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ABSTRACT 
In real-time interactive data analytics, the user expects to receive 
the results of each query within a short time period such as seconds. 
This is especially challenging when the data is big (e.g., on the scale 
of petabytes), and the analytics system runs on top of cloud 
infrastructure (e.g., thousands of interconnected commodity 
servers). We have been building such a system, called OceanRT, 
for managing large spatio-temporal data such as call logs and 
mobile web browsing records collected by a telecommunication 
company.  Although there already exist systems for querying big 
data in real time, OceanRT’s performance stands out due to several 
novel designs and components that address key efficiency and 
scalability issues that were largely overlooked in existing systems. 
First, OceanRT makes extensive use of software RDMA one-sided 
operations, which reduce networking costs without requiring 
specialized hardware. Second, OceanRT exploits the parallel 
computing capabilities of each node in the cloud through a novel 
architecture consisting of Access-Query Engines (AQEs) 
connected with minimal overhead. Third, OceanRT contains a 
novel storage scheme that optimizes for queries with joins and 
multi-dimensional selections, which are common for large spatio-
temporal data. Experiments using the TPC-DS benchmark show 
that OceanRT is usually more than an order of magnitude faster 
than the current state-of-the-art systems. 

1. INTRODUCTION 
Recently, considerable research efforts have been devoted to 

the infrastructure for real-time interactive analytics (or simply real-
time analytics) over massive amounts of data. For example, in a 
typical interactive session, a user submits a query, waits online for 
its results, and possibly issue additional queries based on these 
results. The queries in such applications are usually exploratory in 
nature, for which the user expects to receive results quickly, e.g., 
within seconds. Meanwhile, the user may use business intelligence 
(BI) tools to generate queries automatically. As pointed out in [5], 
many BI tools expect the underlying data management system to 
return results within a short period of time; otherwise, they may 
timeout and return an error. For these applications, it is critical to 

achieve a low response time, meaning that offline, batch-oriented 
analytics tools are unfit for this purpose. Our goal is to perform real-
time analytics over big spatio-temporal data, such as call logs and 
mobile web browsing records from a large mobile network operator 
[30]. Naturally, queries on such data often contain temporal and/or 
spatial predicates. Towards this goal, we have been building 
OceanRT (first introduced in [30]), a cloud-based system that aims 
for high scalability and resource efficiency, while ensuring low 
query response time. 

We attribute OceanRT’s high performance in the experiments 
in this paper to three novel designs, in its networking, computing 
architecture, and storage scheme, respectively. First, profiling of 
existing systems reveals that network transmissions incurs a 
significant cost in cloud-based systems in general, and real-time 
analytics systems in particular, which typically require the 
cooperation of a large number of computing nodes to answer a 
query, in order to satisfy the real-time response time requirements. 
OceanRT’s solution is to employ remote direct memory access 
(RDMA) [23] extensively instead of traditional socket-based 
transmission methods. In particular, as we describe in Section 3.2, 
OceanRT employs a software implementation of RDMA, which 
accelerates network transmissions without requiring costly, 
specialized hardware. 

Second, the design of OceanRT captures the parallel computing 
capabilities of modern servers which typically have multiple CPU 
cores and hard drives, as well as a large amount of RAM and Flash 
storage. While it is possible to subdivide each server into virtual 
machines, doing so incurs high overhead. OceanRT’s computing 
architecture, which includes multiple interconnected Access-Query 
Engines (AQEs) in each node, ensures high parallelism with 
minimal overhead. 

Third, data storage in OceanRT is optimized for speed without 
losing the fault tolerance and load balancing properties of 
traditional cloud-based storage systems. Meanwhile, its file layout 
and indexing are optimized for queries with joins and/or multi-
dimensional range selections, which are common for spatio-
temporal data. 

An overview of a preliminary version of OceanRT was 
presented in a demo [30], which showed that OceanRT was faster 
than the state-of-the-art real-time analytics systems available to us, 
including Cloudera Impala [19], Apache Shark [6] and Apache 
Hive [25]. Since then, OceanRT has been heavily developed and 
thoroughly optimized. In particular, the new OceanRT employs 
faster one-sided read/write operations in its RDMA links (described 
in Section 3.2), a query re-optimization module for query parsing 
(Section 3.3), direct communication between AQEs in the same 
node (Section 3.3), and an extended storage scheme that optimizes 
for spatio-temporal data and queries, while also handling other 
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types of data well (Section 3.4). In addition, we have conducted an 
extensive evaluation of OceanRT using a popular big data 
benchmark, TPC-DS [17]. The results confirm that OceanRT 
achieves considerable speedup (often more than an order of 
magnitude) compared to the current versions of major systems for 
real-time analytics, especially for complex queries involving joins 
and subqueries. In the following, Section 2 overviews related work. 
Section 3 presents the novel designs in OceanRT. Section 4 
presents experimental evaluations. Section 5 concludes the paper. 

2. RELATED WORK 
In the past decade, cloud computing has emerged as the 

dominant paradigm for performing analytics on big data, since the 
cloud provides virtually unlimited computing resources on demand. 
These resources are provided by a massive number of 
interconnected commodity servers. Hence, to use the cloud 
effectively, the analytics system should be scalable (i.e., it can 
handle larger data by using more cloud resources), fault-tolerant (it 
deals with machine errors and failures gracefully, which are 
common in a cloud), elastic (it dynamically allocates or releases 
cloud resources based on the current workload), and efficient (it 
minimizes resource usage). 

Early cloud-based big data analytics systems focus on offline 
analytics, which processes batches of long-running jobs. Notably, 
the seminal paper [3] describes Google’s MapReduce framework, 
which provides strong fault tolerance and high parallelism for job 
processing, while hiding the complexity of the system and exposing 
a simple programming interface. Soon after the publication of [3], 
its key ideas were implemented into an open-source system Hadoop 
[26], which has been widely used. MapReduce, however, is 
inefficient at handling certain complex, iterative jobs, common in 
machine learning and graph computation. Addressing this problem, 
Dryad [10] enables the user to handle a DAG of tasks, and Pregel 
[13] deals with vertex-centric programming for large graphs. 
Recently, epiC [11] provides a unified framework for a variety of 
data types, combining the merits of all afore-mentioned systems. 
We refer the reader to a comprehensive survey [12] for other related 
systems. 

The successes of offline analytics systems led to attempts to 
build analytics capabilities on top of them. For instance, earlier 
versions of Hive [25] translate SQL queries into MapReduce jobs. 
This approach, however, is not suitable for real-time analytics [15], 
since offline analytics systems usually incur high query latency. 
Another methodology is to build MapReduce / RDBMS hybrids. 
For instance, HadoopDB [1] (which forms the basis of its 
commercial version, Hadapt) uses relational databases to perform 
MapReduce tasks. Microsoft PolyBase [4] improves the scalability 
of SQL Server through “split query processing” [2], which 
transforms queries into MapReduce jobs. Sailfish [20] accelerates 
MapReduce by batching disk I/Os. These systems tend to inherit 
the offline processing designs of MapReduce, and, thus, are not 
ideal for real-time query processing. 

Recently, a plethora of real-time big data analytics systems 
have been built that do not rely on MapReduce. OceanRT belongs 
to this category. Most of them, including OceanRT, use SQL as the 
query language, since SQL is familiar to users and enables 
interaction with legacy systems [15]. Notably, Google introduced 
Dremel [14], its real-time analytics tool that focuses on speed (i.e., 
low query latency) rather than power (support for very complex 
queries). Cloudera Impala [19] is an open-source real-time SQL 
processing system over big data inspired by Dremel. Facebook 
recently replaced Hive with a new system, Presto [22], for real-time 

analytics. Shark [6] is a real-time SQL processing module built on 
top of Spark [27], a novel big data processing paradigm based on 
the idea of resilient distributed datasets (RDDs) [27]. Newer 
versions of Hive, with a set of optimizations collectively called the 
“stinger initiative”, can also run on faster, non-MapReduce data 
processing frameworks, e.g., Tez (http://tez.incubator.apache.org), 
which is inspired by Dryad [10]. Proprietary systems include 
Amazon Redshift (http://aws.amazon.com/redshift), which, like 
Dremel, has few technical details publicly revealed. 

Finally, another line of research concerns real-time, continuous 
analytics on fast data streams. Popular open source systems in this 
category include Storm (https://storm.incubator.apache.org/) and 
S4 (http://incubator.apache.org/s4/), and Spark Streaming [28]. 
TimeStream [18] addresses efficient failure recovery in operator-
network streaming systems. Resa [24] provides enhanced elasticity, 
and applies to a wider range of analytics such as clustering [29]. 
These systems are orthogonal to OceanRT, since we focus on 
interactive analytics in a data warehouse, rather than continuous 
analytics over streams. 

3. OCEANRT 
Section 3.1 overviews the architecture of OceanRT. Sections 

3.2-3.4 present the novel networking, computing units, and storage 
scheme of OceanRT, respectively. In each subsection, we omit the 
details already presented in the preliminary version [30], and focus 
on the improvements compared to [30]. 

3.1 Overview 
Similar to most cloud-based systems, an OceanRT cluster 

consists of interconnected commodity servers. As explained in 
Section 3.2, although OceanRT employs RDMA technology, we 
chose a software implementation rather than a hardware one. Hence, 
the network infrastructure in OceanRT can be simply commodity 
Ethernet (e.g., 1 GBits or 10 GBits) that is common in today’s cloud 
infrastructure. Similar to existing real-time analytics systems, the 
user interacts with OceanRT through SQL. 

Figure 1 shows the shared-nothing architecture of OceanRT 
with n computing nodes connected through software RDMA links. 
Each node runs a Parsing Engine (PE), as well as one or more 
Access-Query Engines (AQEs). Note that unlike the architecture in 
the preliminary version of OceanRT [30], the AQEs in the same 
node are connected through lightweight inter-AQE links, detailed 
in Section 3.3. All nodes in OceanRT are symmetric; in other words, 
there is no distinction among nodes such as master / slaves. Similar 
to parsers and query executors in a traditional RDBMS, the PE 
parses incoming SQL queries or sub-queries into execution plans, 
whereas the AQE is responsible for accessing the data and 
performing operations in the query plan. 

 
Figure 1: Computing Architecture of OceanRT 

OceanRT employs Zookeeper [8] to manage the states of all 
nodes in the cluster, such as total amount of available memory, 
CPU utilization percentage, network usage, etc. We omit the details 
of node/AQE states as they remain largely unchanged from the 
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preliminary version [30]. AQEs in OceanRT read data from 
existing cloud-based storage systems, such as HDFS [26], HBase 
[7], etc. Meanwhile, OceanRT includes a novel storage scheme, 
explained in Section 3.4, which directs how data is organized in the 
underlying storage system. 

Since all nodes are symmetric, when the user issues a query, 
one node serves as the gateway that parses the query, coordinates 
with other nodes to execute it, collects (partial) query results, and 
returns the final results to the user. In our current implementation, 
each user connects to a random node upon startup, which serves as 
the gateway for all queries of this user. Alternatively, to ensure load 
balancing, we could route each query to the currently least busy 
node, according to node statuses maintained by Zookeeper. In the 
current prototype, we observed that the gateway incurs negligible 
overhead; so, the choice of the gateway node might not be critical. 
We detail query execution further in Section 3.3. Finally, we 
mention that the OceanRT architecture does not complicate fault 
recovery, except for the fact that when one node crashes, all AQEs 
therein are down. Currently, OceanRT’s fault recovery mechanism 
is similar to that in Impala [19]. 

3.2 RDMA-Based Networking 
Since the cloud comprises a massive number of nodes 

connected with limited bandwidth, communication between these 
nodes always incurs a non-trivial cost. This cost is especially 
prominent in real-time analytics, for two reasons. First, queries in 
such applications are usually exploratory, and do not involve costly 
computations; hence, networking overhead takes a larger share of 
the overall costs. Second, in order to satisfy the real-time response 
constraint, queries may need to be executed on a large number of 
nodes to obtain high parallelism, leading to higher communication 
expenses overall. 

OceanRT tackles these problems by using RDMA extensively 
instead of traditional socket-based communication methods 
between nodes. RDMA accelerates network transmissions in two 
ways. First, RDMA enables zero-copy transmission, meaning that 
data is directly transmitted from memory pages in the source node 
to the pages in the destination node, without any intermediate 
copying between the application memory, the operating system 
kernel memory, and the socket buffer as in socket-based 
networking. Second, a hardware implementation of RDMA, 
common in supercomputers, involves specialized network adaptors 
with computing capabilities, which perform data transmissions 
without consuming CPU cycles. However, relying on specialized 
hardware is also a major disadvantage for applying RDMA in a 
cloud, since equipping all nodes with RDMA hardware currently 
requires considerable investment, which may become obsolete 
soon as the technology advances. 

To avoid relying on specialized hardware, OceanRT employs a 
software implementation of RDMA, namely SoftiWarp [23]. 
Although network-related operations are still performed by the 
CPU, SoftiWarp avoids 4 memory copying operations for each data 
transfer [23], which, in today’s increasingly common 10Gbits 
Ethernet, can cause significant latencies. In particular, OceanRT 
makes extensive use of the one-sided remote read/write operations 
of RDMA. For instance, in one-sided writing, before any 
transmission occurs, the node that will receive data pins a number 
of RAM pages, which are guaranteed not to be swapped to disk by 
the OS. After that, a sending node can directly “write” content to 
these pinned RAM pages in the receiving node with negligible 
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overhead. When the writing is done, SoftiWarp notifies the 
receiving node, which then reads its pinned memory locally. One-
sided reading is symmetric, with the sender pinning RAM pages.  
Note that the need to pin RAM pages could be a drawback for 
RDMA when applied in a cloud, since the pinned pages cannot be 
used for other purposes, leading to reduced flexibility. This 
problem is alleviated in software RDMA, since memory pages can 
be unpinned (i.e., swappable to disk) once there is no more 
transmission [23]. 

In practice, we found that RDMA accelerates OceanRT mainly 
in two operations characterized by large message sizes: remote data 
retrieval and the transmission of intermediate query results. Remote 
data retrieval occurs, for example, in queries with joins, where a 
node containing data from one relation must retrieve data from the 
other relation. Transmission of intermediate results is involved 
when the query is decomposed into sub-queries, whose results must 
be subsequently reassembled. For queries that do not involve joins 
or subqueries, RDMA improves performance by reducing the 
overhead of the underlying cloud file system. For example, 
communication costs between a node accessing a large number of 
blocks from HDFS and the HDFS name node can be significantly 
reduced using RDMA one-sided reads. 

3.3 PE and AQE 
Figure 2 shows the internal compositions of the PE and the 

AQE in OceanRT. Recall from Section 3.1 that a PE parses a SQL 
query into an execution plan, and multiple AQEs perform the 
operations in the plan. As shown in Figure 2a, the PE contains four 
components: a parser, an optimizer, a re-optimizer, and a dispatcher. 
Specifically, OceanRT invokes the PE in two different occasions; 
in both uses, the cost of the PE is negligible; hence, we place only 
one PE per node. First, when a user issues a SQL query to its 
gateway node, the latter’s PE parses the query into an execution 
plan, optimizes it, decomposes it into multiple subplans, and 
dispatches each subplan to an AQE for execution. This use of the 
PE had been implemented in the preliminary version of OceanRT, 
and we refer the reader to Ref. [30] for details in the query parsing, 
optimizing, and subplan dispatching steps. 

 

(a) Parsing Engine (b) Access-Query Engine 
Figure 2: PE and AQE in OceanRT 

The second use of the PE is that when an AQE receives a query 
subplan, the PE of its corresponding node re-optimizes the subplan, 
before the AQE executes it. This is a new optimization developed 
since the preliminary version [30]. The rationale for this step is that 
the node where the AQE resides may contain more detailed 
statistics for the data stored locally, which helps optimize the plan 
further. Instead of using PostgreSQL components as in the parsing 
and optimizing steps, this re-optimization step is performed by a 
customized optimizer built from scratch using LLVM 1 , which 
incorporates optimization logic designed specifically for this step.  

1756



 

 

An AQE executes the operators in its query subplan, and 
generates (intermediate) results. As illustrated in Figure 2b, an 
AQE contains a planner, a coordinator, and an executor, and can 
read/write data stored in HDFS, HBase, or a relational database. As 
their respective names suggest, the planner determines the 
appropriate algorithm for executing the assigned task; the 
coordinator coordinates with other AQEs to retrieve data (e.g., 
when processing a join) or partial/subquery results; the executor 
performs the actions of the logical operator. We omit further details 
of these components for brevity, which can be found in [30]. 

Since different AQEs inside a node operate independently, they 
need to communicate in order to perform certain operations, such 
as joins and passing sub-query results. In the preliminary version 
of OceanRT [30], we used RDMA for this purpose, which, though 
faster than traditional socket-based transmissions, still incurs 
considerable overhead, such as pinning/unpinning RAM pages, 
sending acks and checking for errors. We eliminate this overhead 
by replacing RDMA with a novel inter-AQE link, which resembles 
an inter-process communication protocol for transmitting data 
between AQEs (which are run as different processes) in the same 
node. In particular, sending a piece of information through the 
inter-AQE link involves little more than a simple memory copy. 

Each physical node runs multiple AQEs, depending on its 
hardware configuration, which obtains a higher degree of 
parallelism compared to existing systems in which every node is a 
single processing unit. For instance, consider a node with two hard 
drives and two CPU cores. By dividing the node into two AQEs, 
each with a hard drive and a CPU core, the node is able to perform 
two independent data retrieval and/or processing tasks 
simultaneously. As our experiments demonstrate, setting the 
number of AQEs slightly higher than the CPU-and-disk 
configuration suggests often improves overall performance, e.g., 
when one AQE is busy reading data from disk, another may 
perform CPU-intensive computations, and yet another retrieving 
data from the network. Our current implementation uses a simple 
heuristic for determining the number of AQEs per node: a (tunable) 
factor times that number suggested by the CPU-and-disk 
configuration. A formal analysis for the optimal number of AQEs 
is left as future work. 

3.4 Data Storage 
As described in the previous subsection, OceanRT can process 

data stored in HDFS, HBase, and/or an RDBMS. Currently, data 
storage in OceanRT ultimately relies on HDFS, since (i) to provide 
high fault-tolerance, HBase employs HDFS as the underlying file 
system; and (ii) for the same reason, in OceanRT, the RDBMS 
(currently PostgreSQL) also stores data files on HDFS. To obtain 
higher performance, we customized HDFS to better fit OceanRT as 
well as spatio-temporal data management. Our modifications to 
HDFS do not compromise the functionalities or fault-tolerance 
properties of standard HDFS; in other words, OceanRT-optimized 
HDFS can be directly used in place of HDFS whenever the latter is 
applicable. 

OceanRT involves two major modifications in HDFS. First, as 
described in [30], we alleviate block fragmentation by grouping 
blocks of the same file into larger partitions, each of which contains 
M (>1) blocks; meanwhile, we require that each partition be stored 
completely in at least N nodes. For instance, when M=10 and N=2, 
each partition contains 10 blocks; these 10 blocks are stored 
together in at least 2 nodes, each of which is able to scan the entire 
partition locally without network transmissions. We refer the reader 
to [30] for further details. From our experiments, we observed that 

this HDFS-modification alone (i.e., without the second storage 
optimization, explained soon) does not lead to dramatic 
performance enhancements. On the other hand, grouping blocks 
into partitions requires modification to the HDFS source code, 
which is a limitation to the applicability of OceanRT. For these 
reasons, we plan to migrate OceanRT storage to stock HDFS in 
future versions. 

Using the two-level partition-block file organization, we 
further optimize OceanRT storage for spatio-temporal data and 
queries, as follows. First, we decompose the space into cells, e.g., 
using an (possibly unbalanced) quad-tree, and assign records in 
each cell to a partition. Then, in each partition, records are further 
separated according to their timestamps, and assigned to blocks 
accordingly. Each partition and block also contains various 
metadata, including the minimum bounding rectangle (for the 
spatial attributes) and a time range (for the timestamp) of records 
therein. Records in each block are then organized using an existing 
method, e.g., RC-File [9], ORC-File [16], etc. 

The grouping of records is accomplished via hashing, i.e., the 
partition of a record is determined by a hash value of its 
corresponding spatial cell, and the block of a record is determined 
by hashing its timestamp. Essentially, this file organization 
corresponds to an embedded spatio-temporal primary index, whose 
outer structure is a spatial one; each of its node contains an 
embedded temporal index. When processing a query with spatial 
and/or temporal range selections, instead of scanning an entire 
relation, OceanRT only scans the partitions and blocks whose 
spatial MBR and temporal range overlap the query. 

Besides spatio-temporal data and queries, the novel file 
organization of OceanRT also applies to other types of data with 
range selections on multiple attributes, achieving the benefits of a 
multi-dimensional primary index. In general, for relational and 
non-spatio-temporal data, the records are first grouped into 
partitions by their primary key, and then into blocks by an attribute 
that is frequently involved in range queries or joins. This scheme is 
used in our experimental evaluations, presented next. 

4. EXPERIMENTS 
We implemented all core components of OceanRT in C++, plus 

a foreign data wrapper in Java for interacting with Hadoop, which 
includes HDFS. The experiments use data and queries from TPC-
DS [17], a popular benchmark for comparing big data processing 
systems, containing 25 tables, 429 columns and 99 query templates. 
The default data size is set to 1 TByte. Specifically, we use the same 
query set as a recent experimental evaluation performed by 
Cloudera [5], which is classified in [5] into 3 categories: interactive, 
reporting, and deep analytics. Table 1 lists the TPC-DS queries 
used in our experiments. 

Table 1: TPC-DS queries used in the experiments 
Type Queries 

Interactive Q19, Q42, Q52, Q55, Q63, Q65, Q68, Q73, Q98
Reporting Q3, Q7, Q27, Q43, Q53, Q89 

Deep Analytics Q34, Q46, Q59, Q79, SS_MAX 

According to [5], as of mid-2014, the current version of Impala 
(v1.3.1) outperforms by clear margins the current versions of Presto, 
Shark, and Stinger Hive-on-Tez, which are currently the most 
popular open-source real-time big data analytics systems, as 
described in Section 2. Hence, we consider Impala v1.3.1 as our 
main competitor. Since Impala’s compiler supports only a subset of 
TPC-DS queries [21], the evaluation of Impala utilizes the Impala 
TPC-DS Kit from Cloudera for re-writing queries, available at 
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https://github.com/cloudera/impala-tpcds-kit. In addition, we also 
compare OceanRT against Hive-on-Tez v0.12, and we have 
published the query re-writing toolkit for Hive at 
https://github.com/simonzhangsm/hive-testbench. The version of 
Hadoop used in the experiments is 2.3.0. These versions of Impala, 
Hive and Hadoop are contained in CDH 5.0.2. 

All experiments were run in a private cluster consisting of 10 
nodes, each equipped with 2 Intel Xeon 1.9GHz 6-core CPUs, 16 
GBytes of memory, and 2 1-TByte hard drives. All nodes run on 
64-bit Ubuntu Linux 12.04 LTS. By default, there are 4 AQEs in 
each node. Figure 3 exhibits the network topology of the nodes. 

Figure 4 presents the evaluation results of Hive-on-Tez, Impala, 
and OceanRT on all 20 queries in Table 1, with the dataset size 
fixed to 1 TBytes. The performance trends in our results are 
consistent with [5], with Impala considerably faster than Hive-on-
Tez. On all queries, OceanRT consistently and significantly 
outperforms Impala, often by more than an order of magnitude. The 
performance advantage of OceanRT is particularly pronounced for 
the interactive queries. For example, on Q98, OceanRT achieves 
13x and 106x sppedup compared to Impala and Hive-on-Tez, 
respectively. It is worth mentioning that OceanRT finishes 
processing every query within 7 seconds, which is acceptable 
waiting time for most interactive applications. 

 
Figure 3: Network topology of the nodes in the experiments 

 
Figure 4: Evaluation on all queries using 1TB data 

Figure 5 plots the total running time as a function of the dataset 
size for two sample interactive queries, Q52 and Q68. Results with 
other interactive queries are omitted since they lead to similar 
conclusions. The running times of all systems increase with the 
dataset size, as expected. Clearly, OceanRT is the fastest in all 
settings. The performance gap between OceanRT and Impala/Hive 
generally expands as the data size grows (note that the running 
times are shown in log scale). 

Figure 6 and Figure 7 repeat the above experiment on sample 
reporting and deep analytics queries, respectively. OceanRT again 
wins on all settings, with clear margins that generally grow with the 
dataset size. Comparing the results on different types of queries, the 
performance advantage of OceanRT is more pronounced on 
complex queries such as Q46 (up to 30x faster than Impala) than on 
simpler ones such as Q52 (up to 8x faster than Impala). This is 

because complex queries generally involve more network 
transmissions and data retrievals, leading to more pronounced 
effects of the RDMA links and the novel storage scheme in 
OceanRT. 

 

 
(a) Q52 (b) Q68 

Figure 5: Effect of dataset size on sample interactive queries 

 

 
(a) Q27 (b) Q89 

Figure 6: Effect of dataset size on sample reporting queries 

 

 
(a) Q46 (b) SS_MAX 

Figure 7: Effect of dataset size on deep analytics queries 

Having examined the performance of OceanRT compared to 
existing systems, we next focus on its internal parameters. Figure 8 
shows the impact of the number of AQEs in each physical node on 
the overall performance of OceanRT, using the 6 sample queries 
studied in Figures 5-7. Recall that each node has two CPUs with 6 
cores each, 2 hard drives, and 16 GBytes of RAM. Hence, splitting 
each node into 2 AQEs would lead to each having 1 CPU and 1 
hard drive; a higher number of AQEs forces different AQEs to 
share resources, especially the hard drive. According to Figure 8, 
having multiple AQEs leads to significantly better performance 
than treating each node as a single computing unit, which is the case 
in most existing systems. Meanwhile, the query response time of 
OceanRT continues to drop as the number of AQEs increases 
beyond 2, indicating that the benefit of increased parallelism 
outweighs the drawback of resource competition between AQEs. 
The performance of OceanRT stabilizes when the number of AQEs 
reaches around 8; after that, adding more AQEs adversely affects 
performance. These observations suggest there exists an optimal 
number of AQEs per node that cannot be determined by the amount 
of resources in a straightforward way. Hence, further investigation 
into this topic is an interesting direction for future work. 

Summarizing the experiments, OceanRT outperforms existing 
systems in every single setting tested, with a performance gap that 
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grows with the dataset size as well as the complexity of the query. 
For 1TB data, OceanRT running on a small cluster of 10 nodes 
finishes every query within 7 seconds. Finally, the number of AQEs 
needs to be carefully tuned to maximize performance.  

 
Figure 8: Effect of different number of AQEs per node 

5. CONCLUSION 
We present OceanRT, an interactive analytics platform for big 

data, especially spatio-temporal data and queries. OceanRT 
achieves higher performance compared to existing systems, 
through three innovative system designs: the use of RDMA links 
between nodes, the novel architecture involving multiple AQEs per 
node, and a storage scheme that reduces file fragmentation and 
serves the purpose of a multi-dimensional primary index. 
Regarding future work, an interesting direction is to derive a formal 
performance model for OceanRT, which can help determine the 
best number of AQEs per node, a critical system parameter. 
Meanwhile, the RDMA links may be improved by minimizing 
pinning / unpinning of memory pages. Finally, we intend to 
optimize the storage scheme further to reduce the number of remote 
block retrievals. 
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