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ABSTRACT
Widely adoption of GPS-enabled devices generates large
amounts of trajectories every day. The raw trajectory data
describes the movement history of moving objects by a se-
quence of 〈 longitude, latitude, time-stamp 〉 triples, which
are nonintuitive for human to perceive the prominent fea-
tures of the trajectory, such as where and how the mov-
ing object travels. In this demo, we present the STMaker
system to help users make sense of individual trajectories.
Given a trajectory, STMaker can automatically extract the
significant semantic behavior of the trajectory, and summa-
rize the behavior by a short human-readable text. In this
paper, we first introduce the phrases of generating trajec-
tory summarizations, and then show several real trajectory
summarization cases.

1. INTRODUCTION
Widely adoption of GPS-enabled devices generates large

amounts of trajectories every day. This inspires a tremen-
dous amount of research effort on analyzing large scale tra-
jectory data. Though much existing works have focused on
effective indexing structures designing [6, 1], efficient query
processing [9, 3] and frequent trajectory patterns mining [4,
5], few have paid attentions on semantic representation and
interpretation of the trajectory data itself. Taking a look at
a raw trajectory in databases, which is a sequence of triples 〈
longitude, latitude, timestamp 〉 as shown in Table 1, we find
that this data format does not make much sense and is hard
for humans to understand. In order to better understand
raw trajectories, researchers have proposed semantic trajec-
tories, which align trajectory sample points to semantic en-
tities, i.e., roads in road networks and points of interest.
Figure 3 demonstrates the idea of this approach by aligning
the raw trajectory in Table 1 onto a digital map. Obviously,
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Latitude Longitude Time-stamp
39.9383 116.339 20131102 09:17:56
39.9382 116.337 20131102 09:18:02
· · · · · · · · ·
· · · · · · · · ·

39.9259 116.310 20131102 09:33:26
39.9253 116.310 20131102 09:34:31

Table 1: Trajectory in database

humans can get much better understand for where the mov-
ing object travels.

Although semantic trajectories help to improve the read-
ability of trajectory data, it still has several major disad-
vantages. Firstly, semantic trajectories only demonstrate
the spatial information of trajectories (moving paths), while
the temporal information of trajectories (moving behaviors)
are not demonstrated. For example, sudden speed changes
of the moving objects, which always indicate the happening
of unusual things, cannot be demonstrated on map. Sec-
ondly, semantic trajectories cannot automatically highlight
the “interesting” parts of the trajectories that are worth
noting, such as important landmarks, major roads, etc. Al-
though all these information have been encoded in semantic
trajectories already, it needs considerable manual efforts and
expertise to find them out. Thirdly, semantic trajectories
are hard for communication and storage.

To address the drawbacks of semantic trajectories, we
take the philosophy from text summarization in informa-
tion retrieval field, and propose the STMaker system. The
STMaker system uses a partition-and-summarization ap-
proach to summarize individual trajectory. The following
sentence exemplifies the expected summarization for the tra-
jectory in Table 1. The car started from the Beijing Exhi-
bition Center, and moved along Zizhuyuan Street passing by
the Beijing Shangrila Hotel. Then it moved from the Bei-
jing Shangrila Hotel to the Yuyuantan Park along W 3rd

Ring Road Middle highway, with the speed of 15 km/h which
is 14 km/h slower than usual. We can see that the textual
trajectory summarizations can be superior than the raw and
semantic trajectories in two aspects: (1) As the output of
our framework is a summary rather than transformation of
raw trajectories (e.g., semantic trajectories), data volume
will be reduced significantly, which is easier to store and
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communicate. (2) Despite of smaller data size, the informa-
tion conveyed in the text strategically focuses on the most
“interesting” parts of the trajectories, and thus makes more
sense for humans.

2. SYSTEM OVERVIEW
In real life, people usually describe their trips in the follow-

ing steps: (1) dividing the whole trip into several partitions
with significant sources and destinations, and (2) using some
significant events to specify their driving behaviors along
each partition. This procedure can be demonstrated by
the following tweet demonstrates: “I drove from my apart-
ment to city through No. 5 highway slowly because of the
heavy traffic, and then drove from city to the PA Hospital
smoothly.” In order to generate intuitive trajectory sum-
maries, STMaker uses a partition-and-summarization ap-
proach that follows exactly the same way of how humans
think. Figure 2 shows the overview of the STMaker system.
Since the physical positions (latitude and longitude) of tra-
jectories can hardly give people any intuitive view about the
route of the moving object, and thus cannot serve as an de-
scription in the summary, STMaker first employs trajectory
calibration [8] proposed in our previous research to rewrite
the given sample-point-based trajectory into a sequence of
semantic points, e.g., landmarks in the network. After the
raw trajectory has been transformed to symbolic trajectory,
STMaker conducts a k-partition to split the trajectory into
k non-overlapping parts. During partition, the system takes
considerations of multiple characteristics describing the tra-
jectory, termed features, which will be discussed in Section 3.
The goal of this phase is to minimize the difference between
routing and moving features within the same partition, and
maximize the significance of the landmarks at the two ends
of this partition. Then the second phase will summarize each
partition with short text. Given the fact that there are too
many features to describe, we will choose the most signifi-
cant features within each partition according to a novel mea-
surement of the interestingness for each feature. In the end,
the selected features will be plugged into the pre-defined
phrase template to form the summary.

3. FEATURE EXTRACTION
In this section, we present the main features used by

STMaker to describe the trajectories. Recalling the sum-
mary example in Section 1, we can see that there are three
key elements in describing a trip: (1) landmarks to describe
the source and destination (e.g., Beijing Exhibition Center),
(2) where the moving object passes by (e.g., Zizhuyuan St),
and (3) how the moving object travels (e.g., 14km/h slower
than usual). Accordingly, we define three kinds of features
to describe a trajectory.

3.1 Landmark Significance
The symbolic trajectory consists of a sequence of land-

marks. It is common sense that people tend to be more
familiar with the landmarks that are frequently referred to
by different sources, e.g., public praise, news, bus stop, yel-
low pages. Here we use landmark significance, denoted by
l.s, to measure the familiarity of the landmark l to average
people. To infer the significance of landmarks, we utilize the
online check-in records from a popular location-based social
network (LBSN) and trajectories of cars in the target city,

Figure 1: Trajectory shown on map

Figure 2: Framework overview

as these two datasets are large enough to cover most areas
of a city. We leverage a HITS-like algorithm [10] to infer
the significance of a landmark, by modeling the travellers as
authorities, landmarks as hubs, and check-ins as hyperlinks.

3.2 Routing Features
Trajectory routing features indicate the characteristics re-

lated to where the moving object travels. As we focus on
trajectories collected from vehicles, information about the
roads they travel on are natural routing features. For ex-
ample, if the whole trajectory is along a highway, then the
‘moving on highway’ information is important for the tra-
jectory to be distinctive from others. More importantly, the
type/features of roads can directly affect the moving pat-
terns of the trajectories, for example, people tend to move
faster on a highway than on a local road. In our prototype
system we identify and use four kinds of road information
(grade of road, road width, direction and speed limit) as the
routing features, which can well distinguish different kinds
of roads. The STMaker system extracts these features from
the digital map used.

3.3 Moving Features
Moving features indicate how the moving object trav-

els. There are many kinds of moving features, and many
works have been devoted to extracting moving information
from trajectories. For example, [2, 10] extract “stay points”
where the sample points reported by a trajectory are in a
certain region for a long time. In our system, we propose
four moving features (speed, number of stay points, number
of sudden speed changes and number of U-turns) to describe
the motion behavior of a moving object.
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4. TECHNIQUE BACKGROUND
Different people have different requirements on the sum-

marization granularity, which indicates how fine-grained the
trajectory is partitioned and described. To accommodate
this requirement, we propose to partition the trajectory into
k partitions according to the user’s request, and summarize
each partition respectively. By this way, users can tune the
granularity of summary details.

4.1 Trajectory Partition
Although any k partitions of a trajectory can lead to a

summary, not all of them are suitable for a good summa-
rization. First of all, it is better for each partition to have
its source and destination well-known, or more formally, sig-
nificant. For example, the description of a partition with a
starting point of the Times Square is more understandable
to people than that with the National Hockey League build-
ing, which is only 300 meters away from the Times Square.
Second, it is easier to generate more compact summaries
if the trajectory segments within the same partition are of
similar features. For instance, if a partition is made up of
three segments and the moving speed varies significantly on
these segments, then it is difficult to summarize the driving
behavior of this partition using a concise sentence. After cal-
ibration, a trajectory is a sequence of landmarks where each
landmark is assigned a time stamp. Based on this intuition,
we propose a trajectory partition algorithm by leveraging
the power of Conditional Random Field (CRF). The small-
est sub-trajectories constructing a trajectory T , which are
named as trajectory segment, are the sub-trajectories which
connects two consecutive landmarks of T . Inspired by this,
we model the trajectory partition problem as a process of
labeling each trajectory segment with a tag, which satisfies
the following two requirements: (1) There are k tags in total
and all the tags should be used in the labeling process; (2)
If two trajectory segments are labeled with the same tag t,
then all the trajectory segments in between must be labeled
by t. More formally, we associate each trajectory segment
Si ∈ T with an random variable Xi. The tag sequence of
all segments of T is denoted by X. The probability of X
globally conditioned on T can be defined as:

Pr(X|T ) =
1

Z
exp{−

|T |−1∑
i=1

Φ(Xi,Xi+1, Si, Si+1)} (1)

where Φ(Xi,Xi+1, Si, Si+1) is the potential function which
models the relationship between the tags Xi and Xi+1 of
two consecutive trajectory segments Si and Si+1, and Z
is a normalizing constant. In order to find the best label
sequence Xopt (maximize the probability Pr(X|T)), we need
to minimize the sum of Φ(Xi,Xi+1, Si, Si+1).

Recall the two guidelines of how to conduct a good k par-
titions in beginning of Section 4.1. A reasonable definition
of Φ(Xi,Xi+1, Si, Si+1) is based on the following intuition:
If two trajectory partitions Si and Si+1 are labeled different
tags, the significance of the landmark connecting them li+1

should be high; if two trajectory segments Si and Si+1 are
labeled the same tag, the similarity S(Si, Si+1), which mea-
sures the similarity of the various features of Si and Si+1,
should be high. Thus, Φ(Xi,Xi+1, Si, Si+1) can be evaluated
as follows:

Φ(Xi,Xi+1, Si, Si+1) =

{
−S(Si, Si+1) , if Xi = Xi+1

−Ca · li+1.s , if Xi 6= Xi+1

where li+1.s is the significance of li+1, which is the destina-
tion of Si and the source of Si+1; Ca is a positive constant
specified by users, reflecting the importance of the signifi-
cance of li+1. In order to keep each segment with minimal
difference in travel behaviors, S(Si, Si+1) will measure their
similarity in routing features and moving features.

In order to measure the similarity of all these features
of two trajectory segments, each feature should be compa-
rable. Thus, we normalize each feature of Si to a value
ranging from 0 to 1. After normalization, all the features F
of a trajectory segment Si form a |F|-dimension vector ~vi.
Therefore, measuring the similarity S(Si, Si+1) of two con-
tinuous trajectory segments is to measure the similarity of
two vectors. We employ the most widely used vector similar-
ity measure–Cosine Similarity [7] as our similarity measure.
But since different people have different interest in different
features (e.g., one may have higher interest in speed fea-
ture), the user can specify the weight of each feature, we
denote the feature weight of f by wf . The bigger wf is,
the more important f is. All the feature weight wf forms
a |F|-dimension weight vector ~w, where ~wj is the weight of
feature fj . Using these two vectors, S(Si, Si+1) is defined
as following:

S(Si, Si+1) =
1

2
· (

|F|∑
j=1

wj · ~uj · ~vj√
|F|∑
j=1

wj · ~u2
j ·

√
|F|∑
j=1

wj · ~v2j

+ 1) (2)

where the ~u and ~v are the feature vectors of Si and Si+1

respectively. Since each variable Xi is only directly coupled
with Xi−1 and Xi+1. Therefore, the CRF model is defined on
a chain-structured graph. Optimizing Equation 1 is a Maxi-
mum A posteriori Probability (MAP) problem, and thus dy-
namic programming (DP) can be applied to solve the MAP.
We define the DP state as a pair (i, j) which represents the
score of the potential function Φ on the first i trajectory
segments if the i segments are partitioned into j partitions.
The state transition function is defined as

(i, j) = min

{
(i− 1, j − 1)− Ca · li.s
(i− 1, j)− S(Si−1, Si)

(3)

The initial state is that (1, 1) = 0 while (1, j) =∞ for j ≥ 1.
The final k partition result is given by (n, k).

4.2 Feature Selection
Summarizing a trajectory partition is a process of describ-

ing the key characteristics of each partition in dimensions of
both routing and moving features. As we can see from previ-
ous sections, there are many features of a trajectory, hence
not all of them should be covered in the description. Se-
lecting the features to be covered in the summarization is
the first step in the summarization process. Intuitively, the
more different a feature f is from historical trajectories, the
more necessary f should be mentioned in the summary. In
other words, the selected features to be covered should be
the most irregular features. Only features have higher irreg-
ular rate than a user specified threshold will be covered in
summary.
Irregular Rate of Routing Features Recall that the
routing features reflect where the moving object travels. The
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(a) The car started from the China Min-
metals Corportion and passed through the
Capital Stadium. Then it moved from the
Capital Stadium to the Beijing Shangri-la
Hotel with the speed of 12.5 km/h which was
12 km/h slower than usual.

Figure 3: Example of trajectory summarizations

irregular rate of routing features should represents the dif-
ference ratio between the given trajectory route and the his-
torical popular route. Thus, for a given trajectory segment
P = [Si, Si+1, · · · , Si+j−1] connecting landmarks li and li+j ,
STMaker exploits the algorithm described in [4] to identify
the most popular route from li to li+j , which represents how
the historical trajectories travel from li to li+j . The irregu-
lar rate is measured between the given trajectory partition
and the popular route.
Irregular Rate of Moving Features Recall that the mov-
ing features describe the behaviors during the drive. Trav-
eling on the same path, the behaviors should not vary a lot.
Thus, the irregular rate of moving features should measure
the behaviors’ differences between the given partition and
the historical trajectories traveling on the same path.

4.3 Summary Construction
As the last step, STMaker translates the values of se-

lected highly-irregular features to readable and informative
phrases. Although all the feature values are numeric, some
features’ numeric values do not tell any semantic meaning,
i.e., grade of road and traffic direction features. So we de-
fine a set of phrase templates for each feature. For example,
the template of grade of road feature is “through road type
while the most drivers choose road type”. The differences in
feature values of these kind of feature should be replaced by
semantic words, e.g., “highway” or “express road” of grade
of road, rather than the meaningless numbers, “1” or “2”.
For features which the numeric feature value have semantic
meaning, the irregular values of these features can be either
bigger or smaller than the ordinary value. So we can divide
irregular value of a feature into two types.

In order to give users more fluent summarization sentence,
we also define several sentence templates, such as “The car
moved from source to destination through road type, with
feature phrases”. Landmarks and selected features can be
embedded into these templates to generate the final sum-
maries text.

5. DEMONSTRATION
During the demonstration, the audience could interact

with STMaker by specifying trajectories of their interest,
and let the system generate text summaries. The trajectory
dataset used in the demo is generated by taxis and private
cars in Beijing (more than 100,000 trajectories). We get POI
dataset (about 510,000 POIs) of the Beijing city from a reli-
able third-party company in China. We use the commercial
map of Beijing provided by a collaborating company. The
POIs and commercial map are used to build the landmark
dataset, and to provide routing features which are essential
for our algorithm (Section 3.2 and Section 4.2).

We start the demonstration by briefly explaining the work
flow of our system. Then, we let our audience to pick a tra-
jectory from the dataset or artificially draw a trajectory with
specified time stamps. The audience could also designate the
summary granularity by setting k, which determines how
many pieces a trajectory will be partitioned. After that,
STMaker will generate the summary of the given trajectory.

We show a case study of our summarization system in
Figure 3. which shows an example trajectory with its cor-
responding summary. We can see that the summaries given
by our system can well describe the routes as well as the
moving patterns of the trajectories, which one can hardly
tell directly from the map.

6. REFERENCES
[1] Y. Cai and R. Ng. Indexing spatio-temporal

trajectories with chebyshev polynomials. In SIGMOD,
pages 599–610, 2004.

[2] X. Cao, G. Cong, et al. Mining significant semantic
locations from gps data. Proceedings of the VLDB
Endowment, 3(1-2):1009–1020, 2010.

[3] L. Chen, M. Özsu, et al. Robust and fast similarity
search for moving object trajectories. In SIGMOD,
pages 491–502, 2005.

[4] Z. Chen, H. Shen, et al. Discovering popular routes
from trajectories. In ICDE, pages 900–911, 2011.

[5] W. Luo, H. Tan, et al. Finding time period-based
most frequent path in big trajectory data. In
SIGMOD, pages 195–203. ACM, 2013.

[6] D. Pfoser, C. Jensen, et al. Novel approaches to the
indexing of moving object trajectories. In VLDB,
pages 395–406, 2000.

[7] A. Singhal. Modern information retrieval: A brief
overview. IEEE Data Eng. Bull., 24(4):35–43, 2001.

[8] H. Su, K. Zheng, et al. Calibrating trajectory data for
similarity-based analysis. In SIGMOD, pages 833–844.
ACM, 2013.

[9] M. Vlachos, G. Kollios, et al. Discovering similar
multidimensional trajectories. In ICDE, pages
673–684. IEEE, 2002.

[10] Y. Zheng, L. Zhang, et al. Mining interesting locations
and travel sequences from gps trajectories. In WWW,
pages 791–800, 2009.

1704


