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ABSTRACT
Developing a database engine is both challenging and re-
warding. Database engines are very complex software arti-
facts that have to scale to large data sizes and large hardware
configurations, and developing such systems usually means
choosing between different trade-offs at various points of de-
velopment.

This papers gives a survey over two different database en-
gines, the disk-based SPARQL-processing engine RDF-3X,
and the relational main-memory engine HyPer. It discusses
the design choices that were made during development, and
highlights optimization techniques that are important for
both systems.

1. INTRODUCTION
Building a database engine is a very complex task. Be-

sides the pure code size, many decisions must be made that
affect trade-offs within the system. As an illustrative ex-
ample consider the choice between disk-orientation versus
main-memory-orientation. If we assume that data is mainly
on disk, sequential data access is extremely important, and
aggressive compression is a good idea in order to save I/O
bandwidth. If, however, data is largely in main-memory,
we can afford much more random access, and compression
becomes a burden rather than a virtue due to CPU costs.
Similar, although usually less severe, choices are made con-
stantly during system development. On the other hand some
choices like increasing locality or using a query optimizer are
virtually always a good idea. It is therefore instructive to
look at existing systems to see what they did right and what
could be improved.

In this paper we give a survey of two different systems.
One is the disk-oriented system RDF-3X [37] for managing
graph-structured RDF data, the second is the main-memory
relational DBMS HyPer [16]. Both were developed to a large
extent by the author of this paper, but they have radically
different architectures. We show why that is the case, and
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how the different design goals affected the systems. Further-
more, we show which techniques, in particular in the context
of query optimization, were essential for both systems and
therefore should be applicable to other systems, too.

The rest of the paper is structured as follows: We first
describe the disk-based system RDF-3X in Section 2. In
Section 3 we then contrast that to the architecture of the
relational main-memory DBMS HyPer. Query optimization
techniques are discussed in Section 4. Finally, an overview
of other systems is given in Section 5.

2. RDF-3X
The RDF (Resource Description Framework) data model

has been designed as a flexible representation of schema-
relaxable or even schema-free information for the Seman-
tic Web. Nowadays it is used, beyond the original scope
of the Semantic Web, for many kinds of graph-structured
data. In RDF, all data items are represented in the form of
(subject, predicate, object) triples. For example, informa-
tion about the song “Changing of the Guards” performed
by Patti Smith could include the following triples:

(id1, hasType, ”song”),
(id1, hasT itle, ”Changing of the Guards”),
(id1, performedBy, id2),
(id2, hasName, ”Patti Smith”),
(id2, bornOn, ”December 30, 1946”),
(id2, bornIn, id3),
(id3, hasName, ”Chicago”),
(id3, locatedIn, id4),
(id4, hasName, ”Illinois”),
(id1, composedBy, id5),
(id5, hasName, ”Bob Dylan”),
and so on.

Conceptually an RDF database is a huge set of such triples,
where the triples implicitly form a graph (every triple is an
edge in the graph). This graph can be queried using the
SPARQL query language. For instance, we can retrieve all
performers of songs composed by Bob Dylan by the following
SPARQL query:

Select ?n Where {
?p <hasName> ?n. ?s <performedBy> ?p.

?s <composedBy> ?c. ?c <hasName> "Bob Dylan"

}

For a database system the largely schema-free nature of
RDF data is very challenging. Data is stored in one (or
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select ?u where {
?u <crime> []. ?u <likes> "A.C.Doyle";

?u <friend> ?f.

?f <romance> []. ?f <likes> "J.Austen" .

}
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Figure 1: A SPARQL query with a corresponding
graph representation.

more) huge graph(s), the edge structure can vary wildly,
and both data distributions and queries are hard to pre-
dict. Note that while SPARQL queries usually form nice
subgraphs that are to be matched in the data set (see Fig-
ure 1 for a visual example), the user is free to formulate
very unusual query shapes, including, for example joins over
unbounded predicates. This means that all techniques that
rely upon known predicate values are not well suited to han-
dle arbitrary SPARQL queries.

The RDF-3X engine [37, 39] was designed based upon
three assumptions:

1. It is impossible to predict the shape of the data graph
or the shape of the queries. Therefore, data must
be stored and indexed such that any possible kind of
SPARQL query can be answered efficiently.

2. The data graph is large, typically larger than main
memory. Therefore, query processing will often be I/O
bound, and the system must maximize sequential ac-
cess and minimize I/O bandwidth.

3. Even though the graph is large and queries can touch
arbitrary parts of the graph, the result that will be pre-
sented to the user is usually reasonably small. There-
fore, it pays off to aggressively prune and to delay re-
construction to the end.

Not all of these assumptions are necessarily always true,
in particular main memory sizes have increased significantly
since the start of RDF-3X development. However, they are
plausible, and adhering to them has led to a very scalable
and robust system.

Internally, RDF-3X is organized into several layers [37,
39]. On the storage layer, all RDF triples are first passed
through a dictionary compressor, which replaces all strings
and literals in the triples with dense integer numbers. This
greatly simplifies further processing, and also reduces the
data size significantly, as the degree of redundancy in the
data is often high. These integer triples are then stored
in clustered B+-trees. Clustered B+-trees are very disk-
friendly, both for point accesses and for range queries; and
in the context of SPARQL, we can translate every possi-
ble query pattern into a single range that immediately re-
turns all matching tuples: The triple pattern ?u <likes>
"A.C.Doyle" can be interpreted as p = likes∧ o = A.C.Doyle,
or, after dictionary compression, as something like p = 1 ∧
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Figure 2: Indexing Triples in RDF-3X

o = 1234. Therefore, if we have an index on (P,O), we
can answer that pattern immediately with one range scan.
Because we make no assumption about the shape of the
query, any combination of attributes is useful, and RDF-3X
therefore indexes all combination of S, P, and O. The size
overhead of this redundant indexing is mitigated by using
compressed B-tree leaves, the total storage size is usually
less than the original data size. This is shown in Figure 2.
The “-” marks repeated values that can be totally omitted,
they other values are stored in an tight variable-length rep-
resentation.

The query processing layer exploits the fact that inter-
nally all literals are represented as integers. Even though
a literal can have a data type like string or date, typing
is dynamic and the type information is stored within the
dictionary. The query processing operations usually reason
only over integer values. This again is a trade-off, of course.
Equality comparison is very cheap due to that design, pred-
icates that require type information are more expensive, as
they require consulting the dictionary. But overall this rep-
resentation leads to a very lean and efficient operator model,
which the original paper calls RISC-style [37]. In particular,
joins are cheap and well supported. The system uses merge
joins if the tuple order produced by the indexes accessed is
favorable, otherwise it uses hash joins.

RDF-3X’s runtime infrastructure depends upon a good
query optimizer to find a good execution order. This is very
challenging in RDF due to the lack of a schema. In par-
ticular, cardinality estimation is very hard. We will discuss
this again in Section 4. But overall RDF-3X is quite suc-
cessful there, and usually finds a very good execution plan.
As a result, its initial release outperformed other systems
significantly [37, 39], often by a factor of 10 or more.

For very large graphs with billions of triples efficient data
access is even more important. A query might be selective
in itself, but an individual triple pattern can access signif-
icant parts of the database, which then causes prohibitive
costs. For RDF-3X, we therefore developed techniques for
sideways information passing [38] that allows different parts
of the query to actively prune observed data against each
other, and to restrict the index accesses using this infor-
mation. The simplest example is a merge join, where non-
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joining parts of the data can be skipped in a zig-zag fashion
depending on the other side of the join. Similar techniques
can be derived for hash joins, and large join groups in gen-
eral. As a result, RDF-3X often touches only a fraction of
the original data, which is very helpful for disk-based sys-
tems.

RDF data is usually read-mostly, but of course every RDF
store is updated from time to time. For this case, a database
engine should offer isolation guarantees, ideally serializabil-
ity. In RDF-3X transactions are implemented in a multi-step
approach [40]: First, changes are kept local and only visible
to the writer transaction. At commit, they are merged into
differential indexes (relative to the main database) and an-
notated with version numbers. From time to time the differ-
ential indexes are merged back into the main database, up-
dating the B-trees as needed. The versioning greatly simpli-
fies transaction isolation, as each transaction can decide in-
dividually if a triple is visible for it or not. As an added ben-
efit, they even allow for time travel queries. The differential
indexes are important due to the disk-orientation of RDF-
3X: extensive indexing of all attribute combination virtually
guarantees that at least some indexes will have poor locality
for a given update transaction. By caching them in small in-
termediate indexes the random updates are aggregated into
more sequential merges. A nice property of SPARQL is that
it is relatively simple to implement predicate locking, which
means that RDF-3X can offer fine-grained locking without
excessive locking costs.

In retrospective, the architecture of RDF-3X proved to be
very robust and scalable, but was perhaps geared a bit too
much towards the on-disk case. It was initiated when large
RDF data sets were still much larger than main memory, but
that is about to change. And if the data is already in main
memory, decompression, which is very useful to save disk
I/O, causes a significant CPU overhead. Consequently, some
carefully scheduled random accesses would be very useful to
improve performance for the in-memory case, but would be
prohibitive expensive in the on-disk case. So today some
re-balancing of the trade-offs might be a good idea. On
the other hand these are largely tuning and implementation
issues, they do not require a complete rewrite. And the
original premise of assuming nearly nothing about the data
and the queries was a very good idea. It has led to a system
that is very robust and can handle various kinds of use cases
while offering excellent performance.

3. HYPER
Where RDF-3X is disk-oriented, the newer HyPer system

is a relational main-memory database system [16]. In the
last years main memory sizes have grown to a point where
servers with more than a terabyte of RAM are affordable,
which means that the transactional data of most companies
can fit into main-memory of a single server. Additionally,
main memory offers not only faster I/O than disk, but comes
with hardware support for interesting features. In particu-
lar, main memory databases offer a chance to close a rift
that has developed in the engine landscape: Historically,
database engines are either good at online transaction pro-
cessing (OLTP) or online analytical processing (OLAP), but
usually not at both. This rift has developed out of techni-
cal necessities, not out of user requirements. Users would
often like to run complex analytics on the live OLTP sys-
tem, too, but without hurting mission-critical OLTP per-
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Figure 3: Transaction Isolation using Virtual Mem-
ory Snapshots

formance. This was the original motivation for the develop-
ment of HyPer: Exploit main-memory technology to develop
a unified OLTP and OLAP system that can do both OLTP
and OLAP efficiently and simultaneously.

These observations have led to the development of the
HyPer system [16, 17], which was designed based upon these
assumptions:

1. Running OLTP and OLAP simultaneously is highly
desirable. Therefore, a system has to ensure that they
do not hinder each other. For example, a long-running
OLAP query must not interfere with concurrent OLTP
transactions.

2. Main memory is so large that the working set of trans-
action processing fits into main memory. Therefore,
transactions never block due to external I/O.

3. Another source of blocking behavior could be transac-
tion isolation. Therefore using copy-on-write virtual
memory support to provide non-blocking transaction
isolation is highly desirable.

4. If transactions never block, any CPU overhead is im-
mediately visible. The system must therefore be heav-
ily tuned to minimize CPU costs, much more than in
a disk-based system.

One of the original ideas of HyPer was that if data is in
main memory, we can use virtual memory to provide trans-
action isolation at low costs [16]. This is illustrated in Fig-
ure 3. The “main” database, that executes OLTP trans-
action as quickly as possible, is copied in a virtual manner
for incoming OLAP transactions by using the fork system
call. After the fork, both copies are physically the same, but
virtually separate, offering a stable snapshot at low costs.
The moment a shared page is modified, the memory man-
agement unit traps into the operating system and creates a
copy of the page, hiding the change from the other trans-
action. The nice thing is that we get transaction isolation
at a very low cost. The only noticeable cost is the one-time
costs of the fork call. Within the transactions, we do not
need any kind of latching or other synchronization mecha-
nism, at least as long as we execute the OLTP serially, as
proposed by VoltDB [14]. For performance reasons HyPer
deviates from serial execution if it can decide that transac-
tions operate on disjoint parts of the data, but it never uses
locking or latching. Experiments have shown that classical
2PL is so expensive to implement that serial execution is
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Fragments

much more attractive in a main-memory OLTP system, as
it can use the CPU at full speed and never waits.

On recent processors, namely those that support hard-
ware transactional memory (HTM), it becomes feasible to
deviate from serial execution without paying the high costs
of latching and locking [22]. There, multiple threads can
work optimistically on the same data, only in the unlikely
event that they actually collide does the system fall back
to a lock to synchronize access. Note, however, that while
HTM is enough to provide thread synchronization, it is not
enough for transaction isolation. Database transactions are
too complex for current HTM systems, thus the database
has to assemble a database transaction from multiple hard-
ware transactions [22]. Similar, the database needs a mech-
anism to bring changes from the virtual snapshots back into
the main database. This is not an issue for the more common
read-only OLAP queries, but if OLAP transactions decide
to modify the data, the database can use a similar mecha-
nism to decide if changes can be safely merged back into the
main database [27].

All this assumes that transactions, in particular OLTP
transactions, are very fast. HyPer achieves this by using
LLVM for just-in-time compilation of SQL queries to ma-
chine code [32, 34]. The compilation works in a data-centric
manner: Instead of compiling one operator at a time, the
compiler generates code for each individual data pipeline of
the execution plan. This is illustrated in Figure 4. The
pipelines, i.e., the data flow paths from one materializa-
tion point to the next, are compiled in a bottom-up manner
where every operator pushes tuples towards its consumer.
In code this means that most pipeline fragments consist
of a few tight loops, which is favorable for modern CPUs
and results in excellent performance. This compilation step
avoids the high CPU overhead of classical interpreted ex-
ecution frameworks. For disk-based systems this overhead
was largely neglectable, but for in-memory processing any
interpretation overhead is very visible [32].

Similar, HyPer uses a specialized data structure for in-
memory indexing [21]. Disk-based systems traditionally use
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B-trees, and for good reasons, as B-trees are a well proven
data structure that offers good on-disk performance. Even
in memory B-trees are not a bad choice, and perform much
better than for example red-black trees, which are tradition-
ally used for in-memory search trees. The reason for that is
that red-black trees are much deeper than B-trees, which is
very expensive due to caching and mispredictions on mod-
ern CPUs. The main disadvantage of B-trees is that they
are still comparison based, and comparisons (and the subse-
quent unpredictable branch) are very expensive nowadays.
HyPer therefore use radix-trees to avoid expensive compar-
isons, and uses an adaptive data layout to avoid the space
overhead typically associated with radix trees [21]. This re-
sults in a data structure with very good performance, and
which improved for example TPC-C transaction rates in ex-
periments by over 70%.

Very good single-threaded performance is good, but not
sufficient on modern multi-core systems. Systems with 60
cores and more are becoming common, and a system must
strive to utilize all of them. Therefore massively parallel
multi-core algorithms that take NUMA into account are be-
ing developed, such as our MPSM [1] massive parallel sort
merge join, or hash based join algorithms [20, 2]. On the
other hand system utilization can be hard to predict, which
makes over-committing to a large number of threads danger-
ous. HyPer therefore always uses a fixed number of threads
(one for each core), and multiplexes the workload to the
worker threads [20]. In order to increase locality, in particu-
lar in NUMA settings, the worker threads first try to process
local work in small morsels, and only operate on remote data
if there is no local work left. This adaptive work stealing al-
lows for very flexible execution, and in particular allows for
adjusting the degree of parallelism dynamically during exe-
cution. This task is carried out by the Dispatcher module
which assigns workers a small piece of work (a morsel of
about 100,000 tuples) at a time – as exhibited in Figure 5.

Even though main-memory sizes are growing, HyPer has
to care about large data volumes, of course. In particular
in warehousing scenarios data can go beyond main-memory,
and simply storing it as it is in main-memory is not enough.
One useful technique here is database compaction [7], where
the database separates the hot data, i.e., the data that is
accessed (and potentially updated) very frequently, and the
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cold data that is mainly kept for archival and accessed more
rarely. This separation is done by observing access patterns,
and again virtual memory can be exploited for that. Af-
ter separation it pays off to compress cold data aggressively,
and it will most likely never change again, which saves space
and also makes it reasonable to spool the data to disk. Sim-
ilar disk-based issues arise if data is imported from external
sources in the form of text files. Parsing and importing text
files is surprisingly expensive when handling huge volumes
of data. HyPer therefore uses a number of techniques like
using SSE instructions for parsing and careful parallelization
of the import process to allow for “instant loading” [29]. In-
stant here means that the system can import the data as
fast as it is delivered from the network or very fast disks
(e.g., 10GbE or SSDs). This allows for query processing at
wire speed.

Another way to address very large data volumes is scale-
out, i.e., distributing the data over multiple nodes. This
works particularly well if it is possible to distribute the
queries, but to keep the transaction processing largely on
one node [28]. Distributing data however creates a whole
new class of problems, as network transfer is expensive. This
can be mitigated to some extend by recognizing locality that
often occurs naturally in the data [43]. For example, if data
is stored in time-of-creation order, neighboring tuples will
have very similar date and time information, which can be
exploited to reduce the volume of network traffic.

Overall HyPer offers excellent performance, not only in
OLTP settings like TPC-C or in OLAP settings like TPC-
H, but in both simultaneously. That was traditionally not
possible within a single database engine. The combined pro-
cessing functionality has inspired people to consider com-
bined OLTP and OLAP benchmarks, as in the mixed CH
benchmark [5]. It combines a transaction mix from TPC-C
with a query stream inspired from TPC-H running on the
same data, and thus stresses combined processing function-
ality. This certainly seems to be a promising direction; use
cases like business intelligence simply need the functional-
ity to query live OLTP data and databases should offer this
functionality.

4. QUERY OPTIMIZATION
Both RDF-3X and HyPer rely upon query optimization

techniques for finding good execution plans. Query opti-
mization is absolutly essential for virtually any database
system that has to cope with reasonably complex queries.
As such, it always pays off to invest time in the optimizer.
Often, the impact of the query optimizer is much larger than
the impact of the runtime system!

This is illustrated in Figure 6. It shows the execution
times for TPC-H query 5 (SF1) in HyPer when using 100
random join orders (with a timeout after 3 seconds) [42].
HyPer compiles the query into machine code, parallelizes its
execution, uses semi-join techniques, and uses all kinds of
performance tricks to be fast, but it still cannot mitigate
the devastating effect of picking a bad join order. The dif-
ference between the best plan and the worst plan in that
figure is more than a factor of 100, and the plan that the
HyPer optimizer picks is in fact even better than the best
plan shown there. The runtime system has often no chance
to correct the mistakes made by the query compiler. This
makes a good query optimizer essential.
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Figure 6: Execution times for random join orders of
TPC-H Q5

One of the most crucial decisions a query optimizer must
make is the execution order of operators, in particular the
join order. Join ordering is NP-hard in general, which has
caused many people to give up on it and use heuristics. But
in practice even fairly complex join ordering problems can
be solved exactly by using smart algorithms [23, 24]. The
complexity of the problem depends upon the structure of
the problem, in particular its query graph, and fortunately
most users do not enter clique queries. This structure can
be used directly in a graph-theoretic approach to drive the
search exploration of an optimizer, either in a bottom-up
[23, 24] or in a top-down [6] fashion. Again, fairly complex
queries can be solved exactly, for example optimizing a chain
query with 50 relations is no problem at all when using a
graph-based optimization algorithm.

In the unlikely event that the user really enters a query
that is too complex to solve exactly, the optimizer can de-
grade gracefully towards heuristics [31]: Before optimization
it computes the implied size of the search space, and if that
is too large it uses heuristics to rule out very unlikely join
orders, until the remaining search space is tractable. This
way it avoids the hard cliff of switching from an optimal so-
lution to a greedy heuristic, and if reducing the search space
required only a few heuristic pruning steps, it is very likely
that the optimal solution is still in the remaining search
space.

Of course all of these optimizations rely upon cardinal-
ity estimates, which are notoriously unreliable for complex
queries. However, accuracy can be improved with some care.
All estimates will induce errors, of course, but it is possible
to derive estimates such that the impact of errors is bounded
[26]. For join operators, estimation errors propagate multi-
plicative, but by careful histogram construction the maxi-
mum multiplicative error can be controlled; thus allowing to
drive error bounds for larger join plans.

Another great problem besides error propagation is cor-
relations. This is particularly severe for RDF data, where
correlations between triples with identical subjects are not
an exception but the norm. Most estimators assume more
or less independence, and severely misestimate the cardinal-
ties for SPARQL queries. However, even though RDF is
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conceptually very unpredicatable, real world data exhibits a
certain structure. This structure can be captured by com-
puting characteristic sets [36], i.e., the sets of predicates that
occur together for a given subject. Conceptually this is sim-
ilar to schema discovery, and identifies common structure
within the data graph. By annotation these characteristic
sets with statistics, the optimizer can derive very accurate
estimates, even for large join groups and even in the presence
of correlations. Recognizing typical query patterns is a good
idea for SPARQL processing in general, as it allows both for
improving the accuracy of estimates and for reducing the
optimization effort [11]. Similar ideas would be useful for
relational data processing, too. Star queries for example
have a very large combinatorial search space, but are easy
to optimize in reality. Recognizing that during optimization
could greatly improve optimization times.

Finally, if estimates are really unreliable in a query, the
optimizer can always execute parts of the query and optimize
the rest of the query based upon the observed data [33].
This eliminates most of the uncertainty and prevents gross
misestimations. This comes at a cost, these intermediate
results have to be materialized. Therefore it is helpful to
analyze the query and only execute those parts that are
both hard to estimate and that actually have an impact
on the resulting plan. Somewhat surprisingly this is not
always the case. Sometimes the query structure determines
parts of the execution plan, largely independent from query
estimates. Sensitivity analysis helps to avoid unnecessary
materialization costs.

Most of the optimizations mentioned here are useful inde-
pendent from the concrete database engine, but sometimes
it helps to evolve the optimizer and the runtime system si-
multaneously. One example for that is the group join, i.e.,
the combination of a join and subsequent group by into one
algebraic operator [25]. Such constructs are useful in many
aggregation queries, for example TPC-H query 13, where
it improves response times significantly, but they are not
always applicable. The query optimizer must therefore be
extended to recognize all cases where such a compound op-
erator is valid and useful, and the runtime system must be
extended to handle all these cases. This is a trade-off, using
a simpler implementation in the runtime system makes life
more difficult for the query optimizer, and vice versa.

In general, query optimization is incredibly important.
Changes to an already tuned runtime system might bring
another 10% improvement, but changes to the query opti-
mizer can often bring a factor 10. Or cost a factor 10, which
is why some people criticize query optimization. But the
impact of query optimization is so large that there are no
alternatives, the runtime system alone could never get that
good performance without an optimizer.

5. RELATED WORK
There are too many excellent systems out there to do them

all justice. We therefore limit ourselves to just a few, and
apologize for the systems that we did not mention here.

One of the most influential systems was of course System
R [4], which pioneered many classical techniques like SQL,
dynamic-programming based query optimization, transac-
tion processing, locking, etc.. Its design influenced many,
or perhaps even most, systems up to today. On the query
processing side the Volcano project was highly influential

[9]. Its query processing model, and in particular its paral-
lelization framework, are widely used in commercial systems,
Putting the ideas from these two projects together would
give a rough blueprint for traditional disk-based systems.
Of course architecture evolved and improved over time, but
most disk-based systems were quite similar to that approach.

System architectures started to change significantly as the
hardware evolved. The MonetDB project pioneered a radi-
cally different approach [12]: It used a column oriented stor-
age layout, and optimized query processing for CPU utiliza-
tion, assuming (correctly) that data could be primarily kept
in main-memory on modern machines. The MonetDB/X100
project [48], that then evolved into the commercial Vector-
Wise system [47], took this CPU orientation even further
in their vectorized processing approach. Both system offer
excellent OLAP performance, much better than what was
possible with the older, disk-based row stores. A similar ap-
proach to MonetDB was also followed by C-Store [46], that
then evolved into the commercial Vertica system, and that
introduced more aggressive storage and indexing techniques.

On the OLTP side H-Store [15], and its commercial in-
carnation VoltDB [14], proposed a radical change from tra-
ditional architectures. Its authors observed that if data fits
into main memory, a traditional database system spends
most of its time during OLTP processing on “unproductive”
work like latching, locking, and logging. Therefore they
proposed to restrict OLTP transactions to non-interactive
stored procedures, which can be executed much faster in the
a serial manner, without any need for latching or locking.

Of course many people already have disk-based systems,
and for them a transition to a different architecture is diffi-
cult. The Short-MT project [13] is interesting in that regard,
as it took a relatively classical architecture, and successfully
adapted it for multi core processing. This demonstrates that
modernizing an architecture is definitively possible, but re-
quires a lot of work. Another interesting system is the Cres-
cando project [8], which, instead of concentrating on execut-
ing a single transaction as quickly as possible, concentrates
on execution a large number of concurrent transactions as
quickly as possible. At some point this batching will pay off,
and outperform classical execution.

Most of the systems mentioned so far operate on one node
or a small number of nodes. Another class of systems is aim-
ing at distributed or cloud-based data processing. For exam-
ple Stratosphere [3] combined query optimization techniques
with distributed query processing. But this large group of
systems is beyond the scope of this paper, see [44] for a
survey.

The big commercial database systems have traditionally
been conservative in adapting new technologies. The inner
parts are changing, for example systems have spend a lot
of effort on query optimization [45], but the overall archi-
tecture often still very much disk oriented. But the impact
of technology change is so large that they started changing,
too. SAP presented the HANA system [19], that is a colum-
nar in-memory database system, aiming to offer both OLTP
and OLAP functionality. Microsoft SQL Server has released
the Hekaton module [18] that is an in-memory OLTP engine.
And new IBM BLU [41] is an in-memory OLAP engine. So
after a long period of architectural stability, database sys-
tem start changing again, mandated by the changes to the
underlying hardware.

1739



6. CONCLUSION
Designing a high-performance database engine is a com-

plex task. There are a few design principles that are vir-
tually always a good idea, like accessing data sparingly,
executing as few instructions as possible, and using query
optimization. But we showed by the example of RDF-3X
and HyPer that systems have to make trade-offs, and these
trade-offs might change over time. In particular the choice
between disk-based and in-memory processing has a very
large impact, and nowadays the focus clearly drifts twowards
in-memory processing.

But simply putting everything in main memory is not the
answer, even in-memory systems have to care about local-
ity, parallelism, interpretation overhead, and so on. The
HyPer system has shown one very succesful way to design
an in-memory system, but its architecture will evolve over
time, too. The hardware continues to change, and so does
database design.
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