
YZStack: Provisioning Customizable Solution for Big Data

Sai Wu ‡1, Chun Chen ‡2, Gang Chen ‡3, Ke Chen ‡4, Lidan Shou ‡5, Hui Cao #6, He Bai ∗7
#College of Computer Science and Technology, Zhejiang University, Hangzhou, China

‡yzBigData Co., Ltd., Room 205, Tower B, Hangzhou Narada Grand Hotel, Hangzhou, China
∗City Cloud Technology (Hangzhou) Co., Ltd.,Jiangnan Avenue, Binjiang District, Hangzhou, China

1,2,3,4,5{wusai, chenc, cg, chenk, should}@zju.edu.cn 6caohui@yzbigdata.com
7baihe@citycloud.com.cn

ABSTRACT
YZStack is our developing solution which implements many well-
established big data techniques as selectable modules and allows
users to customize their systems as a process of module selection.
In particular, it includes an openstack based IaaS (Infrastructure as
a Service) layer, a distributed file system based DaaS (Data as a
Service) layer, a PaaS (Platform as a Service) layer equipped with
parallel processing techniques and a SaaS (Software as a Service)
layer with popular data analytic algorithms. Layers of YZStack are
loosely connected, so that customization of one layer does not af-
fect the other layers and their interactions. In this paper, we use a
smart financial system developed for the Zhejiang Provincial De-
partment of Finance to demonstrate how to leverage YZStack to
speed up the implementation of big data system. We also introduce
two popular applications of the financial system, economic predic-
tion and detection of improper payment.

1. INTRODUCTION
Big data applications have drawn significant interests from both

Chinese government and companies. They are keen on adopting
those disruptive technologies to improve their existing services or
discover the possibility of starting a completely new service. How-
ever, based on our experiences with Chinese customers, the progress
of embracing the big data era is very slow due to the “3H” problem
described as below:

1. How can I build and deploy a big data system without back-
ground knowledge? Most of our customers (e.g., govern-
ment) are not IT experts. Although they know the potential
benefit of big data systems, they have no idea of which sys-
tems can do what and how the system can be used to support
their applications. Even deploying a Hadoop1+Hbase2 en-
vironment is not a trivial task for them. What they want is
something like installing a software on Windows. Users just
need a few clicks and some basic customizations to make a
software work.

1http://hadoop.apache.org/
2http://hbase.apache.org/

This work is licensed under the Creative Commons Attribution
NonCommercialNoDerivs 3.0 Unported License. To view a copy of this li
cense, visit http://creativecommons.org/licenses/byncnd/3.0/. Obtain per
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 13
Copyright 2014 VLDB Endowment 21508097/14/08.

2. How can I migrate existing applications to the big data sys-
tem? Our customers have already maintained some IT sys-
tems to support their existing applications. Once the big data
system is ready, they want to migrate those applications to
the new system with few or no additional efforts, because
they do not have the programmers to rewrite the application-
s using big data “language” (e.g., translating the codes into
MapReduce [4] programs).

3. How can I use my big data system to do the analysis job?
Our customers, such as China Southern Power Grid3 and
Zhejiang Provincial Department of Finance4, have collect-
ed more than 20 years of data. However, they never perform
any analysis for their historical data. The reason is twofold.
First, they do not have proper tools to analyze such a large
scale of data. Second, they do not know what can be dis-
covered from their data and hence, cannot even start building
their analytic models. A visualization tool that can be used
to explore the data is currently what they want most.

Moreover, most existing products focus on a specific layer of
big data ecosystem. E.g., openstack 5 and cloudstack 6 provide vi-
sualization service in the IaaS (Infrastructure as a Service) layer.
Hadoop, epiC [9] and Spark [15] are popular processing frame-
works in the PaaS (Platform as a Service) layer. Amazon RDS7

is one of the popular DaaSs (Data as a Service). Linking those
products together as a full-fledged big data system is a very time-
consuming job, especially for customers with little big data knowl-
edge.

To address the “3H” problem, we develop the YZStack, a cus-
tomizable big data solution tailored for Chinese customers which
covers different layers of the big data ecosystem. YZStack includes
many well-established processing technologies and offers rich cus-
tomization options. Users can customize YZStack by adaptively
selecting building blocks for each layer. For instance, to recog-
nize vehicle license plates from images taken by the traffic cam-
eras, the IaaS layer establishes a cluster which consists of 100 n-
odes equipped with 2-core CPU, 16G memory and 256G disk. In
the DaaS layer, we select the HBase as our storage system, while
in the PaaS layer, we employ Hadoop as our processing engine. Fi-
nally, in the SaaS layer, we select the image-processing algorithm
and data mining algorithm to process the data.

3http://eng.csg.cn/
4http://www.zjczt.gov.cn/
5https://www.openstack.org
6http://cloudstack.apache.org/
7https://aws.amazon.com/rds/

1778

As shown in the example, YZStack simplifies the development
of big data applications as a process of module selection and cus-
tomization. However, such flexibility is not easy to achieve and it
may also affect the performance. To balance the tradeoff between
flexibility and performance, YZStack follows two design rules:

First, each layer defines a set of common interfaces that all its
modules should implement, so YZStack can link different layers
using the same codes. As each layer may include many different
modules, it is challenging to design some general interfaces. Our
intuition is to maintain only the fundamental interfaces. For ex-
ample, in the IaaS layer, only one interface is exposed to allow
users to create a cluster with virtual servers of different configura-
tions. Configurations are passed to the interface as parameters. In
the DaaS layer, a get interface is provided which may be explained
differently by modules. The key-value store implements it as re-
trieving data by keys, while the relational data service uses it to
return tuples satisfying query predicates.

Second, common interfaces normally provide sub-optimal per-
formances. To further improve the performance of the system,
we implement some optimization schemes as plugins in YZStack.
Each optimization plugin can register for multiple modules through
their hook interfaces to accept and process specific events. In cur-
rent implementation of YZStack, we have already included some
predefined optimization plugins. More plugins are being added
based on users’ requirement, and users can even develop their own
plugins using the provided interface.

YZStack is used by our customers (e.g., CityCloud8 and Zhe-
jiang Provincial Department of Finance) to set up big data systems
to migrate their existing applications or develop new applications.
In the remaining of the paper, we will introduce the architecture of
YZStack and some of its implementation details in Section 2. In
Section 3, we show how we leverage YZStack to build the smart fi-
nancial system for Zhejiang Provincial Department of Finance. We
discuss the development of two applications on top of the smart
financial system, economic prediction and detection of improper
payment. Finally, we conclude the paper in Section 5.

2. YZSTACK: A SYSTEM OVERVIEW
YZStack is designed to simplify the development and usage of

big data systems. It starts from the IaaS layer to allow users to set
up a cluster from scratch to the SaaS layer, where users can develop
their own applications using the provided interfaces. YZStack has
been successfully used to support smart traffic, smart finance and
e-card service in Hangzhou city. Figure 1 shows the architecture of
YZStack which consists of four layers.

The IaaS layer is built on top of openstack with some customized
implementations. We classify the resources into computation re-
sources and storage resources which include different types of C-
PUs and storage medias respectively. Combining two types of re-
sources, we provide more than 200 instances of virtual servers.
E.g., users can claim an instance with 4-core 2.6Ghz CPU, 16G
memory and 256G SSD or 2-core 2.0Ghz CPU, 4G memory and
1T HDD. Computation resources are connected with the storage
resources with our high speed cloud network. When creating an in-
stance, we try to first match hardware requirement with a physical
node. If the physical node can provide the necessary computation
and storage resource, we directly start a virtual instance on the n-
ode. Otherwise, we establish an instance with remote storage.

In the DaaS layer, on top of the DFS (Distributed File System),
we provide various storage models to handle both relational data
and unstructured data. The relational model can be configured as

8http://www.citycloud.com.cn

Cloud Virtual Server Cloud Storage

Cloud

Network

IaaS

Relational Data

Service

Object Based

Service

Distributed File System

SaaS

Data Mining
OLAP

Processing

Stream

Processing
Visualization

Plugins

Security

Module

OLTP

Processing

DaaS

Data Integration Module

Applications

Smart Traffic
Hangzhou

E-card

Analyzer for

Power Grid

Green

Hangzhou

Key-Value Store

PaaS

YZepiC

Graph Engine
Relational

Analytical Engine

Relational

Transactional Engine System

Monitor

Optimzation

Modules

Data

Importer

/ETL tools

Figure 1: Architecture of YZStack

either row-oriented or column-oriented. A data integration module
connecting multiple storage models is also included to support the
processing of mixed data types.

Our PaaS layer is built on top of YZepiC, a parallel processing
engine that implements and extends the ideas proposed in the epiC
[9]. Similar as epiC, YZepiC adopts the actor model where each
node in YZepiC is considered as an actor which has a job queue
and can communicate with other actors via “emails”. YZepiC pro-
vides a flexible programming interface in that it can simulate both
MapReduce [4] and Pregel [13] model with a better performance
by reusing the computation resource. Besides the basic features of
epiC, YZepiC also implements some techniques which are original-
ly proposed for optimizing the processing in the MapReduce sys-
tems [5]. To handle different data types, we develop three specific
engines in YZepiC. Graph engine simulates Pregel’s vertex-centric
model. Relational analytic engine transforms the SQL queries in-
to data flows between YZepiC’s actors. Relational transactional
engine consisting of a 2-phase locking module, a deadlock detect
module and a transaction recovery module supports high-throughput
distributed transactions. More details of YZepiC can be found in
Section 3.2.

To simplify the development of big data applications, we imple-
ment some popular algorithms and tools as services in the SaaS
layer, such as data mining algorithms, OLAP algorithms and visu-
alization tools. Based on our customer’s requirement, more algo-
rithms are being developed and added to this layer.

Finally, YZStack creates some plugins which may interact with
more than one layers. Those plugins help import the data, monitor
the status of the cluster, and protect the privacy of users. Among
all plugins, the optimization plugins are the most important ones
which optimize the performance of the whole cluster by modifying
the modules of different layers. Normally, an optimization plugin is
specially designed for some module combinations. So when those
modules are used, the optimization plugin is triggered.

In what follows, we introduce some implementation details in
YZStack which are motivated by our customers and distinguish

1779

Chunks of Ubuntu System
Chunks of JRE and Hadoop Chunks of MySQL and Apache

Image 1 Image 2

Figure 2: Shared Chunks Between Images

YZStack from other big data systems.

2.1 Adaptive Images
In the IaaS layer, when we create a virtual server for users, we

actually allocate the compute resources and install a pre-generated
image from the openstack. An image is a snapshot of a running
system, possibly including an operating system and some popu-
lar softwares (e.g., ‘Centos-with-jre” and “Ubuntu-with-mysql”).
Openstack provides a tool to build customized images. To reduce
the storage cost of images, we apply the chunk-based sharing ap-
proach. Figure 2 illustrates the idea, where two images share the
same operating system. If we maintain the images separately, we
actually replicate the data of operating system twice. So we par-
tition the data of operating system and softwares into equal-size
chunks. A unique signature is generated for each chunk. Hence,
chunks with an identical signature are considered as redundant and
only one copy is preserved. This strategy effectively reduces the
storage overhead of images by 65%.

The image tool significantly simplifies the deployment of a clus-
ter system. However, the problem is that we cannot pre-generate
all possible images. As mentioned previously, our IaaS layer pro-
vides more than 200 types of hardware configurations. If we iterate
through all possible combinations across all layers, we end up with
too many images. Therefore, YZStack adaptively decides how the
images are created. There are two basic image strategies.

1. The first strategy is to include as few modules as possible in
the image. The image only contains the operating system and
some necessary softwares. If we customize a big data system
using this type of image, we need to broadcast our codes and
configurations of each selected module to all virtual servers
in an adhoc way. If a virtual server fails, we need to start a
new one with the image and install those modules on the fly.
This strategy allows us to only maintain a few images, but
complicates the system setup and recovery.

2. The second strategy is to include all used modules and their
configurations in one image. When a virtual server fails, we
just restart a new server and install the image. No extra con-
figuration is required. This strategy creates a static snapshot
of the system. If we upgrade any module used in the image,
we need to generate a new image to replace the old one.

In YZStack, we merge the two strategies to balance the update cost
and installation cost. In particular, we rank modules based on their
update frequency, update cost and adhoc installation cost. Modules
that are frequently updated are discarded from the image, while
modules incurring high installation and deployment overhead are
packed into the image.

2.2 Optimization Plugins
The common interfaces reduce the complexity of system devel-

opment, but they may also degrade the performance. In YZStack,

Common Interface of LayerModule A Module K... ...Default Implementation hooksCommon Interface of LayerModule A Module K... ...Default Implementation hooks

Optimization Plugin 1Customized FunctionCustomized FunctionLayer 2
Layer 1

Optimization Plugin 2Customized Function
Figure 3: Optimization Plugins

we implement our optimization techniques as plugins which nor-
mally interact with multiple layers. Figure 3 shows how optimiza-
tion plugins work with other modules. Inside each module, we have
our default implementation which supports the common interface
without any sophisticated technique. All modules provide a hook
interface which can be used by the plugins to override the default
processing functions with their customized ones. Once the mod-
ule accepts a request defined by the common interface, instead of
applying the default implementation, the module invokes the func-
tions provided by the plugins. On the other hand, plugins can also
use the cross-reference technique to access data structures of the
module.

In current implementation, we include many recently published
big data techniques in our plugins which are summarized as below.

2.2.1 ColumnOriented Plugin
Column-oriented plugin is registered for the relational analytical

engine. It consists of a CFile module, a compression module and
a processing module. CFile is used in Llama [10] to store relation-
al data by columns. We reuse its code to support column-oriented
storage in YZStack. In the compression module, besides the popu-
lar compression algorithms such as Lzo, Gzip and Bzip2, we also
implement the bitmap compression proposed in [12]. In curren-
t implementation, users should explicitly specify the compression
algorithm for each column.

The processing module is applied to both the DaaS layer and
PaaS layer. In the DaaS layer, it changes the default file type of the
relational data service into CFile which provides basic access meth-
ods to the relational data (e.g., scan the table or given a key, return
the corresponding tuple). It also provides new column-oriented ac-
cess methods, such as scanning a column and retrieving the value
of a specific column for a tuple.

In the PaaS layer, the processing module adds new algorithms for
processing relational operators to the relational analytic engine. For
example, the Project and Select operator indicate which columns
should be scanned, and early materialization and late materializa-
tion are used adaptively based on the selectivity of predicate. For
more details about column-oriented processing, please refer to the
Llama paper [10].

2.2.2 Index Plugin
The index plugin is triggered when the relational data service is

used in the DaaS layer. By default YZStack already sorts and par-
titions the data by primary key. Therefore, the index plugin mainly
targets at the secondary index. The design of index plugin follows
the same idea proposed in [11], except that we use YZepiC as our

1780

processing engine to build and use the index, instead of Hadoop.
The plugin provides a GiST [8] interface. To create a new in-
dex type, the user needs to implement all methods defined in the
GiST interface. Afterwards, the plugin automatically invokes those
methods in building and searching the index. Currently, we have
implemented B-tree, R-tree and M-tree [3] index in the plugin.

2.2.3 Query Optimization Plugin
Our relational analytic engine works in a similar way as Hive9

which transforms SQL queries into YZepiC jobs in an intuitive
way, resulting in sub-optimal query plans. So we adopt the ap-
proach proposed in AQUA [14] by embedding an query optimizer
as a plugin. The plugin first runs some YZepiC jobs to collect the
statistics of data distribution. For the incoming queries, it employs
a cost model to estimate the costs of different query plans. In most
cases, parallel processing prefers to bushy plans rather than left-
deep plans. Different from Hadoop which needs to generate multi-
ple MapReduce jobs for a complex query, YZepiC engine is more
efficient in that it only requires one job to process a query, reducing
the I/O cost.

2.2.4 Iterative Job Plugin
Many data ming algorithms, such as PageRank and LDA (Laten-

t Dirichlet Allocation), are handled by an iterative job of YZepiC
which repeatedly scans the data. To reduce the I/O costs of each
iteration, we embed an iterative job plugin. The plugin defines the
states of an actor in YZepiC as the data maintained or generated
by the actor during its processing. It classifies the states into stat-
ic states and dynamic states. Static states do not change as the
computation is performed iteratively. For example, in PageRank
algorithm, the graph data are static states of the actors, while the
PageRank values are dynamic states. The static states are fully or
partially buffered in memory (depending on the size of available
memory) by actors. So in next iteration, actors do not need to re-
cover those states. This strategy effectively improves the perfor-
mance of PageRank job by almost 200%.

2.3 Visualization Tools
We provide a set of browser-based visualization tools which can

be classified into two types: basic tools and advanced tools. Ba-
sic tools are used to produce simple charts like bar char and pie
char, while advanced tools can generate social graphs, maps, and
other complex diagrams. Among the advanced tools, the zoom-in
visualization tool is one of the most important features of YZStack.

Our experience shows that there is normally a mismatch of an-
ticipation between the end customers and system deliverables. Al-
though we have provided the data mining tools, OLAP tools and
other analytic tools, the customers still do not know how to lever-
age them to process their data. One popular question is whether we
can help them use those tools to uncover the hidden value in their
data. However, without specific domain knowledge, it is difficult
for us to customize the analysis for their demands.

To narrow the gap, we provide a zoom-in visualization tool. The
idea is to first show the big picture to users, so they can identify
the interesting part and zoom in to perform a more comprehensive
analysis. The zoom-in tool is linked to the background YZepiC
engine and the corresponding algorithms. Each interaction between
users and the tool triggers a new job processing billions of tuples.

Given a data source D, the interface of zoom-in tool is a triple
T = (Θ,Λ,Γ), where Θ defines a concept set, Λ is a set of analysis
algorithms that can be applied to subsets of D and Γ represents the

9https://hive.apache.org/

Virtual

Server

Virtual

Server

Virtual

Server...

Distributed File System

Schema

Metadata
Data Statistics

Table

File

Tablet

File

Tablet

File
...

Relational Data Service

YZepiC

SQL Query Parser

Query Optimizer Query Engine

Relational Analytical Engine

OLAP Module Data Mining Module

Data Importer

Tax Energy EnvironmentTraffic Human ElectronicIndex Plugin

Visualization Tool

Security Plugin

Monitor Plugin

Figure 4: Smart Financial System

navigation operators. Θ is organized as a tree or forest structure
and the relationships between concepts are defined by Γ as

∀γ ∈ Γ,∀θ ∈ Θ ⇒ ∃Θ′ ⊆ Θ ∧Θ′ = γ(θ)

A projection operator ⊙ is also defined for concept θ and data
source D. In particular, ⊙(θ,D) returns a data set S ⊆ D, and
for any tuple in S, it satisfies the concept θ.

Let {θ1, ..., θk} be the top concepts in Θ. Initially, D is parti-
tioned into subsets {⊙(θ1,D), ...,⊙(θk,D)}. All operators in Λ
are applied to each subset to produce the analysis results which are
visualized to users. Users can select one specific concept and its
subset to view the results. He can either zoom in the analysis by
using the navigation operators defined in Γ. Consequently, a set of
new concepts are generated and we redo the analysis for the new
concepts and their subsets.

As an example, we define Θ as the time concepts, Λ as {avg,
sum, var}, and Γ as {drill down, drill up} for the OLAP application
respectively. So we can generate statistics of the database for any
granularity of time (year, month or day). Another example is in the
data mining context, where we can define Θ as the the wordnet’s
concepts, Λ as the frequent pattern mining algorithm and Γ as the
{getparent, getchild} operations to provide more accurate pattern
mining results for the documents.

The functionality of zoom-in visualization tool is still very lim-
ited. Our recent work focus on studying how the user’s query can
be visualized more naturally and how the results can be presented
to inspire users. The tool has already drawn attention from our cus-
tomers and is praised for its ability to discover the hidden patterns.

3. SMART FINANCIAL SYSTEM
YZStack has been commercialized as a customizable solution

for big data. We collaborate with our Chinese customers to build
various big data systems. One successful use case is the smart
financial system, a system built for the Zhejiang Provincial De-
partment of Finance (ZPDF) which is the financial data center of
Zhejing Province that connects to many other government depart-
ments, such as the electronic department, traffic department and tax
department.

Figure 4 shows how we customize YZStack to build the smart
financial system. In the IaaS layer, we establish a cluster with
20 high-end virtual servers which is capable of handling curren-
t dataset (about 15TB data), and we can elastically scale up the
cluster when more processing resources are required. Because the
smart financial system is used as a data warehouse to analyze the

1781

financial data where other departments periodically export their fi-
nancial data into the system, in the DaaS and PaaS layer, we only
keep the relational data service and analytical engine. We do not
need to support the unstructured data and the real-time OLTP pro-
cessing. In the top SaaS layer, various visualization tools are pro-
vided for users to explore the financial data. Interactions with the
visualization tools are handled by the OLAP and data mining algo-
rithms which are further translated into YZepiC jobs for process-
ing. In this section, we discuss two applications being developed
on top of the smart financial system.

3.1 Economic Prediction
Based all collected financial data, ZPDF wants to summarize and

predict the macroeconomic trend of Zhejiang Province. Although
this is a very challenging job, it has been shown previously that
big data analysis can provide a very accurate economic view. The
Billion Prices Project10 at MIT successfully predicts the deflation
trend during the economic crisis from 2008 to 2009 by collecting
the daily prices of more than 500K products. Because ZPDF owns
high-quality financial data, it believes that we can provide a more
insightful view of the macroeconomics using the data. It wants us
to predict the trends of economics and help identify the potential
problems.

To provide an accurate prediction, we are collaborating with the
researchers from college of economics, Zhejiang University. The
analysis is conducted as an iterative process where our economic
experts build the analytic models and we help them implement the
models on the system. The analytic results are returned to the e-
conomic experts for verification who may adjust the models and
repeat the above process. Currently, the analysis is conducted in
three steps:

First, we use the OLAP module to provide a basic view for each
registered company. A data cube is generated for data from ZPDF
and Zhejiang Provincial Administration for Industry and Commerce.
The data cube provides the statistics about the company’s income
and expenses. Users can view the results by varying the time and
category dimension. Moreover, the real spending of a company is
compared to its financial budget, indicating whether the company
is expanding its business or shrinking it. All results in step 1 only
show the financial status of an individual company which are used
as the input in the following steps.

In the second step, we are using models provided by our econom-
ic experts to summarize financial reports of the companies from the
same industry. There are three models being developed:

Healthy Model Based on the historical data, the healthy model
discovers risks and predicts prospects of an industry. It clus-
ters companies by their business scopes. As large companies
are involved in a variety of business operations, they can be
assigned into multiple clusters. The model runs predefined
analysis for each cluster to compute the aggregate results
such as total revenue, total profit and other economic indi-
cators. The aggregate results are then fed to the model gain
to generate predictions for the whole industry.

Energy Consumption Model We link the financial data with the
electronic, water, and environment data to rank each industry
based on its energy consumption per unit of output value. We
also estimate its impact on the environment using the data
from Zhejiang Environmental Protection Bureau.

10http://bpp.mit.edu/

Economic Impact Model By connecting the financial data to the
human resource data, we study how many workers are em-
ployed for an industry and their average salary. Based on the
supply chain relationship, we build a network to connect the
upstream industries to the downstream ones. Using this net-
work, we compute how a specific industry affects the others.
In particular, we generate an impact index for all industries.

The last job of step two is to combine all three models to rank all
industries accordingly. ZPDF requires us to show them which in-
dustry should be renovated and which one should be migrated out
from Zhejiang province due to its low contribution to the economic-
s and high energy consumption.

The last step is the most challenging task which tries to gener-
ate an economic index to predict the status of the whole Zhejiang
Province using statistics generated by previous two steps. This is an
ongoing work involving multiple complex economic models. We
are working closely with our economic researchers to study the ef-
fects of different parameters extensively using our zoom-in visual-
ization tool and its backend analysis modules.

3.2 Detection of Improper Payment
The smart financial system has collected data from different gov-

ernment departments. Previously, those departments never or sel-
dom share their data with each other. So we find that there are many
inconsistent data in the databases which are the major cause of im-
proper payment. For example, in the property database, a person
is classified as the low-income type and buys a house specially for
low-and-medium wage earners. However, in the human database,
he is employed by an IT company and has a very high pay. Another
example is commonly found when companies apply for the govern-
ment projects. One company may submit different registration files
to different government departments (e.g., it registers as a high-tech
company in the Department of Science, but as a labor-intensive one
in the Department of Labor) to enjoy various allowances from the
government. Preventing those improper payments can save more
than one billion CNYs of government funding per year.

There are various types of improper payments. We are work-
ing with our economic researchers to develop a series of models to
cover different improper payment cases. As the first step to detect
the improper payment, we customize a big data verification model
using the algorithms provided in the OLAP module and data min-
ing module. Figure 5 illustrates the data flow of the model. Given
two databases, we want to return all pairs of tuples that may refer
to the same entity. Note that there are many sophisticated entity
resolution algorithms [6][7]. However, they are too complicated to
be parallelized, and for our datasets, they only result in less than
10% improvement in recall than our approach.

To detect improper payment from two databases, D0 and D1,
we first generate two star-join queries, Q0 and Q1, which selec-
tively merge the fact tables with the dimension tables. The trick is
that the entities returned by Q0 should not exist in the results of
Q1. E.g., Q0 returns the high-income persons, while Q1 return-
s the users who own a house specially for low-and-medium wage
earners. Our economic researchers predefine such pairs of queries
as rules which are periodically evaluated by our improper payment
detection algorithm.

The algorithm works as follows. Let T0 and T1 be the results of
Q0 and Q1 respectively. In the naive approach, for a tuple ti in T0,
we need to compare ti with every tuple in T1 and return all possible
matches. However, that is equivalent to an expensive cross product.
Hence, we apply the LSH (Locality Sensitive Hashing) to generate
k hash values for each tuple from T0 and T1. So the tuples sharing
the same hash value are considered as a candidate group. Given

1782

Fact

Table

Dimension TableDimension Table Fact

Table

Dimension TableDimension TableCandidate Group Candidate Group Candidate GroupVerification
Figure 5: Detection of Inconsistent Data

two tuples ti and tj from T0 and T1 respectively, ti is compared to
tj only when they are from the same candidate group. We define
a similarity function sim(ti, tj) to evaluate the probability of two
tuples representing the same entity. If sim(ti, tj) is greater than a
predefined threshold, it will be forwarded to the verification mod-
ule where a human-aided algorithm is applied to filter out the false
positives.

The selection of LSH and similarity function affects the recal-
l and precision of the result. We consider each tuple as a small
document with a set of keywords. Two sets of configurations are
currently supported. Users can either use minhash [1] and Jaccard
similarity or random projection hash [2] and cosine similarity. Both
configurations are supported by the data mining modules and in our
test, they result in a similar recall.

In fact, the model in Figure 5 is a perfect match for YZepiC. In
YZepiC, we create one specific type of actors for each task. Al-
l actors are connected as a DAG (Directed Acyclic Graph) where
data flow between different types of actors. Only one YZepiC job
is required to process the data. On the contrary, if we use Hadoop,
we need to generate five MapReduce jobs, among which four are
submitted to process the joins and one is used to do the compari-
son. Figure 6 shows the performance comparison between YZepiC
and Hadoop. Both systems run as a disk-based processing system,
while our in-memory engine is being developed. Figure 7 shows
the recall of our approach compared to the baseline approach (do-
ing cross product between tables). In the test, we generate two
synthetic databases using the tools provided by ZPDF, a human
database and an employee database. Each database has one fac-
t table and two dimension tables. Our system is deployed on top
of a cluster with 20 nodes. Each node generates the same size
of data (by default, 1GB) for the databases. We select the per-
sons who claim to be low-income from the human database and
compare them against the persons who earn more than 5000 CNY
per month from the employee database. As shown in the figures,
YZepiC achieves a much better performance than Hadoop on al-
l datasets, and our LSH approach can return 99% of suspicious
records by only using 5 hash functions.

4. CONCLUSION
In this paper, we present the design and implementations of YZS-

tack system, our customizable solution for the big data applications.
YZStack is tailored for the users who have little or no experience in
deploying and maintaining the cloud system. It simplifies the de-
velopment of a new big data application as the process of module
selection and customization. To show the flexibility and usability
of YZStack, we demonstrate how we build a smart financial system
for the Zhejiang Provincial Department of Finance using YZStack.
On top of the financial system, two applications, economic predic-
tion and detection of improper payment, are developed to address
real world problems.

 0

 200

 400

 600

 800

 1000

1G 2G 3G 4G 5G

P
ro

c
e
s
s
in

g
 T

im
e
 (

S
e
c
o

n
d

)

Data Size

YZepiC
Hadoop

Figure 6: YZepiC VS Hadoop

 75

 80

 85

 90

 95

 100

2 3 4 5 6 7

R
ec

al
l (

P
er

ce
nt

ag
e)

Number of Hash Functions

recall

Figure 7: Recall of Suspicious
Records

5. REFERENCES
[1] A. Z. Broder, M. Charikar, A. M. Frieze, and

M. Mitzenmacher. Min-wise independent permutations
(extended abstract). In STOC, pages 327–336, 1998.

[2] M. Charikar. Similarity estimation techniques from rounding
algorithms. In STOC, pages 380–388, 2002.

[3] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient
access method for similarity search in metric spaces. In
VLDB, pages 426–435, 1997.

[4] J. Dean and S. Ghemawat. Mapreduce: Simplified data
processing on large clusters. In OSDI, pages 137–150, 2004.

[5] D. Gavrila. The visual analysis of human movement: A
survey. Computer Vision and Image Understanding,
73(1):82–98, 1999.

[6] L. Getoor and A. Machanavajjhala. Entity resolution:
Theory, practice & open challenges. PVLDB,
5(12):2018–2019, 2012.

[7] L. Getoor and A. Machanavajjhala. Entity resolution for big
data. In KDD, page 1527, 2013.

[8] J. M. Hellerstein, J. F. Naughton, and A. Pfeffer. Generalized
search trees for database systems. In U. Dayal, P. M. D.
Gray, and S. Nishio, editors, VLDB, pages 562–573. Morgan
Kaufmann, 1995.

[9] D. Jiang, G. Chen, B. C. Ooi, K.-L. Tan, and S. Wu. epic: an
extensible and scalable system for processing big data.
PVLDB, 7(7):541–552, 2014.

[10] Y. Lin, D. Agrawal, C. Chen, B. C. Ooi, and S. Wu. Llama:
leveraging columnar storage for scalable join processing in
the mapreduce framework. In SIGMOD Conference, pages
961–972, 2011.

[11] P. Lu, G. Chen, B. C. Ooi, H. T. Vo, and S. Wu. Scalagist:
Scalable generalized search trees for mapreduce systems.
Technique report, National University of Singapore, 2014.

[12] P. Lu, S. Wu, L. Shou, and K.-L. Tan. An efficient and
compact indexing scheme for large-scale data store. In
ICDE, pages 326–337, 2013.

[13] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: a system for
large-scale graph processing. In SIGMOD, 2010.

[14] S. Wu, F. Li, S. Mehrotra, and B. C. Ooi. Query optimization
for massively parallel data processing. In SoCC, page 12,
2011.

[15] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica. Spark: Cluster computing with working sets. In
HotCloud, 2010.

1783

