

Design and Implementation of a Real-Time Interactive
Analytics System for Large Spatio-Temporal Data

Shiming Zhang* Yin Yang# Wei Fan* Marianne Winslett#
*Huawei Noah’s Ark Lab

{simon.zhangsm, david.fanwei}@huawei.com
#Advanced Digital Sciences Center, University of Illinois at Urbana-Champaign

{yini, winslett}@illinois.edu

ABSTRACT
In real-time interactive data analytics, the user expects to receive
the results of each query within a short time period such as seconds.
This is especially challenging when the data is big (e.g., on the scale
of petabytes), and the analytics system runs on top of cloud
infrastructure (e.g., thousands of interconnected commodity
servers). We have been building such a system, called OceanRT,
for managing large spatio-temporal data such as call logs and
mobile web browsing records collected by a telecommunication
company. Although there already exist systems for querying big
data in real time, OceanRT’s performance stands out due to several
novel designs and components that address key efficiency and
scalability issues that were largely overlooked in existing systems.
First, OceanRT makes extensive use of software RDMA one-sided
operations, which reduce networking costs without requiring
specialized hardware. Second, OceanRT exploits the parallel
computing capabilities of each node in the cloud through a novel
architecture consisting of Access-Query Engines (AQEs)
connected with minimal overhead. Third, OceanRT contains a
novel storage scheme that optimizes for queries with joins and
multi-dimensional selections, which are common for large spatio-
temporal data. Experiments using the TPC-DS benchmark show
that OceanRT is usually more than an order of magnitude faster
than the current state-of-the-art systems.

1. INTRODUCTION
Recently, considerable research efforts have been devoted to

the infrastructure for real-time interactive analytics (or simply real-
time analytics) over massive amounts of data. For example, in a
typical interactive session, a user submits a query, waits online for
its results, and possibly issue additional queries based on these
results. The queries in such applications are usually exploratory in
nature, for which the user expects to receive results quickly, e.g.,
within seconds. Meanwhile, the user may use business intelligence
(BI) tools to generate queries automatically. As pointed out in [5],
many BI tools expect the underlying data management system to
return results within a short period of time; otherwise, they may
timeout and return an error. For these applications, it is critical to

achieve a low response time, meaning that offline, batch-oriented
analytics tools are unfit for this purpose. Our goal is to perform real-
time analytics over big spatio-temporal data, such as call logs and
mobile web browsing records from a large mobile network operator
[30]. Naturally, queries on such data often contain temporal and/or
spatial predicates. Towards this goal, we have been building
OceanRT (first introduced in [30]), a cloud-based system that aims
for high scalability and resource efficiency, while ensuring low
query response time.

We attribute OceanRT’s high performance in the experiments
in this paper to three novel designs, in its networking, computing
architecture, and storage scheme, respectively. First, profiling of
existing systems reveals that network transmissions incurs a
significant cost in cloud-based systems in general, and real-time
analytics systems in particular, which typically require the
cooperation of a large number of computing nodes to answer a
query, in order to satisfy the real-time response time requirements.
OceanRT’s solution is to employ remote direct memory access
(RDMA) [23] extensively instead of traditional socket-based
transmission methods. In particular, as we describe in Section 3.2,
OceanRT employs a software implementation of RDMA, which
accelerates network transmissions without requiring costly,
specialized hardware.

Second, the design of OceanRT captures the parallel computing
capabilities of modern servers which typically have multiple CPU
cores and hard drives, as well as a large amount of RAM and Flash
storage. While it is possible to subdivide each server into virtual
machines, doing so incurs high overhead. OceanRT’s computing
architecture, which includes multiple interconnected Access-Query
Engines (AQEs) in each node, ensures high parallelism with
minimal overhead.

Third, data storage in OceanRT is optimized for speed without
losing the fault tolerance and load balancing properties of
traditional cloud-based storage systems. Meanwhile, its file layout
and indexing are optimized for queries with joins and/or multi-
dimensional range selections, which are common for spatio-
temporal data.

An overview of a preliminary version of OceanRT was
presented in a demo [30], which showed that OceanRT was faster
than the state-of-the-art real-time analytics systems available to us,
including Cloudera Impala [19], Apache Shark [6] and Apache
Hive [25]. Since then, OceanRT has been heavily developed and
thoroughly optimized. In particular, the new OceanRT employs
faster one-sided read/write operations in its RDMA links (described
in Section 3.2), a query re-optimization module for query parsing
(Section 3.3), direct communication between AQEs in the same
node (Section 3.3), and an extended storage scheme that optimizes
for spatio-temporal data and queries, while also handling other

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain
permission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume were
invited to present their results at the 40th International Conference on Very
Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 13
Copyright 2014 VLDB Endowment 2150-8097/14/08

1754

types of data well (Section 3.4). In addition, we have conducted an
extensive evaluation of OceanRT using a popular big data
benchmark, TPC-DS [17]. The results confirm that OceanRT
achieves considerable speedup (often more than an order of
magnitude) compared to the current versions of major systems for
real-time analytics, especially for complex queries involving joins
and subqueries. In the following, Section 2 overviews related work.
Section 3 presents the novel designs in OceanRT. Section 4
presents experimental evaluations. Section 5 concludes the paper.

2. RELATED WORK
In the past decade, cloud computing has emerged as the

dominant paradigm for performing analytics on big data, since the
cloud provides virtually unlimited computing resources on demand.
These resources are provided by a massive number of
interconnected commodity servers. Hence, to use the cloud
effectively, the analytics system should be scalable (i.e., it can
handle larger data by using more cloud resources), fault-tolerant (it
deals with machine errors and failures gracefully, which are
common in a cloud), elastic (it dynamically allocates or releases
cloud resources based on the current workload), and efficient (it
minimizes resource usage).

Early cloud-based big data analytics systems focus on offline
analytics, which processes batches of long-running jobs. Notably,
the seminal paper [3] describes Google’s MapReduce framework,
which provides strong fault tolerance and high parallelism for job
processing, while hiding the complexity of the system and exposing
a simple programming interface. Soon after the publication of [3],
its key ideas were implemented into an open-source system Hadoop
[26], which has been widely used. MapReduce, however, is
inefficient at handling certain complex, iterative jobs, common in
machine learning and graph computation. Addressing this problem,
Dryad [10] enables the user to handle a DAG of tasks, and Pregel
[13] deals with vertex-centric programming for large graphs.
Recently, epiC [11] provides a unified framework for a variety of
data types, combining the merits of all afore-mentioned systems.
We refer the reader to a comprehensive survey [12] for other related
systems.

The successes of offline analytics systems led to attempts to
build analytics capabilities on top of them. For instance, earlier
versions of Hive [25] translate SQL queries into MapReduce jobs.
This approach, however, is not suitable for real-time analytics [15],
since offline analytics systems usually incur high query latency.
Another methodology is to build MapReduce / RDBMS hybrids.
For instance, HadoopDB [1] (which forms the basis of its
commercial version, Hadapt) uses relational databases to perform
MapReduce tasks. Microsoft PolyBase [4] improves the scalability
of SQL Server through “split query processing” [2], which
transforms queries into MapReduce jobs. Sailfish [20] accelerates
MapReduce by batching disk I/Os. These systems tend to inherit
the offline processing designs of MapReduce, and, thus, are not
ideal for real-time query processing.

Recently, a plethora of real-time big data analytics systems
have been built that do not rely on MapReduce. OceanRT belongs
to this category. Most of them, including OceanRT, use SQL as the
query language, since SQL is familiar to users and enables
interaction with legacy systems [15]. Notably, Google introduced
Dremel [14], its real-time analytics tool that focuses on speed (i.e.,
low query latency) rather than power (support for very complex
queries). Cloudera Impala [19] is an open-source real-time SQL
processing system over big data inspired by Dremel. Facebook
recently replaced Hive with a new system, Presto [22], for real-time

analytics. Shark [6] is a real-time SQL processing module built on
top of Spark [27], a novel big data processing paradigm based on
the idea of resilient distributed datasets (RDDs) [27]. Newer
versions of Hive, with a set of optimizations collectively called the
“stinger initiative”, can also run on faster, non-MapReduce data
processing frameworks, e.g., Tez (http://tez.incubator.apache.org),
which is inspired by Dryad [10]. Proprietary systems include
Amazon Redshift (http://aws.amazon.com/redshift), which, like
Dremel, has few technical details publicly revealed.

Finally, another line of research concerns real-time, continuous
analytics on fast data streams. Popular open source systems in this
category include Storm (https://storm.incubator.apache.org/) and
S4 (http://incubator.apache.org/s4/), and Spark Streaming [28].
TimeStream [18] addresses efficient failure recovery in operator-
network streaming systems. Resa [24] provides enhanced elasticity,
and applies to a wider range of analytics such as clustering [29].
These systems are orthogonal to OceanRT, since we focus on
interactive analytics in a data warehouse, rather than continuous
analytics over streams.

3. OCEANRT
Section 3.1 overviews the architecture of OceanRT. Sections

3.2-3.4 present the novel networking, computing units, and storage
scheme of OceanRT, respectively. In each subsection, we omit the
details already presented in the preliminary version [30], and focus
on the improvements compared to [30].

3.1 Overview
Similar to most cloud-based systems, an OceanRT cluster

consists of interconnected commodity servers. As explained in
Section 3.2, although OceanRT employs RDMA technology, we
chose a software implementation rather than a hardware one. Hence,
the network infrastructure in OceanRT can be simply commodity
Ethernet (e.g., 1 GBits or 10 GBits) that is common in today’s cloud
infrastructure. Similar to existing real-time analytics systems, the
user interacts with OceanRT through SQL.

Figure 1 shows the shared-nothing architecture of OceanRT
with n computing nodes connected through software RDMA links.
Each node runs a Parsing Engine (PE), as well as one or more
Access-Query Engines (AQEs). Note that unlike the architecture in
the preliminary version of OceanRT [30], the AQEs in the same
node are connected through lightweight inter-AQE links, detailed
in Section 3.3. All nodes in OceanRT are symmetric; in other words,
there is no distinction among nodes such as master / slaves. Similar
to parsers and query executors in a traditional RDBMS, the PE
parses incoming SQL queries or sub-queries into execution plans,
whereas the AQE is responsible for accessing the data and
performing operations in the query plan.

Figure 1: Computing Architecture of OceanRT

OceanRT employs Zookeeper [8] to manage the states of all
nodes in the cluster, such as total amount of available memory,
CPU utilization percentage, network usage, etc. We omit the details
of node/AQE states as they remain largely unchanged from the

1755

preliminary version [30]. AQEs in OceanRT read data from
existing cloud-based storage systems, such as HDFS [26], HBase
[7], etc. Meanwhile, OceanRT includes a novel storage scheme,
explained in Section 3.4, which directs how data is organized in the
underlying storage system.

Since all nodes are symmetric, when the user issues a query,
one node serves as the gateway that parses the query, coordinates
with other nodes to execute it, collects (partial) query results, and
returns the final results to the user. In our current implementation,
each user connects to a random node upon startup, which serves as
the gateway for all queries of this user. Alternatively, to ensure load
balancing, we could route each query to the currently least busy
node, according to node statuses maintained by Zookeeper. In the
current prototype, we observed that the gateway incurs negligible
overhead; so, the choice of the gateway node might not be critical.
We detail query execution further in Section 3.3. Finally, we
mention that the OceanRT architecture does not complicate fault
recovery, except for the fact that when one node crashes, all AQEs
therein are down. Currently, OceanRT’s fault recovery mechanism
is similar to that in Impala [19].

3.2 RDMA-Based Networking
Since the cloud comprises a massive number of nodes

connected with limited bandwidth, communication between these
nodes always incurs a non-trivial cost. This cost is especially
prominent in real-time analytics, for two reasons. First, queries in
such applications are usually exploratory, and do not involve costly
computations; hence, networking overhead takes a larger share of
the overall costs. Second, in order to satisfy the real-time response
constraint, queries may need to be executed on a large number of
nodes to obtain high parallelism, leading to higher communication
expenses overall.

OceanRT tackles these problems by using RDMA extensively
instead of traditional socket-based communication methods
between nodes. RDMA accelerates network transmissions in two
ways. First, RDMA enables zero-copy transmission, meaning that
data is directly transmitted from memory pages in the source node
to the pages in the destination node, without any intermediate
copying between the application memory, the operating system
kernel memory, and the socket buffer as in socket-based
networking. Second, a hardware implementation of RDMA,
common in supercomputers, involves specialized network adaptors
with computing capabilities, which perform data transmissions
without consuming CPU cycles. However, relying on specialized
hardware is also a major disadvantage for applying RDMA in a
cloud, since equipping all nodes with RDMA hardware currently
requires considerable investment, which may become obsolete
soon as the technology advances.

To avoid relying on specialized hardware, OceanRT employs a
software implementation of RDMA, namely SoftiWarp [23].
Although network-related operations are still performed by the
CPU, SoftiWarp avoids 4 memory copying operations for each data
transfer [23], which, in today’s increasingly common 10Gbits
Ethernet, can cause significant latencies. In particular, OceanRT
makes extensive use of the one-sided remote read/write operations
of RDMA. For instance, in one-sided writing, before any
transmission occurs, the node that will receive data pins a number
of RAM pages, which are guaranteed not to be swapped to disk by
the OS. After that, a sending node can directly “write” content to
these pinned RAM pages in the receiving node with negligible

1 llvm.org.

overhead. When the writing is done, SoftiWarp notifies the
receiving node, which then reads its pinned memory locally. One-
sided reading is symmetric, with the sender pinning RAM pages.
Note that the need to pin RAM pages could be a drawback for
RDMA when applied in a cloud, since the pinned pages cannot be
used for other purposes, leading to reduced flexibility. This
problem is alleviated in software RDMA, since memory pages can
be unpinned (i.e., swappable to disk) once there is no more
transmission [23].

In practice, we found that RDMA accelerates OceanRT mainly
in two operations characterized by large message sizes: remote data
retrieval and the transmission of intermediate query results. Remote
data retrieval occurs, for example, in queries with joins, where a
node containing data from one relation must retrieve data from the
other relation. Transmission of intermediate results is involved
when the query is decomposed into sub-queries, whose results must
be subsequently reassembled. For queries that do not involve joins
or subqueries, RDMA improves performance by reducing the
overhead of the underlying cloud file system. For example,
communication costs between a node accessing a large number of
blocks from HDFS and the HDFS name node can be significantly
reduced using RDMA one-sided reads.

3.3 PE and AQE
Figure 2 shows the internal compositions of the PE and the

AQE in OceanRT. Recall from Section 3.1 that a PE parses a SQL
query into an execution plan, and multiple AQEs perform the
operations in the plan. As shown in Figure 2a, the PE contains four
components: a parser, an optimizer, a re-optimizer, and a dispatcher.
Specifically, OceanRT invokes the PE in two different occasions;
in both uses, the cost of the PE is negligible; hence, we place only
one PE per node. First, when a user issues a SQL query to its
gateway node, the latter’s PE parses the query into an execution
plan, optimizes it, decomposes it into multiple subplans, and
dispatches each subplan to an AQE for execution. This use of the
PE had been implemented in the preliminary version of OceanRT,
and we refer the reader to Ref. [30] for details in the query parsing,
optimizing, and subplan dispatching steps.

(a) Parsing Engine (b) Access-Query Engine
Figure 2: PE and AQE in OceanRT

The second use of the PE is that when an AQE receives a query
subplan, the PE of its corresponding node re-optimizes the subplan,
before the AQE executes it. This is a new optimization developed
since the preliminary version [30]. The rationale for this step is that
the node where the AQE resides may contain more detailed
statistics for the data stored locally, which helps optimize the plan
further. Instead of using PostgreSQL components as in the parsing
and optimizing steps, this re-optimization step is performed by a
customized optimizer built from scratch using LLVM 1 , which
incorporates optimization logic designed specifically for this step.

1756

An AQE executes the operators in its query subplan, and
generates (intermediate) results. As illustrated in Figure 2b, an
AQE contains a planner, a coordinator, and an executor, and can
read/write data stored in HDFS, HBase, or a relational database. As
their respective names suggest, the planner determines the
appropriate algorithm for executing the assigned task; the
coordinator coordinates with other AQEs to retrieve data (e.g.,
when processing a join) or partial/subquery results; the executor
performs the actions of the logical operator. We omit further details
of these components for brevity, which can be found in [30].

Since different AQEs inside a node operate independently, they
need to communicate in order to perform certain operations, such
as joins and passing sub-query results. In the preliminary version
of OceanRT [30], we used RDMA for this purpose, which, though
faster than traditional socket-based transmissions, still incurs
considerable overhead, such as pinning/unpinning RAM pages,
sending acks and checking for errors. We eliminate this overhead
by replacing RDMA with a novel inter-AQE link, which resembles
an inter-process communication protocol for transmitting data
between AQEs (which are run as different processes) in the same
node. In particular, sending a piece of information through the
inter-AQE link involves little more than a simple memory copy.

Each physical node runs multiple AQEs, depending on its
hardware configuration, which obtains a higher degree of
parallelism compared to existing systems in which every node is a
single processing unit. For instance, consider a node with two hard
drives and two CPU cores. By dividing the node into two AQEs,
each with a hard drive and a CPU core, the node is able to perform
two independent data retrieval and/or processing tasks
simultaneously. As our experiments demonstrate, setting the
number of AQEs slightly higher than the CPU-and-disk
configuration suggests often improves overall performance, e.g.,
when one AQE is busy reading data from disk, another may
perform CPU-intensive computations, and yet another retrieving
data from the network. Our current implementation uses a simple
heuristic for determining the number of AQEs per node: a (tunable)
factor times that number suggested by the CPU-and-disk
configuration. A formal analysis for the optimal number of AQEs
is left as future work.

3.4 Data Storage
As described in the previous subsection, OceanRT can process

data stored in HDFS, HBase, and/or an RDBMS. Currently, data
storage in OceanRT ultimately relies on HDFS, since (i) to provide
high fault-tolerance, HBase employs HDFS as the underlying file
system; and (ii) for the same reason, in OceanRT, the RDBMS
(currently PostgreSQL) also stores data files on HDFS. To obtain
higher performance, we customized HDFS to better fit OceanRT as
well as spatio-temporal data management. Our modifications to
HDFS do not compromise the functionalities or fault-tolerance
properties of standard HDFS; in other words, OceanRT-optimized
HDFS can be directly used in place of HDFS whenever the latter is
applicable.

OceanRT involves two major modifications in HDFS. First, as
described in [30], we alleviate block fragmentation by grouping
blocks of the same file into larger partitions, each of which contains
M (>1) blocks; meanwhile, we require that each partition be stored
completely in at least N nodes. For instance, when M=10 and N=2,
each partition contains 10 blocks; these 10 blocks are stored
together in at least 2 nodes, each of which is able to scan the entire
partition locally without network transmissions. We refer the reader
to [30] for further details. From our experiments, we observed that

this HDFS-modification alone (i.e., without the second storage
optimization, explained soon) does not lead to dramatic
performance enhancements. On the other hand, grouping blocks
into partitions requires modification to the HDFS source code,
which is a limitation to the applicability of OceanRT. For these
reasons, we plan to migrate OceanRT storage to stock HDFS in
future versions.

Using the two-level partition-block file organization, we
further optimize OceanRT storage for spatio-temporal data and
queries, as follows. First, we decompose the space into cells, e.g.,
using an (possibly unbalanced) quad-tree, and assign records in
each cell to a partition. Then, in each partition, records are further
separated according to their timestamps, and assigned to blocks
accordingly. Each partition and block also contains various
metadata, including the minimum bounding rectangle (for the
spatial attributes) and a time range (for the timestamp) of records
therein. Records in each block are then organized using an existing
method, e.g., RC-File [9], ORC-File [16], etc.

The grouping of records is accomplished via hashing, i.e., the
partition of a record is determined by a hash value of its
corresponding spatial cell, and the block of a record is determined
by hashing its timestamp. Essentially, this file organization
corresponds to an embedded spatio-temporal primary index, whose
outer structure is a spatial one; each of its node contains an
embedded temporal index. When processing a query with spatial
and/or temporal range selections, instead of scanning an entire
relation, OceanRT only scans the partitions and blocks whose
spatial MBR and temporal range overlap the query.

Besides spatio-temporal data and queries, the novel file
organization of OceanRT also applies to other types of data with
range selections on multiple attributes, achieving the benefits of a
multi-dimensional primary index. In general, for relational and
non-spatio-temporal data, the records are first grouped into
partitions by their primary key, and then into blocks by an attribute
that is frequently involved in range queries or joins. This scheme is
used in our experimental evaluations, presented next.

4. EXPERIMENTS
We implemented all core components of OceanRT in C++, plus

a foreign data wrapper in Java for interacting with Hadoop, which
includes HDFS. The experiments use data and queries from TPC-
DS [17], a popular benchmark for comparing big data processing
systems, containing 25 tables, 429 columns and 99 query templates.
The default data size is set to 1 TByte. Specifically, we use the same
query set as a recent experimental evaluation performed by
Cloudera [5], which is classified in [5] into 3 categories: interactive,
reporting, and deep analytics. Table 1 lists the TPC-DS queries
used in our experiments.

Table 1: TPC-DS queries used in the experiments
Type Queries

Interactive Q19, Q42, Q52, Q55, Q63, Q65, Q68, Q73, Q98
Reporting Q3, Q7, Q27, Q43, Q53, Q89

Deep Analytics Q34, Q46, Q59, Q79, SS_MAX

According to [5], as of mid-2014, the current version of Impala
(v1.3.1) outperforms by clear margins the current versions of Presto,
Shark, and Stinger Hive-on-Tez, which are currently the most
popular open-source real-time big data analytics systems, as
described in Section 2. Hence, we consider Impala v1.3.1 as our
main competitor. Since Impala’s compiler supports only a subset of
TPC-DS queries [21], the evaluation of Impala utilizes the Impala
TPC-DS Kit from Cloudera for re-writing queries, available at

1757

https://github.com/cloudera/impala-tpcds-kit. In addition, we also
compare OceanRT against Hive-on-Tez v0.12, and we have
published the query re-writing toolkit for Hive at
https://github.com/simonzhangsm/hive-testbench. The version of
Hadoop used in the experiments is 2.3.0. These versions of Impala,
Hive and Hadoop are contained in CDH 5.0.2.

All experiments were run in a private cluster consisting of 10
nodes, each equipped with 2 Intel Xeon 1.9GHz 6-core CPUs, 16
GBytes of memory, and 2 1-TByte hard drives. All nodes run on
64-bit Ubuntu Linux 12.04 LTS. By default, there are 4 AQEs in
each node. Figure 3 exhibits the network topology of the nodes.

Figure 4 presents the evaluation results of Hive-on-Tez, Impala,
and OceanRT on all 20 queries in Table 1, with the dataset size
fixed to 1 TBytes. The performance trends in our results are
consistent with [5], with Impala considerably faster than Hive-on-
Tez. On all queries, OceanRT consistently and significantly
outperforms Impala, often by more than an order of magnitude. The
performance advantage of OceanRT is particularly pronounced for
the interactive queries. For example, on Q98, OceanRT achieves
13x and 106x sppedup compared to Impala and Hive-on-Tez,
respectively. It is worth mentioning that OceanRT finishes
processing every query within 7 seconds, which is acceptable
waiting time for most interactive applications.

Figure 3: Network topology of the nodes in the experiments

Figure 4: Evaluation on all queries using 1TB data

Figure 5 plots the total running time as a function of the dataset
size for two sample interactive queries, Q52 and Q68. Results with
other interactive queries are omitted since they lead to similar
conclusions. The running times of all systems increase with the
dataset size, as expected. Clearly, OceanRT is the fastest in all
settings. The performance gap between OceanRT and Impala/Hive
generally expands as the data size grows (note that the running
times are shown in log scale).

Figure 6 and Figure 7 repeat the above experiment on sample
reporting and deep analytics queries, respectively. OceanRT again
wins on all settings, with clear margins that generally grow with the
dataset size. Comparing the results on different types of queries, the
performance advantage of OceanRT is more pronounced on
complex queries such as Q46 (up to 30x faster than Impala) than on
simpler ones such as Q52 (up to 8x faster than Impala). This is

because complex queries generally involve more network
transmissions and data retrievals, leading to more pronounced
effects of the RDMA links and the novel storage scheme in
OceanRT.

(a) Q52 (b) Q68

Figure 5: Effect of dataset size on sample interactive queries

(a) Q27 (b) Q89

Figure 6: Effect of dataset size on sample reporting queries

(a) Q46 (b) SS_MAX

Figure 7: Effect of dataset size on deep analytics queries

Having examined the performance of OceanRT compared to
existing systems, we next focus on its internal parameters. Figure 8
shows the impact of the number of AQEs in each physical node on
the overall performance of OceanRT, using the 6 sample queries
studied in Figures 5-7. Recall that each node has two CPUs with 6
cores each, 2 hard drives, and 16 GBytes of RAM. Hence, splitting
each node into 2 AQEs would lead to each having 1 CPU and 1
hard drive; a higher number of AQEs forces different AQEs to
share resources, especially the hard drive. According to Figure 8,
having multiple AQEs leads to significantly better performance
than treating each node as a single computing unit, which is the case
in most existing systems. Meanwhile, the query response time of
OceanRT continues to drop as the number of AQEs increases
beyond 2, indicating that the benefit of increased parallelism
outweighs the drawback of resource competition between AQEs.
The performance of OceanRT stabilizes when the number of AQEs
reaches around 8; after that, adding more AQEs adversely affects
performance. These observations suggest there exists an optimal
number of AQEs per node that cannot be determined by the amount
of resources in a straightforward way. Hence, further investigation
into this topic is an interesting direction for future work.

Summarizing the experiments, OceanRT outperforms existing
systems in every single setting tested, with a performance gap that

1758

grows with the dataset size as well as the complexity of the query.
For 1TB data, OceanRT running on a small cluster of 10 nodes
finishes every query within 7 seconds. Finally, the number of AQEs
needs to be carefully tuned to maximize performance.

Figure 8: Effect of different number of AQEs per node

5. CONCLUSION
We present OceanRT, an interactive analytics platform for big

data, especially spatio-temporal data and queries. OceanRT
achieves higher performance compared to existing systems,
through three innovative system designs: the use of RDMA links
between nodes, the novel architecture involving multiple AQEs per
node, and a storage scheme that reduces file fragmentation and
serves the purpose of a multi-dimensional primary index.
Regarding future work, an interesting direction is to derive a formal
performance model for OceanRT, which can help determine the
best number of AQEs per node, a critical system parameter.
Meanwhile, the RDMA links may be improved by minimizing
pinning / unpinning of memory pages. Finally, we intend to
optimize the storage scheme further to reduce the number of remote
block retrievals.

6. ACKNOWLEDGMENTS
Yin Yang and Marianne Winslett are supported by A*STAR

under the Human Centric Cyber Systems (HCCS) Program.

7. REFERENCES
[1] Abouzeid, A., Bajda-Pawlikowski, K., Abadi, D., Silberschaz,

A., Rasin, A. HadoopDB: An Architectural Hybrid of
MapReduce and DBMS Technologies for Analytical Workloads.
VLDB, 2009.

[2] Bajda-Pawlikowski, K., Abadi, D., Silberschatz, A., Paulson, E.
Efficient Processing of Data Warehousing Queries in a Split
Execution Environment. SIGMOD, 2011.

[3] Dean, J., Ghemawat, S. MapReduce: Simplified Data Processing
on Large Clusters. OSDI, 2004.

[4] DeWitt, D. J., Halverson, A., Nehme, R., Shakar, S., Aguilar-
Saborit, J., Avanes, A., Flasza, M., Gramling, J. Split Query
Processing in Polybase. SIGMOD, 2013.

[5] Erickson, J., Kornacker, M., Kumar, D. New SQL Choices in the
Apache Hadoop Ecosystem: Why Impala Continues to Lead.
http://blog.cloudera.com/blog/2014/05/new-sql-choices-in-the-
apache-hadoop-ecosystem-why-impala-continues-to-lead/.

[6] Engle, C., Lupher, A., Xin, R., Zaharia, M., Franklin, M.,
Shenker, S., Stoica, I. Shark: Fast Data Analysis Using Coarse-
Grained Distributed Memory. SIGMOD, 2012, demo.

[7] George, L. HBase: The Definitive Guide – Random Access to
Your Planet-Size Data. O’Reilly, 2011.

[8] Hunt, P., Konar, M., Junqueira, F. P., Reed, B. ZooKeeper:
Wait-Free Coordination for Internet-Scale Systems. USENIX
ATC, 2010.

[9] He, Y., Lee, R., Huan, Y., Shao, Z., Jain, N., Zhang, X., Xu, Z.
RCFile: A Fast and Space-Efficient Data Placement Structure in
MapReduce-Based Warehouse Systems. ICDE, 2011.

[10] Isard, M., Budiu, M., Yuan, Y., Birrell, A., Fetterly, D. Dryad:
Distributed Data-Parallel Programs from Sequential Building
Blocks. ACM Eurosys, 2007.

[11] Jiang, D., Chen, G., Ooi, B. C., Tan, K. -L., Wu, S. epiC: an
Extensible and Scalable System for Processing Big Data.
PVLDB, 7(7), 2014.

[12] Li, F., Ooi, B. C. Ozsu, T., Wu, S. Distributed Data
Management Using MapReduce. ACM Computing Survey, 46(3),
2014.

[13] Malewicz, G., Austern, M. H., Bik, A. J. C., Dehnert, J. C.,
Horn, I., Leiser, N., Czajkowski, G. Pregel: a System for Large-
Scale Graph Processing. SIGMOD, 2010.

[14] Melnik, S., Gubarev, A., Long, J. J., Romer, G., Shivakumar, S.,
Tolton, M., Vassilakis, T. Dremel: Interactive Analysis of Web-
Scale Datasets. VLDB, 2010.

[15] Olson, M. Impala v Hive. http://vision.cloudera.com/impala-v-
hive/.

[16] Propopp, C. ORC: An Intelligent Big Data File Format for
Hadoop and Hive. http://www.semantikoz.com/blog/orc-
intelligent-big-data-file-format-hadoop-hive/.

[17] Poess, M., Nambiar, R. O., Walrath, D. Why You Should Run
TPC-DS: A Workload Analysis. VLDB, 2007.

[18] Qian, Z., He, Y., Su, C., Wu, Z., Zhu, H., Zhang, T., Zhou,
L., Yu, Y., Zhang, Z. TimeStream: Reliable Stream
Computation in the Cloud. ACM EuroSys, 2013.

[19] Russell, J. Cloudera Impala. O’Reilly, 2013.
[20] Rao, S., Ramakrishnan, R., Silberstein, A., Ovsiannikov, M.,

Reeves, D. Sailfish: A Framework for Large Scale Data
Processing. SoCC, 2012.

[21] Soliman, M. A., Antova, L., Raghavan, V., El-Helw, A., Gu, Z.,
Shen, E., Caragea, G. C., Garcia-Alvarado, C., Rahman, F.,
Petropoulos, M., Waas, F., Narayanan, S., Krikellas, K.,
Baldwin, R. Orca: A Modular Query Optimizer Architecture for
Big Data. SIGMOD, 2014.

[22] Traverso, M. Presto: Interacting with petabytes of data at
Facebook. https://www.facebook.com/notes/facebook-
engineering/presto-interacting-with-petabytes-of-data-at-
facebook/10151786197628920

[23] Trivedi, A., Metzler, B., Stuedi, P. A Case for RDMA in Clouds:
Turning Supercomputer Networking into Commodity. ACM
APSys, 2011.

[24] Tan, T, Ma, R., Winslett, M., Yang, Y., Yong, Y., Zang, Z.
Realtime Elastic Streaming Analytics in the Cloud. SIGMOD,
2013, poster.

[25] Thusoo, A., Sarma, J. S., Jain, N., Shao, Z., Chakka, P.,
Anthony, S., Liu, H., Wyckoff, P., Murthy, R. Hive – A
Warehousing Solution Over a Map-Reduce Framework. VLDB,
2009.

[26] White, T. Hadoop: The Definitive Guide – MapReduce for the
Cloud. O’Reilly, 2009.

[27] Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J.,
McCauley, M., Franklin, M., Shenker, S., Stoica, I. Resilient
Distributed Datasets: A Fault-Tolerant Abstraction for In-
Memory Cluster Computing. NSDI, 2012.

[28] Zaharia, M., Das, T., Li, H., Shenker, S., Stoica, I. Discretized
Streams: An Efficient and Fault-Tolerant Model for Stream
Processing on Large Clusters. ACM SOSP, 2013.

[29] Zhang, Z., Shu, H., Chong, Z., Lu, H., Yang, Y. C-Cube: Elastic
Continuous Clustering in the Cloud. ICDE, 2013.

[30] Zhang, S., Yang, Y., Fan, W., Lan, L., Yuan, M. OceanRT:
Real-Time Analytics over Large Temporal Data. SIGMOD,
2014, demo.

1759

