
ADDICT: Advanced Instruction Chasing for Transactions

Pınar Tözün
EPFL

pinar.tozun@epfl.ch

Islam Atta
University of Toronto

iatta@eecg.toronto.edu

Anastasia Ailamaki
EPFL

natassa@epfl.ch

Andreas Moshovos
University of Toronto

moshovos@eecg.toronto.edu

ABSTRACT
Recent studies highlight that traditional transaction pro-
cessing systems utilize the micro-architectural features of
modern processors very poorly. L1 instruction cache and
long-latency data misses dominate execution time. As a re-
sult, more than half of the execution cycles are wasted on
memory stalls. Previous works on reducing stall time aim
at improving locality through either hardware or software
techniques. However, exploiting hardware resources based
on the hints given by the software-side has not been widely
studied for data management systems.

In this paper, we observe that, independently of their
high-level functionality, transactions running in parallel on a
multicore system execute actions chosen from a limited sub-
set of predefined database operations. Therefore, we initially
perform a memory characterization study of modern trans-
action processing systems using standardized benchmarks.
The analysis demonstrates that same-type transactions ex-
hibit at most 6% overlap in their data footprints whereas
there is up to 98% overlap in instructions.

Based on the findings, we design ADDICT, a transaction
scheduling mechanism that aims at maximizing the instruc-
tion cache locality. ADDICT determines the most frequent
actions of database operations, whose instruction footprint
can fit in an L1 instruction cache, and assigns a core to ex-
ecute each of these actions. Then, it schedules each action
on its corresponding core. Our prototype implementation
of ADDICT reduces L1 instruction misses by 85% and the
long latency data misses by 20%. As a result, ADDICT leads
up to a 50% reduction in the total execution time for the
evaluated workloads.

1. INTRODUCTION
Online transaction processing (OLTP) is one of the most

demanding database applications and a multibillion-$/year
industry. It is for this reason that OLTP has been one of the
main applications that drive advancements in the data man-
agement ecosystem. Despite innovations in the database and

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 14
Copyright 2014 VLDB Endowment 2150-8097/14/10.

computer architecture communities, recent workload char-
acterization studies show that micro-architectural resources
are severely underutilized when running OLTP [5, 22, 24].
Up to 80% of the execution cycles go to memory stalls [5].
As a result, on modern processors, OLTP barely achieves
one instruction per cycle (IPC), far below the processors
peak capability of four IPC [24].

Previous works on reducing memory stall time for data
management systems aimed at reducing cache miss rates,
focusing primarily on improving locality and cache utiliza-
tion for data rather than for instructions. Proposals range
from cache-conscious data structures and algorithms [4, 7]
to sophisticated data partitioning and thread scheduling [17]
at the software-side, whereas hardware techniques mainly
target data prefetching [21].

Recent studies [5, 22, 23, 24] reveal that, for traditional
transaction processing systems, the stall time due to L1 in-
struction misses is at least as problematic as long-latency
data misses from the last-level cache. Improving code lay-
out by writing better code or by compilation optimizations
[18] does improve instruction cache utilization but does so
by mainly reducing conflict misses. However, it is capac-
ity misses that dominate L1 instruction misses on today’s
most commonly used server hardware [23]; the instruction
footprint of a transaction is too big to fit in the L1, thus
thrashing the L1 and leading to very lengthy stalls.

There are proposals that address capacity instruction misses
in OLTP. These proposals are motivated on the observation
that threads executing transactions in parallel on a multi-
core server execute significant amount of common code. To
be able to reuse the common instructions already brought
into L1, STEPS [8] and STREX [2] time-multiplex a batch
of threads on the same core, whereas SLICC [1] spreads
the computation of a transaction to several cores to local-
ize the common instructions to specific caches. Nevertheless,
STREX and SLICC are completely oblivious to software and
miss the opportunity to more precisely improve instruction
locality through software guidance. STEPS, on the other
hand, is a pure software technique designed to run only on
a single-core and requires significant manually-aided instru-
mentation. Furthermore, all three techniques increase av-
erage transaction latency and STREX and STEPS increase
the potential of deadlocks due to extensive batching and
context-switching.

The goal of this work is to better exploit the L1 caches
when running transactions based solely on hints from the
software-side. The traditional way of scheduling transac-
tions considers each as one big, monolithic task. Therefore,

1893

index scan

initialize
cursor

fetch
next

25%

75%

index probe

find key

lookup

traverse lock

73%

71%

33%34%

update tuple

pin
record
page

update
page

40%46%

insert tuple

create
record

create
index
entry

allocate
page

44% 56%

47% 65%

structural
modification

Figure 1: The flow graph of common database operations from the TPC-C transaction mix with the percentage of instruction
footprints corresponding to each significant code part in these operations. An arrow from A to B with label X% means that
X% of A’s instruction footprint comes from executing B. The dashed lines indicate the code paths that are not always taken.

the granularity of tasks assigned to run on a core is too
coarse, which leads to cache thrashing due to the large in-
struction footprint of the scheduled task. This work pro-
poses to reduce the granularity of task-to-core assignment
by scheduling the actions of common database operations.
This approach bridges the gap between a transaction’s in-
struction footprint and the L1 capacity.

To assign finer-grained tasks to cores while running trans-
actions, we design ADDICT, a transaction scheduling mech-
anism that chases instruction cache locality. ADDICT first
segments a database operation into smaller actions, where
the instruction footprint of each action fits in a single L1
instruction cache. Then, it assigns specific cores for each
of these actions and migrates the transactions over multiple
cores using core assignment decisions that aim to maximize
instruction locality for each action.

The contributions of this work are the following:

• We characterize the memory behavior of the TPC OLTP
benchmarks [25] (TPC-B, TPC-C, TPC-E) during tradi-
tional transaction execution. We observe that same-type
transactions exhibit 53% to 98% overlap in their instruc-
tion footprint while the data overlap is at most 6%.

• We design ADDICT, a transaction scheduling mecha-
nism that views transactions as a composition of the ac-
tions from the database operations they execute. There-
fore, it departs from the traditional way of scheduling
transactions, which views them as an indivisible unit.

• Our experimental evaluation shows that ADDICT re-
duces L1 instruction cache misses by 85%, while also re-
ducing the rate of the long-latency data misses by 20%.
Even though ADDICT slightly increases L1 data cache
misses and average transaction latency, the improved in-
struction locality leads to a 45% and 15% gains in total
execution time on average on shallow and deep cache
hierarchies, respectively.

The rest of the paper is organized as follows. Section 2 de-
tails typical database operations and presents the findings of
our memory characterization study. Section 3 explains AD-
DICT’s algorithm and its implementation. Section 4 eval-
uates our ADDICT prototype. Finally, Section 5 surveys
related work and Section 6 concludes.

2. INSIDE TRANSACTIONS
Each transaction satisfies a different request in terms of

its high-level functionality. However, underneath, transac-
tions execute a series of actions from the same predefined set
of database operations. These operations dictate the way
of interaction with the storage manager components. This
section first details some of the common database opera-
tions, and then, investigates the instruction and data over-
lap across their different instantiations in a workload mix.

2.1 Database Operations
Most transactional workloads have five major operations:

index probe, index scan, update tuple, insert tuple, delete
tuple. In the rest of this section we discuss their main char-
acteristics; we omit delete tuple because of its similarity to
insert tuple. To guide the discussion, Figure 1 sketches the
high-level call flow for each operation including the percent-
age of the instruction footprint for each significant code path
in it. In Figure 1, an arrow from box A to box B with la-
bel X% indicates that X% of the instruction footprint of A
comes from executing the routine B. Solid arrows represent
calls that are always made whereas dashed arrows repre-
sent calls that are not always made, i.e., they depend on a
branch condition. The footprint is measured as the unique
64byte cache blocks requested by each operation when run-
ning 1000 transactions from the transaction mix of TPC-C
(see Section 4.1 for the experimental setup).

Index Probe is the most common operation in transac-
tion processing and is read-only. Its input parameters are
an index identifier and a key. If the key exists in the index,
index probe returns the tuple corresponding to the given
key value in the index. Otherwise, index probe returns a
flag indicating the key is not found. From Figure 1, we see
that index probe follows a predictable call path. It starts
with a call to the storage manager API, find key, which
calls the lookup routine for the corresponding index. Then,
it traverses the index pages from top to bottom to find the
desired key and interacts with the lock manager to acquire
the lock for the record that maps the searched key.

Index Scan is the other read-only operation used in
transactions. It takes as input an index identifier, two key
values for the boundaries of the scan, and two flags indi-
cating the inclusiveness of the boundary keys. It returns

1894

[0,30)

[30,60)

[60,90)

[90,100)

100

in
se

rt

u
p

d
a

te

p
ro

b
e

TPC-B TPC-C

TPC-E

a
ll

mix mix

mix

new order

trade status

sc
a

n

p
ro

b
e

a

ll

TPC-C

TPC-E

in
se

rt

u
p

d
a

te

p
ro

b
e

a

ll

TPC-B

mix mix
TPC-C

mix
TPC-E

p
ro

b
e

sc

a
n

a

ll

instructions data

Figure 2: Overlaps in instruction and data footprints across different instantiations of the transactions in a workload mix,
transactions of the same type, or database operations. Each pie represents the instruction or data footprint for the indicated
transaction, database operation, or workload mix. The legend represents the frequency of an operation, transaction, or
workload mix using the corresponding slice of the overall footprint. For example, the darkest slices (100%) represent the
instructions and data that are executed in all instances, whereas the lightest slices ([0-30)%) represent the instructions and
data that are common in less than 30% of the instances.

the set of tuples mapping to the key values within the given
boundaries. As Figure 1 shows, index scan has two main
parts. Initialize cursor first finds the position on the index
leaf pages to be used as the starting point for the scan. This
routine forms 75% of the instruction footprint of index scan.
Then, fetch next fetches all the tuples until it reaches the
scan’s ending boundary. The instruction footprint of this
last, tuple fetching code part is three times smaller com-
pared to the instruction footprint of initialize cursor ; fetch
next has just a short loop that reads the tuples in sequence.

Update Tuple takes as input a tuple identifier and the
updated tuple. Then, it rewrites the part of the data page in
the database that corresponds to the tuple identifier. It is
a relatively short operation and follows a more predictable
execution compared to the other database operations. It
has two major routines as shown in Figure 1: pin record
page pins the page that has the tuple to be updated in the
buffer pool, and update page updates the record and inserts
a log entry for the update.

Insert Tuple takes a table identifier and a tuple as in-
puts. Create record adds the tuple to one of the data pages
that belong to the given table and has sufficient space. Cre-
ate index entry inserts the index entries for this record to
all the indexes associated with the table. Figure 1 shows
that these two routines almost equally contribute to the in-
struction footprint. Therefore, inserting a tuple to a table
that has indexes, results in a significantly different instruc-
tion stream compared to inserting a tuple to a table with
no indexes. Similarly, if none of the data pages allocated for
the given table has space, then a new data page is created
(allocate page). This process requires almost half of the in-

structions in create record. Further deviation in the instruc-
tion stream might be caused by the instructions needed to
handle structural modifications in an index (e.g., index page
splits, merges, or new index root creation). Such modifica-
tions form 65% of all the instructions needed to create an
index entry. Overall, the insert tuple operation exhibits the
most variety in its instruction flow compared to the other
database operations.

2.2 Commonalities across Transactions
Considering the database operations transactions share,

we expect to see significant overlap in the code executed by
different transactions as well as some common data accesses.
To quantify this intuition, we analyze the memory behavior
of the transactions from the standard TPC [25] benchmarks
for OLTP, i.e., TPC-B, TPC-C, and TPC-E (Section 4.1
details the experimental setup). We mark each instruction
and data cache block accessed by each database operation or
transaction. Then, we check how often these blocks appear
in other instances of that database operation or transaction.
Our goal is to examine instruction and data overlap at three
different granularities: a) within the whole transaction mix,
b) within each transaction of the same type, and c) in each
database operation.

Figure 2 depicts the highlights of the overall analysis.
Each pie-chart represents the whole instruction or data foot-
print for the indicated workload, transaction, or database
operation called within that workload or transaction. Next,
Section 2.2.1 and Section 2.2.2 detail the results in Figure 2
for instruction and data overlaps, respectively.

1895

0

500

1000

1500

2000

2500

A
v
e

ra
g

e
 R

e
u

se
 C

o
u

n
t

Instruction Cache Blocks Data Cache Blocks

Account Update

0

100

200

300

400

A
v
e

ra
g

e
 R

e
u

se
 C

o
u

n
t

Instruction Cache Blocks Data Cache Blocks

Insert Tuple

Figure 3: The average number of accesses to each memory address per instance of the TPC-B’s AccountUpdate transaction
and insert tuple operation. The x-axis places the addresses in the order of their commonality across different transaction
instances in the workload. The addresses to the right of the vertical light-gray line are the ones that are used in all instances.

2.2.1 Instruction Overlap
The left-hand side of Figure 2 reports the instruction over-

lap results. For simplicity, Figure 2 only shows the most fre-
quent operations invoked by the most frequent transaction
type in the mix in addition to the results from the overall
transaction mix for all the workloads. The pie slices group
instructions based on the appearance frequency across the
instances of each database operation or transaction. For ex-
ample, the darkest slice (100%) represents the instructions
that are executed in all instances, whereas the lightest slice
([0-30)%) represents the instructions that are common in
less than 30% of the instances.

Since TPC-B has only one transaction in its mix, Figure 2
shows the results only for the workload mix (the leftmost
pies). The instruction footprint overlap across all probe and
update operation instances exceeds 90%. The overlap across
all insert operation instances is at 60%. TPC-B has a single
transaction type, AccountUpdate, that inserts a tuple to the
History table, which has no index. Investigating where that
40% of uncommonly executed code comes from shows that
these instructions come from the part of the insert opera-
tion code that creates a new data page. Even though there
are only six AccountUpdate instances out of the 1000 that
require this routine, the large instruction footprint of the
routine (see Figure 1) causes a high deviation in the whole
instruction stream.

The TPC-C charts show similar trends to TPC-B. Within
individual transactions, e.g., NewOrder, the instruction over-
laps in probe and update operations are high: at least 70%
of the instructions accessed are the same. For the insert
operation, however, around half of the instructions are not
so common. NewOrder performs inserts to tables with in-
dexes. This code has more branches compared to TPC-B’s
AccountUpdate since it also needs to execute the routine for
creating an index entry (see Figure 1).

Since NewOrder forms almost half of the TPC-C transac-
tion mix, the charts for each operation in the mix are similar
to the charts for NewOrder. The slight differences are due to
the different tables accessed by the transactions in the mix.
For example, Payment, which together with NewOrder con-
tributes to the 88% of the mix, inserts a tuple to a table with
no indexes. Therefore, the instructions for creating an in-
dex entry are not common in the overall mix. Furthermore,
the degree of overlap is lower in the whole transaction mix
(third column, fourth row in Figure 2) compared to the in-
dividual operations. This is expected since probe is the only
database operation code shared by all TPC-C transactions.

Since almost 80% of the TPC-E mix is read-only, Figure 2
presents the results for probe and scan for TPC-E. TPC-E
has 10 transaction types in its mix, twice the number of
TPC-C, and the most frequent transaction, TradeStatus,
accounts for only 19% of the mix. Therefore, the instruction
overlap is less in the overall TPC-E mix (fifth column, fourth
row in Figure 2) compared to the other two benchmarks.
However, among same-type transactions instruction overlap
is still significant; different TradeStatus instances observe a
98% instruction overlap.

2.2.2 Data Overlap
The right-hand side of Figure 2 presents data overlap re-

sults for the transaction mixes only since the conclusions are
the same for individual transaction types. Figure 2 clearly
depicts that the overlap in data is very low, at most 6%.

The dataset used while collecting the traces is around
100GB for each workload. Therefore, there is almost no
overlap on the data that represent database records or lower-
levels of the indexes. On the other hand, investigating the
sources of the few, very frequently used data shows that
metadata information, lock manager, buffer pool structures,
and index root pages are commonly accessed (mostly read)
across different transactions. Such data mainly stem from
the tables that are accessed in all the transactions of a work-
load’s mix, e.g., the Warehouse table in TPC-C, or used by
all the instances of a particular database operation, e.g., the
inserts to History table in TPC-B.

2.3 Average Reuse in an Instance
Figure 2 demonstrates the frequency of instruction reuse

across different instances of transactions or database opera-
tions. It does not indicate how frequently a memory address
is reused within each instance. Therefore, we also measure
the average per instruction and per data address accesses
within one instance of each transaction and database op-
eration. Figure 3 shows the results for the AccountUpdate

transaction and the insert tuple operation in TPC-B. The
results for TPC-C and TPC-E and the other database op-
erations share similar trends.

Figure 3 omits the address labels on the x-axis, but places
the addresses based on their frequency across different trans-
action instances (from left to right the frequency increases).
The addresses on the right of the light-gray vertical line
appear in all the instances. Figure 3 highlights that the fre-
quently reused addresses across transaction and operation
instances are also frequently reused within each instance.

1896

2.4 Summary and Conclusions
The memory characterization study demonstrates that:

• Transactions exhibit high instruction overlap because of
the common database operations they execute, especially
among same-type transactions. This offers an opportu-
nity to achieve better L1-I cache locality by scheduling
transactions in a way that would enable instruction reuse
across transactions based on their common actions.

• The percentage of the data that is common across trans-
actions is very low due to infrequent reuse of the database
tuples. The few frequently used data are small-sized and
mostly read-only. Accordingly it may be possible to pin
them in the caches to improve data cache locality.

• The cache blocks that are highly common across different
transaction instances tend to be more frequently reused
within each instance. Therefore, any technique for im-
proving cache locality for the common instructions and
data across different instances also has potential to im-
prove cache locality within each transaction instance.

3. ADDICT
Section 2 emphasizes that transactions exhibit high in-

struction commonality whereas the data commonality is low.
Based on this finding, we design an alternative method to
schedule transactions to maximize instruction cache local-
ity. ADDICT, an advanced instruction chasing mechanism
for transactions, departs from the traditional way of schedul-
ing transactions, which sees a transaction as one big task.
ADDICT rather considers a transaction as a combination of
the database operations it calls and migrates transactions
over cores based on the actions their operations are about
to execute.

ADDICT consists of two steps, which are detailed in the
subsequent subsections. Step 1 determines the migration
points in each database operation (Section 3.1) and Step 2
spreads the execution of a transaction over multiple cores
based on the migration points picked in the previous step
(Section 3.2). Step 2 is always dynamic since it orchestrates
transaction execution during the actual run, whereas Step
1 can be either static or dynamic depending on the applica-
tion’s needs.

3.1 Finding Migration Points
To be able to determine when and where to move a trans-

action at run-time, ADDICT first needs to decide on the mi-
gration points in each database operation. ADDICT picks
these points separately for each transaction type since the
code paths each database operation takes might change based
on the tables accessed in a particular transaction, as we ob-
serve in Section 2.2.1.

3.1.1 Algorithm
Algorithm 1 shows the details of ADDICT’s initial step

that finds the migration points for a workload. It takes a
list of indicators to identify the transactions and database
operations in the workload. These indicators can be function
names or instruction addresses that correspond to the entry
and exit points of the transactions or operations.

In lines 1-16 of Algorithm 1, ADDICT records the se-
quences of instructions that cause an eviction from each

Algorithm 1 Finding migration points.
Inputs: list of transactions and database operations.
Output: a list of instruction sequences that indicate the
migration points picked for each database operation invoked
by each transaction.

1: m→ keeps possible migration points
2: for instruction access addr in workload do
3: if a transaction entry/exit then
4: empty the L1-I cache
5: if transaction entry then
6: xct = current transaction type
7: else if a database operation entry/exit then
8: empty the L1-I cache
9: if operation entry then

10: op = current operation
11: create empty sequence
12: else
13: m[xct][op][sequence] + +
14: else if addr request requires an eviction then
15: empty the L1-I cache
16: sequence.append(addr)
17: return the sequence with the highest value for each

m[xct][op]

database operation invoked in a particular transaction type
as migration point candidates. In parallel, it collects the
occurrence count for each of these sequences. Since AD-
DICT aims to migrate transactions at the granularity of ac-
tions from database operations that can fit in an L1-I cache,
it resets the L1-I cache upon transaction or database oper-
ation entry and exit points in this step. After collecting the
candidates, ADDICT picks the most frequent sequence of
instructions for each database operation from each transac-
tion type as migration points (line 17 in Algorithm 1).

3.1.2 Example
In line 17 of Algorithm 1, ADDICT has information sim-

ilar to the following in map m:
....
1) xct1→insert→0x8b5f5f 0x899397→9

2) xct1→insert→0x9bd97f 0x8b5fbf 0x94ffde→1

3) xct2→probe→0x98560e 0x8d97bc→10

4) xct2→update→0x9557f0→5

....
ADDICT goes over this information to figure out the most

frequent sequence of migration points. In this example,
these are (1) for insert operation in xct1, (3) for probe oper-
ation in xct2, and (4) for update operation in xct2. Migra-
tion points in (2) represent a corner case in the insert tuple
operation since they only appear once among all instances
of xct1. For probe and update operations in xct2, however,
there are no alternative migration points to the ones in (3)
and (4). If there are multiple sequences of migration points
that are the most frequent for an operation, ADDICT picks
one of them randomly. However, we do not observe such
cases for the workloads we evaluate in Section 4.

3.1.3 Implementation
There are several ways of deploying Algorithm 1 in prac-

tice. Adopting ADDICT as a pure dynamic approach re-
quires integrating Algorithm 1 with the actual workload

1897

run. ADDICT can perform this step as a part of the ramp-
up time (a few seconds) without making any specialized
scheduling decisions for transactions and then switch to mi-
grating transactions based on the information collected in
this step. On the other hand, Step 1 of ADDICT can be
static and performed a priori as well. In this case, AD-
DICT would migrate transactions over the dedicated cores
as soon as the real workload run starts.

In this step, ADDICT detects cache-sized chunks from
each database operation. Therefore, given an empty L1-
I cache, ADDICT should track the instructions that cause
cache evictions within each database operation. To track
such instructions at run-time, ADDICT can use either the
hardware counters on the target hardware or mechanisms
like informing memory operations [10]. Upon a transac-
tion/operation entry/exit or eviction, ADDICT must flush
the L1-I contents to reset the instruction cache and deter-
mine the next cache-sized code chunk in the current opera-
tion.

In addition, within the storage manager, there might be
functions/routines, where one should avoid migrating at.
For example, migrating within short-critical sections or lock
acquisitions/releases would increase the duration of these
routines. Therefore, Algorithm 1 can take additional input
that indicates such functions and avoid picking migration
points within these functions.

3.2 Migrating Transactions
After determining the migration points, ADDICT applies

its scheduling principles during regular transaction execu-
tion. Since it picks the migration points separately for each
transaction, it batches same-type transactions to maximize
instruction cache locality. Furthermore, while processing a
batch, ADDICT adjusts the core assignments based on the
needs of the application, i.e., it assigns more cores to a mi-
gration point if it is more frequently used.

3.2.1 Algorithm
Algorithm 2 shows the core assignment and transaction

migration principles of ADDICT’s Step 2. Algorithm 2 takes
as input the migration points found by Algorithm 1. It first
assigns cores to each of the migration points (lines 1-14).
Then, it migrates transactions based on the core assignments
(lines 16-31).

Lines 1-14 of Algorithm 2 handle the core assignments
on the target hardware. As in Algorithm 1, ADDICT con-
siders each transaction separately. Therefore, each transac-
tion takes core0 as their entry core (lines 3-6). For the re-
maining core assignments, ADDICT incrementally assigns
a unique core ID to each database operation in a trans-
action (lines 7-10) and its corresponding migration points
(lines 11-14). Section 3.2.3 describes how ADDICT handles
the cases where the number of migration points does not
exactly match the number of available cores. Algorithm 2
omits these details for simplicity.

Lines 16-31 of Algorithm 2 perform the actual transac-
tion execution. To maximize cache locality, in lines 16-17,
same-type transactions from the list of client requests form
a batch. The batch size is equal to the number of available
cores on the current hardware to not to increase average
transaction latency drastically. Then, for each instruction
to be executed, ADDICT checks whether the transaction
should migrate to another core based on the prior core as-

signment decisions (lines 20-26). If destination core ID has
a different value than the current core ID of the transaction
being executed, ADDICT migrates the transaction provided
that there is an available destination core for the current mi-
gration point (lines 27-31).

To ensure the instruction stream is on a path that matches
the migration points sequence in the input, ADDICT also
tracks the previous migration addresses for each migration
point. It migrates a transaction upon encountering a mi-
gration point only if that transaction has already executed
the previous migration point in the sequence (line 25). An
instruction address might be used several times during the
execution of a database operation. However, it might lead to
migration only if it is called through a specific path. There-
fore, ADDICT must check for such order dependencies in
the migration sequence.

Algorithm 2 Migrating transactions.
Input: migration points (output of Step 1) m.

1: cores→ keeps core assignments
2: prev → keeps previous migration point
3: for each transaction type xct in m do
4: core = 0, op = 0, prev = 0
5: addr = entry instruction for xct
6: cores[xct][op][addr] =< core, prev >
7: for each operation op in m[xct] do
8: core + +, prev = 0
9: addr = entry instruction for op

10: cores[xct][op][addr] =< core, prev >
11: for each migration address addr in m[xct][op] do
12: core + +
13: cores[xct][op][addr] =< core, prev >
14: prev = addr
15: ..
16: for each transaction type xct in the list of requests do
17: group num cores transactions of type xct in batch
18: for each core do mxct = cores[xct], op = 0, prev = 0
19: for each transaction t in batch do
20: for each instruction access addr in t do
21: coredest = corecurr
22: if addr is in mxct then
23: op = addr, prev = 0
24: if addr is in mxct[op] then
25: if prev == mxct[op][addr].prev then
26: coredest = mxct[op][addr].core, prev = addr
27: if coredest! = corecurr then
28: if coredest is available then
29: migrate t to coredest
30: else
31: steal an idle core from another migration

point or wait in the work queue of coredest

3.2.2 Example
Let’s assume that Algorithm 2 takes as input the output

of the example in Section 3.1.2. At line 15 of Algorithm 2,
cores would have the assignments given below:

....
xct1→<core0,0>

xct1→insert→<core1,0>

xct1→insert→0x8b5f5f→<core2,0>

xct1→insert→0x899397→<core3,0x8b5f5f>

1898

xct2→<core0,0>

xct2→probe→<core1,0>

xct2→probe→0x98560e→<core2,0>

xct2→probe→0x8d97bc→<core3,0x98560e>

xct2→update→<core4,0>

xct2→update→0x9557f0→<core5,0>

....
After deciding on the core assignments, ADDICT starts

batching transactions. Let’s assume that it initially batches
requests of xct1 and one of the transactions in that batch
has the following instruction sequence:

....
xct1 entry instr ... insert entry instr ...

0x899397 0x89939c 0x89939e ... 0x8b5f5f

0x8b5f62 ... 0x899397 ...

....
Upon xct1 and insert operation entry, ADDICT migrates

the transaction to core0 and core1, respectively. When the
instruction 0x899397 is accessed for the first time, since its
previous migration point, 0x8b5f5f, is not yet encountered,
ADDICT keeps the transaction on the same core. When the
transaction uses the instruction 0x8b5f5f, since it is the first
migration point in the insert operation, ADDICT migrates
the transaction to core2. When the instruction 0x899397
is reused, since it comes after a migration to core2 due to
0x8b5f5f, ADDICT now migrates the transaction to core3.

3.2.3 Load Balancing
Algorithm 2 presents a simplified version of the actual

ADDICT algorithm as it just assigns one core per migra-
tion point. In a typical OLTP workload running on modern
server hardware, there are (1) database operations that are
more frequently used than others and (2) more or fewer cores
than the number needed by a transaction. We describe how
ADDICT deals with such cases below.

More migration points than cores: If the migration
points for a transaction require more cores than what is
available in the system, ADDICT starts ignoring the inter-
nal migration points in less frequent database operations
starting from the last migration point. For example, in Sec-
tion 3.2.2, if there were only four cores in the system, there
would not be any cores assigned to 0x9557f0 in update and
0x8d97bc in probe for xct2. 0x9557f0 in update is ignored
prior to 0x8d97bc in probe since update operation occurs
less (5 vs. 10 in Section 3.1.2). 0x8d97bc in probe is ignored
since there are no more internal migration points to ignore
in update. In our experiments in Section 4, this situation
arises for some TPC-C and TPC-E transactions.

If there are too few cores available for a workload, e.g., if
number of cores is even less than the number of operations
executed by a transaction type, ADDICT can either fallback
to traditional scheduling or switch to a scheduling technique
that optimizes instruction locality for a single-core [2, 8].

Fewer migration points than cores: When a trans-
action requires fewer cores than what is available on the
machine, which is the common case in the era of multi-
socket multicores, ADDICT distributes the remaining cores
based on the frequency of operations. For example, in Sec-
tion 3.2.2, if there were ten cores in the system, there would
be two cores assigned to each migration point in probe oper-
ation since it is more frequent than update. The remaining
one core would be given to the entry point of update.

In the case of having enough cores to assign to the migra-
tion points from multiple transactions, ADDICT can run
multiple batches of transactions in parallel.

Dynamic reassignment of cores: After the initial core
assignments, ADDICT deploys a dynamic approach. When-
ever the destination core to be migrated to is not avail-
able, i.e., occupied by another transaction (line 31 of Al-
gorithm 2), there are two options: (1) if there are any idle
cores that belong to another migration point, ADDICT re-
assigns one of these idle cores to the current migration point,
(2) if there are no idle cores, then the transaction waits in
the work-queue of the destination core.

3.2.4 Implementation
We design ADDICT to be a software-guided hardware

mechanism. We think of the migration points picked by the
Step 1 of ADDICT as the software hints used by the Step
2 of ADDICT at the hardware side. Therefore, while Step
1 can use the already existing hardware features of mod-
ern hardware, Step 2 requires some additional features from
the hardware side. These additional features stem from two
things: (1) keeping track of the migration points and (2)
performing fast and exact thread migrations.

To be able to decide on when and where to migrate a
transaction, each core must keep the list of migration points
for that transaction as well as an indicator for the current
database operation and the previous migration point. AD-
DICT distinguishes both database operations and migration
points using instructions addresses. Therefore, we can calcu-
late ADDICT’s space cost mainly based on the space cost of
an instruction, which is 48bits on modern servers. Keeping
the current database operation and the previous migration
point would require 92bits per core. For each migration
point, we need to map a <database operation, migration
point> pair to a <core id, previous migration point>. In
this mapping, except for the core id value, the rest of three
values are instructions. We can keep the core ids as 8bit
integers since 8bits already give us 256 distinct values. As a
result, 152bits would be enough to keep a migration point.
This way, a core can keep up to 50 migration points in less
than 1KB space, which is a feasible space cost per core on
most server hardware.

On the other hand, the hardware cost of the thread migra-
tions is mainly algorithmic, which Atta et. al. [1] describe in
detail and show that it is also feasible. We estimate the time
required per thread migration to be ∼90 cycles; the cost of
writing/reading a thread’s state (e.g., the register values,
last program counter, etc.) from/to the last-level-cache (∼6
cache lines).

Deploying ADDICT as a pure software mechanism would
be less straightforward than our design. Dictating which
transactions should run on which cores, is harder and less ef-
ficient at the software side. Modifying the context-switching
code in the current platform in order to perform fast context-
switches, like STEPS does [8], would help to some extent.
However, this still does not guarantee that threads are go-
ing to migrate exactly to the cores ADDICT wants them to
migrate. The functions that set a thread’s core affinity (e.g.,
pthread setaffinity np in POSIX library) only work well
provided that the destination core is idle. Otherwise, the
OS scheduler schedules the thread to one of the underuti-
lized cores automatically. To prevent such undesired migra-
tions and cache thrashing, ADDICT requires a more drastic

1899

Table 1: System Parameters.

Processing 16 OoO cores, 2.5GHz
Cores 6-wide Fetch/Decode/Issue

128-entry ROB, 80-entry LSQ
BTAC (4-way, 512-entry)

TAGE (5-tables, 512-entry, 2K-bimod)

Private L1 32KB, 64B blocks, 8-way
Caches 3-cycle load-to-use, 32 MSHRs

MESI-coherence for L1-D

L2 NUCA Shared, 1MB per core, 16-way
Cache 64B blocks, 16 banks

16-cycle hit latency, 64 MSHRs

Interconnect 2D Torus, 1-cycle hop latency

Memory DDR3 1.6GHz, 800MHz Bus, 42ns latency
2 Channels / 1 Rank / 8 Banks

8B Bus Width, Open Page Policy

Latencies CAS(10), RCD(10), RAS(35)
RC(47.5), WR(15), WTR(7.5)
RTRS(1), CCD(4), CWD(9.5)

design change at the software-side if a software-only design
is more desirable. Deploying an execution model similar to
staged databases [9] and assigning stages to each database
operation would allow us to pin each stage to a core, send
requests to each stage’s work queue, and give ADDICT more
control over the core affinities.

3.2.5 Effect on Database Components
Under ADDICT, a transaction goes through the same

database components as it does under traditional schedul-
ing. ADDICT only involves multiple cores in the execution
of a transaction. However, it does not change what a trans-
action executes. Therefore, ADDICT’s migrations have no
effect on ACID properties, concurrency control mechanisms,
or the logging subsystem. In addition, since ADDICT does
not batch more transactions than the number of available
cores in the system, it does not change the data contention
patterns.

For the cases outside the regular workload run, such as
recovery or database population, ADDICT can either fall-
back to traditional scheduling or find new migration points
for the specific operations or routines executed during such
periods of execution.

4. EVALUATION
This section demonstrates: (1) the stability of the migra-

tion points ADDICT picks across different number of trans-
action instances (Section 4.2), (2) ADDICT’s effect on in-
struction and data misses at different levels of the memory
hierarchy (Section 4.3), (3) ADDICT’s impact on perfor-
mance (Section 4.4), (4) the effect of changing server load
on ADDICT’s performance (Section 4.5), (5) ADDICT’s
effectiveness under deeper cache hierarchies (Section 4.6),
(6) ADDICT’s impact on power (Section 4.7), and (7) AD-
DICT’s overheads (Section 4.8).

4.1 Setup and Methodology
Since ADDICT is a software-guided hardware mechanism

(Section 3.2.4), the evaluation uses full timing simulation.

We collect x86 execution traces from transactions using Pin
[16]. We replay these traces on the Zesto x86 multicore ar-
chitecture simulator [15], modeling the timing of all events.
Table 1 details the hardware parameters in our simulation.

The traces are extracted from three standard transaction
processing benchmarks [25]; TPC-B, TPC-C, and TPC-E,
while running their workload mix after a warm-up period on
the Shore-MT storage manager [12, 20]. Scaling factors are
set big enough to have a 100GB dataset right after database
population, and the buffer-pool is configured to keep the
whole database in memory. To run the most scalable con-
figuration for all the benchmarks, we enable all the logging
[13] and locking [11] optimizations of Shore-MT. Since we
simulate 16 cores, there are 16 worker threads executing
transactions during the trace collection.

We collect 11000 transaction traces for each workload.
The initial step of ADDICT (Algorithm 1) uses the first
1000 of the traces (from 1 to 1000) to determine the mi-
gration points. Section 4.2 uses all the traces after the first
1000 (from 1001 to 11000), whereas the rest of the sections
use the next batch of 1000 traces (from 1001 to 2000) while
evaluating the different scheduling mechanisms.

We compare ADDICT against three transaction schedul-
ing mechanisms: (1) Baseline, the traditional transaction
scheduling, where each transaction starts and finishes its
execution on one core provided that no context-switching
occurs due to I/O, waiting for lock, etc., (2) STREX [2],
which time-multiplexes a batch of transactions on the same
core to enable instruction reuse among the transactions in
the batch, (3) SLICC [1], which spreads the computation of
transactions over several cores to localize common instruc-
tions to caches without any software hints. We implement all
four scheduling mechanisms on the Zesto simulator. Except
for Baseline, all the mechanisms rely on batching same-type
transactions. ADDICT picks a batch size that is equal to
the number of available cores by default. Therefore, except
for Section 4.5, the batch size is 16 in our experiments.

4.2 Migration Points
As Section 3.1 describes, ADDICT picks the most com-

mon migration point sequences among all the possible mi-
gration points for a transaction type. In our experimental
evaluation, ADDICT determines the migration points based
on a run with 1000 transaction traces (Section 4.1). This
section investigates the stability of these migration points
across all the instances of a transaction. It also shows how
stability changes as we drastically increase the total num-
ber of transaction instances. A transaction instance has
stable migration points if ADDICT ’s core migration selec-
tion algorithm, when ran directly on this transaction in-
stance alone, picks migration points that match the migra-
tion points chosen by ADDICT during the initial profiling
phase of the 1000 transaction instances. Figure 4 shows the
results for TPC-B’s AccountUpdate and TPC-C’s NewOrder
and Payment transactions. The results are very similar for
the other transaction types.

Except for the insert tuple operation in TPC-C, the mi-
gration points ADDICT determines for each database op-
eration is stable in at least 90% of all the transactions. As
Section 2.1 notes, insert tuple is the operation that has the
most variety in its instruction stream across different instan-
tiations. Therefore, it is expected that even the most fre-
quent migration sequence for insert does not satisfy almost

1900

0

20

40

60

80

100

1000 10000 1000 10000 1000 10000

AccountUpdate NewOrder Payment

TPC-B TPC-C

%
 o

f
O

p
e

ra
ti

o
n

 I
n

st
a

n
ce

s
W

h
e

re

M
ig

ra
ti

o
n

 P
o

in
ts

 E
x
a

ct
ly

 M
a

tc
h

Total Number of Transaction Traces

probe update insert

Figure 4: Percentage of database operation instances where
the migration points picked by ADDICT have an exact
match as we increase the number of transaction instances.

half of the instances for some transaction types.
Furthermore, Figure 4 shows that the percentage of sta-

bility of the migration points stays the same when we move
from 1000 to 10000 traces. This demonstrates that the 1000
transaction traces is sufficient enough to capture the dif-
ferences across multiple instantiations of a transaction type
for the workloads we evaluate. Therefore, the rest of the
experiments in this section use 1000 transaction traces that
is different from the 1000 transaction traces used for deter-
mining the migration points (see Section 4.1).

4.3 Instruction and Data Misses
This section quantifies ADDICT ’s impact on the instruc-

tion and data misses at the various cache hierarchy levels.
More specifically, this section measures the number of in-
struction and data misses per 1000 instructions (MPKI) at
the L1-I, L1-D, and L2 caches as we run the workloads with
different scheduling techniques. Figure 5 reports the MPKI
values for ADDICT, STREX, and SLICC normalized over
the MPKI values from the Baseline.

L1-I: As Figure 5 illustrates, all scheduling mechanisms
reduce the L1-I misses. However, ADDICT is more ef-
fective in reducing the instruction misses compared to the
other hardware-techniques. Specifically, ADDICT reduces
instruction misses by 85% on average over Baseline whereas
the reduction is 20% and 60% with STREX and SLICC,
respectively. ADDICT makes more precise scheduling deci-
sions while chasing instruction locality for transactions be-
cause of the software-guidance.

TPC-B benefits the most from ADDICT since its trans-
action mix has only one transaction type. The migration
points picked for TPC-B are suitable for all transactions.
Therefore, after the initial set of transactions the instruc-
tions are spread over the various instruction caches and re-
main mostly resident for all other transactions. For TPC-C
and TPC-E, however, if the new batch of transactions is of
different type than the ones in the previous batch, the non-
overlapping instruction footprint must be first loaded in the
instruction caches by the first few transactions.

L1-D: The L1-D MPKI results in Figure 5 show that the
techniques that are based on computation spreading, SLICC
and ADDICT, hinder data locality. When a transaction mi-
grates from one core to another, it leaves its data behind.
Therefore, SLICC and ADDICT increase data misses by

0

0.2

0.4

0.6

0.8

1

T
P

C
-B

T
P

C
-C

T
P

C
-E

M
is

se
s

p
e

r
k
-I

n
st

ru
ct

io
n

s

(N
o

rm
a

li
ze

d
 o

v
e

r
B

a
se

li
n

e
)

L1-ISTREX

SLICC

ADDICT

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

T
P

C
-B

T
P

C
-C

T
P

C
-E

L1-D

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

T
P

C
-B

T
P

C
-C

T
P

C
-E

L2

Figure 5: ADDICT ’s impact on instruction and data misses.
Y-axes show the number of misses per 1000 instructions nor-
malized over Baseline (=1 on Y-axis).

40% and 25% on average over the Baseline, respectively.
STREX, on the other hand, leads to constructive data shar-
ing for the few overlapped read-only data cache blocks (see
Section 2.2.2).

Recent studies show that the data misses OLTP suffers
the most from are the long-latency data misses from the
last-level cache [23]. These misses result to off-chip accesses
that require a trip to main-memory. Modern out-of-order
(OoO) processor cores are capable of hiding the latency of
a few additional L1 data misses that end up being serviced
by the on-chip memory hierarchy. Moreover, it is harder
to overlap L1 instruction miss stalls compared to L1 data
misses on a modern superscalar OoO processor, like the one
we model (Section 4.1). Therefore, the slight increase in
L1-D MPKI does not overweigh the benefits of reducing the
L1-I MPKI as long as we avoid increasing the misses from
the last-level cache. Section 4.4 supports this claim.

L2: ADDICT and SLICC both reduce the L2 MPKI by
∼20% whereas STREX increases it by 50% on average. Due
to batching transactions on one core, STREX runs more
transactions concurrently, which increases the stress on the
requests to the last-level cache. However, STREX still im-
proves the performance as Section 4.4 shows emphasizing the
importance of reducing the instruction misses. On the other
hand, since all the techniques batch the same type of trans-
actions, they access the same tables concurrently. There-
fore, the reduction in L2 MPKI for ADDICT and SLICC
stems from the constructive sharing of the read-only meta-
data information and higher-levels of the B-tree indexes for
the same tables.

4.4 Performance Impact
This section measures how performance varies with AD-

DICT. It uses two performance metrics: (1) total execution
time to complete all traces and (2) average time to complete
a single transaction. Figure 6 presents the results.

Total execution cycles: Figure 6 shows that ADDICT
reduces the total execution time by 45% over the Baseline.
ADDICT is better than STREX and SLICC, which respec-
tively improve performance by 17% and 35% on average
over the Baseline. ADDICT manages to better utilize the
instruction caches boosting instruction cache locality (see
Figure 5).

Latency: While STREX, SLICC, and ADDICT reduce

1901

0

0.2

0.4

0.6

0.8

1

TPC-B TPC-C TPC-E

C
y
cl

e
s

to
 C

o
m

p
le

te
 1

0
0

0
 T

ra
ce

s

(N
o

rm
a

li
ze

d
 o

v
e

r
B

a
se

li
n

e
)

STREX SLICC ADDICT

0

1

2

3

4

5

6

7

8

TPC-B TPC-C TPC-E
A

v
e

ra
g

e
 T

ra
n

sa
ct

io
n

 L
a

te
n

cy

(N
o

rm
a

li
ze

d
 o

v
e

r
B

a
se

li
n

e
)

Figure 6: Impact of different scheduling techniques on per-
formance; total execution cycles (left-hand side) and average
transaction latency (right-hand side). Y-axes are normalized
over Baseline (=1 on Y-axis).

0

0.2

0.4

0.6

0.8

1

2 4 8 16 32

C
y
cl

e
s

to
 C

o
m

p
le

te
 1

0
0

0
 T

ra
ce

s

(A
D

D
IC

T
 o

v
e

r
B

a
se

li
n

e
)

Batch Size

0

0.2

0.4

0.6

0.8

1

2 4 8 16 32

L1
-I

 M
is

se
s

p
e

r
k
-I

n
st

ru
ct

io
n

s

(A
D

D
IC

T
 o

v
e

r
B

a
se

li
n

e
)

Batch Size

TPC-B

TPC-C

TPC-E

Figure 7: Impact of changing server load (or batch size)
on ADDICT ; total execution cycles (left-hand side) and in-
struction cache misses (right-hand side). Y-axes are normal-
ized over Baseline (=1 on Y-axis).

the total execution time and improve throughput, they all
depend on transaction batching. As a result they increase
the average transaction latency in all the workloads. How-
ever, ADDICT exhibits the lowest transaction latency over-
head compared to STREX and SLICC increasing average
transaction latency by 60% over the Baseline, whereas the
latency increase is 7-8X by STREX since it overloads cores
with multiple transactions.

4.5 Effect of Changing Loads
By default, ADDICT picks a batch size that is equal to

the number of available cores in the system. This section in-
vestigates ADDICT ’s behavior under different batch sizes,
in parallel observing the effect of changing server load on
ADDICT. Figure 7 reports how well ADDICT reduces the
total execution cycles and L1-I misses as a function of batch
size, i.e., the number of concurrent transactions in the sys-
tem, from two (lightly-loaded system) to 32 (heavily-loaded
system).

Figure 7 shows that while the reduction in L1-I MPKI re-
mains the same the total execution time improves for larger
batch sizes. This is expected since the transactions from the
previous batch might prefetch the instructions needed for
current batch. Therefore, ADDICT ’s effect on L1-I MPKI

0

0.2

0.4

0.6

0.8

1

T
P

C
-B

T
P

C
-C

T
P

C
-E

C
y
cl

e
s

to
 C

o
m

p
le

te
 1

0
0

0
 T

ra
ce

s

(
A

D
D

IC
T

 o
v
e

r
B

a
se

li
n

e
)

0

0.2

0.4

0.6

0.8

1

1.2

T
P

C
-B

T
P

C
-C

T
P

C
-E

N
o

rm
a

li
ze

d
 P

o
w

e
r

o
v
e

r
B

a
se

li
n

e

(a) (b)

Figure 8: Impact of deeper cache hierarchies on ADDICT
(a) and ADDICT ’s impact on power (b). Y-axes plot nor-
malized ADDICT values over Baseline (=1 on Y-axis).

does not change as we increase the batch size. On the other
hand, as we increase the batch size more transactions ex-
ploit the improved L1-I locality at a time. As a result, the
reduction in the total execution time increases starting from
a batch size of 8.

4.6 On Deeper Memory Hierarchies
This section considers a deeper memory hierarchy, which

is representative of certain popular modern chip multipro-
cessors. Specifically, the experiments of this section intro-
duce an additional 256KB per core L2 cache with 7 cycles
of access latency. The previously considered shared L2 now
appears as a shared L3 and the L1 caches remain the same.
Figure 8(a) shows the total execution cycles for ADDICT
normalized over the Baseline.

The reduction in L1-I MPKI and LLC(=L3) MPKI are
similar to those for the shallower memory hierarchy (Fig-
ure 5). ADDICT remains effective at improving overall per-
formance. As expected the overall performance improve-
ments are lower compared to the shallower memory hierar-
chy since now the penalty for an L1-I cache miss is lower;
the new L2 cache now handles some of the instruction cache
misses. Considering that Shore-MT has an instruction foot-
print of 128KB-256KB, most L1-I misses will now be served
by the 256KB L2 cache, which effectively keeps the whole
instruction footprint. However, the instruction footprint for
commercial database management systems would be higher
than the instruction footprint of Shore-MT.

4.7 Impact on Power
We also measure ADDICT ’s impact on power using Mc-

PAT [14]. Figure 8(b) shows the average per core power
required by ADDICT normalized over the numbers for Base-
line. From Figure 8(b), we see that ADDICT requires around
10% more power than Baseline.

4.8 Overheads
All three hardware mechanisms we evaluate have one ma-

jor run-time overhead. They require frequent context-switches
either due to time-multiplexing transactions on a single core
(STREX) or thread migrations across multiple cores (SLICC
and ADDICT). Figure 9 compares the three mechanisms in
terms of this overhead. More specifically, we first measure

1902

0

0.2

0.4

0.6

0.8

1

TPC-B TPC-C TPC-E

#
 C

o
n

te
x
t-

sw
it

ch
e

s
p

e
r

k
-I

n
st

ru
ct

io
n

s
STREX

SLICC

ADDICT

0

20

40

60

80

100

S
T

R
E

X

S
LI

C
C

A
D

D
IC

T

E
x
e

cu
ti

o
n

 C
y
cl

e
s

B
re

a
k
d

o
w

n

Rest Overhead

Figure 9: Number of context-switches/thread migrations
per 1000 instructions (left-hand side) and execution cycles
breakdown (right-hand side).

the number of times they context-switch transactions per
1000 instructions. Then, we report the contribution of this
overhead on total execution cycles.

As the graph on the left-hand side of Figure 9 shows,
ADDICT achieves its better performance through fewer mi-
grations compared to both STREX and SLICC ; 85% and
60%, respectively. Therefore, its run-time overhead due to
context-switches is lower compared to the other two mech-
anisms. Nevertheless, the graph on the right-hand side of
Figure 9 shows the execution cycles breakdown averaging
the results for all the workload runs. It demonstrates that
none of the mechanisms suffer due to the additional context-
switches they incur. Even in the case of STREX, only 3%
of the overall cycles go to these context-switches (labeled
Overhead).

4.9 Summary
The evaluation shows that ADDICT is able to make ef-

fective decisions on the migration points for a variety of
transaction types. As a result, it significantly reduces the
instruction misses since it optimizes transaction scheduling
to maximize instruction locality. ADDICT encounters 85%
fewer instruction misses for typical OLTP benchmarks com-
pared to traditional scheduling. As a result, it reduces the
total execution time by 45% under shallower cache hierar-
chies and 15% under deeper cache hierarchies. In addition,
it incurs lower run-time cost and performs better than the
current state-of-the-art hardware scheduling mechanisms for
transactions (e.g., STREX [2] and SLICC [1]).

5. RELATED WORK
The related work consists of two parts: (1) memory behav-

ior characterization for OLTP workloads and (2) improving
instruction locality in L1-I.

5.1 Characterization of OLTP Workloads
Previous workload characterization studies performed on

traditional data management systems investigate OLTP work-
loads at the micro-architectural level [5, 19, 22, 24]. They all
highlight that OLTP exploits aggressive micro-architectural
features very poorly; i.e., spends most of the execution cy-
cles on memory, especially instruction, stalls and exhibits
low IPC. However, all of these studies consider the data
management system as a black-box. None of them maps

the sources of the hardware underutilization to the compo-
nents of a typical data management system.

On the other hand, Wenisch et. al. [26] attribute the tem-
poral streams in data cache misses to the application com-
ponents such as various kernel activities, SQL interpreter,
storage manager, etc. Tözün et. al. [23] go one step further
and focus only on the storage manager. They map both the
data and instruction misses coming from the different lev-
els of the cache hierarchy of a modern commodity server to
storage manager components and database operations. Our
analysis is complementary to these works since we investi-
gate the sources of memory access overlaps not cache misses,
within transactions and database operations.

Finally, Atta et. al. [1, 2] briefly quantify the instruction
overlaps in TPC-C and TPC-E transactions. We expand
their study by exploring more transaction types, studying
the overlaps for both data and instructions, and looking at
the overlaps at the granularity of databases operations.

5.2 Improving Instruction Cache Locality
There is a large body of work on reducing instruction

stalls through improving instruction cache locality. Here
we survey the ones that target OLTP workloads specifically.

Smart static or dynamic compilation techniques [18] can
optimize the code layout to mainly minimize the conflict
misses. However, as Tözün et. al. [23] show, even if we min-
imize the conflict misses with any code optimization tech-
nique, there is a significant amount of capacity misses that
we have to reduce for more efficient OLTP execution.

On the other hand, instruction prefetching proposals de-
signed for OLTP-like applications has emerged from simple
stream buffers [19] to highly sophisticated stream predic-
tors [6] that trade simplicity for accuracy. For example,
PIF [6] requires ∼40KB of extra storage per core. There-
fore, modern commodity servers still prefer the low-cost
next-line prefetcher, which sequentially fetches the memory
addresses, for L1-I. Nevertheless, both the code optimiza-
tion and instruction prefetching techniques are orthogonal
to ADDICT and can be combined with it.

In addition to these techniques, there is a line of recent
work that aim to improve instruction locality through ex-
ploiting the code commonality among concurrent transac-
tions. These span proposals from batching transactions and
time-multiplexing their execution on one core, STEPS [8]
and STREX [2], to spreading the computation of transac-
tions across multiple cores, computation spreading [3] and
SLICC [1]. Similarly to ADDICT, they all rely on the ini-
tial/leader thread to miss the instructions it needs as it
would during traditional transaction execution, and the rest
of the threads to reuse the instructions already brought into
cache(s) by the initial thread. However, except for STEPS,
they are all oblivious to software. They cannot prevent mi-
grations or context switches during lock acquisitions or re-
leases. In addition, even though their hardware costs are
low, ADDICT minimizes the space and functionality re-
quired by these two pure hardware techniques since it de-
termines its migration decisions through software hints. On
the other hand, STEPS is unable to exploit multicore hard-
ware and requires cumbersome modifications to be able to
perform fast context switching at the software.

ADDICT aims to achieve the best of both SLICC and
STEPS; spread the computation of a transaction over multi-
ple cores to enable an ample cache capacity for instructions

1903

and get the insights for when and where to migrate from
the software-side to better localize the instructions in L1-I.
In parallel, ADDICT attempts to reduce the migration costs
and the transaction latency incurred by the two techniques.

6. CONCLUSIONS
L1 instruction miss stalls are among the main causes of the

hardware underutilization when running transaction pro-
cessing applications on today’s hardware. To overcome this
problem, we design ADDICT. ADDICT assigns cores to the
actions of each database operation in each transaction at a
granularity that matches the size of the L1 instruction cache
being used. It dynamically spreads the execution of trans-
actions over multiple cores based on the core assignments
to maximize the locality for instructions. Our evaluation
shows that ADDICT’s efforts in improving the instruction
cache locality offers great potential in terms of performance
and hardware utilization because of the high reuse frequency
of instructions both within one and across different transac-
tions and database operations.

We envision ADDICT as a task scheduler on emerging
heterogeneous many-core processors where cores are special-
ized for various database functionalities. In such a setting,
ADDICT can also guide developers while making decisions
about which granularity each database operations should be
specialized at. Finally, in addition to OLTP workloads, AD-
DICT can benefit any application that suffers from instruc-
tion stalls and have concurrent requests executing a series
of actions from a predefined set.

7. REFERENCES
[1] I. Atta, P. Tözün, A. Ailamaki, and A. Moshovos.

SLICC: Self-Assembly of Instruction Cache Collectives
for OLTP Workloads. In MICRO, pages 188–198,
2012.

[2] I. Atta, P. Tözün, X. Tong, A. Ailamaki, and
A. Moshovos. STREX: Boosting Instruction Cache
Reuse in OLTP Workloads through Stratified
Transaction Execution. In ISCA, pages 273–284, 2013.

[3] K. Chakraborty, P. M. Wells, and G. S. Sohi.
Computation Spreading: Employing Hardware
Migration to Specialize CMP Cores On-the-Fly. In
ASPLOS, pages 283–292, 2006.

[4] S. Chen, P. B. Gibbons, T. C. Mowry, and
G. Valentin. Fractal Prefetching B+-Trees:
Optimizing Both Cache and Disk Performance. In
SIGMOD, pages 157–168, 2002.

[5] M. Ferdman, A. Adileh, O. Kocberber, S. Volos,
M. Alisafaee, D. Jevdjic, C. Kaynak, A. D. Popescu,
A. Ailamaki, and B. Falsafi. Clearing the Clouds: A
Study of Emerging Scale-out Workloads on Modern
Hardware. In ASPLOS, pages 37–48, 2012.

[6] M. Ferdman, C. Kaynak, and B. Falsafi. Proactive
Instruction Fetch. In MICRO, pages 152–162, 2011.

[7] A. Ghoting, G. Buehrer, S. Parthasarathy, D. Kim,
A. Nguyen, Y.-K. Chen, and P. Dubey.
Cache-Conscious Frequent Pattern Mining on Modern
and Emerging Processors. The VLDB Journal,
16(1):77–96, 2007.

[8] S. Harizopoulos and A. Ailamaki. Improving
Instruction Cache Performance in OLTP. ACM
TODS, 31(3):887–920, 2006.

[9] S. Harizopoulos, V. Shkapenyuk, and A. Ailamaki.
QPipe: A Simultaneously Pipelined Relational Query
Engine. In SIGMOD, pages 383–394, 2005.

[10] M. Horowitz, M. Martonosi, T. C. Mowry, and M. D.
Smith. Informing Memory Operations: Memory
Performance Feedback Mechanisms and Their
Applications. ACM TOCS, 16(2):170–205, 1998.

[11] R. Johnson, I. Pandis, and A. Ailamaki. Improving
OLTP Scalability Using Speculative Lock Inheritance.
PVLDB, 2(1):479–489, 2009.

[12] R. Johnson, I. Pandis, N. Hardavellas, A. Ailamaki,
and B. Falsafi. Shore-MT: A Scalable Storage Manager
for the Multicore Era. In EDBT, pages 24–35, 2009.

[13] R. Johnson, I. Pandis, R. Stoica, M. Athanassoulis,
and A. Ailamaki. Aether: A Scalable Approach to
Logging. PVLDB, 3:681–692, 2010.

[14] S. Li, J.-H. Ahn, R. Strong, J. Brockman, D. Tullsen,
and N. Jouppi. McPAT: An Integrated Power, Area,
and Timing Modeling Framework for Multicore and
Manycore Architectures. In MICRO, pages 469–480,
2009.

[15] G. H. Loh, S. Subramaniam, and Y. Xie. Zesto: A
Cycle-Level Simulator for Highly Detailed
Microarchitecture Exploration. In ISPASS, pages
53–64, 2009.

[16] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and
K. Hazelwood. Pin: Building Customized Program
Analysis Tools with Dynamic Instrumentation. In
PLDI, pages 190–200, 2005.

[17] D. Porobic, E. Liarou, P. Tözün, and A. Ailamaki.
ATraPos: Adaptive Transaction Processing on
Hardware Islands. In ICDE, pages 688–699, 2014.

[18] A. Ramirez, L. A. Barroso, K. Gharachorloo, R. Cohn,
J. Larriba-Pey, P. G. Lowney, and M. Valero. Code
Layout Optimizations for Transaction Processing
Workloads. In ISCA, pages 155–164, 2001.

[19] P. Ranganathan, K. Gharachorloo, S. V. Adve, and
L. A. Barroso. Performance of Database Workloads on
Shared-Memory Systems with Out-of-Order
Processors. In ASPLOS, pages 307–318, 1998.

[20] Shore-MT Official Website.
http://diaswww.epfl.ch/shore-mt/.

[21] S. Somogyi, T. F. Wenisch, A. Ailamaki, and
B. Falsafi. Spatio-Temporal Memory Streaming. In
ISCA, pages 69–80, 2009.

[22] R. Stets, K. Gharachorloo, and L. Barroso. A Detailed
Comparison of Two Transaction Processing
Workloads. In WWC, pages 37–48, 2002.

[23] P. Tözün, B. Gold, and A. Ailamaki. OLTP in
Wonderland – Where do cache misses come from in
major OLTP components? In DaMoN, pages 8:1–8:6,
2013.

[24] P. Tözün, I. Pandis, C. Kaynak, D. Jevdjic, and
A. Ailamaki. From A to E: Analyzing TPC’s OLTP
Benchmarks – The obsolete, the ubiquitous, the
unexplored. In EDBT, pages 17–28, 2013.

[25] Transcation Processing Performance Council (TPC).
http://www.tpc.org.

[26] T. F. Wenisch, M. Ferdman, A. Ailamaki, B. Falsafi,
and A. Moshovos. Temporal Streams in Commercial
Server Applications. In IISWC, pages 99–108, 2008.

1904

