Consider the example in Figure 1. Assum-
ing the maximum package size is 2, the package space P is
given by {p1, . . . , p6}. If the profile under consideration is
(sum1, avg2), then the maximum value for a size-2 package
on feature 1 is 1, and the maximum value of a size-2 pack-
age on feature 2 is 0.4. We can normalize packages’ feature
values using these two maximum values. E.g., for package
p1 in Figure 1(b), sum1(p1) = 0.6, avg2(p1) = 0.2, so the
normalized feature value vector for p1 is (0.6/1, 0.2/0.4) =

(0.6, 0.5). To simplify the presentation, we assume in Fig-
ure 2(a) that there are only three weight vectors, w1, w2 and
w3, under consideration, the probability for which is given
in the third column. Given the weight vector information,
we can easily calculate the utility of each package under each
weight vector, as shown in Figure 2(c). E.g., the utility of
package p1 under w1 is 0.6 × 0.5 + 0.5 × 0.1 = 0.35. The
expected utility value for each package can be calculated ac-
cordingly, using the probability of each weight vector. E.g.,
the expected utility for p1 is 0.35×0.3+0.31×0.4+0.11×0.3 =
0.262. For this example, it is not difficult to verify that p4
has the largest expected utility, followed by p5.

The second ranking semantics we consider is based on the
probability of a package being in the top-σ position under
different parameter settings (TKP). This is inspired by re-
cent work on learning to rank in the machine learning com-
munity [8]. Let P�(p | w) = {p′ | p′ ∈ P,w · p′ > w · p}
denote the set of packages in P which have utility larger
than package p, given a fixed w. Let W� denote the set of
weight vectors w under which a package p is dominated by
σ or fewer packages, i.e., |P�(p | w)| ≤ σ. Since the util-
ity function is convex, we can readily show that ∀ w1, w2,
w1 6= w2, if w1 · p′ > w1 · p, and w2 · p′ > w2 · p, then for any
α ∈ [0, 1], (αw1 + (1− α)w2) · p′ > (αw1 + (1− α)w2) · p. It
thus follows that W¬� := {w | σ < |P�(p | w)|} forms a con-
tinuous and convex region, and that W� is also continuous.
So we define the probability of p ∈ P being ranked among
the top-σ packages as P(p | Pw, σ) =

∫
w∈W�

Pw(w)dw.

Definition 3 (TKP). Given a package space P and a
probability distribution Pw over weight vectors w, find the
top-k packages Pk w.r.t. the probability of being ranked in the
top-σ positions, i.e., ∀p ∈ Pk, ∀p′ ∈ P\Pk, P(p | Pw, σ) ≥
P(p′ | Pw, σ).

Example 2. In Figure 2(d), we show the top-2 package
list for each weight vector. We can calculate that the prob-
ability of p5 being in a top-2 package list is 0.4 + 0.3 = 0.7.
Package p5 has the largest probability of all candidate pack-
ages, followed by p4 for which the probability is 0.6.

The third ranking semantics we consider is the most prob-
able ordering (MPO), which has been discussed in recent
work on sensitivity analysis of querying top-k items under
uncertainty [24]. We note that unlike EXP and TKP which
represent the desirability of each individual package inde-
pendently, adapted to our setting, MPO represents the de-
sirability of the top-k package list Pk as a whole.

For MPO, given a fixed w, let I(Pk | w) be an indicator
function which denotes whether Pk is the set of top-k pack-
ages under w, i.e., I(Pk | w) = 1 if @p′ ∈ P\Pk, w ·p′ > w ·p,
for any p ∈ Pk; and I(Pk | w) = 0 otherwise. Let WPk de-
note the set of weight vectors w under which I(Pk | w) = 1.
Similar to TKP, we can show WPk forms a continuous re-
gion, so the probability of Pk being the top-k package can
be defined as Po(Pk | Pw) =

∫
w∈WPk

Pw(w)dw.

Definition 4 (MPO). Given a package space P and a
probability distribution Pw over weight vectors w, find the
top-k packages Pk w.r.t. the most probable ordering, i.e.,
∀P ′k ⊆ P , |P ′k| = k, P ′k 6= Pk, Po(Pk | Pw) ≥ Po(P

′
k | Pw).

Example 3. In Figure 2(d), we can directly see the prob-
ability of each top-2 package list by referring to the proba-
bility of the corresponding weight vector. Clearly, the best
top-2 package list under MPO is p5, p2.

1944

In summary, different ranking semantics might lead to
different top-2 packages: in our example, the top-2 pack-
ages for EXP, TKP, and MPO repectively are p4, p5; p5, p4;
and p5, p2. These ranking semantics have been successfully
adopted in different communities, and they can all be neatly
incorporated into our PE framework (see Section 3).

3. A SAMPLING-BASED FRAMEWORK
To accommodate the preference elicitation framework and

various ranking semantics for selecting packages to recom-
mend, we propose to use a sampling-based framework. Un-
like the geometric approach proposed in previous work (e.g.,
see [24]), a sampling-based solution can be easily adapted to
handle cases with higher dimensionality, as we show empiri-
cally in Section 5. We first discuss simple rejection sampling
in Section 3.1. We then consider more sophisticated sam-
pling techniques in Section 3.2. In Section 3.3, we discuss
how to optimize the constraint violation checking process for
sample generation. Finally in Section 3.4, we discuss how
previously generated samples can be reused given newly re-
ceived user feedback, i.e., we discuss sample maintenance.

3.1 Rejection Sampling
Given the distribution Pw over w, an intuitive solution

for finding the best packages under Pw is to first sample
the weight vectors w according to Pw, and then for every
w sampled, try to find the best package under w. The best
package results obtained from each sampled w can be ag-
gregated for estimating the final list of best packages. The
required aggregation logic depends on the ranking seman-
tics, the details of which will be discussed in Section 4. This
approach is intuitive: w’s are sampled from Pw, and pack-
ages which are ranked higher under those w’s that have a
higher probability are likely to be given a greater weight.

As discussed in Section 2.1, given current recommenda-
tions to the user and the feedback received, we need to
constantly refit the distribution Pw so that it reflects the
updated user preferences. However refitting the Gaussian
mixture Pw, say using the EM algorithm [6], after every re-
ceived feedback using Equation (2) can be extremely time
consuming. So a näıve way of performing refit-and-sample
may be inefficient. Thus we consider an alternative approach
of maintaining both the prior distribution Pw and all feed-
back without refitting the Gaussian mixture.

The key idea is that every feedback p1 � p2 rules out
weight vectors w under which p1 � p2 is not true. For
those w’s which do satisfy p1 � p2, the feedback alone does
not change their relative order with respect to Pw, i.e., if
Pw(w1) > Pw(w2) for w1, w2 which both satisfy p1 � p2,
without any further information, we have Pw(w1 | p1 �
p2) > Pw(w2 | p1 � p2), as we show in the following lemma.

Lemma 1. Given feedback p1 � p2: (1) if p1 � p2 does
not hold under weight vector w, Pw(w | p1 � p2) = 0;
(2) for two weight vectors w1, w2, w1 6= w2, if p1 � p2
holds under both w1, w2, and Pw(w1) > Pw(w2), we have
Pw(w1 | p1 � p2) > Pw(w2 | p1 � p2).

Proof. (1) Consider the likelihood P(p1 � p2 | w) in
Equation (2). If p1 � p2 does not hold under w, clearly the
likelihood of p1 � p2 under w is 0, so Pw(w | p1 � p2) = 0.

(2) Consider Pw(w1 | p1 � p2) and Pw(w2 | p1 � p2).
Since p1 � p2 holds under both w1, w2, P(p1 � p2 | w1) =

P(p1 � p2 | w2) = 1, so Pw(w1|p1�p2)
Pw(w2|p1�p2)

= Pw(w1)
Pw(w2)

.

So this means that we can use rejection sampling to sam-
ple directly from the posterior. I.e., we can sample a random
w from the current Pw, and if w violates any user feedback,
we reject this sample. Otherwise, the sample is accepted.
Clearly the rejection sampling method will only keep sam-
ples which conform to the feedback received from the user,
and as shown above, the relative order of probabilities of two
weight vectors being sampled still conforms to their original
relative order following the distribution Pw.

3.2 Feedback-aware Sampling
The simple rejection sampling scheme proposed above may

work well when the amount of feedback is small. However, as
the amount of feedback grows, the cost of this approach in-
creases, as samples become more likely to be rejected. Thus
a better sampling scheme should be “aware” of the feedback
received, and try to avoid generating invalid samples, i.e.,
those that violate any provided feedback constraint.

Recall that user feedback produces a set of pairwise pref-
erences of the form p1 � p2, where p1 and p2 are packages.
Given a set Sρ of these preferences, it can be shown that
the set of valid weight vectors w, i.e., those that satisfy all
feedback preferences, has the following useful property.

Lemma 2. The set of valid weight vectors which satisfy a
set of preferences Sρ forms a convex set.

Proof. By definition, for any w1, w2 which satisfy Sρ,
∀ρ := p1 � p2 ∈ Sρ, w1 · p1 ≥ w1 · p2 and w2 · p1 ≥ w2 · p2.
Then ∀α ∈ [0, 1], αw1 · p1 ≥ αw1 · p2 and (1 − α)w2 · p1 ≥
(1−α)w2 · p2. Combining these inequalities shows that any
convex combination of w1 and w2 also forms a valid w.

So valid weight vectors form a continuous and convex re-
gion. By exploiting this property, we can leverage differ-
ent sampling methods which can bias samples more towards
those which are inside the valid region.

3.2.1 Importance Sampling
The general idea of importance sampling is that, instead

of sampling from a complex probability distribution (origi-
nal distribution), which in our case is Pw(w | Sρ), we sam-
ple from a different proposal distribution Qw, which is more
likely to satisfy the constraints given by the feedback set Sρ.
However, this process will introduce a set of samples which
do not follow the original distribution, so we need to cor-
rect this bias by associating each sample w from Qw with
an importance weight (or simply weight, when there is no
ambiguity) q(w). Next we will discuss how this framework
can be employed in solving our problem.

Since valid weight vectors w.r.t. Sρ form a continuous and
convex region, samples which lie close to the “center” of this
region are more likely to satisfy Sρ. However, finding the
center of an arbitrary convex polytope is extremely com-
plex and time consuming [5], which negates the motivation
for using importance sampling, namely efficiency. Instead,
we use a simple geometric decomposition-based approach,
which partitions the space into a multi-dimensional grid,
and approximates the center of the convex polytope using
the centers of the grid cells which overlap with it.

In Figure 3, we show a simple two dimensional example
of the above approach. Initially, the entire valid region is
divided into a 3 × 3 grid as depicted in Figure 3(a). Given
feedback ρ := p1 � p2, we know any invalid w satisfies the
property that w · p1 < w · p2, or w · (p2 − p1) > 0, i.e., w
is invalid if w is above the line p2 − p1 = 0. As shown in

1945

w1

w2

(0,0)

(1,1)

(a)

w1

w2

(0,0)

(1,1)

(b)

ρ

Figure 3: Approximate center of a convex polytope.

Figure 3(b), all w’s which are in the top-right grid cell are
above the line corresponding to ρ, so we can eliminate this
cell from consideration, and the center of the region of valid
w’s can be approximated by the center of the remaining
eight cells. The latter can be calculated by simply taking
the average of the eight cell centers.

We note that whether there exists a w in a grid cell which
satisfies a constraint ρ can be checked in time linear in the
dimensionality of the feature space. Also, finding those cells
which violate new feedback can be facilitated by organizing
the cells into a hierarchical structure such as a quad-tree [12].

Given the center w∗ of the valid region, an intuitive choice
for the proposal distribution would be a Gaussian Qw ∼
N (w∗,Σ) with mean w∗, covariance Σ. To correct the bias
introduced in samples from Qw, in importance sampling,
we could associate each valid sample w with an importance
weight q(w) = Pw(w)/Qw(w). Intuitively, this importance
weight compensates for the difference between Pw and Qw.

The importance weight of each sample q(w) can be easily
adapted to different ranking semantics. For EXP, we mul-
tiply q(w) by the utility value calculated for each package
under consideration for this w. For TKP and MPO, instead
of adding one to the corresponding counter of each package
w.r.t. the given w, we add q(w).
Performance Analysis: To compare the performance of
importance sampling and rejection sampling, we use the
classic notion of Effective Number of Samples (ENS) [17],
which measures the overall efficiency of a sampling algorithm
based on a χ2 distance between the original distribution and
the proposal distribution:

ENS(Pw(w | Sρ),Qw(w)) =
N

1 + χ2(Pw(w | Sρ),Qw(w))

χ2(Pw(w | Sρ),Qw(w)) =

∫
w

(Pw(w | Sρ)−Qw(w))2

Qw(w)
dw (3)

where N is the number of samples. Intuitively, the closer
the proposal distribution is to the original distribution, the
larger the ENS value, meaning more samples out of the N
in the sample pool are “effective”. ENS reaches its maxi-
mum value N when Pw(w | Sρ) = Qw(w), ∀w. Note that
the rejection sampling of Section 3.1 can be regarded as im-
portance sampling using the prior distribution Pw as the
proposal distribution, except that those samples which do
not satisfy ρ will be discarded.

Let w � ρ denote that w satisfies ρ. The following theorem
shows that when the same number of samples are generated
by importance sampling and rejection sampling, more sam-
ples from importance sampling are effective, which is verified
by our experiments (Section 5.1).

Theorem 1. ENS(Pw(w | Sρ),Qw(w)) ≥ ENS(Pw(w |
Sρ),Pw(w))

Proof. Let W− = {w | w 2 ρ}, W+ = {w | w � ρ}.
Because Qw is assumed to be a Gaussian whose mean is at
the center of the convex region formed by W+ (according
to Lemma 2), samples generated from Qw(w) have a higher
chance of satisfying user feedback ρ compared to sampling

directly from Pw, i.e., for w ∈ W−, Qw(w) ≤ Pw(w). Ac-
cording to Lemma 1, for w ∈ W−, Pw(w | Sρ) = 0, so we
have:∫
w∈W−

(Pw(w | Sρ)−Qw(w))2

Qw(w)
−

(Pw(w | Sρ)−Pw(w))2

Pw(w)
dw

=

∫
w∈W−

Qw(w)−Pw(w)dw ≤ 0 (4)

On the other hand, for w ∈ W+, according to the pro-
posed importance sampling, each sample is corrected with
a weight q(w) = Pw(w)/Qw(w), thus the actual probabil-
ity of generating each w ∈ W+ is the same as Pw(w), i.e.,
Qw(w) = Pw(w), w ∈W+. Thus we have:∫
w∈W+

(Pw(w | Sρ)−Qw(w))2

Qw(w)
−

(Pw(w | Sρ)−Pw(w))2

Pw(w)
dw

(5)

=

∫
w∈W+

(Pw(w | Sρ)−Pw(w))2

Pw(w)
−

(Pw(w | Sρ)−Pw(w))2

Pw(w)
dw = 0

So according to Equation (3), χ2(Pw(w | Sρ),Qw(w)) ≤
χ2(Pw(w | Sρ),Pw(w)), and ENS(Pw(w | Sρ),Qw(w)) ≥
ENS(Pw(w | Sρ),Pw(w)).

3.2.2 MCMC-based Sampling
Another popular approach for sampling from complex dis-

tributions is the Markov Chain Monte Carlo (MCMC) method.
This approach generates samples from the distribution by
simulating a Markov chain. We construct the Markov chain
in such a way that it gives more importance to the re-
gions which are valid, i.e., the stationary distribution of the
Markov chain is the same as the posterior Pw(w | Sρ).

Since valid weight vectors form a single continuous and
convex region, we could simply find a first valid weight vec-
tor w, and then perform a random walk from w to a new
weight vector w′. Note that in order to explore the valid
region w.r.t. the current set of preferences Sρ, it is clearly
desirable that each step of the random walk explores only
a close region around the current w, as otherwise, w′ gen-
erated from w may be more likely to be outside the valid
region. Thus we define a length threshold lmax, and set the
transition probability Q(w′ | w) from w to w′ as follows:

Q(w′ | w) =

{
1/lmax if ‖w′ − w‖ ≤ lmax
0 otherwise.

(6)

One of the most popular MCMC-based sampling algo-
rithms is Metropolis-Hastings (MH). Using MH we can gen-
erate samples following the Markov chain defined by Q(w′ |
w). Given a current weight parameter w, we randomly pick
a weight parameter w′ such that the distance ‖w′ − w‖ is
less than or equal to lmax. If w′ satisfies the preferences in
the feedback set Sρ, w

′ is accepted as the next sample with
a probability α, as defined in Equation (7). If w′ is rejected
(i.e., with probability (1 − α)), we use a copy of w as the
next sample.

α = min{1,
Pw(w′)Q(w | w′)
Pw(w)Q(w′ | w)

} (7)

Note that Q(w′ | w) is obviously symmetric in our case,

so α can be simply calculated as α = min{1, Pw(w′)
Pw(w)

}.
Following recommendations in the MH sampling literature

[3], we pick one sample from every δ samples generated,
where δ is called the step length, rather than including all
generated samples in the final sample pool. This avoids
generating highly correlated samples.

1946

Performance Analysis: Let Q′w be the probability dis-
tribution of w obtained by the proposed MH sampler. Ob-
viously Q′w converges to the prior distribution Pw accord-
ing to Equation (7). So for w ∈ W+, we have χ2(Pw(w |
Sρ),Q

′
w(w)) = χ2(Pw(w | Sρ),Pw(w)).

According to the MH sampler, whenever a new sample w′

obtained following Q(w′ | w) is rejected, we keep a copy of
the current w, so the probability of sampling a w ∈ W−

is 0, which means ∀w ∈ W−, Q′w(w) = Pw(w | ρ) = 0.
Thus ∀w ∈ W−, χ2(Pw(w | Sρ),Q′w(w)) ≤ χ2(Pw(w |
Sρ),Pw(w)), yielding the following result.

Theorem 2. ENS(Pw(w | Sρ),Qw(w)′) ≥ ENS(Pw(w |
Sρ),Qw(w))

So the MCMC-based sampler is more effective than im-
portance sampling for our constrained sampling problem, as
verified by our experiments (Section 5.1).

3.3 Optimizing Constraint Checking Process
Suppose σ packages p1, . . . , pσ are presented to the user.

Even if the user clicks on only one package p1 out of the σ
recommended packages, this results in σ−1 pairwise package
preferences: ρ1 := p1 � p2, . . . , ρσ−1 := p1 � pσ−1. Thus,
as more feedback is received from the user, the number of
package preferences we need to deal with increases quickly.

This raises the following two issues: (1) cycles in prefer-
ences, and (2) cost of checking whether a sample w should be
rejected. We note that cycles in preferences can be resolved
by presenting packages in a cycle to the user, and asking the
user to choose the best out of them (which reverses the di-
rection of one edge in the cycle and breaks the cycle). Next
we will discuss how a set Sρ of pairwise package preferences
can be organized in order to facilitate efficient checking of
whether a sampled weight vector w is valid.

One intuitive solution is to reduce redundant package pref-
erences by exploiting the transitivity of the preference rela-
tion. It is easy to see that the preference relation � over
packages is transitive for additive utility functions, i.e., for
any packages p1, p2, p3 and any weight vector w, w·p1 > w·p2
and w·p2 > w·p3 imply w·p1 > w·p3. Thus, there is no need
to verify satisfaction of p1 � p3 for a sample w whenever w
satisfies p1 � p2 and p2 � p3. It follows that the number of
preferences we need to check is at most linear in the number
of distinct packages (implicitly) appearing in the feedback.

To eliminate redundant preferences received from the user,
we can maintain preferences in a directed acyclic graph (DAG)
Gρ: an edge (pi, pj) represents the preference pi � pj . Then
any transitive reduction algorithm [2] can be applied to elim-
inate redundant preferences.

3.4 Sample Maintenance
It is clear from the previous section that depending on

the number of feedback preferences received from a given
user, the sampling process may actually be quite time con-
suming. Thus, it is desirable to avoid generating samples
from scratch whenever new feedback is received. In other
words, it is desirable to maintain previously generated sam-
ples against new incoming feedback.

Given a probability distribution Pw of w, a set Sρ of pref-
erences, and a sample pool S, instead of regenerating all
samples, we can simply replace samples which violate the
new feedback, and retain samples which do not violate any
new feedback. This approach works since the probability

of each valid w always follows Pw, regardless of the newly
received feedback.

A simple idea for replacing invalid samples in the pool
is to scan through all samples in the pool one by one, and
check whether each satisfies the new feedback. This simple
approach will be effective if many samples might violate the
new feedback received. However, the performance will be
very poor if hardly any samples from S actually violate the
newly received feedback.

Note that, as discussed in the previous section, for feed-
back ρ := p1 � p2, w violates ρ if w · (p2 − p1) > 0. Thus
finding those w ∈ S which violate ρ is the same as finding all
weight vectors which have a projected value on p2−p1 larger
than 0. This problem can be solved by leveraging the clas-
sic threshold algorithm (TA) framework [13], by iteratively
enumerating the largest w from S w.r.t. the query vector
p2 − p1 until the maximum possible score of any unseen w
is less than or equal to 0. Obviously this TA-based algo-
rithm is very efficient when not many samples violate the
new preference. However, for cases where most samples vi-
olate the new feedback, the cost of the TA-based algorithm
may be much higher than the näıve algorithm of checking
every sample in the pool for possible preference violation.

Algorithm 1: RejectedSampleCheck(S, ρ = p1 � p2)

1 Q ← An empty set for rejected sample w’s;
2 Lw ← Lists of samples sorted based on feature values;
3 while true do
4 lw ← Access lists in Lw in round-robin fashion;
5 w ← getNext(lw);
6 τ ← boundary value vector from Lw;
7 if w · (p2 − p1) > 0 then Add w to Q;
8 if τ · (p2 − p1) ≤ 0 then Break;
9 if Cprocessed + Cremain ≥ (1 + γ)|S| then

10 Scan and check each remaining w in lw, Break;

11 return Q;

Motivated by this, we propose a hybrid approach shown
in Algorithm 1. We organize the samples into m lists Lw =
lw1 , . . . , l

w
m, where each list lwi is a total ordering of items

based on the values of the corresponding feature fi. Given
new feedback ρ, we start with the TA-based algorithm, and
if the current number Cprocessed of items processed plus the
number Cremain of remaining items in the current list is
larger than or equal to (1 + γ) of the total number of items,
we stop the TA process, and instead scan through the re-
mainder of the current list, checking the validity of each
sample within this list. Here, γ is a parameter which can
be tuned based on the actual performance, with smaller γ
leading to performance closer to the simple scanning algo-
rithm, and larger γ leading to performance closer to the pure
TA-based algorithm.

4. SEARCH FOR BEST PACKAGES
If we have a top-k package solver which can produce the

top-k packages for a given weight vector w, then given a set
S of sample weight vectors, we can find the overall top-k
packages under different ranking semantics as follows.

For EXP, we need to estimate the expected utility of pack-
ages and return the top-k packages w.r.t. the estimates.
Given all the top-k package results obtained from the sam-
ples w ∈ S, we maintain the sum of the utility values for each
package appearing in the results. Then the sample utility
mean of each package is simply the utility sum divided by

1947

the number of times the package appears in a result. Note
that we only need to consider those packages which appear
in the top-k package list w.r.t. at least one sample w.

For TKP, we just maintain a counter for each package
which appears in the result set; the k packages appearing
most frequently in this set will be the result under TKP.

For MPO, instead of maintaining statistics for each pack-
age that appears in the result set, we maintain a counter for
each top-k package list. The final top-k package list under
MPO is the one with the largest counter value.

Thus a key step in finding the top-k packages for a set S
of sample weight vectors is to find the top-k packages for a
specific w, which we address next.

Given a set T of items and a fixed w for the utility func-
tion, the problem of finding the k best items w.r.t. w can
be done using any standard top-k query processing tech-
nique [13]. However, because we are dealing with subsets of
items, the problem becomes challenging since a näıve solu-
tion which first enumerates all possible packages, and then
uses a top-k query processing algorithm to find the best k
packages would be prohibitively expensive. Below, we dis-
cuss how classical top-k query processing algorithms can be
adapted to finding the top-k packages, given a fixed w.

Following recent research on top-k item query processing
[13], one intuition is that for a top-k package p, the likeli-
hood of having a high utility item in p is often higher than
the likelihood of having a low utility item in p. Thus by ac-
cessing items in their descending utility order, we could po-
tentially locate the top-k packages by accessing only a small
number of items. To facilitate efficient processing over dif-
ferent weight vectors, we order items based on their utility
w.r.t. each individual feature. We denote the resulting set
of sorted lists by L.

Given a fixed w and utility function U , Algorithm 2 gives
the pseudo-code of the overall algorithm framework Top-k-
Pkg. As shown, Top-k-Pkg first sorts the underlying items
into different lists, where each list is an ordering of the
items in T w.r.t. the desirable order on one specific fea-
ture according to the utility function (line 2). E.g., consider
U(p) = 0.5avg1(p)− 0.5sum2(p), where avg1(p) and sum2(p)
are the normalized aggregation values of the package w.r.t.
the corresponding feature. The algorithm sorts items into
two lists, l1 and l2, where in l1, items are sorted in non-
increasing order of feature 1, and in l2, in non-decreasing
order of feature 22. As discussed before, the intuition is
that by accessing items with better utility values w.r.t. each
individual feature in the utility function early, we can po-
tentially quickly find the top-k packages of items.

After constructing the set of lists L, Top-k-Pkg accesses
items from lists in L in a round-robin fashion (lines 4–5).
We assume items reside in memory, so their feature values
can be retrieved quickly. After accessing each new item t,
we can obtain the new boundary value vector τ in which
each feature value equals the corresponding feature value of
the last accessed item in each list (line 6). So essentially,
the feature vector τ corresponds to the maximum possible
utility value for an unaccessed item.

Next, we can expand the existing packages in the queue Q
by incorporating the new item t (line 7), a process described

2A sorted list can be accessed both forwards and backwards,
so there is no need to maintain two separate lists when both
non-increasing and non-decreasing orders are required on
the same feature.

in Section 4.2. During package expansion, a current lower
bound utility threshold ηlo can be obtained by looking at the
kth best package so far in queue Q, and an upper bound util-
ity threshold ηup of any possible package can be obtained by
referring to the maximum utility value an unaccessed item
can have, a calculation described in Section 4.1. Obviously,
if ηup ≤ ηlo, we can safely return the current top-k pack-
ages, as no future packages can have higher utility than the
current top-k packages (lines 8–9).

Algorithm 2: Top-k-Pkg(U , T , w, k)

1 Q ← A priority queue of packages having one item ∅;
2 L ← Lists of items in T sorted according to util. func. U ;
3 while true do
4 l ← Access lists in L in round-robin fashion;
5 t ← getNext(l);
6 τ ← boundary value vector from L;

7 (ηlo, ηup) ← expandPackages(U , Q, t, τ));

8 if ηup ≤ ηlo then break ;

9 return top-k packages in Q;

4.1 Upper Bound Estimation for Best Package
Given the accessed item information, one requirement in

Top-k-Pkg is to estimate the upper bound value a package
can have. In this section, we present an algorithm for esti-
mating this upper bound value.

Given a fixed weight vector w, the utility value U(p) of
a specific package p can be calculated as p · w, so it de-
pends only on items within the package p. Given the fact
that items in each list of L are ordered in non-increasing
utility of the corresponding feature, the maximal marginal
utility value of an unseen item is obviously bounded by the
imaginary item with feature vector τ .

Given a utility function U , we say that U is set-monotone
if for any packages p, p′ of items, we have U(p ∪ p′) ≥
U(p). E.g., U(p) = 0.5sum1(s)−0.5min2(s) is set-monotone.
Clearly, if U is set-monotone, the maximum utility of a pack-
age p can be achieved by packing as many items with feature
vector τ (were they to exist) as possible into p. On the other
hand, if U is not set-monotone, e.g., when some aggregate
feature values in U are based on avg, we can show that the
upper bound value of p in this case is given by packing as
many items with feature vector τ into p as possible, as long
as the marginal utility gain of this addition is positive.

Lemma 3. Given a package p, a utility function U with
fixed w, and a sequence of items t1, . . . , tm such that every
feature value of ti is no worse than that of ti+1, then U(p ∪
{t1, . . . , ti})−U(p∪{t1, . . . , ti−1}) ≥ U(p∪{t1, . . . , ti+1})−
U(p ∪ {t1, . . . , ti}), 1 < i < m.

Proof. The result follows from that fact that every fea-
ture value of ti is no worse than that of ti+1 w.r.t. U .

Algorithm 3 shows the function upper-exp, which returns
an estimate for the upper bound value, where φ is the max-
imum allowed package size.

Theorem 3. The upper bound computed by Algorithm 3
is correct.

Proof. The result obviously follows for the case where
U is set-monotone. When U is not set-monotone, assume to
the contrary that there exists a package p′′ ⊃ p, such that
p′′ is returned by upper-exp, p′′ 6= p′ and U(p′′) > U(p′).
Since τ bounds the maximum value on every feature of an
unseen item, ∀t ∈ p′′\p, τ upper bounds t on every feature.
Thus according to Lemma 3, we could replace every t ∈ p′′\p

1948

with τ without sacrificing the utility of p′′. So the maximum
value achieved by padding p with τ is as good as p′′, or
U(p′) ≥ U(p′′), which contradicts the assumption.

Algorithm 3: upper-exp(p, U , τ , φ)

1 p′ ← p;
2 if U is set-monotone then
3 for i ∈ [1, φ− |p|] do p′ ← p′ ∪ {τ} ;
4 return U(p′)

5 else
6 for i ∈ [1, φ− |p|] do
7 if U(p′ ∪ {τ})− U(p′) > 0 then p′ ← p′ ∪ {τ} ;
8 else return U(p′);

9 return U(p′)

4.2 Package Expansion
Consider the problem of expanding the set of packages in

queue Q on accessing a new item t. A näıve way of expand-
ing packages would be to add t to every possible package
in Q as long as the resulting package satisfies the package
size budget, inserting the new packages into Q. This strat-
egy, equivalent to enumerating all possible combinations of
accessed items, while correct, is highly inefficient.

Given a package p, one intuitive optimization is that if
incorporating any unaccessed item cannot improve the value
of p, we do not need to consider p in the expansion phase.
E.g., let U(p) = 0.5avg1(p) + 0.5min2(p), with p = (0.5, 0.5)
and τ = (0.4, 0.4). Clearly, any unaccessed item in L will
have a utility worse than or equal to that of τ , so there is
no need to consider p for expansion in the future.

To incorporate this optimization, we split the priority
queue Q in Top-k-Pkg into two sub-queues Q+ and Q−.
Queue Q+ stores packages which can be further expanded
(while improving utility), while Q− stores packages which
cannot be further expanded (while improving utility) and
so can be pruned from the expansion phase. In Algorithm 4
for the expansion phase, we only need to iterate through
packages in Q+ (lines 2–12), and for each package p ∈ Q+,
we test whether p can be improved by incorporating the new
item t (line 3). If true, we generate a new package p′, and
insert it into the appropriate sub-queue based on whether it
can be further improved by an unaccessed item or not (lines
5–8). If false, we can check whether the current p can be
further improved by referring to the updated τ , and p will
be moved to Q− if it cannot be improved (lines 9–11).

Algorithm 4: expandPackages(U , Q, t, τ)

1 (ηlo, ηup) ← lower/upper bound value;
2 foreach p ∈ Q+ do
3 if U(p ∪ {t}) > U(p) then
4 p′ ← p ∪ {t};
5 if U(p′ ∪ {τ}) > U(p′)) then
6 Q+ ← Q+ ∪ {p′};
7 ηup ← max(ηup, upper-exp(p′, U , τ , φ));

8 else Q− ← Q− ∪ {p′} ;

9 if U(p ∪ {τ}) > U(p) then
10 ηup ← max(ηup, upper-exp(p, U , τ , φ));

11 else Q+ ← Q+ − {p}; Q− ← Q− ∪ {p} ;

12 ηlo ← U(Q−[k]) or 0 if fewer than k packages in Q−;

13 return (ηlo, ηup)

5. EXPERIMENTAL EVALUATION
In this section, we study the performance of various al-

gorithms proposed in this paper based on one real dataset

of NBA statistics and four synthetic datasets. The goals of
our experiments are to study: (i) the performance of vari-
ous sampling techniques w.r.t. our package recommendation
problem; (ii) the effectiveness of the proposed pruning pro-
cess; (iii) the performance of various maintenance algorithms
as the system receives new feedback. We implemented all
the algorithms in Python, and all experiments were run on
a Linux machine with a 4 Core Intel Xeon CPU, OpenSuSE
12.1, and Python 2.7.2.

The NBA dataset is collected from the Basketball Statis-
tics website 3, which contains the career statistics of NBA
players until 2009. The dataset has 3705 NBA players and
we randomly selected 10 (out of 17) features to be used
in our experiments. The synthetic datasets are generated
by adapting the benchmark generator in [4]. The uniform
(UNI) dataset and the powerlaw (PWR) dataset are gen-
erated by considering each feature independently. For UNI,
feature values are sampled from a uniform distribution, while
for PWR, feature values are sampled from a power law dis-
tribution with α = 2.5 and normalized into the range [0, 1].
In the correlated (COR) synthetic dataset, values from dif-
ferent features are correlated with each other, while in the
anti-correlated (ANT) synthetic dataset, values from differ-
ent features are anti-correlated with each other. Each syn-
thetic dataset has 10 features and has 100,000 tuples.

5.1 Comparing Sampling Methods
In Figure 4, we show an example of how different sam-

pling methods generate 100 valid 2-dimensional sample w
parameters given 5000 packages and 2 randomly generated
preferences. As discussed previously, each preference ρ :=
p1 � p2 defines a linear hyperplane. A sample w satisfies
ρ iff w · (p1 − p2) ≥ 0, or w is above the corresponding hy-
perplane. In Figure 4 (a), given the set of valid sample w’s
(black dots) and the set of invalid sample w’s (red crosses),
we can infer the two linear hyperplanes which correspond
to the two given preferences and bound valid sample w’s to
the bottom. It is clear from the figure that unless these two
preferences are way “above” the center of Pw, many sample
w’s from Pw will be invalid. Thus using rejection sampling,
many samples will be wasted and we need to spend con-
siderable time checking whether each sample w satisfies all
preference constraints received.

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

D
im

e
n

s
io

n
 2

Dimension 1

(a) Rejection Sampling

Accepted samples
Rejected samples

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

D
im

e
n

s
io

n
 2

Dimension 1

(b) Importance Sampling

Accepted samples
Rejected samples

-0.8
-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8

D
im

e
n

s
io

n
 2

Dimension 1

(c) MCMC-based Sampling

Accepted samples
Rejected samples

Figure 4: Example of various sampling algorithms.

On the other hand, the two feedback-aware sampling strate-
gies will generate far fewer invalid samples. E.g., in Figure 4
(b), the importance sampling technique samples from a pro-
posal distribution which is more to the center of the valid
region, so samples generated are more likely to satisfy all
constraints. Notice, each sample w is also associated with a
weight, which is captured by the size of the dot/circle in the
figure. The higher the probability w has under the original
distribution, and the lower the probability w has under the
proposal distribution, the larger the weight of w.

3http://www.databasebasketball.com

1949

MCMC-based sampling first needs to find one random
valid sample w. During this process we leverage the sim-
ple rejection sampling, thus these rejected samples (denoted
as isolated red crosses in Figure 4 (c)) will not be part of
the random walk process in MCMC. Then from this valid
sample w, we initiate a random walk from the neighborhood
of w, which follows the original distribution of Pw using a
Metropolis-Hastings sampler as discussed Section 3.2.2.

5.2 Constraint Checking
As discussed in Section 3.1, no matter which sampling

method we use, an important task is to efficiently check
whether a sample satisfies all the feedback constraints re-
ceived from a user. In Figure 5, we show how pruning strate-
gies discussed in Section 3.3 benefit the overall checking per-
formance by varying the number of features, the number of
samples, and the number of Gaussians in the mixture distri-
bution while keeping the other variables fixed at a default
value. We set the default value for the number of randomly
generated preferences to 10000, the number of packages to
5000, the number of Gaussians to 1, the number of fea-
tures to 5, and the number of samples to 1000. As can be
seen from this figure, when we vary one parameter while
fixing other parameters at their default values, the pruning
strategy can robustly generate at least a 10% improvement.
Results under other different default values are similar.

 0
 5

 10
 15
 20
 25
 30
 35
 40

3 4 5 6 7

O
v
e
ra

ll
c
h
e
c
k
in

g
 t
im

e
(s

)

Number of features

(a) Varying number of features

Before pruning
After pruning

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

1000 2000 3000 4000 5000

O
v
e
ra

ll
c
h
e
c
k
in

g
 t
im

e
(s

)

Number of samples

(b) Varying number of samples

Before pruning
After pruning

 0
 5

 10
 15
 20
 25
 30
 35
 40

1 2 3 4 5

O
v
e
ra

ll
c
h
e
c
k
in

g
 t
im

e
(s

)

Number of Gaussians

(c) Varying number of Gaussians

Before pruning
After pruning

Figure 5: Efficiency of the pruning strategy.

5.3 Overall Time Performance
In this section, we report the overall time performance for

package recommendation over different datasets. All time
results reported are based on an average of 5 runs.

In Figure 6, we compare overall time performance for
generating top-k package recommendations under Rejection
Sampling (RS), Importance Sampling (IS), and MCMC-based
Sampling (MS). In these experiments, we fixed the ranking
semantics to be EXP and varied one of the following two
parameters, while fixing the remaining parameters at their
default values: (1) Number of valid samples required; (2)
Number of features. We also tested varying the ranking se-
mantics, the number of feedback preferences received, and
the number of Gaussians in the mixture distribution; the
results were very similar, and thus are omitted.

From Figure 6 (a)–(e), with a log-scale for processing time,
we observe that the sampling cost for generating valid sam-
ple w’s mostly outweighs or at least is comparable to the cost
for generating top-k packages, as usually the top-k packages
can be found by just checking the first few high utility items.
Also the rejection sampling cost is usually much higher than
that of the other two feedback-aware sampling approaches.

As can be seen from Figure 6 (f)–(j), importance sam-
pling is excluded from high dimensional experiments because
finding the center of a high-dimensional polytope is compu-
tationally intractable [11]. Even the simple grid-based al-
gorithm discussed in Section 3.2.1 is exponential w.r.t. the
dimensionality. When the dimensionality is over 5, the time
to find the center will quickly exceed the time for rejection
sampling. With dimensionality 6, the algorithm cannot fin-
ish within 30 minutes, whereas simple rejection sampling

takes only a few seconds. As can be seen from Figure 6 (f)–
(j), MCMC-based sampling scales well w.r.t. dimensionality.

5.4 Sample Quality
To measure the quality of different sampling methods,

we compare the top-5 package list generated w.r.t. differ-
ent ranking semantics and different sampling methods. In
our experiments, we set the number of samples to 5000,4 the
number of feedback preferences received to 1000, the num-
ber of features to 4, and the number of Gaussians in the
mixture distribution to 2. Results under different settings
are similar and thus excluded. Each package is associated
with a unique and random package id.

We have observed that on both the synthetic dataset and
the NBA dataset, given enough samples, the top package
results from different sampling methods typically tend to
become very similar. And the top-k package results under
different ranking semantics also tend to be similar to each
other. The reason is that although different ranking seman-
tics may potentially result in different top package lists, they
can be correlated with each other. E.g., as in our example,
if one list of top packages dominates the results given a set
of samples, TKP and MPO may tend to give very similar
results. This is because picking the same list of top pack-
ages guarantees that packages in this list may also appear
most frequently among all top packages. EXP may not be
affected by this as it is determined by the expected utility
of the package, so a package appearing frequently may not
necessarily have high expected utility value.

5.5 Sample Maintenance
As discussed in Section 3.4, upon receiving new feedback,

a näıve method of scanning through previous samples to
determine which samples need to be replaced might be costly
if the number of rejected samples is low, whereas a top-k
algorithm might help by quickly scanning through the pre-
processed sample lists, and determining whether all samples
satisfy the constraints. However, this algorithm suffers from
a substantial overhead when the number of rejected samples
is large. Thus we propose a hybrid method which starts
following the top-k based approach, then falls back to the
default näıve method if the top-k process cannot stop early.

To assess the actual performance of these three algorithms,
we consider in the following experiment a setting where the
number of previously generated samples is set to 10000 (re-
sults using other values are similar and are omitted), ev-
ery other parameter is fixed at a default value similar to
previous experiments. We randomly generate sets of 1000
feedback preferences, and then according to the number of
samples rejected w.r.t. the feedback, we group the mainte-
nance costs into 7 buckets, where each bucket is associated
with a label indicating the maximum number of samples re-
jected (see Figure 7 (a)). Results are placed in the bucket
with the smallest qualifying label. Maintenance cost results
are averaged for all cases within the same bucket.

According to Figure 7 (a), the top-k based algorithm is a
clear winner when the number of rejected samples is small.
As the number of rejected samples grows, the performance of
the top-k based algorithms deteriorates, especially the non-
hybrid method. But the hybrid method introduces only a

4Increasing the number of samples beyond 5000 does not
change the top package rankings for different datasets.

1950

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

1000 2000 3000 4000 5000

O
v
e

ra
ll

p
ro

c
e

s
s
 t

im
e

(s
)

Number of samples

(a) UNI

Sample Gen.(RS)

Sample Gen.(IS)

Sample Gen.(MS)

Top-k Pkg(RS)

Top-k Pkg(IS)

Top-k Pkg(MS)

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

1000 2000 3000 4000 5000

O
v
e

ra
ll

p
ro

c
e

s
s
 t

im
e

(s
)

Number of samples

(b) PWR

Sample Gen.(RS)

Sample Gen.(IS)

Sample Gen.(MS)

Top-k Pkg(RS)

Top-k Pkg(IS)

Top-k Pkg(MS)

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

1000 2000 3000 4000 5000

O
v
e

ra
ll

p
ro

c
e

s
s
in

g
 t

im
e

(s
)

Number of samples

(c) COR

Sample Gen.(RS)

Sample Gen.(IS)

Sample Gen.(MS)

Top-k Pkg(RS)

Top-k Pkg(IS)

Top-k Pkg(MS)

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

1000 2000 3000 4000 5000

O
v
e

ra
ll

p
ro

c
e

s
s
in

g
 t

im
e

(s
)

Number of samples

(d) ANT

Sample Gen.(RS)

Sample Gen.(IS)

Sample Gen.(MS)

Top-k Pkg(RS)

Top-k Pkg(IS)

Top-k Pkg(MS)

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

1000 2000 3000 4000 5000

O
v
e

ra
ll

p
ro

c
e

s
s
in

g
 t

im
e

(s
)

Number of samples

(e) NBA

Sample Gen.(RS)

Sample Gen.(IS)

Sample Gen.(MS)

Top-k Pkg(RS)

Top-k Pkg(IS)

Top-k Pkg(MS)

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

2 4 6 8 10

O
v
e

ra
ll

p
ro

c
e

s
s
 t

im
e

(s
)

Number of features

(f) UNI

Sample Gen.(RS)

Sample Gen.(MS)

Top-k Pkg(RS)

Top-k Pkg.(MS)

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

2 4 6 8 10

O
v
e

ra
ll

p
ro

c
e

s
s
 t

im
e

(s
)

Number of features

(g) PWR

Sample Gen.(RS)

Sample Gen.(MS)

Top-k Pkg(RS)

Top-k Pkg.(MS)

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

2 4 6 8 10

O
v
e

ra
ll

p
ro

c
e

s
s
in

g
 t

im
e

(s
)

Number of features

(h) COR

Sample Gen.(RS)

Sample Gen.(MS)

Top-k Pkg(RS)

Top-k Pkg.(MS)

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

2 4 6 8 10

O
v
e

ra
ll

p
ro

c
e

s
s
in

g
 t

im
e

(s
)

Number of features

(i) ANT

Sample Gen.(RS)

Sample Gen.(MS)

Top-k Pkg(RS)

Top-k Pkg.(MS)

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

2 4 6 8 10

O
v
e

ra
ll

p
ro

c
e

s
s
in

g
 t

im
e

(s
)

Number of features

(j) NBA

Sample Gen.(RS)

Sample Gen.(MS)

Top-k Pkg(RS)

Top-k Pkg.(MS)

Figure 6: Overall time performance under various sampling algorithms.
small overhead over the näıve algorithm because of the fall-
back mechanism, and this overhead can be tuned through
the parameter γ. In Figure 7 (b), we show how the cost
ratio of each of the top-k and hybrid approaches to that of
the näıve approach varies with γ. When γ is very small, the
average performance of the hybrid method is very similar
to the näıve algorithm as the algorithm is forced to check
fewer samples. By slightly increasing γ (e.g., to 0.025 as
in Figure 7 (b)), the hybrid method can show over 15%
improvement compared to the näıve method. When γ in-
creases further, the performance deteriorates as it becomes
similar to the non-hybrid method. We note that this prop-
erty means we could adaptively decrease γ in practice until
a reasonable performance gain can be observed.

 0

 20

 40

 60

 80

 100

 120

0 1 5 20 50 200 1000

P
ro

c
e
s
s
in

g
 t
im

e
(s

)

Maximum number of violating samples

(a) 10000 Samples

Naive checking
Top-K checking
Hybrid checking

 0

 0.5

 1

 1.5

 2

 2.5

0 0.025 0.05 0.075 0.1

C
o
s
t
ra

ti
o
 w

.r
.t
.
n
a
iv

e
 c

h
e
c
k
in

g

γ

(b) Varying γ

Top-k cost / Naive cost
Hybrid cost / Naive cost

1.0
0.844 0.874 0.897 0.914

Figure 7: Experiments on sample maintenance.

5.6 Elicitation Effectiveness Study
To study the effectiveness of the proposed preference elici-

tation framework, we consider in the following experiment a
set of 100 randomly generated ground truth utility functions
for the NBA dataset which are not known by the package
RS. For each utility function U , we use our proposed al-
gorithm to generate 5 recommended packages along with 5
random packages, and we assume users always pick from
these recommendations the one which maximizes U .

In Figure 8, we show for MCMC-based sampling and un-
der EXP, only a few clicks/feedbacks are needed for each
query before the system converges to a stable top-k pack-
age ranking list. Results for different ranking semantics are
similar, so are omitted.

 0

 2

 4

 6

 8

 10

2 4 6 8 10N
u
m

b
e
r

o
f
c
li
c
k
s

Number of features

Figure 8: Experiments on elicitation effectiveness.

6. RELATED WORK
Item RS recommend to users personalized lists of single

items based on previous transactions of the users in the sys-
tem. The promise of item RS has been recognized by the
database community, resulting in a series of recent research

projects such as RecStore [19], FlexRecs [18], aimed at push-
ing item RS inside the database engine. However, as pointed
out in an influential survey [1], item RS suffer from limited
flexibility and cannot be leveraged to recommend packages.

There has been much investigation in the database com-
munity into handling of preferences over items, e.g., general
preference frameworks [16] [10], skyline queries [4, 22], and
top-k queries [13]. However only recently have researchers
started considering preference handling for sets of items.
This calls for exploring a much larger candidate space, and
usually has an aggregation-based feature space, which fur-
ther complicates the underlying problem. Initial work by
AI researchers such as [7] usually focuses on the formal as-
pects of this problem, e.g., expressiveness of the preference
language, but the proposed model is often not practical.
In [27], we model preferences on packages using hard con-
straints and a fixed score function, thus turning the problem
of finding the top preferred sets into an optimization prob-
lem. However, hard constraints may be too rigid for prac-
tical purposes, since users are often flexible or unsure when
considering budgets and quality, and may be willing to trade
cost for better quality results. In [29] and [20], the authors
study an alternative approach of finding skyline packages of
fixed cardinality. A severe drawback of this approach is that
the number of skyline packages can be prohibitive.

In [30], the authors propose an interactive way to elicit
preferred items. The paper does not consider preferences
for packages, and more importantly, they assume that the
weight parameters of the underlying utility function follow a
uniform distribution, and do not discuss how user feedback
can be leveraged to update the utility function.

In [22] and [14], the authors have a similar setting of infer-
ring preferences given a set of item comparisons. Both pa-
pers focus on inferring a most desirable order directly from
given comparisons; whereas in our work, we took a Bayesian-
based approach by modeling the parameters of the utility
function using a distribution. The most desirable order of
packages depends on the uncertain utility function following
different ranking semantics. Feedback received only affects
the posterior of the parameter distribution.

In [23], the authors consider an interactive way of ranking
travel packages. However, the user feedback model in [23]
is defined in such a way that for each iteration, the user is
asked to rank a set of items instead of a set of packages.
Also unlike our framework in which the elicitation of pref-
erences is implicit, [23] requires several iterations of explicit
preference elicitation before the system shows the user any
recommended package.

1951

Finally, in [28], the authors study the problem of con-
strained sampling. However, the underlying distribution
they consider is discrete, whereas we use Gaussian mixtures.
Also the technique proposed there depends on the particu-
lar form of the constraint, e.g., sum(p) ≤ 10, which is quite
different from the preference constraints considered here.

7. DISCUSSION AND CONCLUSION
Discussion: A user’s online interaction can be noisy. E.g.,
a user may accidentally click on a package or may change
her mind after clicking. A popular method for modeling
this problem is to assume that every feedback received has
a probability ψ of being “correct” [6]. We can use this noise
model in our framework by assuming that every feedback is
independent. Then instead of rejecting a sample w whenever
it violates some feedback preference, we condition its rejec-
tion using the probability that at least one violated feedback
preference is correct, i.e., 1−(1−ψ)x, where x is the number
of feedbacks w violates. This can easily be incorporated into
both importance and MCMC-based sampling.

As discussed in [29], users may sometimes specify predi-
cates on the schema of a desired package, e.g., when buying
a set of books, at least two should be novels. We can handle
such predicates in the top package generation process dis-
cussed in Section 4. The idea is that when generating a new
candidate package, we evaluate the predicates and retain the
package only if it satisfies the specified predicates.
Conclusion: In this paper, we propose a package RS which
uses a Bayesian uncertainty-based preference elicitation frame-
work. The core of the proposed system is a linear utility
function which captures a user’s personalized preferences
over packages. Unlike most existing work which assumes
that this utility function is given, we learn weight param-
eters of this function through implicit user feedback in the
form of clicks on suggested packages. We propose several
constrained sampling-based methods which treat user’s feed-
back as constraints and avoid calculating posterior distri-
butions of the weight parameters explicitly. Each sampling
algorithm can be leveraged to efficiently find the top-k pack-
ages under different ranking semantics, and a user’s feedback
over these recommended packages can be used to update the
system’s knowledge of the corresponding utility function. As
future work, we plan to investigate how Algorithm Top-k-
Pkg can be further optimized using domination-based prun-
ing [29, 20]. The idea is that by pruning away candidate
packages which are not promising, we can further reduce
the queue Q, which is iteratively searched in the expansion
phase. However, pruning strategies also come with an over-
head, so a systematic cost-based study of different pruning
strategies under our proposed model would be interesting.

8. REFERENCES
[1] G. Adomavicius and A. Tuzhilin. Toward the next

generation of recommender systems: A survey of the
state-of-the-art and possible extensions. TKDE,
17(6):734–749, 2005.

[2] A. V. Aho, M. R. Garey, and J. D. Ullman. The transitive
reduction of a directed graph. J.Comp., 1(2):131–137, 1972.

[3] C. M. Bishop. Neural Networks for Pattern Recognition.
Oxford University Press, 1995.

[4] S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline
operator. In ICDE, pages 421–430, 2001.

[5] N. Botkin and V. Turova-Botkina. An algorithm for finding
the chebyshev center of a convex polyhedron. Applied
Mathematics and Optimization, 29(2):211–222, 1994.

[6] C. Boutilier. A pomdp formulation of preference elicitation
problems. In AAAI, pages 239–246, 2002.

[7] G. Brewka, D. Kossmann, and K. Stocker. Representing
preferences among sets. In AAAI, 2010.

[8] Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li. Learning
to rank: from pairwise approach to listwise approach. In
ICML, pages 129–136, 2007.

[9] U. Chajewska, D. Koller, and R. Parr. Making rational
decisions using adaptive utility elicitation. In AAAI, pages
363–369, 2000.

[10] J. Chomicki. Preference formulas in relational queries.
ACM TODS, 28(4):427–466, 2003.

[11] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars.
Computational Geometry: Algorithms and Applications.
Springer, 2000.

[12] R. A. Finkel and J. L. Bentley. Quad trees: A data
structure for retrieval on composite keys. Acta Inf., 4:1–9,
1974.

[13] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of
top-k query processing techniques in relational database
systems. ACM Comput. Surv., 40(4), 2008.

[14] B. Jiang, J. Pei, X. Lin, D. W. Cheung, and J. Han. Mining
preferences from superior and inferior examples. In KDD,
pages 390–398, 2008.

[15] R. L. Keeney and H. Raiffa. Decisions with Multiple
Objectives: Decisions with Preferences and Value
Tradeoffs. Cambridge University Press, 2003.

[16] W. Kießling. Foundations of preferences in database
systems. In VLDB, pages 311–322, 2002.

[17] A. Kong, J. S. Liu, and W. H. Wong. Sequential
imputations and bayesian missing data problems. JASA,
89(425):278–288, 1994.

[18] G. Koutrika, B. Bercovitz, and H. Garcia-Molina. FlexRecs:
expressing and combining flexible recommendations. In
SIGMOD, pages 745–758, 2009.

[19] J. J. Levandoski, M. Sarwat, M. F. Mokbel, and M. D.
Ekstrand. Recstore: an extensible and adaptive framework
for online recommender queries inside the database engine.
In EDBT, pages 86–96, 2012.

[20] C. Li, N. Zhang, N. Hassan, S. Rajasekaran, and G. Das.
On skyline groups. In CIKM, 2012.

[21] G. Linden, S. Hanks, and N. Lesh. Interactive assessment
of user preference models: The automated travel assistant.
In UM, pages 67–78, 1997.

[22] D. Mindolin and J. Chomicki. Discovering relative
importance of skyline attributes. PVLDB, 2(1):610–621,
2009.

[23] S. B. Roy, G. Das, S. Amer-Yahia, and C. Yu. Interactive
itinerary planning. In ICDE, 2011.

[24] M. A. Soliman, I. F. Ilyas, D. Martinenghi, and
M. Tagliasacchi. Ranking with uncertain scoring functions:
Semantics and sensitivity measures. In SIGMOD, pages
805–816, 2011.

[25] K. Stefanidis, G. Koutrika, and E. Pitoura. A survey on
representation, composition and application of preferences
in database systems. ACM TODS, 36(3):19, 2011.

[26] O. Toubia, J. R. Hauser, and D. I. Simester. Polyhedral
methods for adaptive choice-based conjoint analysis.
Journal of Marketing Research, 41(1):116–131, 2004.

[27] M. Xie, L. V. S. Lakshmanan, and P. T. Wood. Breaking
out of the box of recommendations: From items to
packages. In RecSys, pages 151–158. ACM, 2010.

[28] M. Yang, H. Wang, H. Chen, and W.-S. Ku. Querying
uncertain data with aggregate constraints. In SIGMOD,
pages 817–828, 2011.

[29] X. Zhang and J. Chomicki. Preference queries over sets. In
ICDE, pages 1019–1030, 2011.

[30] F. Zhao, G. Das, K.-L. Tan, and A. K. H. Tung. Call to
order: A hierarchical browsing approach to eliciting users
preference. In SIGMOD, pages 27–38, 2010.

1952

