
Mariana: Tencent Deep Learning Platform and its

Applications
Yongqiang Zou, Xing Jin, Yi Li, Zhimao Guo, Eryu Wang, Bin Xiao

Tencent Inc.

{aaronzou, xingjin, sincereli, zhimaoguo, eryuwang, leoxiao}@tencent.com

ABSTRACT

Deep learning gains lots of attentions in recent years and is more

and more important for mining values in big data. However, to

make deep learning practical for a wide range of applications in

Tencent Inc., three requirements must be considered: 1) Lots of

computational power are required to train a practical model with

tens of millions of parameters and billions of samples for products

such as automatic speech recognition (ASR), and the number of

parameters and training data is still growing. 2) The capability of

training larger model is necessary for better model quality. 3)

Easy to use frameworks are valuable to do many experiments to

perform model selection, such as finding an appropriate

optimization algorithm and tuning optimal hyper-parameters. To

accelerate training, support large models, and make experiments

easier, we built Mariana, the Tencent deep learning platform,

which utilizes GPU and CPU cluster to train models parallelly

with three frameworks: 1) a multi-GPU data parallelism

framework for deep neural networks (DNNs). 2) a multi-GPU

model parallelism and data parallelism framework for deep

convolutional neural networks (CNNs). 3) a CPU cluster

framework for large scale DNNs. Mariana also provides built-in

algorithms and features to facilitate experiments. Mariana is in

production usage for more than one year, achieves state-of-the-art

acceleration performance, and plays a key role in training models

and improving quality for automatic speech recognition and image

recognition in Tencent WeChat, a mobile social platform, and for

Ad click-through rate prediction (pCTR) in Tencent QQ, an

instant messaging platform, and Tencent Qzone, a social

networking service.

1. INTRODUCTION

1.1 Backgroud
Tencent provides a wide range of Internet services, such as

WeChat, a mobile social platform having 396 millions of monthly

active users (MAU), QQ, an instant messaging platform having

848 millions of MAU, and Qzone, a social networking service

having 644 millions of MAU in the first quarter of 2014. Tencent

holds over 100 PB data from various applications, plus more user

generated content (UGC) such as photos, audios, and videos.

Deep learning is a hot topic in mining values in big data in recent

years [1], and makes a breakthrough in several different fields,

such as automatic speech recognition (ASR) [2] and image

recognition [3]. Deep learning has potential benefits for various

applications in Tencent, such as speech recognition and image

recognition in WeChat, and advertising in QQ and Qzone, to

improve application quality, build exciting applications, and

increase revenue.

To make deep learning practical in Tencent to realize benefits,

three requirements must be considered.

 Lots of computational power and efficient parallelism is

needed to train models fast. For example, acoustic model of

automatic speech recognition for Chinese and English in

Tencent WeChat adopts a deep neural network with more

than 50 millions of parameters, more than 15 thousands of

senones (tied triphone model which is represented by one

output node in output layer in a DNN), and tens of billions

of samples, so it would cost years to train this model by a

single CPU server, or months by a single off-the-shelf GPU.

 Support for training large models is necessary to improve

model quality. Since it is validated that more filter maps and

more layers for CNN networks could both contribute to

better classification accuracy.

 Easy to use frameworks are valuable to do various

experiments to perform model selection, such as choosing

model architectures, finding optimization methods and

tuning optimal hyper-parameters for a high performance

model, especially for applications with mass data.

To meet above requirements, parallel frameworks are essential to

make training model faster, bigger, and easier.

Data parallelism and model parallelism are introduced in Google

DistBelief [4] for CPU clusters, and also used in Google COTS

systems [5] for GPU servers as well as Facebook multi-GPU

training [6]. Data parallelism launches multiple model replicas for

different mini-batches, and collects gradients to update model

parameters. Model parallelism involves multiple workers each

holding parts of the model and swapping activations and errors to

complete a mini-batch. Besides improving performance, model

parallelism reduces memory consumption for each worker, thus

make it possible to build larger models.

Besides company proprietary frameworks, some deep learning

frameworks are emerged in the open source community using

CPUs or GPUs. However, available open source frameworks do

not meet the requirements in Tencent. These frameworks usually

This work is licensed under the Creative Commons Attribution-

NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this

license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain

permission prior to any use beyond those covered by the license. Contact

copyright holder by emailing info@vldb.org. Articles from this volume were

invited to present their results at the 40th International Conference on Very

Large Data Bases, September 1st - 5th 2014, Hangzhou, China.

Proceedings of the VLDB Endowment, Vol. 7, No. 13

Copyright 2014 VLDB Endowment 2150-8097/14/08

1772

train models using a single multi-threaded CPU server, or a single

GPU, therefore lack of efficient parallelism or large model

support for tremendous training data and large scale models in

Tencent. For the easy to use requirements, these frameworks

usually need tons of efforts to code, deploy, and configure to

make them be able to start new experiments.

1.2 Platform Overview
To support emerging deep learning applications in Tencent, we

built Mariana, the Tencent deep learning platform, to accelerate

training, support large models, and facilitate experiments.

We found it's hard to construct a one-size-fits-all framework to

support a wide range of applications including speech recognition

and image recognition in WeChat, and Ads pCTR in QQ and

Qzone. Different applications emphasize different aspects of

requirements.

So Mariana builds three parallel frameworks for different

applications: 1) a multi-GPU data parallelism framework for deep

neural networks (DNNs). 2) a multi-GPU model parallelism and

data parallelism framework for deep convolutional neural

networks (CNNs). 3) a CPU cluster framework with model

parallelism and data parallelism for large scale DNNs.

Mariana makes efforts to simplify deep learning experiments and

offload burden of algorithm engineers. Mariana provides built-in

algorithms, allows flexible hyper-parameter tuning, supports

checkpoint and restart at configurable periods, generates

automatically test reports, and enables training jobs monitoring.

Mariana is used by various applications such as automatic speech

recognition in WeChat, image recognition in WeChat and Ad

click-through rate prediction (pCTR) in QQ and Qzone, and plays

a key role for these applications in Tencent for more than one year.

Mariana uses GPU servers each equipped with 4 or 6 GPUs, and

also has CPU servers.

The multi-GPU data parallelism DNN framework is used to build

the acoustic model of automatic speech recognition in Tencent

WeChat, and gains a speedup of 4.6 times by 6 GPUs in one

server compared to one GPU.

The multi-GPU model parallelism and data parallelism CNN

framework trains image recognition model for Tencent WeChat

and for Ads pCTR in QQ and Qzone. The CNN framework for

ImageNet 2012 dataset with Krizhevsky's network [3] using 4

GPUs gains a speedup of 2.52 times over one GPU.

The CPU cluster framework is also used to build model of

automatic speech recognition.

This paper is organized as follows. Section 2 describes the multi-

GPU data parallelism framework for DNNs. Section 3 introduces

the multi-GPU model parallelism and data parallelism framework

for Deep CNNs. Section 4 gives a brief description for the CPU

cluster framework. Section 5 shows applications and evaluations.

Section 6 discusses related work. Section 7 concludes this paper.

2. MULTI-GPU DATA PARALLELISM

FRAMEWORK FOR DEEP NEURAL

NETWORKS

2.1 Application Requirements
Mariana includes a multi-GPU data parallelism framework for

DNNs, and its first target application is acoustic model of

automatic speech recognition.

Acoustic model of ASR tries to classify triphones from input

audio signals. Acoustic model uses a fully connected 4 to 6

hidden layers deep neural networks with about 50 millions of

parameters.

ASR needs many computational power, but consumes only about

1 GB memory, so GPU is a good available option which has much

higher computational power compared to microprocessors but

with limited memory. To exploit multiple GPUs in one server, we

first built a model parallelism framework for ASR and gained a

1.5 times speedup with two GPUs. However, model parallelism

has limited scalability for ASR and could not achieve better

performance when using more than two GPUs. So we pay much

more attention to data parallelism for multi-GPU DNN framework.

2.2 Architecture
To control the data parallelism training, a worker group is used

for each model replica. Since the DNN framework has no model

parallelism, each worker group contains one GPU.

Multi-GPU data parallelism DNN framework uses a driver

program running in CPUs to control the whole synchronized

stochastic gradient descent (SGD) training process. The driver

program threads read next round training samples as mini-batches

from disk, and copy these samples from CPU memory to GPU

memory for next round training. At the same time, the driver

program waits for all GPUs to finish training its assigned mini-

batches in current round, and then coordinates the parameter

swapping between all GPUs.

2.3 Parameter Swapping
Parameter swapping process is illustrated in Figure 1 and has

three phases in logical view. First, the gradient collection phase

gathers gradients from all GPUs. Then, the parameter updating

phase updates the model with the gathered gradients. Last, the

parameter distribution phase scatters the updated model to all

GPUs. In physical view, parameter swapping copies data through

PCIe or input output hub (IOH) connections between GPUs. For a

multi-GPU server, GPUs are connected by PCIe switches in a tree

topology. For a server with more than 4 GPUs, these GPUs are

organized as two groups connected by an IOH.

1773

IOH

PCIe Switch PCIe Switch

PCIe Switch PCIe Switch PCIe Switch PCIe Switch

GPU 0 GPU 1 GPU 2 GPU 3 GPU 4 GPU 5

CPU 0 CPU 1QPI

QPI QPI

W W W W W W

W

ΔW0 ΔW1 ΔW2 ΔW3 ΔW4 ΔW5

ΣΔWi

Figure 1. Multi-GPU parameter swapping.

The parameter swapping is overhead for data parallelism for each

round mini-batches. Parameter swapping performance is limited

by PCIe and IOH bandwidth, which is about 4 to 6 GB/s for PCIe

2.0, and is much slower than 200+ GB/s GPU memory bandwidth

for GPUs like NVIDIA Tesla K20 serials. With more GPUs for

data parallelism, the parameter swapping becomes worse

performance bottleneck.

2.4 Partitioned Linearity Topology for

Parameter swapping
The key to improve parameter swapping performance is a novel

topology to minimize total copied data and maximize the

utilizations of all bandwidths between GPUs.

A straightforward solution is a star topology, where each GPU

copies its gradients to all other GPUs. For N GPUs, there are N2 /

2 gradients to be copied and the copies data obviously is not

minimal. Another common solution is a tree topology, which

gathers gradients from leaves to the root, but not all GPU

bandwidths are used during gradients collection or parameter

distribution for top tree levels.

In this paper, we propose a partitioned linearity topology, and

show how N GPUs (e.g. N = 6) to collect gradients in Figure 2.

GPU 0 GPU 1 GPU 2 GPU 3 GPU 4 GPU 5

Figure 2. Partitioned linearity topology for data parallelism:

the gradient collection phase.

In the partitioned linearity topology, we split model and gradients

as N / 2 partitions, and assign a GPU as the owner for each

partition. In each period, each partition is transferred to and

merged with its next adjacent GPU, while all the N / 2 data

transfer flows don't interfere with each other. After N - 1 periods,

each partition owner collects all GPU's gradients of its owned

partition, and then applies the gradients locally to update its

owned model partition. The distribution phase distributes the

latest model to all GPUs in a similar topology, except in a

reversed direction.

The partitioned linearity topology performance could be modeled

as follows. Let T0 be the time copying a whole model between 2

GPUs, then time to swap parameter for a mini-batch between N

GPUs is in equation 1. As a result, parameter swapping time has

the upper bound 4T0, so it is easy to be scaled up to 8 or even

more GPUs.

N

N
T

1
4 timeswappingParameter 0

 (Equation 1)

2.5 Approximate AdaGrad
We further introduce the approximate AdaGrad learning rate in

data parallelism to reduce overhead of AdaGrad [7]. AdaGrad

needs to accumulate a helper sum for each parameter. Let

helper_sumij be the helper sum of the i-th round updates of each

parameter j as shown in equation 2. Helper sum accumulates

square of gradients and reduces learning rate, so that to make each

parameter be updated with its own monotonically decreasing

learning rate.

IDGPUMAX

idgpu

i

k kjij gradientssumhelper
__

0_ 0

2_ (Equation 2)

Helper sum is also split into N / 2 partitions and collected from all

GPUs by linear topology like gradient collection. However, helper

sum does not need distribution phase since global helper sum is

only useful for partition owner in the parameter updating phase.

Furthermore, we introduce the Approximated AdaGrad by

reducing the frequency of helper sum collecting, which means

each GPU accumulates local helper sum every mini-batch, while

the partition owner only collects helper sum every M mini-batches

among all GPUs.

3. MULTI-GPU MODEL PARALLELISM

AND DATA PARALLELISM FRAMEWORK

FOR DEEP CONVOLUTIONAL

NETWORKS

3.1 Application Requirements
Mariana includes a multi-GPU model parallelism and data

parallelism framework for deep CNNs and majorly aims to

computer vision applications such as image recognition. The CNN

framework could also be used for automatic speech recognition.

Deep CNNs introduced by Krizhevsky etc [3] gains best accuracy

in ImageNet 2012 1000-category classification contests. This

network has five partitioned convolutional layers and three fully

connected layers, includes about 50 millions parameters, and is

trained on about 1.2 million images.

Both model parallelism and data parallelism are beneficial to

image classification jobs with deep CNNs. Model parallelism is

necessary because the consumed memory is 3.99 GB and is close

to the limit of some GPUs memory. For image classification

applications, large GPU memory is important to train larger

1774

networks to get better results. Data parallelism is a good

supplement for model parallelism to further speed up training with

more GPUs.

3.2 Architecture
The architecture of the multi-GPU model parallelism and data

parallelism CNN framework is illustrated in Figure 3, and uses

Krizhevsky's network [3] for ImageNet 2012 dataset as an

example.

Transfer

Layer

GPU 0

GPU 1

Worker Group 0

Transfer

Layer

GPU 2

GPU 3

Worker Group 1

Figure 3. Architecture of multi-GPU model parallelism and

data parallelism framework for deep CNNs.

For a 4 GPU server, there are two worker groups for data

parallelism and each worker group has two GPUs for model

parallelism. In each worker group, the model is partitioned and

stored in two GPUs. During forward and backward propagation

for each mini-batch, activations and errors are swapped between

these two GPUs in the same worker group. When a mini-batch is

finished, parameter swapping is needed to collect gradients and

distribute new model of the same partition in two worker groups.

As in figure 3, GPU 0 and GPU 2 swap parameters for the first

model partition, while GPU 1 and GPU 3 swap parameters for the

second one.

3.3 Partitioned Linearity Topology for

Parameter Swapping in Data Parallelism
The partitioned linearity topology is also used in data parallelism

of multi-GPU deep CNNs. The idea is the same as the one in the

DNN framework, and the implementation is similar.

For 4 GPUs configuration using both model parallelism and data

parallelism, the topology degrades to a more simple way: only two

worker groups need swapping parameters, each for its owned

partition.

3.4 Transfer Layer
We introduce transfer layer to simplify code and improve

computing performance for model parallelism. Transfer layer

improves performance by involving inter-GPU data copy to

ensure only local GPU memory access. Each transfer layer is

automatically created between two adjacent layers across different

GPUs, for both forward and back propagation. Each transfer layer

copies activation or errors internally as necessary to accomplish

model parallelism. An execution engine is responsible for driving

and orchestrating computations in different GPUs.

3.5 Pipeline Optimization
Before feeding training data to GPUs, reading training data and

preparing for above CNN network are time-consuming tasks for

images, which become more severe after model parallelism and

data parallelism are exploited to optimize GPU compute time. We

adopt a three-stage pipeline for the training process, including

training data reading, training data processing (deserializing,

extracting pixel values, and cropping image borders et al.), and

CNN training. Each stage handles 2 batches by a thread pool.

Note that these three stages are I/O intensive, CPU intensive and

GPU intensive tasks respectively, so that we can balance

workload and fully utilize system resources.

4. CPU CLUSTER FRAMEWORK

4.1 Application Requirements
Mariana includes a CPU cluster data parallelism and model

parallelism framework for DNNs. DNN CPU cluster framework

aims to two kinds of applications. First, CPU cluster is useful for

applications needing large model with huge memory

consumptions, moderate computational power for one mini-batch,

and lots of training data. This kind of applications needs both data

parallelism and model parallelism, and must be rewritten to solve

this large scale problem. Second, legacy CPU training

applications could be empowered by data parallelism with little

code modification to become a parallel version.

4.2 APIs and Architecture
The DNN CPU cluster framework introduces a vertex abstraction

with messages to form a Bulk Synchronous Parallel (BSP)

paradigm. A vertex could be a neuron or a group of continuous

neurons or even a whole DNN model. The vertex APIs include

methods to support gradient serialize and parameter deserialize for

parameter swapping. DNN jobs in CPU cluster are trained in

asynchronous SGD for many iterations.

The DNN CPU cluster framework architecture is showed in

Figure 4.

Web UI

Master

Client

Coordinator

Coordinator

Worker Worker Worker Worker

Parameter

Server

Parameter

Server

Parameter

Server

Parameter

Server

Coordinate

Coordinate

Job Control

Heartbeat

Report Task Info

LogStore

Database

WorkerWorkerWorkerWorker

Parameter Swapping

Trace Job

Message

MessageTrace Job

Heartbeat

Report PS info

Figure 4. Architecture of CPU cluster framework for DNNs.

A client CLI tool is used to submit DNN jobs, then the master,

workers, and parameter servers are scheduled through a resource

management system. The master splits training data as tasks,

schedules tasks among worker groups, and manages task failover.

Master manages job status, task status, and worker group status

through heartbeats, and sinks status to database to keep jobs

history. Master collects counters from workers and parameter

servers. Web UI connects to master and shows the DNN job

internal status and counters. A coordinator is selected from a

worker group to negotiate the model parallelism for each mini-

batch among workers in a BSP paradigm. Workers do real

computation work and send messages within a worker group to

support model parallelism. Each parameter server keeps a shard of

1775

model, and interacts with corresponding workers to collect

gradients and distribute latest model. Parameter servers write

model shards periodically to distributed file system for durability.

5. APPLICATIONS AND EVALUATIONS
Mariana is currently used in training models for automatic speech

recognition, image recognition, and Ads pCTR. The

configurations of GPU servers are as follows: 4 to 6 NVIDIA

Tesla K20c GPUs with 4.8 GB memory, two 8-core Intel(R)

Xeon(R) CPU E5-2640 v2 @ 2.00GHz, 48 GB memory, 4

Seagate 2 TB SATA disks organized as RAID5. The only

difference is that ASR uses 6 GPUs in one server while image

recognition uses 4 GPUs.

5.1 Automatic Speech Recognition
Automatic speech recognition is now used in Tencent WeChat as

voice input, speech open platform, and translating audio message

to text. With voice input, users talk to WeChat directly, get the

corresponding text message automatically, and send to friends.

With the open speech platform, third-party companies could

integrate ASR ability to their products effectively and efficiently.

With translating audio message to text, users press received

speech messages from friends for a short time to automatically

translate speech to text when it's not convenient to listen to the

message.

Now Mariana becomes the basis of model training for all ASR

functions in WeChat. Along with the multi-GPU data parallelism

DNN framework as the major tool, the DNN CPU cluster

framework also serves as a complement method to train ASR

models.

ASR includes acoustic modeling, language modeling, and

decoding. Acoustic model is equipped with DNNs to enrich the

capability to capture the distribution of acoustic signals.

To train the acoustic model, we construct a DNN network with a

616-node input layer, 4 hidden layers, a softmax output layer with

about 16000 nodes, and more than 50 millions parameters. To

make DNN model estimation stable, billions of samples are

gathered to train the model.

With 6 GPUs data parallelism, we gain 4.6 times speedup over

one GPU. With approximate AdaGrad learning rate, the model

converges in less than one week, and the character error rate

decreases more than 10% comparing with the previous model

trained by multi-GPU model parallelism framework without

AdaGrad.

5.2 Image Recognition
Potential image recognition applications with deep learning are

ImageNet classification as a benchmark, image recognition in

Tencent WeChat, and Ads pCTR in Tencent QQ and Qzone.

All above image recognition applications could use the Mariana

to train models, and majorly uses the multi-GPU model

parallelism and data parallelism framework for deep CNNs.

We train our model on the ImageNet 2012 training set (1.2

million images, over 1000 different classes) using Mariana. We

consider model parallelism and data parallelism with 4 different

configurations to explore the impact of parallelism. As a

comparative model, we use the same network as Krizhevsky’s in

ImageNet 2012 [3].

With our deep CNN framework, 2 GPUs model parallelism

speedup is 1.71 times over one GPU for training one batch. With

4 GPUs employing both model and data parallelism, we gain a

speedup 2.52. For 4 GPUs data parallelism, the speedup is 2.67.

Table 1. Multi-GPU performance in speedup vs 1 GPU

Configurations Speedup vs 1 GPU

2 GPUs model parallelism 1.71

2 GPUs data parallelism 1.85

4 GPUs model + data parallelism 2.52

4 GPUs data parallelism 2.67

For ImageNet classification, memory for each GPU is reduced

from 3.99 GB to 2.15 GB with model parallelism and is able to

train larger CNN network using the same GPUs. Both using the

data parallelism and model parallelism, we get the same error rate

as the Krizhevsky’s on the ImageNet 2012 validation set.

We also explore different model architectures from Krizhevsky’s

network on the ImageNet 2012 data set using Mariana. By cutting

the filter size of the first convolutional layer and increasing the

number of feature maps in the middle layers, we get a better

performance, beating Krizhevsky’s single model result by 2%.

6. RELATED WORK
Several frameworks have been emerged to accelerate and facilitate

deep learning.

Google DistBelief [4] is a CPU cluster framework employing data

parallelism and model parallelism to train a deep network with

over 1 billion parameters using tens of thousands of CPU cores.

DistBelief provides downpour SGD and sandblaster L-BFGS and

is used for speech recognition and the 21k category ImageNet

classification.

A deep convolutional neural network [3] is designed by

Krizhevsky to get top 5 error rate 15% for ImageNet LSVRC-

2012 1000-category classification contest by an efficient GPU

implementation Cuda-Convnet using two GPUs model parallelism.

Cuda-Convnet is available as an open source toolkit for one single

GPU CNN training. Cuda-convnet2 [8] improves training

performance for multi-GPU CNN by a novel composing of model

parallelism and data parallelism, but is not open yet.

Google COTS HPC systems [5] use data parallelism and model

parallelism in GPU servers with Infiniband interconnects and MPI.

COTS is able to train 1 billion parameter networks with 3 GPU

machines in several days.

Facebook multi-GPU deep CNN [6] is used to employ data

parallelism and model parallelism to train CNN models, and is

able to train Krizhevsky's ImageNet 2012 1000-catetory network

by 4 NVIDIA TITAN GPUs in a couple of days.

Several open source frameworks are available.

Caffe [9] provides fast CNN implementations for CPU or a single

GPU, provides deep learning algorithms, and is able to process

1776

more than 40 million images per day with a single NVIDIA K40

or Titan GPU.

Kaldi [10] is a speech recognition research toolkit with fast C++

and CUDA code to run in CPU or GPU.

Theano [11] is a Python library to define, optimize, and evaluate

mathematical expressions involving multi-dimensional arrays,

which is easily running on CPU or GPU and facilitates DNN

training.

7. CONCLUSION
Deep learning gains notable success in several fields, such as

automatic speech recognition and image recognition, but is hard

to be practical for training models for various applications in

Tencent due to big data, model complexity, and model selection.

This paper introduces Mariana, the Tencent deep learning

platform to accelerate training, support large model, and simplify

experiments for various of applications in Tencent. Mariana

includes three frameworks: a multi-GPU data parallelism

framework for DNNs, a multi-GPU model parallelism and data

parallelism framework for deep CNNs, and a CPU cluster

framework for large scale DNNs. Mariana also provides built-in

algorithms and features to facilitate experiments.

By data parallelism DNN framework with 6 GPUs using

partitioned linearity topology for parameter swapping, we build an

acoustic model for ASR with more than 50 million parameters and

billions of samples and get a 4.6 times speedup over a single GPU.

Along with approximate AdaGrad, this training job completes in

less than one week, and the character error rate decreases more

than 10% compared with that by previous model parallelism

training.

By model and data parallelism deep CNN framework with 4

GPUs using transfer layer and pipeline optimization, we train the

ImageNet 2012 1000-category classification model and get a

speedup 2.52 times over one GPU. We construct a larger network

with model parallelism and beat Krizhevsky’s single model result

by 2%.

Mariana has been used for more than one year to train models for

automatic speech recognition and image recognition in Tencent

WeChat, and for Ads pCTR in Tencent QQ and Qzone.

8. ACKNOWLEDGMENTS
Thanks all team members for contributions of this paper. Many

thanks to Yong Li, Bo Chen, Wei Xue, Lei Xiao, Chunjian Bao,

and Jie Jiang for numerous advises and continuous support.

9. REFERENCES
[1] Hinton, G. E., and Salakhutdinov, R. R. Reducing the

Dimensionality of Data with Neural Networks. Science, 313,

6 (July. 2006), 504-507.

[2] Hinton, G., Deng, L., Yu, D., et al, Kingsbury, B. Deep

Neural Networks for Acoustic Modeling in Speech

Recognition. IEEE Signal Processing Magazine. 29, 6

(November. 2012), 82-97.

[3] Krizhevsky, A., Sutskever, I., and Hinton, G.E. ImageNet

Classification with Deep Convolutional Neural Networks. In

Proceedings of the Neural Information Processing Systems

(NIPS’12) (Lake Tahoe, Nevada, United States, December

3–6, 2012). Curran Associates, Inc, 57 Morehouse Lane, Red

Hook, NY, 2013, 1097-1106.

[4] Dean, J., Corrado, G.S., Monga, R., et al, Ng, A. Y. Large

Scale Distributed Deep Networks. In Proceedings of the

Neural Information Processing Systems (NIPS’12) (Lake

Tahoe, Nevada, United States, December 3–6, 2012). Curran

Associates, Inc, 57 Morehouse Lane, Red Hook, NY, 2013,

1223-1232.

[5] Coates, A., Huval, B., Wang, T., Wu, D. J., Ng, A. Y. Deep

learning with COTS HPC systems. In Proceedings of the

30th International Conference on Machine Learning

(ICML’13) (Atlanta, Georgia, USA, June 16–21, 2013).

JMLR: W&CP volume 28(3), 2013, 1337-1345.

[6] Yadan, O., Adams, K., Taigman, Y., Ranzato, M. A. Multi-

GPU Training of ConvNets. arXiv:1312.5853v4 [cs.LG]

(February 2014)

[7] Duchi, J. C., Hazan, E., and Singer, Y. Adaptive subgradient

methods for online learning and stochastic optimization.

Journal of Machine Learning Research, 12, 7 (July. 2011) ,

2121-2159.

[8] Krizhevsky, A. Parallelizing Convolutional Neural Networks.

in tutorial of IEEE Conference on Computer Vision and

Pattern Recognition (CVPR 2014). (Columbus, Ohio, USA,

June 23-28, 2014). 2014.

[9] Jia, Y. Q. Caffe: An Open Source Convolutional

Architecture for Fast Feature Embedding.

http://caffe.berkeleyvision.org (2013).

[10] Povey, D., Ghoshal, A. Boulianne, G., et al, Vesely, K. Kaldi.

The Kaldi Speech Recognition Toolkit. in Proceedings of

IEEE 2011 Workshop on Automatic Speech Recognition and

Understanding(ASRU 2011) (Hilton Waikoloa Village, Big

Island, Hawaii, US, December 11-15, 2011). IEEE Signal

Processing Society. IEEE Catalog No.: CFP11SRW-USB.

[11] Bergstra, J., Breuleux, O., Bastien, F., et al, Bengio, Y.

“Theano: A CPU and GPU Math Expression Compiler”. in

Proceedings of the Python for Scientific Computing

Conference (SciPy 2010). (Austin, Texas, USA. June 30 -

July 3, 2010).

1777

