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ABSTRACT

MapReduce has become the state-of-the-art for data parallel

processing. Nevertheless, Hadoop, an open-source equivalent of

MapReduce, has been noted to have sub-optimal performance in

the database context since it is initially designed to operate on raw

data without utilizing any type of indexes. To alleviate the

problem, we present ScalaGiST – scalable generalized search

tree that can be seamlessly integrated with Hadoop, together with

a cost-based data access optimizer for efficient query processing at

run-time. ScalaGiST provides extensibility in terms of data and

query types, hence is able to support unconventional queries (e.g.,

multi-dimensional range and k-NN queries) in MapReduce

systems, and can be dynamically deployed in large cluster

environments for handling big users and data.

We have built ScalaGiST and demonstrated that it can be

easily instantiated to common B+-tree and R-tree indexes yet for

dynamic distributed environments. Our extensive performance

study shows that ScalaGiST can provide efficient write and read

performance, elastic scaling property, as well as effective support

for MapReduce execution of ad-hoc analytic queries. Performance

comparisions with recent proposals of specialized distributed

index structures, such as SpatialHadoop, Data Mapping, and

RT-CAN further confirm its efficiency.

1. INTRODUCTION
By design, traditional parallel database systems are optimized

for fairly static environments with a relatively small number of

high-end machines. While this architecture provides the desired

performance, its capability is limited in scaling dynamically with

loads and needs. To take advantage of dynamic cluster

environments comprising a large number of commodity machines,

MapReduce was first introduced by Dean and Ghemawat [10] to

simplify the building of web-scale inverted indexes, and the

framework has gained fast popularity as the state-of-the-art of data

parallel programming model.

The framework can be used to evaluate more complex data

analytical tasks by executing a series of MapReduce jobs [24].

However, based on the evaluation of an open-source
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implementation of MapReduce, namely Hadoop1, the framework

has been noted to yield sub-optimal performance in the database

context [24]. MapReduce does not exploit any type of indexes,

and current state-of-the-art cloud storage systems such as Bigtable

[5], Cassandra [18], and HBase2 have not been designed to

support general purpose indexes for MapReduce processing.

Consider the following example query which tries to generate

the statistics about the regional behavior of users in a certain age

group:

SELECT count(*)

FROM mobile m, user u

WHERE m.x< x0 + α and m.x> x0 − α and

m.y< y0 + β and m.y> y0 − β and m.uid=u.uid

m.dataUsage>3000MB and u.age>20 and u.age<30
GROUP BY u.age

Current way of processing the query is to assemble a

MapReduce job comprises of two types of mappers. One type of

mapper scans the mobile table and filters the tuples based on the

data usage and location information. The other type scans through

the user table to retrieve the users with ages within the query

range. Both types of mapper shuffle the data to the reducers by

using uid as the partition key. Then a reducer can generate the

partial results for its designated uid. But to merge the users from

the same age group, one additional MapReduce job is required to

aggregate the results using age as the key .

In fact, the above MapReduce query processing strategy incurs

unnecessary I/O overheads, which can be effectively avoided by

using indexes. The challenge, however, is that we need to build

various types of indexes to support the query. For example, an

R-tree index can be employed to locate the mobile phones within

the range [(x0 − α, x0 + α), (y0 − β, y0 + β)]. An un-clustered

B+-tree index can be built for attribute dataUsage to track user’s

data consumption. For the user table, a clustered B+-tree index

is preferred as it can efficiently prune the users that are not in the

qualified age group. With those indexes available, the mappers can

push down query predicates for the indexes to evaluate and scan

only the tuples that contribute to the query result, in which way

query performance can be significantly improved.

There have been several proposals on distributed index schemes

in cloud environments. For example, a distributed B+-tree-like

index was proposed to support single-dimensional range queries

[27]. To facilitate multi-dimensional queries, SpatialHadoop [14]

realized multi-dimensional indexes in Hadoop using specialized

index operators, and can support several types of spatial indexes,

such as R-tree and grid files. Another distributed R-tree-like index

1http://hadoop.apache.org
2http://hbase.apache.org
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to support multi-dimensional range and k-NN (k-nearest

neighbors) queries was introduced in [26]. However, these index

schemes are specialized in a certain type of index. In order to

support multiple indexes of different types, which is a desirable

feature for MapReduce-based query processing systems, these

distributed index schemes need to be implemented and deployed

separately on the same cluster. Such an approach results in high

index maintenance overheads, and lacks code and interface reuse.

More recently, a generalized distributed indexing framework

based on Cayley graph model has been proposed to address the

scalability and performance issues of supporting a large number of

indexes of different types such as hash, range, and

multi-dimensional indexes in dynamic cluster environments [6].

Although this work provides a generic framework for the

declaration and implementation of scalable distributed indexes, it

requires users to define a data mapping function for each specific

index (for example, mapping from multi-dimensional to single

dimensional data). This could result in inefficiency of range query

processing because such data mapping may incur redundant I/Os

for the system having to scan false positive candidates.

In summary, the challenges of incorporating indexes for the

MapReduce and other large-scale data processing systems are:

1. To support different types of applications and queries, a

general indexing framework is required which can be used

to build all popular indexes, such as B+-tree index and

R-tree index, for the distributed systems. It should also

provide unified interfaces for users to implement new types

of index.

2. The framework should work as a non-intrusive component

for existing systems such as MapReduce so that the

previous algorithms written for those systems do not need to

be modified to exploit the benefit of index-base processing.

3. As an index service for parallel data processing, the design

of index framework must consider the efficiency, reliability

and scalability as its first class citizen.

Based on the above considerations, in this paper, we present an

indexing framework, ScalaGiST – Scalable Generalized Search

Tree – which is intrigued by classical Generalized Search Tree

(GiST) [16]. GiST provides functionalities of various types of

database search trees in a single package, while ScalaGiST is

designed for dynamic distributed environments such as in-house

clusters and public clouds so as to handle large-scale datasets and

adapt to changes in the workload while leveraging commodity

hardware. ScalaGiST is extensible in terms of both data and

query in that it enables users to define indexes for new type of data

and provides efficient lookup over the index data as built-in

functions without the need of data mapping as being used in other

distributed indexing frameworks [6, 22].

Indexes in ScalaGiST are distributed and replicated among

index servers in the cluster for scalability, data availability and

load balancing purposes. ScalaGiST develops a light-weight

distributed processing service to process the request in parallel and

effectively reduce the overhead of searching over a large index.

ScalaGiST is designed as indexing service and can work with

other systems in a non-intrusive way. In this paper, we show how

to embed ScalaGiST into the execution of MapReduce-based

systems by only launching appropriate map tasks on selected data

chunks containing records (for primary indexes) that satisfy the

query predicate. This strategy creates opportunities in reducing the

startup cost of MapReduce jobs, and most importantly, avoids

unnecessary I/Os and computation that do not eventually

contribute to the query results. While secondary indexes facilitate

a more direct location of data of interest, they may incur

non-negligible cost due to random accesses to the base data.

Therefore, ScalaGiST develops a data access optimizer to

compare two possible query execution plans, namely index scan

and full table scan, and choose the better plan before running the

query.

In summary, the contributions of the paper are as follows.

• We introduce ScalaGiST – scalable generalized search

tree for dynamic cluster environments such as the Cloud. It

provides extensibility in terms of data and query types for

supporting unconventional queries (e.g., multi-dimensional

range and k-NN queries), and more importantly, can be

dynamically deployed on large clusters for handling big

users and data.

• We present an approach to integrating ScalaGiST

seamlessly with Hadoop platform, coupled with a

cost-based data access optimizer for improving the

performance of MapReduce execution.

• We have built ScalaGiST and conducted an extensive

performance study on an in-house cluster. We compare the

R-tree and B+-tree-like indexes implemented using

ScalaGiST with recent indexes such as Data Mapping [6],

RT-CAN[26] and SpatialHadoop[14]. The results confirm

its efficiency and scalability in terms of write and read

performance, as well as effective support of exact match,

range, and similarity queries.

The remainder of the paper is organized as follows. We review

related work in Section 2. We present the overall architecture and

system implementation of ScalaGiST in Section 3 and

Section 4 respectively. Its integration with Hadoop and data access

optimization are described in Section 5, and an extensive

performance evaluation is presented in Section 6. We conclude the

paper in Section 7.

2. RELATED WORK
In this section, we review related work and highlight the

contributions of our proposed scalable index structure –

ScalaGiST – for cloud environments.

2.1 MapReduce­based Systems
MapReduce [10] has become the state-of-the-art data parallel

processing framework for solving complex problems over

large-scale datasets. Nevertheless, as shown by research in the

database community, Hadoop – an open-source implementation of

MapReduce – achieves sub-optimal performance when being used

to process database analysis tasks [24]. As a result, many

extensions and augmentations have been proposed [19]. In order

to utilize sophisticated technologies from the database community,

HadoopDB [2] introduces a hybrid architecture bring together the

MapReduce runtime and database engine. It makes use of a cluster

of local databases as the storage layer for MapReduce processing

engine.

Another line of research focuses on tweaking the core of

Hadoop. For example, Jiang et al. [17] have identified five design

factors that affect the performance of Hadoop MapReduce

including I/O modes, indexing utilization, record parsing,

grouping algorithm and scheduling policy. Note that the index

scheme considered in [17] is restricted to sorted files such as

range-index and B+-tree files, which have limited usage in a wider

1798



range of database applications that require multiple indexes of

different types.

Similarly, other research proposals, Hadoop++ [12] and HAIL

[13], also aim to optimize the performance of Hadoop via

exploitation of indexes. These systems reduce overall I/O cost by

utilizing local index on the input of map tasks. Split-oriented

indexes for Hadoop was proposed in [15], and SpatialHadoop [14]

was implemented as an extension of Hadoop to support

multi-dimensional queries. However, unlike ScalaGiST, these

indexes are not generic and cannot support user-defined index and

unconventional queries (e.g., metric space query).

Other research in this trend build global B+-tree-like indexes

[29] or multi-dimensional indexes [20] on top of HDFS. These

works all focus on building a specific type of index for an

individual system.

2.2 Distributed Data Structures for Cluster
Environments

A thorough survey and feature comparison of distributed data

structures for cluster environments can be found in [4]. Bigtable

[5] and its open-source implementation HBase provide record

oriented access to very large tables which are distributed in

commodity clusters consisting of thousands of machines. Dynamo

[11] and Cassandra [18] are other popular key-value stores with

some different features and design considerations.

Given a key, the key-value systems can efficiently locate the

value associated to the key. These systems build a global index

over the underlying storage layer, using key space as the partition

factor. More complex indexes, such as multi-dimensional indexes

[22], are also introduced to the key-value store (HBase).

Motivated by the fact that existing distributed indexing services

are mainly designed for some specific type of index, which greatly

limits the much needed versatility of supporting various types

indexes, Chen et al. [6] proposed a comprehensive distributed

indexing framework based on the generic Cayley graph model. It

is designed to support key-based data retrieval, while

ScalaGiST is tailored for the MapReduce system to process

large analytic queries.

2.3 Generalized Search Trees (GiST)
Generalized Search Tree (GiST) [16] was proposed as a

framework that aims to provide the functionalities of various types

of indexing search trees. What makes the GiST index structure

efficient and suited to broad applications is its extensibility in

terms of both data and query types. That is, instead of

implementing indexes from scratch, users are able to customize

indexes over various type of data while still being guaranteed with

the efficiency.

To customize the GiST as a search tree for a specific data type,

users only need to implement four abstract methods defined in the

GiST package, which determine the behavior of data keys handled

in the tree. In this paper, we extend the idea of GiST to dynamic

cluster environments and present ScalaGiST, scalable

generalized search tree with the ability to distribute indexes across

machines for scalability and load balancing, and demonstrate its

usefulness for MapReduce execution.

3. ARCHITECTURE OVERVIEW
ScalaGiST is designed as a scalable and non-intrusive

indexing framework for MapReduce systems as illustrated in

Figure 1. The index is organized as a tree structure and stored as a

sequential file in the DFS (HDFS in this paper). Similar to a

normal DFS file, the index file is also partitioned into multiple
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Figure 1: Overview of ScalaGiST.

chunks. Each chunk, in fact, contains the index data of one or

multiple sub-trees of an index. Given limited memory,

ScalaGiST selectively loads some index chunks into memory.

More specifically, ScalaGiST employs a metastore to collect the

query statistics, based on which a prediction model is applied to

generate a caching strategy to maximize the performance (the

details will be discussed in the next section.) If multiple indexes

are created, the metastore also maintains the basic information of

the index including:

1. The DFS file for which the index is constructed. By default,

ScalaGiST considers all DFS files as an unstructured

format, where each line contains a key and a value. If it is

built for the relational data, the user should define a parser

for the DFS file and specify the indexed column.

2. The role of the index, e.g. primary and secondary. Primary

index is built for the sorted data and if the data are not sorted

by the indexed column, ScalaGiST will invoke the tera-

sort algorithm of MapReduce to do the sorting.

3. The type of indexes. ScalaGiST includes B-tree index

and R-tree index in it implementations. For other

customized indexes, the user can register their index types

in the metastore via the interface provided by ScalaGiST.

To process index search requests, ScalaGiST develops a

light-weighted distributed processing service which includes an

index master and multiple index workers. As shown in Figure 1,

each index worker handles one index chunk by scanning the file

and materializing the index in memory. Among the workers, a

specific worker (worker 1 in Figure 1) is responsible for the root

node. Once receiving a search request, the index master forwards

it to the worker hosting the root node, which progressively

forwards the request to the other workers. When receiving the

request, all workers start the search concurrently to exploit the

parallelism to maximize the performance. To reduce maintenance

overhead, when no query is being processed, the worker process

releases all its resources.

The search results of ScalaGiST are offsets of the DFS that

refer to the tuples that satisfy the predicates. The offsets are flushed

back to the DFS as a temporary file. In ScalaGiST, we provide

a specific IndexInputFormat for MapReduce runtime to read
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the temporary files. In the ideal case, if ScalaGiST finds that a

data chunk cannot contribute to any query result, the corresponding

mapper will not be scheduled. In most cases, the mapper will adopt

the skip-and-scan strategy to read a few tuples that qualifies the

predicates, which effectively reduces the processing cost.

4. SYSTEM IMPLEMENTATION
In this section, we list the interfaces of ScalaGiST and the

techniques adopted in our implementation. More specifically, we

discuss how multiple indexes are used together to facilitate the

query processing and how the memory is exploited to reduce the

index search overhead.

4.1 Interface of ScalaGiST
The essence of ScalaGiST is to provide template algorithms

for traversal and modification of the tree structures distributed in

dynamic environments. These algorithms are designed and

implemented to work with a generic class of data key.

Unlike classical B-trees whose keys typically are numerical

values or short strings, ScalaGiST’s keys are instances of a

user-defined class overrides the abstraction key class. This

capability allows users to define new types of indexes by

customizing the key class.

As an illustration, ScalaGiST can be instantiated as a

distributed B+-tree-like index structure by defining keys as ranges

of numbers, which means that all index entries descending from a

certain index node have the values between the range. Similarly,

ScalaGiST can be instantiated as a distributed R-tree-like index

structure by defining keys as bounding boxes so that all index

entries descending from a certain index node are bounded by the

box – in this paper, we use the term “node” and “page”

interchangeable.

Overall, in order to instantiate ScalaGiST as a specific type

of search tree, the only thing that users are required to do is to

define what represents a key, and implement, i.e., override,

abstracted methods in the key class as discussed below. These

methods will be invoked at runtime by the template algorithms

implemented within the ScalaGiST framework to realize basic

tree operations such as search and modification.

• Consistent(N.p, q). This method provides the basis for

guiding the search operation correctly. It takes as input two

parameters, namely a key predicate p of a tree node N and a

query predicate q. It returns true if both p and q are satisfied

for a given data key, and returns false otherwise.

• Penalty(e,N). This method provides an indication of the

cost if the new index entry e is inserted to the subtree rooted

by node N . The path that has the least penalty in the tree is

chosen for inserting the new entry.

• Union(S). This method defines how to merge a set S of

index nodes. It returns a new key predicate p that evaluates

to true for all the index entries contained in or reachable from

the index nodes in S.

• PickSplit(N). This method is invoked when there is a node

split upon the insertion of a new index entry. It decides which

index entries stay on the old node, and which ones go to a

newly allocated index node.

• Parse(InputStream). This method reads the binary data

from the DFS and parses it into a user-defined tree node.

• Store(N,OutputStream). This method serializes node N
into its binary representation and flushes it back to the DFS.

In ScalaGiST, users can define a customized node type, and

thereby a new index type, by implementing the above interfaces.

An abstract class, GiSTWorker, is used as our index processing

unit and users should pass the node definition as a template to the

worker process. The declaration of GiSTWorker class is:

abstract class GiSTWorker<AbstractNode>

As shown in Figure 1, we actually maintain multiple nodes in

one GiSTWorker. The GiSTWorker loads a data chunk of the index

file and adopts the Parse method to reconstruct the tree nodes.

For each node, GiSTWorker invokes the user-defined function to

process the request. In current implementation, ScalaGiST has

created two sub-classes of the AbstractNode, namely the

BTreeNode and RTreeNode for supporting the B-tree index and

and R-tree index respectively. In the experiments, we also show

that using ScalaGiST, we can build various types of indexes,

such as a metric index MTree [8], by overriding the interface

functions. The new indexes can provide a scalable performance as

well. In the following discussion, we use the R-tree as our running

example to demonstrate the index construction and search process

in ScalaGiST.

4.2 Tree Methods

4.2.1 Index Construction

When a user requests to build an index using ScalaGiST, a

new MapReduce job is submitted for the index construction.

Figure 2 illustrates the idea of how an R-tree index is built.

ScalaGiST first randomly picks K samples from the indexed

attributes and then partitions the key space into W sub-spaces (W
is the number of reducers used to construct the index), so that each

sub-space has the same number of samples. For single dimension

case, the partitioning process works as building a equal-depth

histogram, while for multi-dimension case, it just simulates the

KD-tree algorithm. After the partitioning, C mappers are started

to scan the data where C is the total number of data chunks. Each

mapper generates W intermediate files, recording how tuples are

distributed to different sub-spaces. In the reduce phase, each

reducer collects the intermediate files from the mappers for a

specific sub-space and constructs a local R-tree using Algorithm 1.

In the ChooseSubtree method, we apply the user-defined

Penalty function to recursively select the subtree that the key

should be inserted into until reaching the leaf node. After inserting

the new key, we check whether the node needs to split. If so, a

recursive split process is invoked using the PickSplit function.

After the MapReduce job completes, the index master reads the

root nodes of all sub-trees (e.g., R1, R2, R3 and R4 in Figure 2)

Algorithm 1 Insert(Key key)

1: AbstractNode root = getRoot()

2: if root==null then

3: createRootNode(key)

4: else

5: AbstractNode node = ChooseSubtree(root, key)

6: node.insert(key)

7: if node.needSplit() then

8: Key splitkey=PickSplit(node)

9: create two new nodes based on the splitkey

10: notify the parent node about the two new nodes and do

the recursive split if necessary
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Figure 2: Building an R-tree Index

and builds a top R-tree by using those root nodes as its leaf nodes.

The top R-tree is the merging result of the sub-trees. Both the top

R-tree and the sub-trees are written back to the HDFS as index

chunks. In particular, the sub-trees are serialized into a sequential

file based on the in-order traversal. The sub-tree in Figure 2 is

serialized as C, D, A, E, F, B, R4. For a large sub-tree, it may be

stored as multiple index chunks. Suppose C, D, A and E, F, B, R4

are two index chunks. For the second chunk, we include a pointer

to the offset of A in the first chunk to indicate the position of the

left child of R4.

search

index master

FGHIIJKHLIHM FGHIIJKHLIHN FGHIIJKHLIHO

FGHIIJKHLIHP FGHIIJKHLIHQ FGHIIJKHLIHR FGHIIJKHLIHS

Figure 3: Search with R-tree

To give an detailed illustration of the index construction process,

here we show the performance breakdown of indexing 10 GB 2-

dimensional data. There are two strategies that are commonly used

for R-Tree construction, namely sequential insertion (insert data

points one by one sequentially) and bulk loading. We implement

both methods and compare their efficiency. The data set contains

approximately 10 million records.

Sequential Insertion Bulk Loading

No. of Mapper 20 20

Map Time (second) 151 151

No. of Reducer 40 40

Reduce Time (second) 1094.2 26.63

Sub-Tree Merging (millisecond) 178 178

Table 1: COMPARISON OF INDEX CONSTRUCTION STRATEGIES

As shown, bulk loading outperforms sequential insert by a large

margin. There are in total 20 mappers launched. Each mapper reads

in 512MB of data, maps them to sub-spaces and shuffles the data

to 40 reducers. This process takes up to 2.5 minutes (151 seconds)

for both methods, inclusive of instantiation time of the job. When a

reducer receives the data, it performs R-Tree construction (locally).

In this phase, sequential insertion spends 18 minutes due to large

amount of keys (over 10 millions), whereas bulk loading is very

efficient and costs only 27.19 seconds. The final merge phase reads

in the root nodes of local R-Trees as leaf nodes and inserts them into

a top layer R-Tree. This phase involves reading the 40 root nodes

from DFS and inserting them into an in-memory R-Tree, which is

rather fast and can be finished in 178 milliseconds. It is notable that

sequential insertion is directly supported by the GiST interface for

all types of indexes, while bulk loading requires some customized

codes for each index.

4.2.2 Search

Figure 3 shows how the GiSTWorker processes a range query. It

simulates the typical tree search algorithm. The search starts from

the index master which maintains the top R-tree. Based on the

search range, it sends the query to GiSTWorker1 and

GiSTWorker2. The two workers start the tree search in parallel.

When reaching the leaf nodes, a worker checks whether it can

return the result or it needs to forward the search message to other

workers. Algorithm 2 illustrates the local search process inside

each worker. The index master monitors the whole search process.

Once it detects that all workers have finished their tasks, it notifies

the MapReduce scheduler for further query processing.

Algorithm 2 GiSTWorker.Search(Query q)

1: Set<AbstractNode> nodes = new Set(root)
2: while nodes.hasMoreElement() do
3: AbstractNode n̄ = nodes.next()
4: if Consistent(n̄.key, q) then

5: if n̄.isLeaf() then

6: result.add(n̄)
7: else

8: Set<AbstractNode> child = n̄.getChild()
9: while child.hasMoreElement() do

10: AbstractNode c = child.next()
11: nodes.add(c)
12: return result

On top of range search, we provide two k-NN algorithms, one is

generic for all indexes defined by the ScalaGiST interface and

one is specific for the R-tree index. The generic k-NN algorithm

iteratively expands its search range until k results are obtained.

Suppose the query point is p = (v1, ..., vd). We submit an initial

query as Q0 = ([v1 − r0, v1 + r0], ..., [vd − r0, vd + r0]). If

more than k results are obtained, the search completes. Otherwise,

we enlarge the search range by θ. So the new query is

Q1 = ([v1 − r0 − θ, v1 + r0 + θ], ..., [vd − r0 − θ, vd + r0 + θ]).
To avoid repeating the search of the initial query, we also include

Q0 when processing Q1. The query will not be sent to the tree

nodes that only overlaps with Q0. r0 and θ are two tunable

parameters in the k-NN search which have been well studied [25].

Using their analysis, we set r0 = θ, and θ is estimated as:

θ =
Dk

k
=

2 d

√
Γ( d

2
+ 1)

k
√
π(1−

√
1− d

√
K
N
)
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where Dk represents the distance between the kth nearest neighbor

and the query point and N is the estimated number of data in the

whole space. Γ is a function defined as: Γ(x + 1) = xΓ(x) with

Γ(1) = 1 and Γ(0.5) = π
2

. We start with an initial θ value and

each time when we complete a range search, we will update our

estimation for Dk , so the next range is more accurate and tight.

We also include the classic branch-and-bound k-NN algorithm

for R-tree which provides a near optimal performance [23]. It first

retrieves the nearest neighbor to the query point and then

computes its minimal and maximal distances to the nearby

bounding boxes. The distances are used to expand the search

range and decide when to terminate. In fact, both the

performances of the two k-NN algorithms differ marginally in

both our experiments and the theoretic analysis [25].

It is also noted that different index construction strategies has

substantial impact on search performance [7]. We use the two

R-Trees populated by sequential insertion and bulk loading in the

last benchmark, and compare their query performance using range

search and k-NN search.

Sequential Insertion Bulk Loading

Range Query (second) 0.185 10.28

k-NN Query (second) 3.97 27.19

Table 2: COMPARISON OF QUERY PERFORMANCE

Table 2 shows that, although bulk loading speeds up index

construction, it compromises the query performance to some

extend comparing to that of sequential insertion, because

one-by-one insertion allows the index to adaptively pick a better

sub-tree in the R-tree to insert and reduces the size of bounding

boxes. In the above evaluation, query performances for range

query and k-NN query are about 55 times and 7 times worse when

using bulk loading. Therefore, there is a trade-off between index

construction cost and run-time performance. It is up to the users to

decide which method to use.

4.2.3 Insertion

As an indexing service for the MapReduce system,

ScalaGiST only supports batch insertion. For a new batch of

data, instead of appending them to the existing DFS file, we

import them as a new file under the same directory. ScalaGiST

checks the metastore whether we need to build indexes for the new

data and starts the index construction process if necessary.

ScalaGiST creates a new index tree and registers it in the index

master. Therefore, for an increasing dataset, we may have multiple

index trees and we will route the query to all trees for processing.

Periodically, ScalaGiST merges the index trees to reduce the

search cost. Let T0 be the original tree and T1,...,Tk be the new

trees. T1,..,Tk, in fact, are discarded and we build a new T0 by

inserting their data into T0. We start a MapReduce job to perform

the merging. Specifically, in the map phase, we scan data files of

T1,..,Tk and partition them based on the same partitioning strategy

of T0. In the reduce phase, the reducer loads its specific sub-tree

of T0 and inserts the new data into T0. After all reducers complete

their insertion, the index master will generate a new index tree for

all existing data files. For example, in Figure 2, the new data are

partitioned into four sub-spaces defined by the previous sampling

process. In reducer4, we load R4 from the DFS and insert the

received data into R4’s sub-tree. The insertion process applies the

user-defined Consistent, Penalty and PickSplit functions to guide

the tree construction. After the MapReduce job, a new R4 covers

all existing data in the sub-space is built.

4.3 Search with Multiple Indexes
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Figure 4: Search With Multiple Indexes

One of the most distinguished features of ScalaGiST is its

capability of supporting various types of index. As shown in our

example query in the introduction section, we can build both a

B-tree index and an R-tree index for different attributes of a table.

In ScalaGiST, only one clustered index can be built for a table,

while the number of secondary indexes is not limited. Figure 4

shows how ScalaGiST exploits multiple indexes together to

process the query.

Suppose we have a clustered B-tree index which is disseminated

to worker 1, worker 2 and worker 3. We also have a secondary

R-tree index which is maintained by worker 4, worker 5 and

worker 6. Given a query with two predicates, p0 and p1, suppose

p0 is on the clustered attribute and p1 is on the other attributes.

ScalaGiST splits the search into two parts. p0 is forwarded to

worker 1 to worker 3, while p1 is forwarded to the other 3

workers. All the workers start their search in parallel. When we

complete the search of clustered index, suppose only worker 2 has

the query results (DFS offsets that point to the corresponding

tuples). Instead of returning the results to the applications, e.g.,

MapReduce jobs, worker 2 waits for the search results of the

secondary index. Once worker 5 and worker 6 finish their search,

they broadcast their results to worker 2 and worker 3. As a matter

of fact, worker 3 will not be notified by ScalaGiST, as it does

not have the query results for p0. On the other hand, worker 2 will

merge its results with the results from the other two workers. The

final index search results are then returned to the users. The

flexibility of ScalaGiST allows us to link the workers in an

arbitrary way, simplifying the search algorithm design for the

multiple indexes.

4.4 Memory Management
After a worker completes the job, we destroy its memory stacks

and reclaim all the used memory. When the next query comes,

ScalaGiST will wake up the worker and reconstruct its states.

Such initialization cost and the cost of loading index nodes from

the DFS into memory cannot be ignored. One way to address the

problem is to maintain some workers and their states in memory. In

other words, those workers are maintained as a “persistent worker”

in ScalaGiST. They are always running, waiting for receiving the

requests from the users. Their states, e.g., the tree structure, are also

cached in memory. This is similar to using the RDD as the storage

in Spark [28]. However, given limited memory, we must adaptively

select the memory-resident workers to maximize the performance.

DEFINITION 1. Benefit of A GiSTWorker

The benefit of a GiSTWorker regarding to a query q is defined as

the total size of index tree nodes (except the root nodes) that are

required to read from the DFS to process q.

In ScalaGiST, we record the last processed k queries in the

metastore and use that statistics to measure the benefit of buffering

each GiSTWorker. So the memory management problem is

transferred into an optimization problem:

1802



DEFINITION 2. Optimal Buffering Strategy

Given a query set Q and a GiSTWorker set U , suppose we only

have limited memory M , we want to select a subset GiSTWorkers

Ū from U , so that:

1. The memory for buffering GiSTWorkers in Ū is less than M .

2. For any other subset Û ⊆ U satisfying the memory

constraint, its benefit is less than that of Ū .

Note that although all GiSTWorkers handle the same-size index

chunks, when materializing the tree nodes in memory, the

GiSTWorkers require different sizes of memory because the index

nodes may have different data structures. Therefore, the optimal

buffering strategy is, in fact, a set-packing problem which is

NP-hard. In ScalaGiST, we adopt a greedy-based heuristic

approach as shown in Algorithm 3. The intuition is to compute a

score for each worker as benefit

memory size
and rank workers based on

the scores. The top ranked workers are set as “persistent workers”

which are maintained in memory for speeding up the processing.

Algorithm 3 ManageBuffer()

1: for each GiSTWorker u ∈ U do

2: u.score = u.benefit/u.memory size

3: Heap H = sortByScore(U )

4: while Ū .size < M and H .size>0 do

5: Worker u = H .pop()

6: ū.add(u)

7: return ū

In ScalaGiST, Algorithm 3 is invoked periodically to adjust

the buffer strategy. We provide a parameter for users to tune the

frequency. By default, Algorithm 3 is invoked only when new

indexes have been created since the last adjustment.

...

...
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Figure 5: Effect of Fanout

4.5 Tuning the Fanout
For tree-based index, fanout F affects the search performance.

We illustrate the problem using Figure 5. Suppose each index

chunk can maintain three leaf nodes or 6 pointers of the internal

nodes. For the left binary tree, the workers and their tree node

assignment is: { (W1: A, B, N5), (W2: C, D, N6, N3), (W3: E, F,

N7), (W4: G, H, N8, N4, N1), ...}. For the right tree, the tree

node assignment is: {(W1: A, B, C), (W2: D, E, F), (W3:

N1),...}. Given a query that retrieves data from leaf nodes B, C,

D and E, the left tree first forwards the query to W4. W4 then

forwards the query to W2 and W3. W2 further forwards the query

to W1. There are totally four workers involved in the processing

and three workers (W1, W2 and W3) perform their jobs

concurrently. On the contrary, in the right tree, the query is first

routed to W3 and then forwarded to W1 and W2. Only two

workers can run concurrently. However, the left binary tree

requires a longer search path W4 → W2 → W1, while the right

tree has a much shorter path W3 → W1. In summary, the fanout

has the following two properties:

1. A small fanout can increase the level of parallelism by

involving more workers in the processing. This can

effectively improve the performance when the query needs

to retrieve a large portion of data. But it also incurs more

communication costs, when only a few results are required.

2. A large fanout can reduce the search path and hence, lead to a

lower communication and I/O cost. However, it may result in

load imbalance, as the query is processed by fewer workers.

In fact, most B+-tree style hierarchies in production such as

Bigtable [5] and HBase also use a small number of levels and very

high fanouts. This is because they are targeting at high-selective

queries (e.g., key-based retrieval). ScalaGiST, on the other

hand, is designed for the MapReduce system. So we also want to

benefit the large analytic queries. In ScalaGiST, we group the

historical queries into two categories, high-selective queries and

large analytic queries. Our purpose is to estimate a fanout F that

can achieve a good performance for both types of queries.

We apply a coarse estimation and for space limitation, we use

the single-dimension index to briefly demonstrate the idea. We

assume that the index evenly partitions the key range. Therefore,

at level l, we have F l leaf nodes and the domain is partitioned into

F l sub-ranges. Let t be the size of a tree node and C be the size of

DFS file chunk. Each worker handles C
t

index nodes. Using the

partitioning strategy shown in Figure 1, we can estimate how the

F 0 + ... + F l nodes are distributed to different workers. Given a

list of historical queries {q0, ..., qk}, we can also estimate how

many workers are involved for each query. Based on the query

pattern, we set two selectivity thresholds θx and θy. For queries

with selectivity smaller than θx, we want to set a F that only one

worker is involved in the search concurrently. So we can get a

lower bound ǫlow for F . For queries with selectivity larger than

θy , we want as many index workers as possible in the search

process. Namely, the involved index workers are no less than W
where W is the number of available cluster nodes that

ScalaGiST is deployed on. This constraint can generate an

upper bound ǫup for F . Let {θ0, ..., θn} denote the selectivities of

historical queries on table T , and e as the size of each leaf index

entry. The total cost can be estimated as (detailed cost model will

be discussed in Section 5.2.2):

n∑

i=0

⌈
∑logF |T |

j=1 θiF
je2

W
⌉

We then iterate F in the range of [ǫlow, ǫup] and compute the

above equation respectively. ScalaGiST selects the F value that

minimizes the cost estimation.

5. HADOOP INTEGRATION AND DATA

ACCESS OPTIMIZATION
Unlike existing proposals [3, 6, 27, 26], our proposed

ScalaGiST has been designed for seamless integration with

Hadoop and its data access optimization algorithm helps

MapReduce select an index scan versus a full table scan method

depending on characteristics of queries.

5.1 Leveraging Indexes in Hadoop
In ScalaGiST, we implement an IndexInputFormat

class for ScalaGiST so that its data can be accessed by

MapReduce. This class overrides the required public methods

such as getSplits() and createRecordReader().

More specifically, the getSplits() routine will be called

during the starting up of a MapReduce job to identify how the
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index data are split into chunks, which in turn will determine the

number of map tasks that are required to execute the query

processing job. Given a query, the system parses its range

predicates and composes an appropriate Scan operator on the

corresponding index. All index pages between the start and end

keys of the range Scan operator are included for processing the

query. ScalaGiST splits the index data at index pages’

boundaries, and therefore the number of splits is essentially the

number of index pages located within the query range.

During the execution of the MapReduce job, the framework

iterates over the splits and calls the createRecordReader()

for each split. Each calling of createRecordReader() with

a split creates a new IndexRecordReader to access the

corresponding index page. That is, each IndexRecordReader

handles exactly one index page and process every index entry

between the index page’s start and end keys in two steps: (1)

retrieving the base record referred by the index entry, and (2)

mapping the record based on the map function customized for

processing the query and shuffling intermediate data to the

appropriate reduce task.

Overall, in this MapReduce execution with index scan, the

selectivity of the query predicate determines the number of map

tasks to be launched for processing the query. By utilizing the

index, the number of needed maps is restricted to the minimal and

only relevant records satisfying the query predicate are retrieved

from the base table, thus reducing the task’s startup and I/O cost

significantly. However, the benefits of this index scan execution do

not come for free. In fact, this index scan strategy introduces other

overhead that does not exist in the full table scan approach. A cost

model is therefore essential and proposed in the following section

to estimate the performance of the two strategies so that the

system is able to choose the optimal one for query execution.

5.2 Data Access Optimization Algorithm
To identify an optimal access method, we build histograms to

collect statistics of data distribution and design a cost model to

select the data access plan.

5.2.1 Construction of Histograms

At regular time, the system runs a background MapReduce job

for constructing histograms of tables. Suppose a0, a1, ..., an−1 are

columns of table T and [li, ui] is ai’s domain. We build an equal-

width histogram for each column. That is, we split [li, ui] into

B buckets, and for each bucket, we count the number of tuples

whose attribute value falls within the bucket. In the map phase, we

generate a composite key for each tuple. Key-value pairs follow the

format of < (columnID, bucketID), 1 >, where columnID is

the unique ID of the column and bucketID is the bucket ID of the

bucket containing the corresponding attribute value.

To reduce shuffling cost, we customize the combiner function to

aggregate key-value pairs within the same bucket so that each

mapper only generates at most one key-value pair for a bucket. In

the reduce phase, we group key-value pairs by their columnID
and combine the results from multiple mappers. Finally, the

metadata of a histogram bucket, including table name, column

name, bucket range and bucket value, are written back to HDFS.

To efficiently locate a histogram, histograms are maintained as a

directory tree in HDFS, e.g., the histogram for column ai of table

T is stored in “/histogram/T/ai”.

5.2.2 Selection of Optimal Data Access Plan

After having constructed the histograms for selectivity

estimation of range predicates, we proceed to design an algorithm

for selection of optimal data access plan.

The base tables are comprised of equal-size (sd) data chunks in

the underlying distributed file system (e.g., HDFS ). Consider a

query Q, we use the function f(Q) to denote the size of data

involved in the processing of that query. For the full table scan, if

the query Q involves multiple tables T1,...,Tk, then f(Q) is

computed as
∑k

i=1 |Ti|si, where si denotes the average size of

records in the table Ti. For the index scan approach, f(Q) is

estimated as
∑k

i=1
g(Ti, Q)si. g(Ti, Q) denotes the number of

tuples in the table Ti that satisfy the selection predicates of the

query Q. In the following discussion, we estimate the cost of map

phase for processing a table Ti, as index is mainly used by the

mappers to reduce the I/O cost.

Full scan. The total number of data chunks in the base tables

referred in the query is
|Ti|si
sd

We need the same number of

mappers in our processing. The underlying distributed file system

(HDFS) ensures that the data chunks are roughly distributed

across machines in the cluster. Suppose we have N cluster nodes.

Let cs be the cost ratio of sequential scan. The cost of the slowest

node is:

cpscan = ⌈ |Ti|si
sdN

⌉ × sdcs = ⌈ |Ti|si
N

⌉cs (1)

Index scan. If the query can be processed by the primary index

of Ti, we can effectively reduce the number of data chunks in the

MapReduce job. The scan cost of the slowest node is reduced to

ciscan = ⌈ |Ti|sig(Ti, Q)

N
⌉cs (2)

If the query only involves the secondary index, ScalaGiST

groups the pointers that refer to the same data chunk and performs

random accesses to the base records in sequential offsets. Let cr
denote the cost ratio of random read with sequential offsets. The

cost of slowest node is

ciscan = ⌈ |Ti|sig(Ti, Q)

N
⌉cr (3)

For a query involving k tables, we normally generate k − 1
MapReduce jobs to perform the join. If we stick to the left-deep

plan, except the first job, the rest jobs join a raw table with an

intermediate result table. For an intermediate result table Ti, we

consider it as a table without indexes (namely, g(Ti, Q) = |Ti|).
Given two table Ti and Tj , the scan cost of slowest node in the

map phase is:

⌈ |Ti|si + |Tj |sj
N

⌉cs

And the cost of primary index scan is:

ciscan = ⌈ |Ti|sig(Ti, Q) + |Tj |sjg(Tj, Q)

N
⌉cs (4)

Similarly, the cost of secondary index scan can be estimated.

Another cost is the index lookup cost. As most internal tree

nodes are buffered in memory, our model only computes the

network communication cost and the scan cost of leaf nodes. Let

L be the number of index workers in the longest search path of the

index. So the maximal network cost is Lcn, where cn is the

network cost ratio. If the size of each leaf index entry is e, we can

maintain approximately
sd
e

leaf nodes in one index chunk.

Namely, each index worker can handle about
sd
e

leaf nodes.

Suppose we have W index workers, the index search cost is

estimated as:
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clookup = Lcn + ⌈g(Ti, Q)e2

W
⌉cs (5)

The second term in above equation denotes the average cost of

each index worker when processing the leaf node scan. For two

table join, we need to add up the index search costs of both tables.

Data access optimizer. After estimating the cost of the two

data accessing schemes (scan and index-based processing), we

now present a data access optimization algorithm as a guiding

principle for the system to dynamically choose the optimal data

access plan for the execution of a specific query with MapReduce.

Given a query, we split it into multiple MapReduce jobs

{j0, j1, ..., jk}. For each job ji, we estimate the cost of cpscan
and ciscan + clookup and select the optimal strategy. At regular

time, the system runs a background a micro-benchmark on the

underlying distributed file system to measure the performance of

raw random and sequential I/Os and update the values of cs, cr
and cn respectively.

6. PERFORMANCE EVALUATION
We have performed a series of experiments to evaluate the

efficiency and scalability of ScalaGiST. First, we evaluate the

performance of ScalaGiST using the YCSB benchmark [9].

Then, we compare the performance of ScalaGiST-integrated

MapReduce with generic MapReduce in processing analytical

queries. We also study the performance of ScalaGiST in terms

of analytic query and multi-dimensional query, and compare its

performance with other distributed indexing frameworks, namely

Data Mapping [6], SpatialHadoop [14], and RT-CAN [26]. To

show the flexibility of ScalaGiST, we implement a new index

MTree [8] on top of ScalaGiST and evaluate its performance on

processing multi-dimensional queries. Lastly, we show the

effectiveness of ScalaGiST in an application scenario involving

multiple indexes in a single query.

6.1 Experimental Setup
The experiments are conducted on an in-house cluster, which

includes 64 commodity machines equipped with Intel X3430 2.4

GHz processors, 8 GB of memory, two 7200 RPM SATA disks

with 500 GB capacity each, and 1 Gb ethernet. The machines in

the cluster are connected via a flat network.

A Hadoop cluster is set up as the infrastructure system for index

storage and query processing with ScalaGiST. We keep the

settings of Hadoop as default. Each machine in the cluster runs

three daemon processes and plays multiple roles as a data node for

HDFS, a worker node for MapReduce, and an index worker for

ScalaGiST. The index master process is configured to run on

the same machine as Hadoop cluster’s master node.

6.2 Micro­benchmarks
In this test, we study the performance of index construction and

index lookup operations with ScalaGiST using the YCSB [9]

benchmark. We build a B+-tree index using ScalaGiST. We

generate the following two workloads.

• Insert. New records (key-value pairs) are randomly

generated and inserted into the system. Note that when

working with MapReduce system, ScalaGiST only

supports batch insertion, but for the indexing service itself,

ScalaGiST can support realtime insertion. The master

forwards the updates to the corresponding index workers

who update their local sub-trees. This experiment shows the

raw performance of ScalaGiST and also indicates the cost

of batch insertion using MapReduce.

• Lookup. The previously inserted records are searched, with

the keys are randomly chosen.

For each index server, we configure the YCSB runtime to

instantiate 4 client threads to concurrently access the ScalaGiST

tree. That is, client workloads submitted to the system scale up

much faster than the system size and index servers will observe

heavy loads when the system size is large. The aggregate

throughput of the two workloads are measured as the system

scales out from 10 to 60 index servers.

We also run the workload on a centralized system with a

standalone B+-tree implementation to show the advantages of

scalable distributed search trees. The B+-tree is deployed on a

Dell PowerEdge R610 server (which has a much higher hardware

configuration compared to other commodity machines in the

cluster), and is configured to have a cache of 4 GB. The number of

concurrent client threads submitting workloads to the standalone

B+-tree is configured to be equivalent with the above setting of

ScalaGiST tree. Before running the insert workload, both the

ScalaGiST tree and the standalone B+-tree are pre-populated

with 10,000 records.
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As shown in Figure 6, the ScalaGiST tree scales almost

linearly with the system size. On the contrary, the standalone

B+-tree achieves a much lower throughput and its capacity is

saturated quite soon due to the lack of the ability to handle

concurrent requests. The high throughput performance of

ScalaGiST is attributed to its scalable architectural design. In

addition, with the help of caching internal index nodes, most of

the tree traversals along the read path can be finished within one

network hop before reaching the appropriate index server to

retrieve the desired index leaf page.

Figure 7 plots the system throughput for the insert workload.

The aggregate throughput grows almost linearly with system sizes

at low and medium scales (up to 40 machines). As the workload

gets heavier (by increasing the number of machines and hence the

number of client threads also scales up four times as much as

described in the experiment settings), new insertions incur more

network communication overhead and I/O contentions.

Overall, the above experimental results confirm the elastic

performance of raw ScalaGiST framework. More index servers

can be added into the system to serve the increasing workloads.

6.3 MapReduce Scan vs. Index Scan
In this section, we compare the performance of

ScalaGiST-integrated MapReduce with generic MapReduce in

processing analytical queries. We conduct the experiment on

TPC-H benchmark dataset [1] which models the workload of a

decision support system.
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Q1:SELECT custkey, count(orderkey)

FROM Orders

WHERE totalprice ≥ y and totalprice ≤ y + 100
GROUP BY (custkey)

We consider a selective query above on the Orders table. For the

data, we vary the scale factor of Orders table from 10 to 100.

Under each scale factor, the workload generator produces 1.5

million records for the table. Each record has an average size of 1

KB. Thus, the total data size ranges from 15 GB to 150 GB. The

data records are stored in the underlying HDFS and sorted by the

selection key, i.e., the totalprice attribute. A 20-machine cluster

is set up for this experiment. The ScalaGiST index built on the

data set is configured to instantiate a scalable B+-tree-like index

on the totalprice column.
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Figure 8: MapReduce Scan vs. Index Scan.

By setting the value of y in the query predicate, we can define

the selectivity of the query (denoted as s in Figure 8). Two sets of

experiments were conducted to evaluate the query processing time

of generic MapReduce and ScalaGiST-integrated MapReduce

under different selectivity settings.

In the first experiment, we study performance characteristics of

the systems when executing highly selective queries – the

selectivity is set to 0.4% and 4%. The results plotted in Figure 8(a)

confirm the effectiveness of ScalaGiST in supporting query

processing over large scale data. Particularly, ScalaGiST helps

to achieve a better performance by first querying the distributed

index to identify the qualified data, then launching map tasks only

on the data chunks hosting the target data.

Based on the insights of our cost model, ScalaGiST-integrated

MapReduce underperforms in the case when index search cannot

prune out enough data chunk. Hence, in the second experiment,

we test the two approaches with non-selective queries to see the

crossover point. As depicted in Figure 8(b), a selectivity of 30%

is low enough for ScalaGiST-integrated MapReduce to perform

worse than the generic MapReduce. Low query selectivity results

in a larger result set that may span across more data chunks, and

hence more map tasks have to be launched.

6.4 Multi­Dimensional Index Performance
In this section, we demonstrate the effectiveness of

ScalaGiST in terms of its support for multi-dimensional data.

We first compare the performances of ScalaGiST and three

systems (namely, Data Mapping [6], SpatialHadoop [14] and

RT-CAN [26]) on a 2-dimensional dataset. We then evaluate the

performance of ScalaGiST’s M-tree implementation in higher

dimensional (up to 10) settings.

For the first set of experiments, we construct a 2-dimensional

table T with schema T (a1, a2, p) where each attribute ai uniformly

generated from the domain of 109 integer values, and attribute p is a

payload of 1 KB string data. The table is populated with 10 million

to 100 million records, thus the size of the table varies from 10 GB

to 100 GB. R-Tree indexes are built on (a1, a2) pair using the three

systems, respectively. The number of index servers in the system is

fixed to be 20.

We run both range queries and k-NN queries to evaluate the

systems’ performance. Specifically, range queries are run on

(a1, a2) against the indexes with the following template:

Q2:SELECT p FROM T

WHERE a1 l ≤ a1 ≤ a1 u and a2 l ≤ a2 ≤ a2 u

We define the selectivity as the percentage of searched space. By

adjusting the lower bounds and upper bounds for both a1 and a2,

we are able to control the query selectivity, which is set to 0.4%

in this experiment. K-NN queries are processed via a set of range

queries. For k-NN queries, k is set to be 16 in the experiments. The

results are presented in the following figures.

6.4.1 Generalized Search Tree vs. Data Mapping

For multi-dimensional domains, data mapping approach

partitions the original space into sub-spaces by different

dimension iteratively, then links the partitions with adjacent

identifiers to form the Z-ordering [21], which is a 1-dimensional

representation of the original multi-dimensional domain, and thus

range query in higher dimensional spaces could be transformed

into querying intervals along the Z-ordering.

As can be seen in Figure 9, ScalaGiST gains a better

performance over the ‘Data Mapping’ approach. As the data size

increases, the latency of queries with ‘Data Mapping’ grows

proportionally, while remaining stable with only a slight increment

for ScalaGiST. This is because mapping multi-dimensional data

into one single dimensional space results in information loss. It

incurs many false positives in during the index lookup process.
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6.4.2 Generalized Search Tree vs. SpatialHadoop

SpatialHadoop extents Hadoop to support spatial index

operations. It organizes the spatial index in a layered structure,

namely global partition index and local indexes. SpatialHadoop

provides a layer of abstraction upon MapReduce by implementing

its own multi-dimensional index operators, such as range operator

and k-NN operator in order to facilitate multi-dimensional queries.

In comparison, ScalaGiST adopts a different index processing

mechanism in which the index operations are performed by index

workers, and DFS data requests are handled by MapReduce(e.g.

Hadoop) runtime.

Figure 9 and 10 compare the performance of ScalaGiST and

SpatialHadoop in terms of range queries and k-NN queries. From

the results, we observe a close performance for the two systems.

In both systems, index operations are mostly done in memory,

while the local index (in SpatialHadoop) or index workers (in

ScalaGiST) take care of DFS I/Os. The slight difference comes

from different implementation of index operators, in particular, the

different instantiation cost for the two systems.

However, it is a promising result for ScalaGiST in that the

performance of its generalized framework is comparable to that of

SpatialHadoop’s specially built and tuned index.
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6.4.3 Generalized Search Tree vs. RT­CAN

RT-CAN is a multi-dimensional indexing framework for cloud

environments. RT-CAN organizes the servers into an overlay based

on an extended CAN routing protocol, and utilizes R-tree based

index scheme at each server to support multi-dimensional query.

In the experiments, data are pre-partitioned into 5,000 grids and

disseminated to the servers of RT-CAN. A local R-tree is built for

the grids at each server with a page size of 4 KB.

The results plotted in Figure 10 confirm the extensibility of

ScalaGiST to support complex multi-dimensional query. In

particular, the overall performance of ScalaGiST is better than

RT-CAN in terms of supporting k-NN query. Even though

ScalaGiST incurs higher latency for k-NN queries at small data

size, we observe a better performance of ScalaGiST as the data

size increases. When data size is small, the start-up time for

MapReduce tasks has more significant impact on the query

efficiency with ScalaGiST, while RT-CAN does not suffer such

overhead due to its different (peer-to-peer) processing model.

However, at lager scales, the iterative overlay lookup and local

R-tree search yield relatively high I/Os and computational cost.

6.4.4 Scalagist in Multi­dimensional Metric Space
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Figure 11: Effect of Dimensionality.

Using ScalaGiST, we can build new distributed indexes with

ease by overriding the interface functions. In this experiment, we

demonstrate the ScalaGiST’s M-tree implementation which is

employed to index multi-dimensional data in a metric space. We

use synthetic Random-Cluster (R-Cluster) data sets to evaluate the

performance of ScalaGiSTon varied dimensionalities (up to

10). The R-Cluster data sets consist of records with a tuple ID and

d-dimensional coordinates. The IDs are 4-byte integers and the

coordinates are 4-byte floating-point types. Distance between two

records can be calculated using any user defined metric distance

function. In this experiment, we adopt the L∞ metric, i.e.

L∞(Ox, Oy) = maxDim
j=1 {|Ox[j] − Oy [j]|}. System settings

remain the same as in the previous experiments. A range query

with selectivity of 0.4% in the d-dimensional space is run on the

indexed data. Under each scale, we report the effect of varying

dimensionality from 2 to 10 in Figure 11.

As depicted in Figure 11, with the increase of dimensionality

and data size, the average time of running a range query also

increases. This trend coincides with the typical performance of

M-tree in the stand-alone setting. In addition, we are able to

observe a good scalability both in terms of dimensionality and

data size. The time-to-dimensionality and time-to-size pairs both

scale nearly linearly. These results verify the functionality of

ScalaGiST in supporting multi-dimensional data.

6.5 Multiple Indexes Performance
As mentioned in Section 4.3, one of the most distinguished

features of ScalaGiST is its capability of supporting various

types of indexes. In this experiment, we demonstrate this merit by

incorporating multiple indexes in a single query. As most of the

real data are business sensitive and are not publicly available, we

synthetically construct our data to have multiple dimensional

characteristics. Our purpose is to use this simple but

straightforward example to exhibit how ScalaGiST benefits

query using multiple indexes.

The schema T{orders, (a1, a2)} is composed of the Orders

table from TPC-H dataset, and the two-dimensional attribute

(a1, a2) we generate in the last experiment. The table is sorted by

totalprice column in Orders table. Given its characteristic, a

B+-tree can be built on the totalprice column, and the

2-dimensional column (a1, a2) can be indexed by an R-tree.

Note that when building multiple indexes on one table, factors

such as the clustering of data, the choice of primary index, etc.,

would all have substantial influence on the performance.

ScalaGiST is designed to provide flexible functionality and

APIs, and leaves other decisions to the user.

The query used in this experiment is a simple extension of Q1

with a range search on the 2-dimensional column:

Q3:SELECT custkey, count(orderkey)

FROM Orders

WHERE totalprice ≥ y and totalprice ≤ y + 100
and a1 l ≤ a1 ≤ a1 u and a2 l ≤ a2 ≤ a2 u

Q3 is evaluated in three execution modes. The first is

ScalaGiST multiple indexes mode, who has both B+-tree and

R-tree built on the two columns respectively. The second mode

only builds R-tree on the 2-dimensional column. And in the third

mode we use SpatialHadoop. The size of data varies

approximately from 15G to 150G (Orders table plus additional

column). The results are plotted in Figure 12.
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To process Q3, two columns of the table are touched. The

indexed column is searched via index workers first. With the

knowledge of index search result, MapReduce jobs are launched

on the chunks hosting the interested data. For the column without

index, a MapReduce scan must be launched. Specifically, in the

R-tree only case, index search on R-tree returns a super set of the

accurate selection result. Then a “partial” MapReduce job scans

through the chunks included in the search result to test against the

totalprice column before generating the final results. For

SpatialHadoop, two set of MapReduce jobs are launched. The first

MapReduce job runs range search using original SpatialHadoop

function. The second set of MapReduce jobs are used to scan the
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whole table for selective condition, and merge the scan result with

result of range search.

In Figure 12, the processing time is broken down to highlight

the index search phase and the MapReduce phase. As shown, the

overall execution time of ScalaGiST is significantly reduced

comparing to those of SpatialHadoop and single index.

ScalaGiST has longer index processing time, since the runtime

need to wait until all index workers complete the search and merge

the results. However, with the benefit of more accurate index

search result, the subsequent MapReduce job in ScalaGiST is

able to avoid launching redundant mappers, and enjoys better

performance.

7. CONCLUSION
In this paper, we have presented ScalaGiST – scalable

generalized search tree – which provides the much desired

extensibility in terms of data and query type. It supports multiple

types of indexes, and can be dynamically deployed on large

clusters while resilient to machine failures. We have implemented

ScalaGiST and demonstrated that it can be easily instantiated as

scalable B+-tree and R-tree like indexes for dynamic cluster

environments. More importantly, its seamless integration with

Hadoop platform, coupled with a cost-based data access optimizer,

provide promising opportunities for significant performance

improvement on query processing in MapReduce-based systems.

Our experiments on ScalaGiST’s performance with respect to

multiple types of indexes confirmed the effectiveness and

efficiency of our proposed indexing mechanism.
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