
Thoth: Towards Managing a Multi-System Cluster

Mayuresh Kunjir
Duke University

mayuresh@cs.duke.edu

Prajakta Kalmegh
Duke University

pkalmegh@cs.duke.edu

Shivnath Babu
Duke University

shivnath@cs.duke.edu

ABSTRACT
Following the ‘no one size fits all’ philosophy, active re-
search in big data platforms is focusing on creating an envi-
ronment for multiple ‘one-size’ systems to co-exist and co-
operate in the same cluster. Consequently, it has now be-
come imperative to provide an integrated management so-
lution that provides a database-centric view of the under-
lying multi-system environment. We outline the proposal
of DBMS+, a database management platform over multi-
ple ‘one-size’ systems. Our prototype implementation of
DBMS+, called Thoth, adaptively chooses a best-fit system
based on application requirements. In this demonstration,
we propose to showcase Thoth DM, a data management
framework for Thoth which consists of a data collection
pipeline utility, data consolidation and dispatcher module,
and a warehouse for storing this data. We further intro-
duce the notion of apps; an app is a utility that registers
with Thoth DM and interfaces with its warehouse to provide
core database management functionalities like dynamic pro-
visioning of resources, designing a multi-system-aware opti-
mizer, tuning of configuration parameters on each system,
data storage, and layout schemes.

We will demonstrate Thoth DM in action over Hive, Hadoop,
Shark, Spark, and the Hadoop Distributed File System.
This demonstration will focus on the following apps: (i)
Dashboard for administration and control that will let the
audience monitor and visualize a database-centric view of
the multi-system cluster, and (ii) Data Layout Recommender
app will allow searching for the optimal data layout in the
multi-system setting.

1. INTRODUCTION
A data-driven enterprise today needs systems for advanced

computations like clickstream log analysis, getting real-time
insights into streaming data, business forecasting, and near-
interactive experience for large volumes of data, etc. Organi-
zations like Facebook, Netflix, Zynga, LinkedIn, and Yahoo

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 13
Copyright 2014 VLDB Endowment 2150-8097/14/08.

Figure 1: Data OS Multi-System Management

are adopting many ‘one-size’ systems that cater to these re-
quirements. Different ‘one-size’ systems serve different pro-
cessing needs such as batch processing, bulk-synchronous
MPI processing, key-value stores, in-memory analytics, graph
computations, and columnar storages.

Following the ‘no one size fits all’ philosophy, active re-
search in big data platforms is focussing on creating an en-
vironment for multiple ‘one-size’ systems to co-exist and co-
operate in the same cluster. Sharing a cluster across multi-
ple systems is desired in order to save on huge data migration
costs involved in dataflow pipelines. Some of the solutions
existing today include Apache Yarn [11], Mesos [7], Face-
book’s Corona, and Google’s Omega [10]. The approach
taken by all these systems is to provide a management layer
capable of managing resource allocation across systems. We
call this layer Data OS since it is functionally closer to an
operating system for data. Figure 1 shows a broad architec-
tural view of these systems.

However, OS functionalities are incapable of managing
database-specific needs of systems. The ‘no one size fits
all’ philosophy poses many challenges for system adminis-
trators and application developers. They are faced with the
challenge of finding a system most suitable for their applica-
tions since each system may serve many overlapping classes
of problems. For instance, log analysis can be performed on
parallel databases like Teradata/Greenplum, batch systems
like Hadoop, column-oriented systems for efficient OLAP
analysis like Vertica, or in-memory analytics with systems
like SAP HANA. An application developer is burdened with
the task of choosing an appropriate system based on re-
source availability and changing application requirements.
This entails considerable manual effort in tuning each sys-
tem individually based on available resources.

A management layer on top with a database-centric view
of systems can use a learning-based approach to recommend
the right system to use for an application. This is a function-
ality of database management systems that will be hard to

1689

Figure 2: Thoth Multi-System Management

provide with a purely OS-centric approach. In [8], we made
a case for building a unified DBMS+ system in a shared-
cluster environment that understands an application’s re-
quirements and finds the best fit system for executing an
application. To think of database-as-a-service is more conve-
nient for system administrators and application developers
for better resource provisioning and data layout. This also
relieves them of significant effort in tuning each system sep-
arately, allocating resources, and most importantly choosing
a system most suitable for an application.

In this work, we introduce a prototype for DBMS+: Thoth.
Thoth provides a platform to develop various multi-system
manageability applications (called apps in short). The ap-
plications could range from a dashboard to monitor running
applications to a multi-system optimizer. We first list down
some of the major research challenges that drive our vision:

• Database-centric view: Create a view over multi-
system cluster by integrating monitoring data from all
the systems and all the layers of software stack for
users to be able to easily track and understand perfor-
mance of their applications without a need to under-
stand internals of each system.

• Auto-tuning: Build a multi-system aware optimizer
capable of picking right system for execution along
with settings for its tuning knobs.

• Dynamic Resource Provisioning: Find a best re-
source allocation strategy across systems by studying
historical workflow traces. Use it to allocate resources
on-the-fly to meet applications’ demands.

• Data Layout Management: Provide recommenda-
tions on data format, storage engine, partitioning and
materialization based on usage patterns of workloads.

Contributions
• Proposal of a multi-system management architecture:

DBMS+ and design of a prototype: Thoth. Thoth pro-
vides a data driven platform for various cluster man-
agement apps.

• Data management utility for Thoth: Thoth DM. It pro-
vides a unified view over data collected from multiple
systems running on cluster for apps to make system
management decisions.

• A dataflow visualization app and a data layout man-
agement app developed in Thoth. While dataflow vi-
sualizer allows real-time monitoring of applications,
data layout manager processes data profiled by Thoth
DM to recommend changes to data layout.

Outline. The rest of the paper is organized as follows: Sec-
tion 2 describes how apps in Thoth contribute towards build-
ing a multi-system management layer. It also illustrates the
methodology for collection and management of data. Sec-
tion 3 provides a proposal to demonstrate a dataflow visu-
alization app and a data-layout recommender app to the
VLDB audience.

2. MULTI-SYSTEM MANAGEMENT PLAT-
FORM

We propose a prototype of DBMS+ architecture, a multi-
system management platform, called Thoth. Let’s first look
at some of the important design goals of Thoth.

1. Extensible: Thoth should provide an extensible plat-
form for development of manageability features that
cannot be provided by Data OS.

2. Data-driven: Thoth should enable data-driven de-
cisions which means an ability to collect and process
data generated by systems is required.

3. Real-time: Thoth should support real-time and fre-
quent decision making.

4. Online and offline modes: Some of the manageabil-
ity decisions are more of recommendations to adminis-
trators while some other may change state of systems.
Thoth should support both modes of functioning.

5. Co-operative development: Thoth should interact
with the systems and Data OS layers through well-
defined APIs so that Thoth apps can be developed side-
by-side as the systems and Data OS evolve.

2.1 Thoth Apps
Thoth provides a platform for development of various multi-

system management applications, apps in short. These apps
help Thoth achieve easy extensibility. Figure 1 shows the
Thoth platform; the backbone of Thoth is a data manager
which enables data-driven decision making. Thoth DM col-
lects data in the form of system logs, runtime statistics,
resource profiles, metadata and configuration options from
multi-system cluster. It consolidates and stores the data in
a warehouse through which it is made available to apps. We
discuss the Thoth DM design in Section 2.2.

DBMS+ apps register themselves with Thoth DM to re-
ceive a subset of instrumented data. The apps can be of
two types: (a) offline apps; and (b) online apps. The
offline apps analyze data to supply recommendations on
system design or system monitoring data to database admin-
istrators. DBAs can use this information to better design
applications or to better tune systems. Since these apps

do not take any action on systems by themselves, they are
termed offline apps. The online apps, on the other hand,
are capable of executing an action that may change system
design. To invoke these actions, we add agents inside sys-
tems. The online apps communicate with the agents using
a RPC mechanism. This allows for development apps with-
out intruding system space much, one of the foremost goals
of DBMS+ design.

We list down a few small apps to showcase potential of
DBMS+ platform. A discussion on building a fully functional
multi-system optimizer prototype is left out of the scope of
this demonstration proposal. In section 3, we give a demo
plan for app1, app2 and app5 from the below list.

1690

Timing Info (Job)

- Start time
- End time
- Wait time in
scheduler queue

Timing Info (Task)

- Running time
- Start-up delay
- GC delay

Resource Profile
(Task)

- Avg. CPU utilization
- Avg. Memory usage
- Local I/O throughput
- Network I/O
throughput

Resource Profile
(Task, Time)

- CPU utilization
- Memory usage
- Local I/O
- Network I/O

Plan Details (Job)

- Operator tree
- # tasks
- # data local tasks
- # failed tasks

Dataflow Stats
(Job)

- Input bytes
- Output bytes
- Size of intermediate
data

Dataflow Stats
(Task)

- Input bytes
- Output bytes

Metadata (Job)

- Input data locations
- Input data format
- Storage format of
data (cached or not)
- Variety of input data

System Configs
(Query)

- Maximum DoP
- Memory limits
- CPU limits
- Scheduler pool config

System Logs (Query)

Figure 3: Categorization of Profiled Data

• offline apps

app1 Dashboard for administration and monitoring a.k.a.
Database-Centric View

app2 Data layout recommender

app3 Multi-tenant resource allocation recommender

app4 Prediction for system tuning parameters

• online apps

app5 Data layout auto-tuner

app6 Multi-tenant resource allocation auto-tuner

app7 Cluster Configuration Parameters auto-tuner

2.2 Thoth Data Manager
Thoth DM is a single entry point for all application logs

and profile data. Its functionalities include: (a) consoli-
dating data to a system-agnostic form; (b) maintaining a
warehouse for data; and (c) supplying relevant data to var-
ious apps of DBMS+. Key challenges in Thoth DM are the
choice of data collection granularity and a need of system-
agnostic traces. We describe how Thoth DM addresses these
challenges next.

Query execution on any distributed system can be imag-
ined as being carried out in three levels – query, job, and
task. A query is executed as a multi-stage process. Each
stage, alternatively called a job, is split into multiple tasks
distributed across cluster. We collect data at all three gran-
ularities. The data includes configuration settings, meta-
data, runtime statistics and profiles. We use lightweight
agents for system instrumentation keeping in tune with our
goal of building Thoth manageability functionalities without
intruding systems space much. Thoth DM consolidates the
collected data into multiple categories shown in Figure 3.
This allows for optimizing storage and supplying only the
relevant data to apps.

Figure 2 shows Thoth DM flow. The data is generated
by various events in life-cycle of queries. It is collected by
data collector module of Thoth DM and passed on to a data
consolidator, which is implemented as an ‘interceptor’ in
Apache Flume. Once consolidated, data can be dispatched
to consumers. A consumer can either be a streaming app or
Thoth data warehouse. Real-time processing apps require
data to be sent over a stream in Apache Storm. The apps

doing a batch processing, on the other hand, require data
to be stored in data warehouse. Thoth DM’s supports data
to be stored either on HDFS or in Spark RDDs as per app

requirements. To extract required information from data

warehouse, apps use a querying interface provided by Thoth
DM.

Data stored in warehouse exhibits a large variety; for ex-
ample query logs are highly unstructured, resource profiles
and other statistics adhere to a fixed structure, and query
plans have hierarchical/nested structure. Thoth apps may
favor one storage system over other based on the type of
data they need. This points to an interesting research chal-
lenge in finding right data layout for Thoth data warehouse
which we plan to address in future.

2.3 Other Approaches
Apache Chukwa [9] is a data collection system that en-

ables monitoring a distributed system. Its scope is limited to
large scale log collection on Hadoop HDFS. It also provides a
reporting and monitoring framework for near real-time anal-
ysis of the cluster. Our solution of Thoth DM enables but is
not limited to log collection on HDFS. Another key differ-
ence is that Thoth DM allows streaming of data to Apache
Storm for efficient real-time processing of events. Netflix’s
adoptation of Chukwa in Suro [1] provides a support for not
only arbitrary data formats but also real-time processing of
data. Suro provides central data management for Netflix
applications running in different clusters. Our vision, how-
ever, is to contribute a database management layer for a
multi-system cluster.

Splunk [4] provides a real-time platform for proactive mon-
itoring of large volumes of machine data. It collects data
from various sources like logfiles, messages, config files, tick-
ets, messages, etc and makes it available for further anal-
ysis. Splunk also promotes the notion of apps and catego-
rizes them into application management, business analytics,
etc. thus enabling more advanced analytics. Our solution is
motivated from Splunk but highly differs in the vision; we
aim at providing an integrated management solution for a
multi-system environment. Our prototype of Thoth DM col-
lects and consolidates data relevant for provisioning of core
DBMS functionalities in the form of apps.

3. DEMONSTRATION PLAN
The purpose of this demonstration is to get vision of

DBMS+ across to community. We want to achieve this by
showcasing our prototype Thoth. Thoth provides a rich plat-
form to develop various management apps with a database-
centric view of underlying systems. It is made possible by
Thoth DM utility that collects data (statistics, profiles, con-
figurations, etc.), consolidates, and supplies it in real-time
to Thoth apps.

A demo cluster is set up on Amazon EC2 cloud with two
systems: (a) Hive over Hadoop, and (b) Shark over Spark.
Two Thoth apps are developed. First app processes data
in real-time and streams it to a dashboard which supports
monitoring execution flow and understanding performance.
The second app analyzes historical workload traces to rec-
ommend dynamic changes in data layouts.

3.1 Database-Centric View
Many cluster monitoring tools are available to assist DBAs,

e.g. Ganglia [3]. These tools have a system-centric view of
cluster which means they treat database applications like
any other processes using hardware resources. Such a nar-
row view is good enough for many Data OS management

1691

Figure 4: A workflow in BigFrame

decisions such as provisioning resources in case of failures.
But for a DBMS+ management layer, what is needed is a
database-centric view of systems. An understanding of intri-
cacies of database systems is essential for admins to better
tune systems or better design applications. e.g. To diag-
nose a query failure, an understanding of behavior of jobs
during execution of the query would help pinpoint whether
the failure was due to: a sub-optimal query plan; an infe-
rior data layout; or insufficient resource allocation. This is
where Thoth helps with its management of data collected
from system instrumentation and logs. Another important
contribution of Thoth is to provide a consistent view of mul-
tiple systems sharing the cluster. An admin managing a
multi-system cluster may not be equipped with expertise
of each system but rather interested in high level easy-to-
understand information that can assist her find best settings
for applications.

We use BigFrame benchmarking service [2] to exhibit Thoth’s
role in managing a multi-system cluster. BigFrame is an
ongoing effort targeted towards creating a benchmarking-
as-a-service solution for big data analytics. An example
application workflow provided by the benchmarking service
is shown in Figure 4. The workflow exhibits a variety of
use-cases: (a) SQL queries with relational operators; (b)
Statistical analysis and machine learning algorithms from
NLP applied to tweets to extract user sentiments; and (c)
Iterative graph computations to compute user influence that
weights their sentiment scores. When presented with such a
workflow and with multiple possible paths of execution, not
just making a right choice of systems for execution but also
understanding behavior of systems under such a workload
in itself is a big challenge for system admins. We demon-
strate how Thoth dashboard app (app1) assists admins on
BigFrame workloads.

The dashboard app receives data from Thoth DM in form
of a stream sent over Apache Storm. It builds visualizations
that show various features like query plans, resource utiliza-
tion profiles, dataflow statistics, etc. Each of the visualiza-
tion includes tuning options to pick a set of statistics to be
included, the granularity for summarization, and so on. The
demonstration will give a walk-through over these features
targeted at managing a BigFrame application workflow.

3.2 Data Layout Recommender
We demonstrate another app in Thoth that provides workload-

aware recommendations for data layout (app2). The purpose
is to showcase how workload traces can be used in building
powerful models for tuning data layouts across multiple sys-
tems. According to a study carried out in [6], analytical
workloads exhibit interesting temporal computational pat-
terns that call for dynamic changes in system design. We
plan to leverage a wide array of literature(e.g. [5]) on build-
ing models for data layout recommendations using histori-
cal traces. The flow of app2 looks like: Trace is periodically
queried from Thoth warehouse; Models are invoked over the
trace to get recommendations on data format, materializa-
tion, partitioning, etc.; The recommendations are relayed to
DBA who can use them in re-structuring of data.

4. REFERENCES
[1] Announcing suro: Backbone of netflix’s data pipeline,

http://techblog.netflix.com/2013/12/

announcing-suro-backbone-of-netflixs.html.

[2] Bigframe: Benchmarking service for big data
analytics,
https://github.com/bigframeteam/BigFrame.

[3] Ganglia monitoring system,
http://ganglia.sourceforge.net/.

[4] Splunk, http://www.splunk.com/.

[5] S. Agrawal. Automatic physical design tuning:
workload as a sequence. In In Proceedings of the ACM
International Conference on Management of Data
(SIGMOD, pages 683–694. ACM Press, 2006.

[6] Y. Chen, S. Alspaugh, and R. Katz. Interactive
analytical processing in big data systems: A
cross-industry study of mapreduce workloads. Proc.
VLDB Endow., 5(12):1802–1813, Aug. 2012.

[7] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi,
A. D. Joseph, R. Katz, S. Shenker, and I. Stoica.
Mesos: A platform for fine-grained resource sharing in
the data center. In Proceedings of the 8th USENIX
Conference on Networked Systems Design and
Implementation, NSDI’11, pages 22–22, Berkeley, CA,
USA, 2011. USENIX Association.

[8] H. Lim, Y. Han, and S. Babu. How to fit when no one
size fits. In CIDR, 2013.

[9] A. Rabkin and R. Katz. Chukwa: A system for
reliable large-scale log collection. In Proceedings of the
24th International Conference on Large Installation
System Administration, LISA’10, pages 1–15,
Berkeley, CA, USA, 2010. USENIX Association.

[10] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and
J. Wilkes. Omega: Flexible, scalable schedulers for
large compute clusters. In Proceedings of the 8th ACM
European Conference on Computer Systems, EuroSys
’13, pages 351–364, New York, NY, USA, 2013. ACM.

[11] V. K. Vavilapalli, A. C. Murthy, C. Douglas,
S. Agarwal, M. Konar, R. Evans, T. Graves, J. Lowe,
H. Shah, S. Seth, B. Saha, C. Curino, O. O’Malley,
S. Radia, B. Reed, and E. Baldeschwieler. Apache
hadoop yarn: Yet another resource negotiator. In
Proceedings of the 4th Annual Symposium on Cloud
Computing, SOCC ’13, pages 5:1–5:16, New York, NY,
USA, 2013. ACM.

1692

