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ABSTRACT
The web is overflowing with implicitly structured data, spread over
hundreds of thousands of sites, hidden deep behind search forms,
or siloed in marketplaces, only accessible as HTML. Automatic
extraction of structured data at the scale of thousands of websites
has long proven elusive, despite its central role in the “web of data”.

Through an extensive evaluation spanning over 10000 web sites
from multiple application domains, we show that automatic, yet
accurate full-site extraction is no longer a distant dream. DIADEM
is the first automatic full-site extraction system that is able to ex-
tract structured data from different domains at very high accuracy.
It combines automated exploration of websites, identification of
relevant data, and induction of exhaustive wrappers. Automating
these components is the first challenge. DIADEM overcomes this
challenge by combining phenomenological and ontological knowl-
edge. Integrating these components is the second challenge. DIA-
DEM overcomes this challenge through a self-adaptive network of
relational transducers that produces effective wrappers for a wide
variety of websites.

Our extensive and publicly available evaluation shows that, for
more than 90% of sites from three domains, DIADEM obtains an
effective wrapper that extracts all relevant data with 97% average
precision. DIADEM also tolerates noisy entity recognisers, and its
components individually outperform comparable approaches.
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1. INTRODUCTION
The web has become the largest repository of structured data.

For the US alone, the number of online shopping sites with $10k+
revenue is estimated in excess of a hundred thousand [30], with a
long-tail of several hundred thousand smaller shops. A significant
portion of data is only available in this long-tail [11].

This data is mostly available in HTML pages, designed for hu-
mans. The automatic, yet accurate extraction of the structured data
underlying such pages is a long standing challenge [5]. Semi-
supervised data extraction approaches, such as [2, 12], have been
investigated extensively, but require users to supervise the induc-
tion by navigating each site and identifying relevant data. In con-
trast, automatic full-site extraction (AFE) operates automatically
with no per-site supervision, navigates to all relevant data on the
full site, yet extracts highly structured data.

Automatic full-site extraction involves three primary sub-
problems, namely site exploration (with form understanding and
filling), record and attribute identification, and wrapper induction.
Each of these sub-problems is a significant challenge by itself,
but worse, these problems have in the past been tackled in iso-
lation with few exceptions. Successful applications of AFE have
been limited to narrow settings with simple structure, such as ti-
tle and body extraction for news articles [39] or search engine re-
sults (ViNTs [44]). For extracting highly structured data, these ap-
proaches are unsuitable. Furthermore, most of these approaches
fail on modern sites. For example, ViNTs [44] full-site extraction
identifies records (of title and body only) with only 83%-88% ac-
curacy (Section 5), even when supervised by selecting negative and
positive examples of result pages for each site.

This lack of integrated, full-site extraction approaches has sig-
nificantly reduced the impact of data extraction—with some com-
mercial applications such as Google Products moving away from
extraction towards purely curated data collection. Yet, the need has
only increased, in particular with the rise of big data analytics for
competitive price intelligence or intelligent supply chain manage-
ment. In many of these applications, the acquisition of accurate,
large-scale data, e.g., about competitor’s products, current deals, or
supply levels are crucial.

DIADEM is the first automatic full-site extraction system that is
able to extract structured data from different domains, such as real
estate or used cars, at very high accuracy. In contrast to previous
AFE systems, such as ViNTs [44], DIADEM extracts, for over 90% of
the 10602 evaluated websites, highly structured data with dozens
of attributes at 97% accuracy. In contrast to existing approaches
focusing on only one or two sub-problems of AFE, DIADEM is an
integrated system that solves each of the sub-problems given just a
list of sites. In contrast to most previous data extraction approaches,
it requires no per-site supervision, not even the selection of result
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Figure 1: Hamptons form

pages following the same template, as, e.g., in [13].
DIADEM achieves this thanks to two primary innovations ad-

dressing the most challenging issues in AFE: (1) automation of
solutions for exploration, identification, and induction at high ac-
curacy, and (2) integration of these components for dynamically
adapting its exploration to cope with the wide variety of web sites.

Challenge (1) is addressed in DIADEM through domain knowl-
edge. Domain knowledge has been used in existing extraction
approaches [35, 13, 14], however, DIADEM uses knowledge in a
unique fashion: Its domain knowledge, the DIADEM ontology, not
only includes a schema of the domain and entity recognisers for
the schema types, but also classifies and constrains these types with
respect to their appearance on web sites. This phenomenology de-
fines, e.g., that some attributes are mandatory, some only appear to-
gether, and some attribute values are wildcards for form filling (e.g.,
an option “All”). DIADEM demonstrates that a small set of observa-
tions about web data in the phenomenology (about 100 per domain)
suffices to significantly improve the accuracy of automated data ex-
traction, both overall and in each component (Section 5).

Challenge (2) is addressed through a novel analysis and work-
flow engine realised as a self-adaptive network of relational
transducers, each representing a component of DIADEM. The
network adapts itself according to previously collected knowledge
about a site, e.g., to rearrange the transducer execution order or
to react to exceptions. For the 10602 sites of our evaluation,
this yields thousands of different sequences of transducers, each
adapted to a particular site’s shape. To improve scalability and iso-
lation of individual transducers, DIADEM enforces an access policy
with fine granularity that dynamically defines the data accessible to
each transducer and the control flow in the network.

Contributions. In this paper, we present the first comprehensive
overview and extensive evaluation of the DIADEM system:

(i) DIADEM automates full-site extraction without site-specific
supervision, yet achieves accurate extraction (97%) of highly struc-
tured data on most sites (90%). This is demonstrated by an eval-
uation over a diverse set of 10602 websites from UK and US real
estate and UK used car (Section 5). DIADEM outperforms, both
as a whole and in its individual components, previous automated
solutions, often by a significant margin.

(ii) DIADEM achieves this automation through a novel kind of
domain knowledge, the DIADEM ontology (Section 3). This infor-
mation is provided once for the entire domain and is the only form
of supervision in DIADEM (Section 5 outlines the needed effort).

(iii) DIADEM integrates solutions for exploration, identification,
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Figure 2: Hamptons listings page

and induction into a self-adaptive synchronised network of rela-
tional transducers (Section 4). Most transducers use specifications
of phenomenological patterns (describing how objects appear on
the web) or of finite state transducers with transitions guarded by
first-order formulas.

In this paper, we focus on the evaluation of DIADEM as a whole
and on the two main challenges in designing a full-site extraction
system, as opposed to isolated solutions for the individual sub-
problems. DIADEM’s form understanding [18], result page analy-
sis [19], and extraction engine [20] have been published previously.
The vision and components of DIADEM are outlined briefly in [17].

1.1 Example
Figure 1 shows a modern form on the homepage of hamptons.

co.uk, a UK real estate agent. Given this URL, DIADEM identi-
fies the form, including its buttons and search field despite the fact
that the form element covers nearly the whole page and contains
no proper submit button. What appears as two buttons (Á) are in
fact styled HTML links. To identify these, DIADEM’s form under-
standing uses a combination of visual, structural, and textual clues,
specifically the vicinity to the text field (À) and their text labels
and IDs. Using the entity recognisers from DIADEM’s ontology,
the form understanding picks up the example value in the text field.
Thus, it classifies the text field as a location and the two links as a
buy/rent switch according to the ontology.

DIADEM’s form filling uses the information from the form under-
standing to fill the form and detects that the location is mandatory
(as submissions without filling that field fail with a red highlight
on the text field). It proceeds to fill the text field with “London”,
a location recognised on the page. This triggers an auto-complete
list which is an expected behaviour for a text input, according to
DIADEM’s ontology. DIADEM identifies the auto-complete list and
iterates over it for submission.

The listings page (Figure 2) contains many regular structures.
Fortunately, DIADEM’s ontology prescribes that real estate records
must contain prices and DIADEM’s domain-aware template dis-
covery uses that to identify and segment the most likely records.
Within these records it identifies and aligns the structural attributes
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such as PRICE (Ê) and LOCATION (Ë), maximising inter-record reg-
ularity. For attribute identification, it again uses entity recognisers,
recognising both labels (“location”) and instances (“London”) of
entities. It also identifies the two links (Ã) and metadata about
the number of returned records (Â)—useful to verify the quality of
the induced wrapper (Section 5). DIADEM follows the next links
to generalise the record and attribute structure from multiple result
pages. Figure 4 shows the OXPATH wrapper (with some abbrevia-
tions) that DIADEM induces from the identified records and the ex-
plored navigation paths. For brevity, it omits the symmetric part for
rentals. With this wrapper, DIADEM manages to extract all proper-
ties for any location in the UK from hamptons.co.uk successfully.

To illustrate the variety of websites DIADEM is able to explore,
we discuss an unusual exploration case. Figure 3 shows DIADEM’s
exploration sequence on beville.co.uk. This site does not use a
form, but rather three pre-defined queries, such as “Up to 250,000”,
for accessing the properties. Furthermore, the properties are shown
in an iFrame pointing to a real-estate hosting provider. DIADEM
explores this site successfully: On the homepage, it ranks rele-
vant links, here “Selling” (Ê), “Buying” (Ë), and then the three
buttons for the pre-defined queries (Ì–Î). Exploring the “Selling”
and “Buying” links leads to no data, but a contact form (À), which
DIADEM correctly identifies and discards. DIADEM then explores
each of the links for the predefined queries (Ì–Î). For each of
these links, it reaches a page (Á) where the results are contained
in an iFrame (shown for the first link in Figure 3). It identifies that
the iFrame most likely contains the main content, switches to the
frame (Â), and identifies the records.

This is just a brief foray into the exploration performed by DI-
ADEM. It deals with a vast variety of forms, navigation structures,
and result pages. Many more examples can be viewed in the auto-
matically generated reports for the 10602 evaluated websites, see
http://diadem.cs.ox.ac.uk/evaluation/14/02.

2. PROBLEM STATEMENT
DIADEM fully automatically extracts data from entire websites

of a target domain at scale. Specifically, it automatically produces
an “effective wrapper” for a full site. A wrapper for a set of at-
tributes Σ is a program Π that specifies actions to navigate between
HTML pages of a specific web site S and queries to select a bag of
records records(Π,S), where each record has only attributes from
Σ. For an attribute A ∈ Σ, we denote with Π(r,A) the value of A
for record r ∈ records(Π,S). We denote the de-duplication of a bag
R of records with set(R). OD is a method (not necessarily a pro-
gram) for producing reference annotations for all records on S from
a target domain D. OD(S) is the set of all records on site S from
D annotated by OD . Finally, OD(r,A) for r ∈ OD(S) and A ∈ Σ

denotes the value of attribute type A in record r from S.

DEFINITION 1. Let D be a target domain, S be a website,
Σ a set of attribute types, and OD as above. Then a wrap-

Nr. Results

Attribute Record Data Area

Price

Period Unit

Location

Town

RE Record

RE Data Area

m
o
d
ifi
e
s

partOf

instanceOf
phenomenological

Property Type

mandatoryFor

Numeric

subTypeOf

Figure 5: DIADEM ontology excerpt

per Π is called an effective full-site wrapper for S and D, if
OD(S) = set(records(Π,S)) and, for all A ∈ Σ and all records r,
OD(r,A) 6= NULL implies Π(r′,A) 6= NULL for some records r′.

Roughly, a wrapper is effective if Π (the program) and OD (the
given method) return the same set of records covering the same
attribute types from Σ as OD . Effectiveness is not affected by the
actual exploration choices. It does not require the wrapper to use
the most efficient path or least amount of queries.

DEFINITION 2. Let S be a website, Σ a set of attribute types,
and OD as above. Then the attribute quality for attribute A ∈ Σ of
a wrapper Π is∣∣{(r,a) : r ∈ records(Π,S)∩OD(S)∧OD(r,A) = a∧Π(r,A) = a}

∣∣∣∣{(r,a) : r ∈ records(Π,S)∧Π(r,A) = a}|

Where effectiveness requires that all and only relevant records
are extracted (i.e., 100% record accuracy), attribute quality mea-
sures the precision of the actually extracted values.

DEFINITION 3. Let S be a website and Σ a set of attribute types.
Then the automatic full-site extraction problem is the problem of
finding a wrapper Π for S, without supervision or prior knowledge
specific to S, such that Π is (1) effective, and (2) maximises attribute
quality over all covered attributes from Σ.

3. DIADEM ONTOLOGY
DIADEM solves AFE and each of its sub-problems, guided by

knowledge in the DIADEM ontology. The combined use of for-
malised domain and phenomenological knowledge is one of the
reasons for DIADEM’s ability to achieve highly accurate and effec-
tive wrappers with no per-site supervision.
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doc(’http://hamptons.co.uk/’)//a[@id=’Generic...ester_4’]/prec-sibl::input[contains(@type,’text’)]/{$LOCATION /} À
//div[@id=’SearchContainerMulti’]/a[@id=’saleSearchButton’]/{click /} Á
/.:<data_area>[? .//h1/span/span[1]/text()[1]:<search_results_number=norm(.)> ] Â

/(//div[3]//li[1]/foll-sibl::li[@class=’paging-next’]/a[@class=’pagingbutton’]/{nextclick /})* Ã
//ul/node()/div[@class=’One’]:<record>

[? .//label/text():<price=norm(.)> ] Ê
[? .e//span[@class=’result-address’]/text():<location=norm(.)> ] Ë
[? .//a[contains(.,’Bedroom’)]/text():<bedroom_number=substring-before(norm(.)," Bedroom")> ]
[? .//span[@class=’result-address’]/prec-sibl::text():<property_status=substring(norm(.), len(norm(.)) - 7)> ]
[? .//span[@class=’result-address’]/prec-sibl::text():<property_type=norm(.)> ]
[? .//div/foll-sibl::p:<description=norm(.)> ]
[? .//img[@class=’PropertyMainImage’]/@src:<image=norm(.)> ]
[? ./div[@class=’inner-photo-wrap’]//@href:<url=norm(.)> ]

Figure 4: Hamptons wrapper

DIADEM’s knowledge is provided by the DIADEM ontology, a
tuple O = 〈S,T ,V,Rr,Rv〉. The set S represents scopes. Each
scope determines a view over the ontology for a given component to
compartmentalise the ontology for more efficient processing. Fig-
ure 5 shows a graphical UML-like representation of a part of such
a scope in the real-estate domain. The set T represents (concrete)
types of the ontology, e.g., PRICE and PROPERTY_TYPE. We distin-
guish a set of phenomenological types representing phenomeno-
logical concepts, e.g., RECORD and ATTRIBUTE for result pages, and
NUMERIC for form filling. These phenomenological types describe
what roles the concrete types can assume on web sites. A num-
ber of relations can be defined over types. Rr is a set of rela-
tional properties over types, and Rv is a set of valued properties
relating a type to a datatype value from V , e.g., strings or integers.
Among relational properties, we distinguish a set of standard rela-
tions over types, namely subTypeOf and partOf, with standard seman-
tics used to define a type-hierarchy. The phenomenological relation
instanceOf is the only relation from concrete types to phenomeno-
logical types and determines where instances of the concrete types
can appear. There are about 20 further phenomenological proper-
ties such as mandatoryFor or modifies. In Figure 5, PROPERTY_TYPE

is instanceOf ATTRIBUTE and partOf RE_RECORD, which is instanceOf
RECORD. PRICE is mandatoryFor RE_RECORD and PERIOD_UNIT (e.g.,
“per month”) modifies PRICE. The semantics of the DIADEM ontol-
ogy is given in terms of Datalog programs.

Labelled and named entity recognisers. DIADEM recog-
nises instances and labels of ontological types on websites. A
pool of named entity extractors (NERs) automatically annotates
instances of known types, e.g., an annotator should know that
“BMW” represents a car MAKE and “SW1A 2AA” a UK POSTCODE.
Annotators are based on knowledge partially gathered from ex-
isting knowledge bases, e.g., DBPedia, and partially hand-crafted
based on entities observed on web pages. We observe that stan-
dard NERs are often insufficient for structured data extraction
since entities might be ambiguous, especially for numeric enti-
ties such as the number of bathrooms and bedrooms in a prop-
erty. To address this issue, the DIADEM annotators are LNERs
(Labelled and Named Entity Recognisers) providing annotations
also for labels associated with ontology types. Moreover, where
traditional NERs strip the HTML and CSS markup from the text,
DIADEM’s LNERs uses the HTML structure and CSS formatting to
determine if recognised entities spanning multiple nodes are ren-
dered split (and thus no actual annotations) or rendered in a line.
E.g., for <p>OX1</p><p>2DR BMW</p> a traditional annotator ignores
the markup and thus may annotate OX12DR as a postcode, where
the rendering as two paragraphs clearly indicates that this is not
a useful annotation. Finally, DIADEM’s LNERs also recognises in-

Scope Ontology Phenomenology

types partOf subTypeOf types
property

types
properties

shared 96 / 23 / 20 12 / – / 1 48 / 5 / 2 4 / – / – 4 / – / – 10 / 1 / 23

form 56 / 10 / 18 9 / 8 / 25 7 / – / – 10 / – / – 6 / – / – 11 / 25 / 28

identification 15 / 7 / 18 15 / 7 / 18 6 / – / – 5 / – / – 4 / – / – – / 6 / 8

crawler 38 / – / – 6 / – / – – / – / – 6 / – / – 6 / – / – 10 / – / –

total 205 / 40 / 57 42 / 15 / 38 61 / 5 / 2 27 / – / – 20 / – / – 31 / 32 / 59

Table 1: DIADEM ontology in numbers (ALL / RE / UC)

stances based on labels in the surrounding markup: For example, on
pennyandsinclair.co.uk, room numbers are plain numbers with
attached icons to indicate the type of room:

<div> <img src=".../bed.jpg" alt="bedrooms"> <br/> 3 </div>

In this case, a traditional NER recognises “3” as a number, but
DIADEM’s LNERs recognises the bedroom label in the img’s alt

text and infers that “3” is actually a BEDROOM_NUMBER instance. For
more details on some of these aspects, see [8].

Table 1 shows the size of the domain-independent (ALL) part of
the DIADEM ontology, as well as the sizes for the UK real estate
and used car case. It gives a distribution of types over scopes, with
the shared scope containing most of the types of a domain. Most
of the ontology and all phenomenological types and property types
are generic and reused in multiple domains. In Figure 5, PERIOD

UNIT and PROPERTY TYPE are the only domain-dependent attributes,
mandatoryFor and modifies the only domain-dependent properties.

In Section 5, we discuss the effort to design a DIADEM ontology
and its LNERs and show that DIADEM remains effective even in
presence of low accuracy LNERs.

4. APPROACH
DIADEM’s automatic full-site exploration, schematically shown

in Figure 6, is driven by the knowledge in this ontology. Starting
with only a site’s URL, DIADEM explores the website through a
combination of focused crawling and form filling, identifies records
and attributes for extraction, and induces a wrapper for eventual
extraction of all relevant data. Each component is realised as a re-
lational transducer, together forming a network of relational trans-
ducers (Section 4.2) that adapts itself to react to observations as
necessary. In the following, we focus on the integration and com-
munication of DIADEM’s components. More details on the major
components is available in [18] (form understanding), [19] (record
and attribute identification), [20] (extraction language OXPATH).
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Relational transducers, arranged into a novel kind of transducer
network, form the basic components of DIADEM. The trans-
ducer network provides integration and communication between
the transducers in a way that represents an ideal trade-off among
DIADEM’s primary integration goals:

(1) Isolation: Transducers communicate through a transactional
shared memory and have no other knowledge of each other.

(2) Resumable: Transducers can be executed repeatedly, possi-
bly continuing previously suspended computation, e.g., if new in-
put data has become available.

(3) Complexity: Transducers are generally Datalog programs
with controlled value invention, retaining Datalog’s polynomial data
complexity. This is reflected in its actual performance (about 3 min-
utes per site, see Figure 14b).

(4) Data partitioning: The relations (in the shared memory) are
strictly partitioned into fine-granular transducer scopes.

In the following, we first introduce resumable relational trans-
ducers and give a classification of such transducers as used in DI-
ADEM (Section 4.1). We then demonstrate how these transducers
are integrated into a workflow through a synchronised transducer
network (Section 4.2).

4.1 Relational transducers
DIADEM extends relational transducers from [1] with (1) resum-

ing, (2) scoping, and (3) dependencies.
Scopes and dependencies are used in DIADEM to ensure isola-

tion, manage the transactional shared memory, and dynamically
determine the control flow. Recall, that DIADEM’s ontology uses
scopes (see Section 3) to provide specific views for transducers.
Transducer scopes follow ontology scopes, but further partition
them by site, page, and processing step. E.g., form(p1) is the trans-
ducer scope for the form relations on page p1, and action(s107) the
scope for the action relations produced in processing step s107.

If a transducer T reads from (writes into) a transducer scope S,
we say that there is an input (output) dependency from T on S.
These dependencies are not static, but depend on the visited site:
For example, the record identification transducer requires access
to the DOM of all previously visited sibling pages where records
have been identified. Therefore, transducer dependencies are dy-
namically computed during the processing. The use of dynamic
dependencies also significantly reduces the size of the input for
each transducer. Each transducer T registers its interface, denoted
as δscopes, in form of a set of Datalog rules. If δscopes |= D, then
D is a (input or output) dependency S from T on a scope S. The
rules in δscopes rules are limited to querying the site structure, i.e.,
the information about the pages and their links observed in the
exploration so far. They determine the set of scopes that an ex-
ecution of T on the current page reads from or writes into. We
write δscopes |=in R, if δscopes |= D, D is an input dependency from
T on scope S, and if R a relation in S. The set of such relations

is then denoted by in(δscopes) = {R : δscopes |=in R}. Similarly,
out(δscopes) = {R : δscopes |=out R} where |=out as above.

A transducer schema is a tuple Γ=(in,out,state,db) of relational
schemata that are pairwise disjoint, except for in and out.

DEFINITION 4. A relational transducer over a schema Γ is a
tuple T = (δstate,δout,δscopes,δguard) of sets of semi-positive Data-
log rules such that (1) δstate (state transition rules) has body atoms
over in(δscopes)∪ state and head atoms over state. (2) δout (output
rules) has body atoms over in(δscopes)∪ state and head atoms over
out(δscopes). (3) δscopes (interface rules) has body atoms querying
the site structure and dependencies as head atoms. (4) δguard (guard
rules) has body atoms querying the site structure and ready as head
to indicate that the transducer is ready to be executed.

We limit ourselves to stratified, semi-positive Datalog rules, i.e.,
negation is allowed only over atoms from in∪db and is thus strati-
fied. For convenience, DIADEM transducers also allow output-only
rules which produce output (or add to the state), but whose conse-
quences are not considered in further reasoning in the same invo-
cation of the transducer, thus avoiding recursion.

DIADEM’s relational transducers are resumable: They can yield
processing and may be called again on the same page, returning
new facts. Resumption is monotone, i.e., additional calls to a trans-
ducer may produce additional output, but never retract previously
derived facts. Resumable transducers are further distinguished into
state- and input-driven transducers. State-driven transducers may
produce new facts even if called with the same input, but maintain
state between calls. These are typically transducers that iterate over
some collection, e.g., all links on a page, and maintain the position
in the iteration in their state relations. Input-driven transducers may
also be called multiple times, but may only produce new data, if
additional input is provided. Typically, these transducers are called
only once or twice per page. Resumable transducers are exhausted,
if further calls yield no new data.

Relational transducers appear in DIADEM in three general types:
(1) Stateless phenomenological transducers encode phe-

nomenological patterns, exemplified by DIADEM’s record and
attribute identification. These patterns are domain independent, but
query the possibly domain-dependent phenomenological knowl-
edge in the DIADEM ontology. These transducers are typically
input-driven resumable.

Example 1: Domain-aware template discovery

DIADEM’s domain-aware template discovery, called AMBER
[19], is realised as a phenomenological transducer that en-
codes domain-independent rules for detecting patterns on web
sites. These patterns are combined with template discovery,
i.e., the detection of regularities in the structure of a page,
typically resulting from data-publishing templates.
AMBER’s transducer is input-driven resumable: It is called
once per page in a sequence of result pages (typically con-
nected by pagination links), each time refining the model of
the template underlying the result pages.
In contrast to existing automated approaches for template dis-
covery, AMBER is driven by domain knowledge (as intro-
duced in Section 3): The most important distinction is the
concept of pivot attribute. Pivot attributes, such as PRICE,
are mandatory attributes of an easy to detect type specified
in the DIADEM phenomenology. DIADEM locates these pivot
attributes to discard regular structures with irrelevant data or
irregular noise in otherwise regular structures, such as ads
interspersed among records. As shown in Section 5, this

I

1849



field set 
selection

behavior 
selection

value 
selection

field 
iteration

browser 
interaction

modification 
classifier

4

3

1

2

Stage 1: Page Init

Stage 3: Crawling

1 2 3 4

Figure 7: DIADEM form filling sub-network

Example 1: Domain-aware template discovery (cont)

significantly increases the accuracy of record and attribute
identification compared to existing template discovery ap-
proaches [9, 43]. In most product domains, PRICE or product
identifier are ideal pivot attributes. In domains with no reg-
ular attributes, we may also choose presentational attributes
such as images or details page links as pivot attributes.

(2) Stateful guarded finite state transducers (gFSTs) encode fi-
nite state transducers where transitions are guarded by first-order
formulas. All exploration decisions are delegated to such transduc-
ers, which are typically state-driven resumable. DIADEM’s form
filling, which builds on DIADEM’s form analysis component OPAL
[18], is an example for such transducers.

Example 2: Form filling

Form filling in DIADEM is an example of a network of state-
driven resumable transducers that encode gFSTs and are
called repeatedly to generate queries for a given form. The
form is analysed by a phenomenological transducer based on
the OPAL [18] approach. DIADEM’s form filling is domain-
aware, as it uses domain knowledge to generate fillings and
to react to feedback from filling (e.g., error messages).
Figure 7 shows the sub-network of transducers (shown as
bubbles) responsible for form filling. This process is split
into six transducers, including the browser interaction trans-
ducer that executes actions and the modification classifier that
analyses how the browser’s content has changed due to an ac-
tion. It returns classifications, such as “new page”, “major
page change”, “new form fields”, “new window”, or “alert”.
The other four transducers are gFSTs responsible À to select
fields to be filled; Á to select the assumed “behavior” for each
field, e.g., that a text field is to be treated as an autocomplete;
Â to select the specific value for each field; and Ã to iterate
over all fields, feeding the browser interaction transducer with
the filling for each field one by one.
These four transducers are all resumable and chained: If there
are no more fields to be filled in the current iteration, the fill-
ing iteration yields control back to the value selection. The
value selection may return the same sequence of fields with
different values or, if there are no additional value combina-
tions to try, may fail and yield control to the behaviour se-
lection. Depending on the classification of the modification,
execution continues either with the field iteration (typically if
there is no change, Ê), with the field set selection (if the state
of form fields changes, Ë), or with the end of the filling phase

I

Example 2: Form filling (cont)

(e.g., if a new page is reached, Ì).

(3) External programs are required for certain tasks in DIADEM,
e.g., interaction with the browser or DIADEM’s high performance
OXPATH engine. The corresponding components are designed,
such that they can be formalised as relational transducers with an
infinite background relation. These transducers are input-driven
(e.g., for wrapper induction as discussed in the following example).

Example 3: Wrapper induction

DIADEM’s wrapper induction is an example of such a trans-
ducer. It accumulates information about all identified result
pages and the navigation paths leading to them and integrates
that information into a coherent wrapper program. It is input-
driven resumable, called once per page, but accumulating the
wrapper information over all the calls for one site. Within a
result page sequence, it combines the collected information
into a coherent wrapper for the underlying template of these
pages, that is likely applicable also to any other page in the
sequence. Figure 4 shows the wrapper DIADEM generates for
extracting sales data from Figure 2 (there is a second one for
rentals not shown here).

4.2 Synchronised transducer networks
DIADEM’s transducers form a synchronised transducer network.

We call this network synchronised as its control flow is determined
by a central controller, itself a relational transducer. Intuitively,
a transducer network is a set of transducers with a transactional
shared memory which serves as input and output for the trans-
ducers. The execution is controlled by the control transducer and
a specific area in the memory is reserved for communication be-
tween controller and transducers. The network is self-adaptive, as
the control flow is dynamically determined from transducer depen-
dencies and their guard rules. Rather than relying on one or a few
statically defined control flows for exploring a page or site, this
allows DIADEM’s network to form different control flows for the
exploration of each individual site. For the experiments, we ob-
serve that about 60% of the sites are covered by common control
flows, for the remaining sites DIADEM generates control flows that
deviate considerably from all or most other sites.

DEFINITION 5. A synchronised transducer network for a
transducer schema Γ is a tuple N = (Ctl,ctl,M,T ), where T is a
set of transducers including the control transducer Ctl, M a schema
over the output relations of all transducers (memory of the net-
work), and ctl ⊂M identifies the part of M that is used for com-
munication between Ctl and the individual transducers. Addition-
ally, the out relation for Ctl contains ctl, and the input schema of all
transducers is a subset of M.

The control transducer Ctl is a state-driven resumable transducer
determining control flow and dependencies in the network. A con-
figuration of a transducer network N is a tuple C = 〈(Si)i∈T ,M〉
where Si is the state of transducer i and M an instance of M.

DEFINITION 6. Let N be a transducer network with configura-
tion C. Then the next transducer to be executed is determined by a
call to Ctl and must satisfy the following conditions:

(1) It must be execution-ready. A transducer T is execution-
ready, if its dependencies have been produced by prior transducers
and its guard rules are satisfied (δguard |= ready on C).
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(2) If there are multiple execution-ready transducers, control
flow is determined by priorities dynamically computed by the con-
trol transducer. Transducers are executed in order of their priority.

Dependency and guard rules, registered by the individual trans-
ducers with the Ctl, thus determine for each transducer separately if
it can be executed at a given point. This determination is typically
based on the already explored portion of the site or page. For ex-
ample, the form analysis transducer has a dependency on the trans-
ducer that produces annotations for DOM elements and a guard
rule that prevents it from running if there are no form elements on
the page. It has the same priority as, e.g., the record identification
transducer, which has similar dependencies, but is guarded by re-
quiring the presence of pivot attribute annotations. If both guards
are satisfied, the transducers may be executed in parallel.

Transducers that yield an interaction with the browser can not be
executed in parallel, but must be sequentialised, as parallel access
may break server state or Javascript execution. Therefore, for the
selection and execution of actions, DIADEM employs explicit pri-
orities to sequentialise the actions and to prioritise actions with the
highest estimated probability to lead to relevant data.

Example 4: Controller

Figure 8 shows a more detailed look at a part of the control
transducer implementing the “action generation and execu-
tion” stage, i.e., the stage where DIADEM determines which
action to perform and executes that action.

At the start of this stage (indicated by the gray half circle),
there are five possible action generators. Each of these has a
different guard, querying the outcome of the analysis and the
previous exploration. For example, the next link action gen-
erator requires the presence of a list of pagination links, as
well as set of records (indicating that this is a listings page).
Typically only two or three of these have their guards and
dependencies satisfied at this stage. Priorities are used to de-
termine which to run: For example, the crawler is always last
and iFrames have priority if they are covering a substantial
portion of the page.

Notice, that in many cases, if one of the action generators
fails (e.g., if it has already attempted to click on all “next
links”) some of the other action generators are called next
(indicated by the red dashed arrows). For example, if the next
link action generator fails, DIADEM either back-tracks to the
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Example 4: Controller (cont)

previous page (Ï), if it arrived on the current page through a
form; otherwise, it continues crawling relevant links (Ð).

Back-tracking is essential to the exploration of sites, as their ex-
ploration often requires multiple alternative paths. When choos-
ing a path, e.g., by filling a form, DIADEM can not know yet
whether that path will indeed lead to relevant data. As all aspects
of DIADEM’s control flow, back-tracking is dynamic and based on
the transducer dependencies and guards: To back-track, the sys-
tem goes back over the sequence of executed transducers until it
reaches a point where either a transducer is resumable and not yet
exhausted, or a prioritised choice of transducers exists with some
transducers not yet executed. The Ctl also allows the specification
of explicit back-tracking logic that overwrites the default case and
is used, e.g., for back actions in the browser.

Each time Ctl is executed the network’s logical clock is advanced
by one step. This gives us the notion of step of the network:

DEFINITION 7. Let T (C) denote the configuration of N after
executing T on C = 〈(Si)i∈T ,M〉. Specifically, T (C) = 〈(Si)i6=T ∪
S′T ,M∪O〉 where S′T is the state of T after execution on N and O
is its output. Then, a step of a transducer network N is a transition
C→ Ctl(T (C)) where T is the next transducer to be executed.

From this notion, it follows that DIADEM’s transducer networks
always terminate, if we explore only a bounded number of pages
and avoid recursion among input-driven transducers on a page.

PROPOSITION 1. Let N be a transducer network. Then the
number of steps that N executes is finite, if the following condi-
tions hold: (1) The number of pages explored for any site is finite.
(2) There is no in-page recursion among input-driven transducers.
(3) Each state-driven transducer iterates over a finite structure.

The last condition is not a significant limitation, as the only inter-
esting structures available to state-driven transducers are the finite
db and the finite structures derived from the DOM of the web pages.

5. EVALUATION
We evaluate DIADEM on 10602 websites from the UK and US

real estate (3404 and 109 sites) and the UK used car domains
(7089 sites). The evaluation focuses on (1) the characteristics of the
datasets, (2) the effectiveness of the induced wrappers and the qual-
ity of the extracted attributes, (3) the impact of the domain knowl-
edge, and (4) the performance of the network of transducers and
the extraction. The primary finding is that DIADEM produces effec-
tive wrappers for > 90% (Table 2b) of the 10602 sites with a 97%
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Figure 10: Dataset characteristics

average quality for attributes. Further findings include: (1) Given
only a site’s URL as an input, in more than 95% of the cases, DI-
ADEM produces a wrapper within 10 minutes. (2) DIADEM as a
whole as well as individual components outperform existing solu-
tions, where available for comparison. (3) The execution of the
induced wrappers produced more than 900,000 records. (4) To
perform this task, DIADEM’s transducers produce in total over 8.4
billion facts, download over 212 GB of web site data, and document
the extraction with over 101,000 screenshots. The entire evaluation
was completed in 2.3 days on a 45 node cluster.

On http://diadem.cs.ox.ac.uk/evaluation/14/02, we pro-
vide the full datasets with links to the automatically generated DI-
ADEM reports including fully-annotated screenshots, all induced
wrappers, and statistics about the extracted data.

Infrastructure. For the evaluation, DIADEM is deployed on a
Hadoop cluster of 45 m2.xlarge Amazon EC2 instances. Each in-
stance is running Ubuntu 12.04 with 17 GB main memory and 2
cores of 6.5 elastic compute units, where each unit is equivalent to
a 1.0-1.2 GHz 2007 Opteron or Xeon processor. We only employ
one of the cores and limit memory use to 10GB, which suffices
even for the largest websites. The current version of DIADEM uses
DLV [26] as Datalog¬ engine for most of the transducers, except
some parts that communicate with the browser or external tools,
that are implemented in Java. Browser interaction is achieved via
Selenium WebDriver 2.35 and Firefox 20.

Datasets. We apply DIADEM to 5 datasets, three for real es-
tate, one for used cars, and one benchmark dataset for compar-
ing form understanding, see Table 2a. URLs of the sites in the
full datasets (RE-FULL and UC-FULL) are extracted from a com-
bination of yell.com and listings of real-estate or used car traders
on aggregators. Both have been cleaned of websites that were un-
reachable or returned HTTP errors or redirects. We also removed
all sub-domains of aggregators and car makers as these are all sim-
ilarly structured and would have biased the evaluation. We do so
even though DIADEM is able to generate effective wrappers for all
major real-estate aggregators. We also sample both UK data sets
randomly to 500 (RE-RND) or 250 (UC-RND) websites. We use a
third data set of 172 sites in the real-estate domain, RE-OXF, that
is sampled regionally instead of randomly, including all real es-
tate websites for Oxford. This is an interesting case, as Oxford is
generally more affluent and has a higher portion of rental proper-
ties than most other UK cities. To provide insight into DIADEM’s
ability to adapt to different countries, we use a sample of US real
estate sites (RE-US). The ICQ dataset is a benchmark dataset for
form understanding and only used for comparing that component

of DIADEM to other approaches. To demonstrate that DIADEM can
handle noisy input, we use the UK Top-100 shopping websites UK-
100 as reported by http://www.hitwise.com/.

DIADEM is generally applicable to most product domains, where
listing pages have at least some structured attributes, such as the
price, in common and the set of attributes is generally homoge-
neous, though their presentation may differ widely. Among product
domains, we chose the domains of used car and real estate for two
primary reasons: In both domains, a large number of sellers is ac-
tive and products are often unique to a seller. Furthermore, the two
domains share very few attributes and differ quite notably with re-
spect to average size and exploration structure of sites: Figure 10a
and 10b show box plotsfor the distribution of records per site and
attributes per record, omitting sites with more than 10000 records
where we avoid extracting all data. RE-FULL and UC-FULL have
similar characteristics to their random sample. Sites in the used car
domain have a much narrower range of records per site, yet a much
wider range of attributes per record. On average they have more at-
tributes (14) than real estate sites (11). Figure 10c shows that also
for form sizes there is a notable difference for the two domains.
Real estate forms are more diverse and generally have more fields.
On the other hand, result page sizes are quite similarly distributed
in both domains (Figure 9).

Figure 11 illustrates the distribution of attribute types in these
datasets and demonstrates that the random samples indeed behave
very similar to the full datasets. In the real estate domain, we find
that nearly all records contain prices, descriptions, locations, and
images. Surprisingly, not all records clearly identify the size of the
property, which is indicated by the number of beds in the UK (not
by the square feet as in the US case). In the used car case, prices,
descriptions, makes, images, models, and mileages all appear in
75% or more of the records. Figure 11c shows the average number
of fields of a certain type per form. We observe again a very similar
distribution for the full datasets and their random sample.

Quality. We evaluate the quality of DIADEM’s full-site extraction
and its components in four steps: (1) Wrapper effectiveness, fol-
lowing Section 2, measures the portion of sites for which an effec-
tive wrapper is returned. Recall, that an effective wrapper returns
all expected records from the page, possibly with duplicates, and
thus has perfect recall. (2) Attribute quality, also following Sec-
tion 2, measures the precision of the extracted attributes. (3) Form
labeling accuracy measures the accuracy of the assigned text labels
for form fields and allows us to compare to existing approaches that
only perform form labeling. (4) Record and attribute identifica-
tion accuracy measures the accuracy of the identified records and
attributes on individual pages (rather than on the level of the gen-
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Figure 12: Attribute quality
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RE-RND DIADEM 91% 7% 2%

UC-RND DIADEM 93% 4% 3%

RE-US DIADEM 90% 5% 5%

RE-OXF DIADEM 90% 6% 4%

RE-OXF ViNTs 4% 5% 91%

(b) Wrapper quality

Table 2: Datasets and wrapper quality

eralised wrapper used for the extraction and evaluated in step (2)).
We do not evaluate DIADEM’s wrapper execution individually for
space reasons, but refer to [20].

Table 2b shows the assessment of the wrapper effectiveness in-
duced by DIADEM for RE-RND, UC-RND, RE-US, and RE-OXF. For
the latter, we also show the corresponding numbers for ViNTs [44].
We assume that the random samples are representative for the full
datasets, as indicated by the highly correlated characteristics. The
primary result is that over 90% of the wrappers are effective in
each datasets, with 91% average effectiveness. To avoid bias, we
use a two step verification of the wrappers: Each wrapper is man-
ually verified by one person. If a wrapper is considered effec-
tive, the actual extracted records are automatically compared to
the SEARCH_RESULTS_NUMBER identified on the first listings page, if
present. If not present, we use uniqueness of URL’s and images
and identical record numbers from different fillings. If this auto-
matic verification fails, two more persons are asked to verify the
wrapper and the aggregated result is reported.

Contrast this to ViNTs, a system for fully automatically generat-
ing wrappers for search engines. It provides only few attributes that
are common to many search engines, namely the title of the result

and its textual description and thus we consider a wrapper effective
if it extracts the right records (where for DIADEM we also inspect
the attributes). ViNTs performs quite well if supervised by provid-
ing a few result pages and a non-result (control) page (Figure 13a).
As DIADEM, ViNTs is also able to automatically extract a full-site
wrapper starting from a form. However, this part of ViNTs has been
specifically engineered for simple search forms. Thus, we remove
all sites with no search forms, iFrames, or too few properties from
the evaluation. ViNTs still only manages to produce a wrapper in
9%. Only for 4% of the sites it produces an effective wrapper. In
the other cases, ViNTs extracts only partial data, e.g., no rentals.

Among the most common causes for a DIADEM wrapper to be
non effective are misaligned attributes, e.g., in presence of multiple
pivot attributes or rare optional attributes, and sites that list related
products more prominently. E.g., on a few sites that offer also new
cars, DIADEM may extract those rather than the used cars, if nei-
ther listing contains many used car specific attributes and the new
cars are more prominently placed on the site. There are about 3%
of sites where no wrapper can be induced, typically as they con-
tain no properties, all properties are on aggregators, or they contain
no pivot attribute. For these sites, DIADEM correctly detects that
there is no effective wrapper. The final case is that DIADEM fails
to produce an effective wrapper, yet one exists. The most common
reasons for these failures are dynamic forms (15%), result pages
with dynamically rendered prices (12%), forms located in sidebar
iframes (15%), prices without currencies (6%), or sites which con-
tain only a single property (6%).

To demonstrate, that DIADEM does not produce a wrapper for
sites that are not in the target domain, we also run DIADEM on the
set of top UK shopping websites UK-100. On this set, DIADEM
induces a wrapper for only 5 sites, confusing toy cars on Amazon
and Toys-R-Us for used cars.

To determine the attribute quality of the extracted data, we per-
form a manual evaluation on the RE-OXF, RE-RND, and UC-RND
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Figure 13: Comparative evaluation (identification) and transducer time

ICQ dataset HA [15] ExQ [41] StatParser [36] DIADEM [18]

F1 for labeling 92% 96% 96% 98%

Table 3: Form labeling accuracy

datasets. Again, we use a two step verification, both manual and au-
tomatic with DIADEM’s LNERs or Bing (for locations). Attributes
are either exact matches, contain the intended value, or wrong. Fig-
ure 12 summarises the results. Overall, the attribute quality > 97%
in the two random datasets (and even higher in RE-OXF). The at-
tribute with the highest error rate is the location in UC-RND. In the
real estate cases this attribute has a rather low error rate. The reason
is that in UC-RND, location is not a very common attribute (below
20% of the records). It typically appears only on sites of dealers
with multiple offices, indicating the cars position.

In addition to the overall performance of the full-site extraction
considered so far, we also evaluated two components separately,
DIADEM’s form labeling and record and attribute identification.
First, we focus on the form labeling accuracy produced as part
of DIADEM’s form understanding. Unfortunately, most form la-
beling systems were not available for comparison on the DIADEM
datasets. Therefore, we compare on the ICQ benchmark, for which
most systems publish their performance. ICQ is a benchmark for
form understanding consisting 100 forms from 5 domains (Air trav-
eling, cars, books, jobs, U.S. real estate). Table 3 summarises the
form labeling accuracy (F1-score) of DIADEM and compares it to
HA [15], ExQ [41], and StatParser [36]. In this comparison, DI-
ADEM uses no domain knowledge, as ICQ spans domains that we
have not considered yet. With domain knowledge, OPAL is able to
achieve higher accuracy, see [18].

For the record and attribute identification accuracy, we com-
pare DIADEM with RoadRunner [9], MDR [27], ViNTs [44] (in super-
vised mode where we provide a set of result pages) and Depta [43].
These were the only systems available to us for evaluation. For
this experiment, we further reduce the two random datasets RE-
RND and UC-RND. We eliminated all sites with only one result
page, where RoadRunner and ViNTs either fail or perform signifi-
cantly worse than with multiple result pages. We also eliminate
all sites where more than one of these systems fails to render the
page, where one of them crashes, or that use iFrames, all not sup-
ported by one or more of these systems. For each of the remain-
ing sites, we created a gold standard covering 2–5 result pages per
site. Figure 13a reports the resulting record and attribute identi-
fication accuracy. For ViNTs and MDR, we only report the record
case, as they return no or very limited (title and body) attributes.
For RoadRunner, we only report the attribute case, as it returns no
records per se. Where for DIADEM, we require exact matches for

both attributes and records, the other systems are evaluated using
best case metrics, where possible: For all systems, we consider any
value that contains the gold standard attribute a match. For MDR,
we pre-filter navigation menus, footers, headers, pagination links,
and other regular structures which otherwise are returned by MDR
as records. For Depta, we only consider identification accuracy for
attributes in records that are perfectly segmented by Depta.

Nevertheless, DIADEM outperforms all these systems by a wide
margin. They particularly suffer from identifying nested structures
(e.g., from repeated attributes). ViNTs performs quite well in record
segmentation when provided with enough result pages, however,
often recognises adjacent pagination links as records and fails to
deal with most grid layout pages.

Domain knowledge. The use of domain knowledge raises
questions about the effort needed to create the domain-specific
parts of the DIADEM ontology and the corresponding LNERs. For
each new domain, there are about 40–60 new types and about the
same number of properties that need to be created. This supervi-
sion is required once per domain, only. If the domain is related,
e.g., as US real estate to UK real estate, the new types are typically
much less, around 5–10. Most effort is in fact not the ontology
itself, but that for each of these types (but not for the properties),
a LNER needs to be provided. In many cases existing resources
such as Freebase, DBpedia, or entity recognisers, such as Open-
Calais, suffice. The amount of effort for creating new recognisers
is directly proportionate to the required quality. Figure 14a shows
that even if we introduce noise into the annotations provided by the
LNERs, DIADEM remains able to produce effective wrappers. On
a random sample from RE-RND, where DIADEM is able to produce
an effective wrapper, we run DIADEM with reduced recall and pre-
cision of all LNERs by 25%, 50% and 75%. At 25% the wrappers
for all sites remain effective, at 50% less than 15% of the wrap-
pers are lost and only at 75% is there a pronounced effect. This
demonstrates that DIADEM produces effective wrappers even with
low quality LNERs. Our experience shows, that an undergradu-
ate student can develop an ontology and LNERs for a new domain
in 2–3 weeks time. This includes the phenomenology, for which
the most important features are straightforward: For example, the
choice of pivot attribute is typically the most common attribute in
the domain, that can be recognised with high accuracy. In nearly all
product domains that is either the price or some product identifier
(such as an ISBN number).

Performance. DIADEM’s automatic full-site extraction is able to
produce an effective wrapper for most sites on a single core ma-
chine in just a few minutes. Figure 14b shows the time for the
entire process for RE-FULL. The left hand shows a box plot for
the distribution of runtimes. The median is at 3.9 mins. For most
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Figure 14: Performance of DIADEM

websites, a wrapper is returned in ≤ 10 mins. Performance is cor-
related with the number of pages visited on a site (right hand side).
It also depends on the size of these pages and the number of form
fillings necessary. Figures 14c shows the time for evaluating all
wrappers on the 3404 site RE-FULL dataset. These extract in total
352k records (before de-duplication) in 2.5hs on a 45 nodes cluster.

In addition to overall performance, the relative performance of
DIADEM’s transducers gives a better insight into its processing, as
seen in Figure 13b. We have grouped some of the smaller trans-
ducers by function. Specifically, it shows that browser interaction,
including page retrieval and rendering, as well as execution of form
actions, dominates the runtime. There is a slight variance in the
relative time for browser interaction between the two smaller real-
estate datasets and the full one. This is caused by a larger number
of non-form websites (of small agencies) in the full dataset. Among
the other transducers, the wrapper induction takes up to 18%, fol-
lowed by the crawler, AMBER, DIADEM’s result and attribute iden-
tification, and OPAL, the form understanding transducer.

6. RELATED WORK
Web data extraction targets data on the web structured by tem-

plates and visual styling [5]. It differs from open information ex-
traction [16, 37], where the target is unstructured text, and from
product extraction [22], targeting unstructured product listings.
Full-site extraction. Current full-site extraction approaches im-
pose limitations on either the type of the extracted entities, e.g.,
news [39], or on the structure of the results, e.g., search-engine
listings (ViNTs [44]), thus trading generality for scalability. ViNTs
is the only other AFE, though limited to the extraction of few at-
tributes such as title and body of a search engine link. Section 5
shows that its form filling and site exploration fails on most real
estate and used car sites. When provided with positive and nega-
tive examples of results pages for each and every site, it is able to
achieve around 85% accuracy for record identification (Figure 13a)
compared to DIADEM’S > 95% accuracy. In contrast, there are
many approaches for each of the primary components of a AFE:

Exploration. DIADEM’s exploration combines focused crawl-
ing [7] and automatic form filling [29, 31, 38]. Again, domain
knowledge is exploited in overcoming many limitations of focused
crawling, e.g., by prioritizing exploration paths that are more likely
to surface results, but without relying on content redundancy as
in [29, 38]. DIADEM does not require users to provide sequences
of fillings for forms as in, e.g., [31, 44]. Instead, DIADEM recovers
both the structure of the form and its behavioural model. Domain
knowledge allows DIADEM to constrain the valid structural and be-
havioral units of the form, leading to behavioural models that are
significantly smaller than those constructed by, e.g., [31]. These are
then used to determine a suitable filling strategy leading to results,

as well as interpreting the feedback from the form (e.g., manda-
tory fields, form changes). For form understanding (see [24] for
a recent survey), DIADEM uses an extended version of OPAL [18].
OPAL does not rely on assumptions on the positioning of fields and
labels as, e.g., [36]. Instead, with phenomenological knowledge, it
encodes visual and structural patterns, thus also avoiding the hard-
coding of complex recognition heuristics found, e.g., in [15].

Record and Attribute Identification. Attempts to automate
the extraction process via unsupervised learning of hidden page
templates by discovering structural and visual regularities lead to
unsupervised data extraction [9, 23, 27, 28, 34, 43, 44, 35, 40].
These approaches offer a scalable alternative to (semi-)supervised
approaches, but—so far—at the price of a substantially lower ac-
curacy. Modern websites make heavy use of regular structures for
non-data content, e.g., navigation controls, recommendations, in-
jected ads, thus unsupervised learners easily mistake them for data.
This usually demands for a-posteriori classification of such struc-
tures thus facing the same limitations as supervised approaches.
Notice that this problem also affects approaches based on statisti-
cal redundancy that accumulate generic knowledge about the struc-
ture of the results such as [3, 42]. Domain knowledge has re-
cently been increasingly employed in record identification, mostly
for reducing supervision in wrapper induction via automatic an-
notation of training samples [13, 33] or for schema-based valida-
tion of the extraction [14, 35]. However, none of these approaches
use phenomenological knowledge that enables DIADEM to prune
uninteresting structures during the analysis, leading to clean and
automatically-generated examples for the induction and a > 95%
accuracy for the extraction of complex, multi-attribute records.

Wrapper Induction. Given a set of already annotated pages,
wrapper induction [2, 12, 21, 25] derives small wrapper programs
to extract the corresponding data from other pages relying on the
same page template. Although wrapper induction has shown high
accuracy and scalability at site level, it still requires non-trivial fea-
ture engineering and a different set of training samples for each site,
thus making this approach unfeasible at web-scale. [13] replaces
human supervision with automatically-generated annotations at the
price of limiting the learning of extraction rules to single attributes,
and thus requiring a (possibly infeasible) reconciliation phase in the
case of multi-attribute extraction. Specifically, [13] considers cer-
tain subsets of automatically generated, possibly noisy annotations
and induces wrappers for each of subsets. In case of multi-attribute
extraction, the number of relevant subsets may quickly become in-
tractable. Crowdsourcing wrapper validation [10] still requires a
large number of workers to obtain accurate wrappers. DIADEM
does not require per-site supervision, only a domain specification
that is then applicable to thousands of websites. Another major lim-
itation is the expressive power of the wrapping language, usually
limited to simple fragments of XPath. Instead, DIADEM general-
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izes both complex text-range selections and exploration sequences,
thus avoiding expensive post-processing and programmatic combi-
nation of multiple wrappers and filling found, e.g., in [35, 40].

7. CONCLUSION
DIADEM is the first system for automatic full-site extraction ca-

pable of producing highly accurate, effective wrappers for thou-
sands of websites in several application domains. Despite this
achievement, there remain several open issues, among them:
(1) We are confident that DIADEM can be applied to most if not
all product domains, such as hotel, electronics, fashion, or books.
However, the performance on domains such as event announce-
ments, where objects are less homogeneous, is an open question.
(2) Sometimes, listing pages report only a subset of the available
data and the extraction of all data requires visiting individual details
pages. The gain from extracting from details pages varies from site
to site and would have to be quantified automatically for integration
into a system like DIADEM. (3) Although effective, form interac-
tion is still one of the hardest problems faced in DIADEM, in partic-
ular when it comes to understanding dynamic field-dependencies
and more complex widgets.
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