
The Impact of Columnar In-Memory Databases
on Enterprise Systems

Implications of Eliminating Transaction-Maintained Aggregates

Hasso Plattner
Hasso Plattner Institute for IT Systems Engineering

University of Potsdam
Prof.-Dr.-Helmert-Str. 2-3
14482 Potsdam, Germany

hasso.plattner@hpi.de

ABSTRACT
Five years ago I proposed a common database approach for
transaction processing and analytical systems using a colum-
nar in-memory database, disputing the common belief that
column stores are not suitable for transactional workloads.
Today, the concept has been widely adopted in academia and
industry and it is proven that it is feasible to run analyti-
cal queries on large data sets directly on a redundancy-free
schema, eliminating the need to maintain pre-built aggre-
gate tables during data entry transactions. The resulting re-
duction in transaction complexity leads to a dramatic simpli-
fication of data models and applications, redefining the way
we build enterprise systems. First analyses of productive
applications adopting this concept confirm that system ar-
chitectures enabled by in-memory column stores are concep-
tually superior for business transaction processing compared
to row-based approaches. Additionally, our analyses show
a shift of enterprise workloads to even more read-oriented
processing due to the elimination of updates of transaction-
maintained aggregates.

1. INTRODUCTION
Over the last decades, enterprise systems have been built

with the help of transaction-maintained aggregates as on-
the-fly aggregations were simply not feasible. However, the
assumption that we can anticipate the right pre-aggregations
for the majority of applications without creating a transac-
tional bottleneck was completely wrong. The superior ap-
proach is to calculate the requested information on the fly
based on the transactional data. I predict that all enterprise
applications will be built in an aggregation and redundancy
free manner in the future.
Consider a classic textbook example from the database lit-

erature for illustration purposes, the debit/credit example as
illustrated in Figure 1. Traditionally, funds are transferred

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 13
Copyright 2014 VLDB Endowment 2150-8097/14/08.

between accounts by adding debit and credit entries to the
accounts and updating the account balances within transac-
tions. Maintaining dedicated account balances and paying
the price of keeping the aggregated sums up to date on ev-
ery transfer of funds was the only way we could achieve
reasonable performance as calculating the balance on de-
mand would require the expensive summation of all trans-
fers. However, this concept of maintaining pre-built aggre-
gates has three major drawbacks: (i) a lack of flexibility
as they do not respond to organizational changes, (ii) added
complexity in enterprise applications and (iii) increased cost
for data insertion as materialized aggregates have to be up-
dated transactionally safe.
In contrast, the most simplistic approach of only record-

ing the raw transaction data allows for simple inserts of new
account movements without the need of complex aggregate
maintenance with in-place updates and concurrency prob-
lems. Balances are always calculated by aggregating all ac-
count movements on the fly. This concept overcomes the
drawbacks mentioned above but is not feasible using row-
based databases on large enterprise data.
Let us consider the thought experiment of a database with

almost zero response time. In such a system, we could ex-
ecute the queries of all business applications, including re-
porting, analytics, planning, etc. directly on the transac-
tional line items. With this motivation in mind, we started
out to design a common database architecture for trans-
actional and analytical business applications [16]. The two
fundamental design decisions are to store data in a columnar
layout [3] and keep it permanently resident in main memory.
I predicted that this database design will replace traditional
row-based databases and today it has been widely adopted
in academia and industry [5, 9, 11, 14, 16, 19].
The dramatic response time reduction of complex queries

processed by in-memory column stores allowed us to drop all
pre-aggregations and to overcome the three drawbacks men-
tioned above. Although a row-based data layout is better
suited for fast inserts, the elimination of maintaining aggre-
gates on data entry results in performance advantages of
columnar-based system architectures for transactional busi-
ness processing [19]. An important building block to com-
pensate for the response time of large aggregations has been
the introduction of a cache for intermediate result sets that
can be dynamically combined with recently entered data [15].
This caching mechanism is maintained by the database and

1722

Accounts with
Transaction-Maintained Balance

TRANSACTIONS

BALANCE

Raw Account
Transactions

TRANSACTIONS

Update

Insert

Read

Primary Index

Figure 1: Debit/Credit Example with transaction-
maintained balances compared to on-the-fly calcula-
tions of balances based on the raw account transac-
tions.

completely transparent to applications. The main results
of an application design without pre-aggregated information
are a simplified set of programs, a reduction of the data foot-
print and a simplified data model. For the remainder of the
paper, we refer to the classic system architecture that keeps
transaction-maintained aggregates on application level and
stores data in row-based disk databases as row-based ar-
chitectures and use column-based architectures in the sense
of a simplified architecture on application level removing
transaction-maintained aggregates by leveraging in-memory
columnar databases.
In the following, this paper summarizes the column-based

architecture in Section 2 and provides arguments why it is
the superior solution for transactional business processing in
Section 3. Additionally, a workload analysis of a new simpli-
fied financial application without transactional-maintained
aggregates is presented in Section 4. Implications of the
adoption of a column-based architecture as well as optimiza-
tions for scalability are described in Section 5. The paper
closes with thoughts on future research and concluding re-
marks in Sections 6 and 7.

2. ARCHITECTURE OVERVIEW
Although the concept behind column stores is not new [3,

21], their field of application in the last 20 years was limited
to read-mostly scenarios and analytical processing [21, 12,
6, 20]. In 2009, I proposed to use a columnar database as
the backbone for enterprise systems handling analytical as
well as transactional processing in one system [16]. In the
following section, we describe the basic architecture of this
approach and the trends that enable this system design.
The traditional market division into online transaction

processing (OLTP) and online analytical processing (OLAP)
has been justified by different workloads of both systems.
While OLTP workloads are characterized by a mix of reads
and writes of a few rows at a time, OLAP applications are
characterized by complex read queries with joins and large
sequential scans spanning few columns but many rows of the
database. Those two workloads are typically addressed by
separate systems: transaction processing systems and busi-
ness intelligence or data warehousing systems.
I strongly believe in the re-unification of enterprise ar-

chitectures, uniting transactional and analytical systems to
significantly reduce application complexity and data redun-
dancy, to simplify IT landscapes and to enable real-time
reporting on the transactional data [16]. Additionally, enter-
prise applications such as Dunning or Available-To-Promise
exist, which cannot be exclusively assigned to one or the

other workload category, but issue both analytical and trans-
actional queries and benefit from unifying both systems [17,
22]. The workloads issued by these applications are referred
to as mixed workloads, or OLXP.
The concept is enabled by the hardware developments

over the recent years making main memory available in large
capacities at low prices. Together with the unprecedented
growth of parallelism through blade computing and multi-
core CPUs, we can sequentially scan data in main memory
with unbelievable performance [16, 24]. In combination with
columnar table layouts and light-weight compression tech-
niques, the technological hardware developments allow to
improve column scan speeds further by reducing the data
size, splitting work across multiple cores and leveraging the
optimization of modern processors to process data in sequen-
tial patterns. Instead of optimizing for single point queries
and data entry by moving reporting into separate systems,
the resulting scan speed allows to build different types of
systems optimized for the set processing nature of business
processes.
Figure 2 outlines the proposed system architecture. Data

modifications follow the insert-only approach and updates
are modeled as inserts and invalidate the updated row with-
out physically removing it. Deletes also only invalidate the
deleted rows. We keep the insertion order of tuples and
only the lastly inserted version is valid. The insert-only ap-
proach in combination with multi-versioning [2] allows to
keep the history of tables and provides the ability of time-
travel queries [8] or to keep the full history due to legal
requirements. Furthermore, tables in the hot store are al-
ways stored physically as collections of attributes and meta-
data and each attribute consists of two partitions: main and
delta partition. The main partition is dictionary-compressed
using an ordered dictionary, replacing values in the tuples
with encoded values from the dictionary. In order to min-
imize the overhead of maintaining the sort order, incoming
updates are accumulated in the write-optimized delta par-
tition [10, 21]. In contrast to the main partition, data in
the delta partition is stored using an unsorted dictionary.
In addition, a tree-based data structure with all the unique
uncompressed values of the delta partition is maintained per
column [7]. The attribute vectors of both partitions are
further compressed using bit-packing mechanisms [24]. Op-
tionally, columns can be extended with an inverted index to
allow fast single tuple retrieval [4].
To ensure a constantly small size of the delta partition, we

execute a periodic merge process. A merge process combines
all data from the main partition with the delta partition to
create a new main partition that then serves as the primary
data store [10]. We use a multi-version concurrency con-
trol mechanism to provide snapshot isolation of concurrently
running transactions [2]. This optimistic approach fits well
with the targeted mixed workload enterprise environment,
as the number of expected conflicts is low and long running
analytical queries can be processed on a consistent snapshot
of the database [16, 17].
Although in-memory databases keep their primary copy

of the data in main memory, they still require logging mech-
anisms to achieve durability. In contrast to ARIES style
logging [13], we leverage the applied dictionary compres-
sion [25] and only write redo information to the log on the
fastest durable medium available. This reduces the overall
log size by writing dictionary-compressed values and allows

1723

Read-only ReplicasRead-only Replicas

Hot Store (Master)

M
er

ge Delta

Cold Store - 1

Main Memory
Storage

Durable
StorageLog

Query Execution Metadata Sessions Transactions

Management
Layer

Financials Logistics
Manu-

facturing
…

History

…

Main

Aggregate Cache

Attribute Vectors

Dictionaries

Index

Dictionaries

Index

Attribute Vectors

Cold Store - 2

Main

Aggregate Cache

Attribute Vectors

Dictionaries

Index

OLTP & OLAP
Applications

Main

Aggregate Cache

Attribute Vectors

Dictionaries

Index

Checkpoin
tCheckpoints

Stored Procedures
SQL Interface

Figure 2: Architecture Blueprint of Columnar In-Memory Database.

for parallel recovery as log entries can be replayed in any
order [25]. Periodically created checkpoints provide con-
sistent snapshots of the database on disk in order to speed
up recovery. Additional concepts leveraging the read-mostly
workload like hot and cold data partitioning, transparent ag-
gregate caches and read-only replication for scalability are
discussed in Section 5.
In summary, the fast sequential memory scan speed of to-

day’s systems allows for a new database architecture for en-
terprise systems that combines various database techniques
like columnar table layouts, dictionary compression, multi-
version concurrency control and the insert only approach.
In addition, the proposed database architecture enables the
redesign of applications, as fast on-the-fly aggregations are
possible and eliminate the need to maintain complex hier-
archies of aggregates on application level.

3. TRANSACTION PROCESSING
It is a common belief that a columnar data layout is not

well-suited for transactional processing and should mainly
be used for analytical processing [1]. I postulate that this is
not the case as column-based system architectures can even
be superior for transactional business processing if a data
layout without transaction maintained aggregates is chosen.
Transactional business processing consists of data entry

operations, single record retrieval and set processing. Most
single record retrievals are accesses to materialized aggre-
gates and therefore logically retrieve results of aggregated
sets of records. Therefore, for our discussion why column-
based architectures are faster for transactional business pro-
cessing than row-based architectures, we consider data entry
performance and set processing capabilities.

3.1 Data Entry
The cost of data entry consists of record insertion and

potentially updating related materialized aggregates. Sin-
gle inserts of full records are slower in column-based than in
row-based system architectures as the operation requires ac-
cess to all attributes of a table which are distributed across
various locations in main memory instead of one sequential
access.
In case of transaction-maintained aggregates, each data

entry operation requires an update of all corresponding ag-
gregates, increasing the cost and complexity of the data en-
try. By dropping all transaction-maintained aggregates, in-
dices and other redundant data structures, we can signifi-
cantly simplify data entry transactions.
Analyzing typical data entry transactions in detail reveals

that the overhead of maintaining aggregates on data en-
try by far outweighs the added insert costs of columnar ta-
bles. As an example, consider the data entry process of the
SAP Financials application with the underlying data model
as outlined in Figure 3. The master data tables contain
customer, vendor, general ledger and cost center informa-
tion and additional tables that keep track of the total per
account. The actual accounting documents are recorded
in two tables as an accounting document header and its
line items. The remaining tables replicate the accounting
line items as materialized views with various filters and dif-
ferent sort orders to improve the performance of frequent
queries. Separate tables for open and closed line items exist
for vendors (accounts payable), customers (accounts receiv-
able) and general ledger accounts. Additionally, controlling
objects are maintained containing all expense line items.
Figure 5 shows the fifteen consecutive steps for posting

a vendor invoice in the classic SAP Financials application,

1724

Customer

KNA1

KNC1

BSET

Vendor General Ledger

LFC1

LFA1

GLT0

SKA1

Primary Index

Secondary Indices

Total

Closed
Items

Tax Documents

Cost Center

COSP

CSKS

BKPF

Accounting
Document Header

BSEG

Accounting
Line Items

COBK

Controlling
Document Header

COEP

Controlling
Line Items

Vendors Customers G/L Accounts

BSAK

BSIK

BSAS

BSISBSID

BSAD

Open
Items

Update

Insert

(i)

(ii) (iii)

Figure 3: Selected tables of the SAP Financials data model, illustrating inserts and updates for a vendor
invoice posting: (i) Master data for customers, vendors, general ledger and cost centers with transaction-
maintained totals. (ii) Accounting documents. (iii) Replicated accounting line items as materialized views.

KNC1 LFC1 GLT0 COSP

Customer

KNA1

Vendor General Ledger

LFA1 SKA1

Cost Center

CSKS

BKPF

Accounting
Document Header

BSEG

Accounting
Line Items

Figure 4: Simplified SAP Financials data model on
the example of a vendor invoice posting illustrating
the remaining inserts for the accounting document.

consisting of ten inserts and five updates. First, the account-
ing document is created by inserting the header and a vendor
line item, an expense line item and a tax line item. Addi-
tionally, the expense and tax line items are inserted into the
list of open items organized by general ledger accounts and
the vendor line item is inserted into the list of open items
organized by vendors. The tax line item is also inserted into
the list of all tax line items. Then, the maintained total
for the respective vendor account balance is updated. Af-
terwards, the general ledger totals are updated by writing
the general ledger account balance, expense account balance
and vendors reconciliation account balance. Finally, a con-
trolling object is created by inserting a document header
and one expense line item plus updating the respective cost
center account balance.
In contrast, the simplified approach removes all redundant

data and only records the accounting documents containing
all relevant information as depicted in Figure 4. There is
no need to update additional summarization tables or sec-
ondary indices. Consequently, the only necessary steps for
the booking of a vendor invoice are the inserts of the ac-
counting document header and its three line items as de-
picted in Figure 5. Although the single inserts into the
column-store take longer, the reduction of complexity elim-

Classic SAP Financials with Transaction-Maintained Aggregates

Simplified SAP Financials

BKPF BSEG BSEG BSEG BSIS BSIS BSIK BSET GLT0

GLT0

GLT0

LFC1

BSEG BSEG BSEGBKPF

COBK COEP COSP

Figure 5: Executed steps for vendor invoice post-
ing on classic SAP Financials with transaction-
maintained aggregates compared to simplified ap-
plication.

inates most of the work during data entry and results in
significant performance advantages on the simplified data
schema. In turn, data entry becomes actually faster on an
in-memory column store.
We measured the runtime of both transactions in an pro-

ductive setting, finding the simplified data entry transaction
on an in-memory column store to be 2.5 times faster than
the classic data entry transaction on a disk-based row-store.

3.2 Transactional Set Processing
For row-stores maintaining pre-built aggregates, it is es-

sential to distinguish between anticipated queries and ad-
hoc queries. Anticipated queries can leverage the prede-
fined, transaction-maintained aggregates, whereas analyti-
cal ad-hoc queries require full table scans and are therefore
in practice not executed on the transactional systems.
In contrast, by dropping the transaction-maintained ag-

gregates in our column-based system architecture, there is
no need to distinguish between ad-hoc queries and antici-
pated queries. All set processing queries can aggregate the
required business data on the fly, taking advantage of fast
sequential data access and are therefore not limited by the
fixed predefined set of aggregates.
Comparing the two system architectures, we conclude that

a row store is only faster in the artificial case if all aggregates
are anticipated and do not change. Anytime an ad-hoc query
requires an aggregate that has not been pre-build, the row-
based architecture is by orders of magnitude slower. And
changing the aggregate structure would mean that we have

1725

0 %
10 %
20 %
30 %
40 %
50 %
60 %
70 %
80 %
90 %

100%

OLTP OLAP

W
or

kl
oa

d

0 %
10 %
20 %
30 %
40 %
50 %
60 %
70 %
80 %
90 %

100%

TPC-C

W
or

kl
oa

d

Read

Insert
Modification
Delete

Read

Insert
Modification
Delete

0 %
10 %
20 %
30 %
40 %
50 %
60 %
70 %
80 %
90 %

100%

Classic Simplified*

W
or

kl
oa

d Insert
Modification
Delete

(a) TPC-C Benchmark (b) Workload Analysis
Krueger et al. VLDB’11

(c) SAP Financials
Workload Analysis

SAP Financials

*Without Transaction-Maintained Aggregates

Read

Figure 6: Workload Analysis outlining ratio between read and write queries. (a) Classic TPC-C benchmark.
(b) Analysis of traditional enterprise system workload [10]. (c) Workload analysis of simplified SAP Financials.

to reconstruct the aggregation tables which instantly leads
to down time with synchronized changes in the application
code. Therefore, we consider a column-based architecture as
faster for set processing when taking anticipated and ad-hoc
queries into account.

4. WORKLOAD ANALYSIS OF SIMPLIFIED
APPLICATIONS W/O AGGREGATES

Applications optimized for a column-based system archi-
tecture without transaction-maintained aggregates lead to
a change in the database workload pattern. The share of
read queries in the workload increases for three reasons: (i)
the reduction of inserts and updates during data entry as
shown in Section 3, (ii) the redesign of current applications
to directly access the transactional data instead of material-
ized aggregates and (iii) the introduction of new, interactive
applications with analytical capabilities.
Traditional applications, such as customer segmentation,

dunning, or material resource planning, have typically been
built around materialized aggregates. Redesigning such ap-
plications to calculate all information on the fly from the
transactional schema leads to more complex queries. This
increases the read share of the total workload, as the runtime
of a query increases in the column-based system architecture
compared to merely reading a single materialized aggregate
in the row-based system architecture.
Enabled by the column-based system architecture, inter-

active analytical applications on the transactional schema
present opportunities for new user groups to derive busi-
ness value from the data. The possibility to ask follow-up
questions in interactive applications and the availability on
mobile devices lead to an increased usage and more queries.
Following the law of supply and demand, the usage of such
applications dramatically increases, since results are avail-
able whenever they are needed.
A workload analysis of the simplified SAP Financials ap-

plication verifies the trend towards a read-dominated work-
load. The workloads were analyzed before and after the in-
troduction of the simplified application without transaction-
maintained aggregates, replacing a classic financial appli-
cation with transaction-maintained aggregates. The work-

loads consists of the queries issued by thousands of users
over one week each.
Figure 6 summarizes the findings and compares the work-

load patterns with TPC-C [23] and previous workload anal-
yses [10]. Compared to the classic application, the share
of read queries of the total execution time increased from
86 percent to 98 percent. With the absence of transaction
maintained aggregates, the update share decreased signifi-
cantly, representing only 0.5 percent of the total workload.
In the classic application, each insert of a line item led to an
average of 3.4 inserts or modifications to other tables within
the same application module. The simplified application is-
sues no additional inserts and calculates all information by
filtering and aggregating the line items on the fly.
In contrast, the workload of the TPC-C benchmark does

not reflect the share of reads and writes as observed in the
financial systems. Instead, database systems for business ap-
plications have to be optimized for a read-dominated work-
load, with an increasing amount of analytical-style queries
that aggregate data on the finest level of granularity, the
actual business transactions.

5. IMPLICATIONS AND OPTIMIZATIONS
Transforming an IT landscape from a row-based system

architecture to a column-based system architecture goes along
with a simplified application development and a reduced
data footprint, as described in this section. Furthermore,
we discuss optimizations to the column-based system archi-
tecture to keep the system scalable.

5.1 Simplified Application Development
Filtering, grouping and aggregation of large datasets can

be done interactively on in-memory column-stores and with-
out the need to prepare indices upfront. This fundamental
performance characteristic implies a complete shift in appli-
cation development: Instead of anticipating a few analytical
use cases that we optimize our programs for, a column-based
system architecture allows us to query all transactional data
with response times in the order of seconds.
The fast filtering and aggregation capabilities support new

interactive applications which were not possible with pre-
defined materialized aggregates. Example applications are

1726

7.1 TB

ERP
on DB2

1.8 TB

ERP
on HANA

0.8 TB

Simplified ERP
on HANA*

* Estimate: No materialized aggregates, no indices, no redundancy

0.6 TB
0.2 TB

HotCold

0.3 TB
Cache

Figure 7: Data footprint reduction of SAP ERP sys-
tem by moving to simplified ERP on HANA.

an available-to-promise check [22], sub-second dunning with
customer segmentation [17] and real-time point-of-sale an-
alytics [18]. Since these applications have short response
times in the order of merely seconds, the results can finally
be used within the window of opportunity, e.g. while the
customer is on the phone or in the store.

5.2 Data Footprint Reduction
The removal of materialized aggregates and redundant

data in combination with compression factors enabled by
columnar storage reduces the data footprint significantly.
Figure 7 outlines the data footprint reduction of the SAP
ERP system.
Starting with the ERP system stored on DB2 and a size

of 7.1 TB and 0.3 TB cache in main memory, the transition
from storing the data in a columnar data layout using effi-
cient dictionary compression on HANA results in a database
size of 1.8 TB, yielding a compression factor of approxi-
mately four. The elimination of all transaction-maintained
aggregates and other redundant data by redesigning the ap-
plications is estimated to reduce the data footprint down to
0.8 TB. Techniques such as hot and cold data partitioning
can further reduce the data footprint in main memory, re-
sulting in 0.2 TB of hot data storage with an impact on a va-
riety of processes including data recovery and archiving. As
a result, the columnar in-memory database needs less main
memory for its hot storage than a traditional database uses
for its cache in main memory. Note that besides reduced
storage requirements, a reduced data footprint also acceler-
ates all downstream processes such as system backup, repli-
cation and recovery.

5.3 Aggregate Cache
When resource-intensive aggregate queries are executed

repeatedly or by multiple users in parallel, we need efficient
means to keep the system scalable. As shown in Section
3, reading tuples of a materialized aggregate is faster than
aggregating on the fly.
Recent work has shown that the main-delta architecture

of the column-based system architecture is well-suited for
an aggregate cache, a strategy of transparently caching in-
termediate results of queries with aggregates and applying
efficient incremental view maintenance techniques [15]. The
cached aggregates are defined only on the part of a user
query that covers the main partition, as depicted in Figure 8.
Since new records are only inserted to the delta partition,
the main partition is not affected. This way, the defini-
tion of the cached aggregate on the main partition remains
consistent with respect to inserts and does only need to be

MAIN

COLD 1
COLD N

DELTA

MAIN

COLD 1
COLD N

DELTA

AGGREGATES

On-the-fly
Aggregation

Transparent
Aggregate Cache

Figure 8: Schematic overview of transparent aggre-
gate cache with efficient incremental view mainte-
nance techniques.

Residence Time
Business Complete

Non Changeable
Creation Audit Lawsuit Information

Destruction
...

Time

Access
Frequency

Figure 9: Lifecycle of Business Objects.

maintained during the online delta merge process. When a
query result is computed using the aggregate cache, the fi-
nal, consistent query result is computed by aggregating the
newly inserted records of the delta partition and combin-
ing them with the previously cached aggregate of the main
partition.
The aggregate cache can be used as a mechanism to handle

the growing amount of aggregate queries issued by multiple
users.

5.4 Hot and Cold Data Partitioning
Transactional enterprise data has to be kept in the sys-

tem for many years due to internal and external reasons like
controlling and legal regulations. However, as illustrated in
Figure 9, after a certain period of time, data is only ac-
cessed for exceptional reasons and not as a result of ongoing
business execution. Therefore, I propose a separation into
hot and cold data regions so that cold data can be excluded
for the majority of query executions while still guarantee-
ing correct results and improving query runtimes as well
as main memory utilization. The proposed concept is a hot
and cold partitioning on application level that leverages spe-
cific characteristics of business objects and the way they are
typically accessed. Therefore, the concept needs to be finely
tuned based on the type of objects and the relevant business
semantics. In addition, automatic data aging mechanisms
could be applied on database level as an orthogonal concept.
Partitioning can be achieved through multiple workload-

specific metrics. A very simple, yet efficient partitioning
scheme is to use all data that is part of ongoing transactional
business for the hot partition. This data can be identified
by selecting the current fiscal year along with open transac-

1727

OLXP

OLAP, Search and Read-Only Applications
on Transactional Schema

OLTP
Master
Node

Read-Only
Replicas

Data EntryOperational Reporting
& New Applications

Customers Sales Managers Decision Support

< 1 Second

Figure 10: Read-Only Replication.

tions such as open invoices or open customer orders. Since it
is often desirable to compare the current year with the last
year, we apply the same logic to last years data. All other
transactional data can be considered as cold. Master data
and configuration data always remains hot as it is frequently
requested and only consumes little main memory capacity.
If we want to access historic data, we simply access both hot
and cold data partitions. On the other hand we can concen-
trate all business activities, including monthly, quarterly, or
yearly reports on the hot data partition only. Our analy-
sis shows that the hot data volume is typically between two
and ten percent of the data volume of a traditional database.
This is even less than a traditional database typically uses
for its in-memory cache.

5.5 Read-only Replication
Despite the aggregate cache, the increasing demand of

new applications, more users and more complex queries can
eventually saturate a single-node in-memory database sys-
tem.
To keep up with the growing demand for flexible reports,

we propose a read-only replication of the transactional schema.
The scale-out is performed by shipping the redo log of the
master node to replications that replay transactions in batches
to move from one consistent state to the next [14]. Figure 10
provides an overview of this design. The need for real-time
information depends on the underlying business function-
ality. While many applications of the day-to-day business
such as stock level or available-to-promise checks need to run
on the latest data to produce meaningful results, others can
work with relaxed isolation levels. I propose that a powerful
master node handles transactions and OLXP workload with
strong transactional constraints.
Modern IT solutions create business value through ana-

lytical applications on top of the transactional data. Cus-
tomers can access the system to track the status of their
orders, sales managers are enabled to analyze the customers
profile and use analytical applications such as recommenda-
tions and managers access run decision support queries.
These applications create the majority of the system load,

but they have relaxed real time constraints. The queries can
work on snapshots and evaluated on read-only replicas of
the same transactional schema. Contrary to existing data
warehousing solutions with an ETL process, the applications
can be created with all flexibility, as all data is accessible up
to the finest level of granularity.
These read-only replicas can be scaled out and perform

the share of the read-only workload that has relaxed trans-
actional constraints. Since there is no logic to transform
data into a different representation, the replication for typ-
ical enterprise workloads can be performed with a delay of
less than a second. In turn, the transactional workload is
not hindered and all applications can use the same transac-
tional schema, without the need for complex and error-prone
ETL processes.

6. FUTURE RESEARCH
Our ongoing research efforts are concentrated on workload

management features for the proposed database architec-
ture [26], lightweight index structures for column stores [4]
and optimized transaction handling for highly contentious
workloads. For future work, we foresee several areas of re-
search for further investigation.
Although hierarchies can be modeled in the data schema

by using techniques as adjacency lists, path enumeration
models and nested set models, querying complex hierarchies
expressed in standard SQL can be cumbersome and very ex-
pensive. Consequently, we plan to further investigate new
ways of calculating and maintaining hierarchies of dynamic
aggregates. Additionally, applications need to be redesigned
in order to allow users to define new hierarchies. Intuitive
mechanism for describing and modeling hierarchies are nec-
essary. This can be beneficial for both, the caching of dy-
namic aggregates and for new applications including enter-
prise simulations and ’what-if’ scenarios.
The availability of large capacities of main memory has

been one of the hardware trends that make the proposed
database architecture a viable solution. New changes to
the commodity hardware stack, such as non-volatile memory
and hardware transactional memory are on the horizon and
the database architecture will be adapted to leverage these
technologies. In a first step, non-volatile memory can easily
be used as a fast storage medium for the database log. In
the future, the primary persistence might be stored on non-
volatile memory allowing to significantly decrease recovery
times, introducing the new challenge of directly updating
the durable data using a consistent and safe mechanism.
The new provided flexibility in maintaining multiple re-

porting hierarchies or analyzing recent business data in near
real-time will lead to completely new types of applications.
The possibility of predicting future trends or quickly react-
ing on changing trends by running complex enterprise simu-
lations directly on the actual transactional data will change
the way businesses are organized and managed.

7. CONCLUSION
In 2009, I proposed a column-based system architecture

for databases that keeps data permanently resident in main
memory and predicted that this database design will replace
traditional row-based databases [16]. Today, we can see
this happening in the market as all major database ven-
dors follow this trend. In the past 5 years, we have proven
the feasibility of this approach and many companies have
this database architecture already in productive use. The
experiences gained by rewriting existing applications and
writing new applications, which I have not even dreamed
that they are possible ten years ago, have confirmed that
column-based systems without any transaction-maintained

1728

aggregates are the superior architecture for enterprise ap-
plications. I predict that all enterprise applications will be
built in an aggregation and redundancy free manner in the
future.

8. ADDITIONAL AUTHORS
Martin Faust, Stephan Müller, David Schwalb, Matthias

Uflacker, Johannes Wust.

9. REFERENCES
[1] D. J. Abadi, S. R. Madden, and N. Hachem.

Column-Stores vs. Row-Stores: How Different Are
They Really? ACM, 2008.

[2] P. A. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency control and recovery in database
systems. Boston, MA, USA, 1986.

[3] G. P. Copeland and S. N. Khoshafian. A
decomposition storage model. SIGMOD, 1985.

[4] M. Faust, D. Schwalb, J. Krüger, and H. Plattner.
Fast lookups for in-memory column stores: Group-key
indices, lookup and maintenance. In ADMS@VLDB,
2012.

[5] M. Grund, J. Krueger, H. Plattner, A. Zeier,
P. Cudre-Mauroux, and S. Madden. HYRISE—A
Main Memory Hybrid Storage Engine. VLDB, 2010.

[6] S. Idreos, F. Groffen, N. Nes, S. Manegold, K. S.
Mullender, and M. L. Kersten. Monetdb: Two decades
of research in column-oriented database architectures.
IEEE Data Eng. Bull., 2012.

[7] T. Karnagel, R. Dementiev, R. Rajwar, K. Lai,
T. Legler, B. Schlegel, and W. Lehner. Improving
in-memory database index performance with intel
transactional synchronization extensions. HPCA, 2014.

[8] M. Kaufmann, P. Vagenas, P. M. Fischer,
D. Kossmann, and F. Färber. Comprehensive and
interactive temporal query processing with SAP
HANA. VLDB, 2013.

[9] A. Kemper and T. Neumann. HyPer: A hybrid
OLTP&OLAP Main Memory Database System based
on Virtual Memory Snapshots. ICDE, 2011.

[10] J. Krüger, C. Kim, M. Grund, N. Satish, D. Schwalb,
J. Chhugani, P. Dubey, H. Plattner, and A. Zeier.
Fast updates on read-optimized databases using
multi-core cpus. VLDB, 2011.

[11] P.-A. Larson, S. Blanas, C. Diaconu, C. Freedman,
J. M. Patel, and M. Zwilling. High-performance
concurrency control mechanisms for main-memory
databases. VLDB, 2011.

[12] R. MacNicol and B. French. Sybase IQ Multiplex -
Designed for Analytics. VLDB, 2004.

[13] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and
P. Schwarz. ARIES: a transaction recovery method
supporting fine-granularity locking and partial
rollbacks using write-ahead logging. TODS, 1998.

[14] T. Mühlbauer, W. Rödiger, A. Reiser, A. Kemper,
and T. Neumann. ScyPer: elastic OLAP throughput
on transactional data. DanaC, 2013.

[15] S. Müller and H. Plattner. Aggregates caching in
columnar in-memory databases. IMDM@VLDB, 2013.

[16] H. Plattner. A common database approach for oltp
and olap using an in-memory column database.
SIGMOD, 2009.

[17] H. Plattner. SanssouciDB: An In-Memory Database
for Processing Enterprise Workloads. BTW, 2011.

[18] D. Schwalb, M. Faust, and J. Krüger. Leveraging
in-memory technology for interactive analyses of
point-of-sales data. ICDEW, 2014.

[19] V. Sikka, F. Färber, W. Lehner, S. K. Cha, T. Peh,
and C. Bornhövd. Efficient Transaction Processing in
SAP HANA Database: The End of a Column Store
Myth. SIGMOD, 2012.

[20] D. Ślȩzak, J. Wróblewski, and V. Eastwood.
Brighthouse: an analytic data warehouse for ad-hoc
queries. VLDB, 2008.

[21] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen,
M. Cherniack, M. Ferreira, E. Lau, A. Lin, S. Madden,
E. O’Neil, P. O’Neil, A. Rasin, N. Tran, and S. Zdonik.
C-store: A column-oriented dbms. VLDB, 2005.

[22] C. Tinnefeld, S. Müller, H. Kaltegärtner, and S. Hillig.
Available-To-Promise on an In-Memory Column
Store. BTW, 2011.

[23] Transaction Processing Performance Council (TPC).
TPC-C Benchmark. http://www.tpc.org/tpcc/.

[24] T. Willhalm, N. Popovici, Y. Boshmaf, H. Plattner,
A. Zeier, and J. Schaffner. SIMD-Scan: Ultra Fast
in-Memory Table Scan Using on-Chip Vector
Processing Units. VLDB, 2009.

[25] J. Wust, J.-H. Boese, F. Renkes, S. Blessing,
J. Krueger, and H. Plattner. Efficient logging for
enterprise workloads on column-oriented in-memory
databases. CIKM, 2012.

[26] J. Wust, M. Grund, K. Höwelmeyer, D. Schwalb, and
H. Plattner. Concurrent execution of mixed enterprise
workloads on in-memory databases. DASFAA, 2014.

1729

