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ABSTRACT 

Deep learning gains lots of attentions in recent years and is more 

and more important for mining values in big data. However, to 

make deep learning practical for a wide range of applications in 

Tencent Inc., three requirements must be considered: 1) Lots of 

computational power are required to train a practical model with 

tens of millions of parameters and billions of samples for products 

such as automatic speech recognition (ASR), and the number of 

parameters and training data is still growing. 2) The capability of 

training larger model is necessary for better model quality. 3) 

Easy to use frameworks are valuable to do many experiments to 

perform model selection, such as finding an appropriate 

optimization algorithm and tuning optimal hyper-parameters. To 

accelerate training, support large models, and make experiments 

easier, we built Mariana, the Tencent deep learning platform, 

which utilizes GPU and CPU cluster to train models parallelly 

with three frameworks: 1) a multi-GPU data parallelism 

framework for deep neural networks (DNNs). 2) a multi-GPU 

model parallelism and data parallelism framework for deep 

convolutional neural networks (CNNs). 3) a CPU cluster 

framework for large scale DNNs. Mariana also provides built-in 

algorithms and features to facilitate experiments. Mariana is in 

production usage for more than one year, achieves state-of-the-art 

acceleration performance, and plays a key role in training models 

and improving quality for automatic speech recognition and image 

recognition in Tencent WeChat, a mobile social platform, and for 

Ad click-through rate prediction (pCTR) in Tencent QQ, an 

instant messaging platform, and Tencent Qzone, a social 

networking service. 

1. INTRODUCTION 

1.1 Backgroud 
Tencent provides a wide range of Internet services, such as 

WeChat, a mobile social platform having 396 millions of monthly 

active users (MAU), QQ, an instant messaging platform having 

848 millions of MAU, and Qzone, a social networking service 

having 644 millions of MAU in the first quarter of  2014. Tencent 

holds over 100 PB data from various applications, plus more user 

generated content (UGC) such as photos, audios, and videos. 

Deep learning is a hot topic in mining values in big data in recent 

years [1], and makes a breakthrough in several different fields, 

such as automatic speech recognition (ASR) [2] and image 

recognition [3]. Deep learning has potential benefits for various 

applications in Tencent, such as speech recognition and image 

recognition in WeChat, and advertising in QQ and Qzone, to 

improve application quality, build exciting applications, and 

increase revenue. 

To make deep learning practical in Tencent to realize benefits, 

three requirements must be considered. 

 Lots of computational power and efficient parallelism is 

needed to train models fast. For example, acoustic model of 

automatic speech recognition for Chinese and English in 

Tencent WeChat adopts a deep neural network with more 

than 50 millions of parameters, more than 15 thousands of 

senones (tied triphone model which is represented by one 

output node in output layer in a DNN), and tens of billions 

of samples, so it would cost years to train this model by a 

single CPU server, or months by a single off-the-shelf GPU.  

 Support for training large models is necessary to improve 

model quality. Since it is validated that more filter maps and 

more layers for CNN networks could both contribute to 

better classification accuracy. 

 Easy to use frameworks are valuable to do various 

experiments to perform model selection, such as choosing 

model architectures, finding optimization methods and 

tuning optimal hyper-parameters for a high performance 

model, especially for applications with mass data. 

To meet above requirements, parallel frameworks are essential to 

make training model faster, bigger, and easier. 

Data parallelism and model parallelism are introduced in Google 

DistBelief [4] for CPU clusters, and also used in Google COTS 

systems [5] for GPU servers as well as Facebook multi-GPU 

training [6]. Data parallelism launches multiple model replicas for 

different mini-batches, and collects gradients to update model 

parameters. Model parallelism involves multiple workers each 

holding parts of the model and swapping activations and errors to 

complete a mini-batch. Besides improving performance, model 

parallelism reduces memory consumption for each worker, thus 

make it possible to build larger models. 

Besides company proprietary frameworks, some deep learning 

frameworks are emerged in the open source community using 

CPUs or GPUs. However, available open source frameworks do 

not meet the requirements in Tencent. These frameworks usually 
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train models using a single multi-threaded CPU server, or a single 

GPU, therefore lack of efficient parallelism or large model 

support for tremendous training data and large scale models in 

Tencent. For the easy to use requirements, these frameworks 

usually need tons of efforts to code, deploy, and configure to 

make them be able to start new experiments. 

1.2 Platform Overview 
To support emerging deep learning applications in Tencent, we 

built Mariana, the Tencent deep learning platform, to accelerate 

training, support large models, and facilitate experiments. 

We found it's hard to construct a one-size-fits-all framework to 

support a wide range of applications including speech recognition 

and image recognition in WeChat, and Ads pCTR in QQ and 

Qzone. Different applications emphasize different aspects of 

requirements. 

So Mariana builds three parallel frameworks for different 

applications: 1) a multi-GPU data parallelism framework for deep 

neural networks (DNNs). 2) a multi-GPU model parallelism and 

data parallelism framework for deep convolutional neural 

networks (CNNs). 3) a CPU cluster framework with model 

parallelism and data parallelism for large scale DNNs.  

Mariana makes efforts to simplify deep learning experiments and 

offload burden of algorithm engineers.  Mariana provides built-in 

algorithms, allows flexible hyper-parameter tuning, supports 

checkpoint and restart at configurable periods, generates 

automatically test reports, and enables training jobs monitoring. 

Mariana is used by various applications such as automatic speech 

recognition in WeChat, image recognition in WeChat and Ad 

click-through rate prediction (pCTR) in QQ and Qzone, and plays 

a key role for these applications in Tencent for more than one year. 

Mariana uses GPU servers each equipped with 4 or 6 GPUs, and 

also has CPU servers. 

The multi-GPU data parallelism DNN framework is used to build 

the acoustic model of automatic speech recognition in Tencent 

WeChat, and gains a speedup of 4.6 times by 6 GPUs in one 

server compared to one GPU.  

The multi-GPU model parallelism and data parallelism CNN 

framework trains image recognition model for Tencent WeChat 

and for Ads pCTR in QQ and Qzone. The CNN framework for 

ImageNet 2012 dataset with Krizhevsky's network [3] using 4 

GPUs gains a speedup of 2.52 times over one GPU. 

The CPU cluster framework is also used to build model of 

automatic speech recognition. 

This paper is organized as follows. Section 2 describes the multi-

GPU data parallelism framework for DNNs. Section 3 introduces 

the multi-GPU model parallelism and data parallelism framework 

for Deep CNNs. Section 4 gives a brief description for the CPU 

cluster framework. Section 5 shows applications and evaluations. 

Section 6 discusses related work. Section 7 concludes this paper. 

2. MULTI-GPU DATA PARALLELISM 

FRAMEWORK FOR DEEP NEURAL 

NETWORKS 

2.1 Application Requirements 
Mariana includes a multi-GPU data parallelism framework for 

DNNs, and its first target application is acoustic model of 

automatic speech recognition. 

Acoustic model of ASR tries to classify triphones from input 

audio signals. Acoustic model uses a fully connected 4 to 6 

hidden layers deep neural networks with about 50 millions of 

parameters. 

ASR needs many computational power, but consumes only about 

1 GB memory, so GPU is a good available option which has much 

higher computational power compared to microprocessors but 

with limited memory. To exploit multiple GPUs in one server, we 

first built a model parallelism framework for ASR and gained a 

1.5 times speedup with two GPUs. However, model parallelism 

has limited scalability for ASR and could not achieve better 

performance when using more than two GPUs. So we pay much 

more attention to data parallelism for multi-GPU DNN framework. 

2.2 Architecture 
To control the data parallelism training, a worker group is used 

for each model replica. Since the DNN framework has no model 

parallelism, each worker group contains one GPU. 

Multi-GPU data parallelism DNN framework uses a driver 

program running in CPUs to control the whole synchronized 

stochastic gradient descent (SGD) training process. The driver 

program threads read next round training samples as mini-batches 

from disk, and copy these samples from CPU memory to GPU 

memory for next round training. At the same time, the driver 

program waits for all GPUs to finish training its assigned mini-

batches in current round, and then coordinates the parameter 

swapping between all GPUs.  

2.3 Parameter Swapping 
Parameter swapping process is illustrated in Figure 1 and has 

three phases in logical view. First, the gradient collection phase 

gathers gradients from all GPUs. Then, the parameter updating 

phase updates the model with the gathered gradients. Last, the 

parameter distribution phase scatters the updated model to all 

GPUs. In physical view, parameter swapping copies data through 

PCIe or input output hub (IOH) connections between GPUs. For a 

multi-GPU server, GPUs are connected by PCIe switches in a tree 

topology. For a server with more than 4 GPUs, these GPUs are 

organized as two groups connected by an IOH. 
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Figure 1. Multi-GPU parameter swapping. 

The parameter swapping is overhead for data parallelism for each 

round mini-batches. Parameter swapping performance is limited 

by PCIe and IOH bandwidth, which is about 4 to 6 GB/s for PCIe 

2.0, and is much slower than 200+ GB/s GPU memory bandwidth 

for GPUs like NVIDIA Tesla K20 serials. With more GPUs for 

data parallelism, the parameter swapping becomes worse 

performance bottleneck. 

2.4 Partitioned Linearity Topology for 

Parameter swapping 
The key to improve parameter swapping performance is a novel 

topology to minimize total copied data and maximize the 

utilizations of all bandwidths between GPUs. 

A straightforward solution is a star topology, where each GPU 

copies its gradients to all other GPUs. For N GPUs, there are N2 / 

2 gradients to be copied and the copies data obviously is not 

minimal. Another common solution is a tree topology, which 

gathers gradients from leaves to the root, but not all GPU 

bandwidths are used during gradients collection or parameter 

distribution for top tree levels. 

In this paper, we propose a partitioned linearity topology, and 

show how N GPUs (e.g. N = 6) to collect gradients in Figure 2. 

GPU 0 GPU 1 GPU 2 GPU 3 GPU 4 GPU 5

 

Figure 2. Partitioned linearity topology for data parallelism: 

the gradient collection phase. 

In the partitioned linearity topology, we split model and gradients 

as N / 2 partitions, and assign a GPU as the owner for each 

partition. In each period, each partition is transferred to and 

merged with its next adjacent GPU, while all the N / 2 data 

transfer flows don't interfere with each other. After N - 1 periods, 

each partition owner collects all GPU's gradients of its owned 

partition, and then applies the gradients locally to update its 

owned model partition. The distribution phase distributes the 

latest model to all GPUs in a similar topology, except in a 

reversed direction.  

The partitioned linearity topology performance could be modeled 

as follows. Let T0 be the time copying a whole model between 2 

GPUs, then time to swap parameter for a mini-batch between N 

GPUs is in equation 1. As a result, parameter swapping time has 

the upper bound 4T0, so it is easy to be scaled up to 8 or even 

more GPUs. 

N

N
T

1
4    timeswappingParameter  0


     (Equation 1) 

2.5 Approximate AdaGrad 
We further introduce the approximate AdaGrad learning rate in 

data parallelism to reduce overhead of AdaGrad [7]. AdaGrad 

needs to accumulate a helper sum for each parameter. Let 

helper_sumij be the helper sum of the i-th round updates of each 

parameter j as shown in equation 2. Helper sum accumulates 

square of gradients and reduces learning rate, so that to make each 

parameter be updated with its own monotonically decreasing 

learning rate. 

   


IDGPUMAX

idgpu

i

k kjij gradientssumhelper
__

0_ 0

2_   (Equation 2) 

Helper sum is also split into N / 2 partitions and collected from all 

GPUs by linear topology like gradient collection. However, helper 

sum does not need distribution phase since global helper sum is 

only useful for partition owner in the parameter updating phase. 

Furthermore, we introduce the Approximated AdaGrad by 

reducing the frequency of helper sum collecting, which means 

each GPU accumulates local helper sum every mini-batch, while 

the partition owner only collects helper sum every M mini-batches 

among all GPUs. 

3. MULTI-GPU MODEL PARALLELISM 

AND DATA PARALLELISM FRAMEWORK 

FOR DEEP CONVOLUTIONAL 

NETWORKS 

3.1 Application Requirements 
Mariana includes a multi-GPU model parallelism and data 

parallelism framework for deep CNNs and majorly aims to 

computer vision applications such as image recognition. The CNN 

framework could also be used for automatic speech recognition. 

Deep CNNs introduced by Krizhevsky etc [3] gains best accuracy 

in ImageNet 2012 1000-category classification contests. This 

network has five partitioned convolutional layers and three fully 

connected layers, includes about 50 millions parameters, and is 

trained on about 1.2 million images. 

Both model parallelism and data parallelism are beneficial to 

image classification jobs with deep CNNs. Model parallelism is 

necessary because the consumed memory is 3.99 GB and is close 

to the limit of some GPUs memory. For image classification 

applications, large GPU memory is important to train larger 
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networks to get better results. Data parallelism is a good 

supplement for model parallelism to further speed up training with 

more GPUs. 

3.2 Architecture 
The architecture of the multi-GPU model parallelism and data 

parallelism CNN framework is illustrated in Figure 3, and uses 

Krizhevsky's network [3] for ImageNet 2012 dataset as an 

example.  

Transfer 

Layer

GPU 0

GPU 1

Worker Group 0

Transfer 

Layer

GPU 2

GPU 3

Worker Group 1

 

Figure 3. Architecture of multi-GPU model parallelism and 

data parallelism framework for deep CNNs. 

For a 4 GPU server, there are two worker groups for data 

parallelism and each worker group has two GPUs for model 

parallelism. In each worker group, the model is partitioned and 

stored in two GPUs. During forward and backward propagation 

for each mini-batch, activations and errors are swapped between 

these two GPUs in the same worker group. When a mini-batch is 

finished, parameter swapping is needed to collect gradients and 

distribute new model of the same partition in two worker groups. 

As in figure 3, GPU 0 and GPU 2 swap parameters for the first 

model partition, while GPU 1 and GPU 3 swap parameters for the 

second one. 

3.3 Partitioned Linearity Topology for 

Parameter Swapping in Data Parallelism 
The partitioned linearity topology is also used in data parallelism 

of multi-GPU deep CNNs. The idea is the same as the one in the 

DNN framework, and the implementation is similar. 

For 4 GPUs configuration using both model parallelism and data 

parallelism, the topology degrades to a more simple way: only two 

worker groups need swapping parameters, each for its owned 

partition. 

3.4 Transfer Layer 
We introduce transfer layer to simplify code and improve 

computing performance for model parallelism. Transfer layer  

improves performance by involving inter-GPU data copy to 

ensure only local GPU memory access. Each transfer layer is 

automatically created between two adjacent layers across different 

GPUs, for both forward and back propagation. Each transfer layer 

copies activation or errors internally as necessary to accomplish 

model parallelism. An execution engine is responsible for driving 

and orchestrating computations in different GPUs. 

3.5 Pipeline Optimization 
Before feeding training data to GPUs, reading training data and 

preparing for above CNN network are time-consuming tasks for 

images, which become more severe after model parallelism and 

data parallelism are exploited to optimize GPU compute time. We 

adopt a three-stage pipeline for the training process, including 

training data reading, training data processing (deserializing, 

extracting pixel values, and cropping image borders et al.), and 

CNN training. Each stage handles 2 batches by a thread pool. 

Note that these three stages are I/O intensive, CPU intensive and 

GPU intensive tasks respectively, so that we can balance 

workload and fully utilize system resources. 

4. CPU CLUSTER FRAMEWORK 

4.1 Application Requirements 
Mariana includes a CPU cluster data parallelism and model 

parallelism framework for DNNs. DNN CPU cluster framework 

aims to two kinds of applications. First, CPU cluster is useful for 

applications needing large model with huge memory 

consumptions, moderate computational power for one mini-batch, 

and lots of training data. This kind of applications needs both data 

parallelism and model parallelism, and must be rewritten to solve 

this large scale problem. Second, legacy CPU training 

applications could be empowered by data parallelism with little 

code modification to become a parallel version. 

4.2 APIs and Architecture 
The DNN CPU cluster framework introduces a vertex abstraction 

with messages to form a Bulk Synchronous Parallel (BSP) 

paradigm. A vertex could be a neuron or a group of continuous 

neurons or even a whole DNN model. The vertex APIs include 

methods to support gradient serialize and parameter deserialize for 

parameter swapping. DNN jobs in CPU cluster are trained in 

asynchronous SGD for many iterations. 

The DNN CPU cluster framework architecture is showed in 

Figure 4.  
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Figure 4. Architecture of CPU cluster framework for DNNs. 

A client CLI tool is used to submit DNN jobs, then the master, 

workers, and parameter servers are scheduled through a resource 

management system. The master splits training data as tasks, 

schedules tasks among worker groups, and manages task failover. 

Master manages job status, task status, and worker group status 

through heartbeats, and sinks status to database to keep jobs 

history. Master collects counters from workers and parameter 

servers. Web UI connects to master and shows the DNN job 

internal status and counters. A coordinator is selected from a 

worker group to negotiate the model parallelism for each mini-

batch among workers in a BSP paradigm. Workers do real 

computation work and send messages within a worker group to 

support model parallelism. Each parameter server keeps a shard of 
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model, and interacts with corresponding workers to collect 

gradients and distribute latest model. Parameter servers write 

model shards periodically to distributed file system for durability. 

5. APPLICATIONS AND EVALUATIONS 
Mariana is currently used in training models for automatic speech 

recognition, image recognition, and Ads pCTR. The 

configurations of GPU servers are as follows: 4 to 6 NVIDIA 

Tesla K20c GPUs with 4.8 GB memory, two 8-core Intel(R) 

Xeon(R) CPU E5-2640 v2 @ 2.00GHz, 48 GB memory, 4 

Seagate 2 TB SATA disks organized as RAID5. The only 

difference is that ASR uses 6 GPUs in one server while image 

recognition uses 4 GPUs. 

5.1 Automatic Speech Recognition 
Automatic speech recognition is now used in Tencent WeChat as 

voice input, speech open platform, and translating audio message 

to text. With voice input, users talk to WeChat directly, get the 

corresponding text message automatically, and send to friends. 

With the open speech platform, third-party companies could 

integrate ASR ability to their products effectively and efficiently. 

With translating audio message to text, users press received 

speech messages from friends for a short time to automatically 

translate speech to text when it's not convenient to listen to the 

message.  

Now Mariana becomes the basis of model training for all ASR 

functions in WeChat. Along with the multi-GPU data parallelism 

DNN framework as the major tool, the DNN CPU cluster 

framework also serves as a complement method to train ASR 

models. 

ASR includes acoustic modeling, language modeling, and 

decoding. Acoustic model is equipped with DNNs to enrich the 

capability to capture the distribution of acoustic signals. 

To train the acoustic model, we construct a DNN network with a 

616-node input layer, 4 hidden layers, a softmax output layer with 

about 16000 nodes, and more than 50 millions parameters. To 

make DNN model estimation stable, billions of samples are 

gathered to train the model. 

With 6 GPUs data parallelism, we gain 4.6 times speedup over 

one GPU. With approximate AdaGrad learning rate, the model 

converges in less than one week, and the character error rate 

decreases more than 10% comparing with the previous model 

trained by multi-GPU model parallelism framework without 

AdaGrad. 

5.2 Image Recognition 
Potential image recognition applications with deep learning are 

ImageNet classification as a benchmark, image recognition in 

Tencent WeChat, and Ads pCTR in Tencent QQ and Qzone. 

All above image recognition applications could use the Mariana 

to train models, and majorly uses the multi-GPU model 

parallelism and data parallelism framework for deep CNNs. 

We train our model on the ImageNet 2012 training set (1.2 

million images, over 1000 different classes) using Mariana. We 

consider model parallelism and data parallelism with 4 different 

configurations to explore the impact of parallelism. As a 

comparative model, we use the same network as Krizhevsky’s in 

ImageNet 2012 [3]. 

With our deep CNN framework, 2 GPUs model parallelism 

speedup is 1.71 times over one GPU for training one batch. With 

4 GPUs employing both model and data parallelism, we gain a 

speedup 2.52. For 4 GPUs data parallelism, the speedup is 2.67. 

Table 1. Multi-GPU performance in speedup vs 1 GPU 

Configurations Speedup vs 1 GPU 

2 GPUs model parallelism 1.71 

2 GPUs data parallelism 1.85 

4 GPUs model + data parallelism 2.52 

4 GPUs data parallelism 2.67 

 

For ImageNet classification, memory for each GPU is reduced 

from 3.99 GB to 2.15 GB with model parallelism and is able to 

train larger CNN network using the same GPUs. Both using the 

data parallelism and model parallelism, we get the same error rate 

as the Krizhevsky’s on the ImageNet 2012 validation set. 

We also explore different model architectures from Krizhevsky’s 

network on the ImageNet 2012 data set using Mariana. By cutting 

the filter size of the first convolutional layer and increasing the 

number of feature maps in the middle layers, we get a better 

performance, beating Krizhevsky’s single model result by 2%. 

6. RELATED WORK 
Several frameworks have been emerged to accelerate and facilitate 

deep learning. 

Google DistBelief [4] is a CPU cluster framework employing data 

parallelism and model parallelism to train a deep network with 

over 1 billion parameters using tens of thousands of CPU cores. 

DistBelief provides downpour SGD and sandblaster L-BFGS and 

is used for speech recognition and the 21k category ImageNet 

classification. 

A deep convolutional neural network [3] is designed by 

Krizhevsky to get top 5 error rate 15% for ImageNet LSVRC-

2012 1000-category classification contest by an efficient GPU 

implementation Cuda-Convnet using two GPUs model parallelism. 

Cuda-Convnet is available as an open source toolkit for one single 

GPU CNN training. Cuda-convnet2 [8] improves training 

performance for multi-GPU CNN by a novel composing of  model 

parallelism and data parallelism, but is not open yet. 

Google COTS HPC systems [5] use data parallelism and model 

parallelism in GPU servers with Infiniband interconnects and MPI. 

COTS is able to train 1 billion parameter networks with 3 GPU 

machines in several days. 

Facebook multi-GPU deep CNN [6] is used to employ data 

parallelism and model parallelism to train CNN models, and is 

able to train Krizhevsky's ImageNet 2012 1000-catetory network 

by 4 NVIDIA TITAN GPUs in a couple of days. 

Several open source frameworks are available. 

Caffe [9] provides fast CNN implementations for CPU or a single 

GPU, provides deep learning algorithms, and is able to process 
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more than 40 million images per day with a single NVIDIA K40 

or Titan GPU. 

Kaldi [10] is a speech recognition research toolkit with fast C++ 

and CUDA code to run in CPU or GPU. 

Theano [11] is a Python library to define, optimize, and evaluate 

mathematical expressions involving multi-dimensional arrays, 

which is easily running on CPU or GPU and facilitates DNN 

training. 

7. CONCLUSION 
Deep learning gains notable success in several fields, such as 

automatic speech recognition and image recognition, but is hard 

to be practical for training models for various applications in 

Tencent due to big data, model complexity, and model selection. 

This paper introduces Mariana, the Tencent deep learning 

platform to accelerate training, support large model, and simplify 

experiments for various of applications in Tencent. Mariana 

includes three frameworks: a multi-GPU data parallelism 

framework for DNNs, a multi-GPU model parallelism and data 

parallelism framework for deep CNNs, and a CPU cluster 

framework for large scale DNNs. Mariana also provides built-in 

algorithms and features to facilitate experiments. 

By data parallelism DNN framework with  6 GPUs using 

partitioned linearity topology for parameter swapping, we build an 

acoustic model for ASR with more than 50 million parameters and 

billions of samples and get a 4.6 times speedup over a single GPU. 

Along with approximate AdaGrad, this training job completes in 

less than one week, and the character error rate decreases more 

than 10% compared with that by previous model parallelism 

training. 

By model and data parallelism deep CNN framework with 4 

GPUs using transfer layer and pipeline optimization, we train the 

ImageNet 2012 1000-category classification model and get a 

speedup 2.52 times over one GPU. We construct a larger network 

with model parallelism and beat Krizhevsky’s single model result 

by 2%. 

Mariana has been used for more than one year to train models for 

automatic speech recognition and image recognition in Tencent 

WeChat, and for Ads pCTR in Tencent QQ and Qzone. 
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