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ABSTRACT
Hosting data query services in public clouds is an attrac-
tive solution for its great scalability and significant cost
savings. However, data owners also have concerns on data
privacy due to the lost control of the infrastructure. This
demonstration shows a prototype for efficient and confiden-
tial range/kNN query services built on top of the random
space perturbation (RASP) method. The RASP approach
provides a privacy guarantee practical to the setting of cloud-
based computing, while enabling much faster query pro-
cessing compared to the encryption-based approach. This
demonstration will allow users to more intuitively under-
stand the technical merits of the RASP approach via inter-
active exploration of the visual interface.

1. INTRODUCTION
With the wide deployment of cloud infrastructures, it

has become popular to host services and big data in public
clouds. This new paradigm is especially attractive for data-
intensive query and analysis services for its great scalability
and significant cost savings. It is well known that main-
taining and mining data incurs much higher cost than ini-
tial data acquisition. By moving data services to the cloud,
data owners can cut costs in almost every aspect of manag-
ing and mining data. However, data privacy is still haunting
data owners’ minds as the underlying infrastructure is out of
their control. In particular, data owners may not be aware
of information leakage, which can happen in all kinds of pos-
sibilities, if the cloud provider does not want to report the
leakage.
A straightforward method is to encrypt datasets before

exporting them to the cloud. However, searchable encryp-
tion is very challenging, showing limited successes in some
specific areas such as document search [4]. Boneh et al. [2]
showed that it is possible to construct a public-key system
for range query, which is one of the basic database queries
(another popular one is k nearest neighbor (kNN) query as
we will discuss). However, it requires a significant amount
of storage and computational costs, only applicable to linear
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scan of the entire database. Database queries such as range
and kNN queries normally demand fast processing time (log-
arithmic or sublinear time complexity) with the support of
indexing structures. However, if not impossible, there is no
efficient indexing structure developed for encrypted data yet,
which renders the current encryption schemes [2] unusable
for search in large databases.

We recently proposed the RAndom Space Perturbation
(RASP) method [5] for the protection of tabular data, which
is secure under the assumption of limited adversarial knowl-
edge - only the perturbed data and the data distributions
are known by adversaries. This assumption is appropriate
in the context of cloud computing. The RASP perturba-
tion is a unique combination of Order Preserving Encryp-
tion (OPE) [1], dimensionality expansion, noise injection,
and random projection, which provides sufficient protection
for the privacy of query services in the cloud. It has a num-
ber of unique features, such as preserving the topology of
range query, non-deterministic results for duplicate records,
and resilience to distributional attacks [5].

We develop the secure half-space query transformation
method that casts any enclosed range in the original space to
an irregularly shaped range in the perturbed space. There-
fore, we are able to use a two-stage range query processing
method : an existing multidimensional index, such as R*-
Tree in the perturbed space is used to find out the records
in the bounding box of the irregularly shaped range, which
is then filtered with the transformed query condition. This
processing strategy is fast and secure under the security as-
sumption.

To allow the readers to fully appreciate the intuition and
the ideas behind the RASP based perturbation and query
processing, we propose this RASP Query Services (RASP-
QS) demonstration system. This system consists of the fol-
lowing major components: (1) the user interface for pertur-
bation parameter generation that allows users to observe the
details of RASP perturbation, (2) the visualization of the
two-stage range query processing procedure to understand
the transformed query ranges and the query results, (3) the
visualization of the progressive steps in the kNN query pro-
cessing that is based on RASP range query processing, and
(4) the performance comparison on index-aided processing
on non-encrypted data, linear-scan query processing on en-
crypted data [2], and the RASP query processing.

2. RASP-QS ARCHITECTURE
We assume that a cloud computing infrastructure, such as

Amazon EC2, is used to host the query services and large
datasets. The purpose of this architecture is to extend the
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Figure 1: The RASP-QS system architecture.

proprietary database servers to the public cloud, or use a
hybrid private-public cloud to achieve scalability and reduce
costs while still maintaining confidentiality.
Each record x in the outsourced database contains two

parts: the RASP-processed attributes D′ = F (D,K) for
indexing and query processing, and the encrypted original
records, Z = E(D,K′), for lossless record retrieval, where
K and K′ are keys for perturbation and encryption, re-
spectively. Figure 1 shows the system architecture for both
RASP-based range query service and kNN query service.
There are two clearly separated groups: the trusted par-
ties and the untrusted parties. The trusted parties include
the data/service owner, the in-house proxy server, and the
authorized users who can only submit queries. The data
owner exports the perturbed data to the cloud. The autho-
rized users can submit range queries or kNN queries to learn
statistics or find some records. The untrusted parties include
the curious cloud provider who hosts the query services and
the protected database. The RASP-perturbed data will be
used to build indices to support query processing.
There are a number of basic procedures in this framework:

(1) F (D) is the RASP perturbation that transforms the orig-
inal data D to the perturbed data D′; (2) Q(q) transforms
the original query q to the protected form q′ that can be
processed on the perturbed data; (3) H(q′, D′) is the query
processing algorithm that works on D′ and q′ and returns
the result R′. It is also possible to securely compute some
statistics such as SUM or AVG of a specific dimension, if
the original data records Z = E(D,K′) are encrypted by
dimension and with a partial homomorphic encryption such
as Paillier encryption. The result is recovered with the pro-
cedure G(R′).

2.1 RASP Perturbation
RASP perturbation is a novel combination of order pre-

serving encryption (OPE) [1], dimension expansion, random
noise injection, and random projection. Let’s consider the
multidimensional data are numeric and in multidimensional
vector space. The database has d searchable dimensions,
which can be used in queries, and n records, which makes
a d × n matrix X. Let x represent a d-dimensional record,
x ∈ R

d. Note that in the d-dimensional vector space R
d,

a range query is represented as an intersection of half-space
functions and a range query is translated to finding the point
set in corresponding polyhedron area described by the half
spaces. In a normal setting, the searchable dimensions will
be indexed with techniques such as R-Tree for fast query
processing.
The RASP perturbation involves three steps. For each

d-dimensional input vector x,

1. An OPE scheme, Eope with keys Kope, is applied to

each dimension of x: Eope(x,Kope) ∈ R
d to change

the dimensional distributions to normal distributions
with each dimension’s value order still preserved.

2. The vector is then extended to d + 2 dimensions as
G(x) = ((Eopt(x))

T , 1, v)T , where the (d+1)-th dimen-
sion is always a 1 and the (d + 2)-th dimension, v, is
drawn from the standard normal distribution N(0, 1),
with the condition v >= v0 (e.g., v0 = −3 which covers
more than 99% of the population).

3. The (d + 2)-dimensional vector is finally transformed
to

F (x,K = {A,Kope}) = A((Eope(x))
T
, 1, v)T , (1)

where A is a (d + 2) × (d + 2) randomly generated
invertible matrix with aij ∈ R such that there are at
least two non-zero values in each row of A and the last
column of A is also non-zero.

Kope and A are shared by all vectors in the database, but v is
randomly generated for each individual vector, which makes
the transformation non-deterministic. Since the RASP per-
turbed data records are only used for indexing and help-
ing query processing, there is no need to recover the per-
turbed data. In the case that original records are needed,
the encrypted records associated with the RASP-perturbed
records will be returned. In our journal paper [5], we have
proven that this perturbation method is secure against ad-
versaries who know only the dimensional distributions and
the perturbed data.

2.2 Query Transformation
A range query condition, say Xi < ai, is first transformed

to OPE transformed domain, i.e., Eope(Xi) ≤ Eope(ai). Ac-
cording to the design of the extended (d+2)-th noise dimen-
sion v in the RASP perturbation, v is always greater than
v0. Thus, the condition Eope(Xi) ≤ Eope(ai) is equivalent
to (Eope(Xi)− Eope(ai))(v − v0) ≤ 0. Using vectors to rep-
resent the half-space conditions and u to represent the per-
turbed vector, we get Eope(Xi)−Eope(ai) = wTA−1u where
wi = 1, wd+1 = −Eope(ai), and wj = 0 for j 6= i, d+ 1; and
similarly, v − v0 = qTA−1u, where qd+2 = 1, qd+1 = −v0,
and qj = 0, for 1 ≤ j ≤ d. Thus, we get the transformed
quadratic query condition

u
T (A−1)Twq

T
A

−1
u ≤ 0. (2)

Let Θi = (A−1)TwqTA−1. Now the server can use uTΘiu ≤
0 to filter out the results. In paper [5], we have proven that
the query transformation is also secure against adversaries
who know only the dimensional distributions and the per-
turbed data. However, it apparently does not preserve the
privacy of access pattern, which is less important under the
cloud-based assumption.

2.3 Two-Stage Fast Range Query Processing
Because the OPE transformation is typically non-linear,

an enclosed range defined by half-space conditions is trans-
formed to a nonlinear manifold with some unknown shape.
However, we have proven that the shape is convex, which al-
lows us to efficiently find its bounding box [5]. Therefore, we
use the following two-stage processing strategy to efficiently
find the query results.

Specifically, the proxy in the client side finds the maxi-
mum bounding box (MBR) of the shape (as a part of the
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submitted transformed query), and then submits the MBR
and a set of transformed query conditions {Θ1, . . . ,Θm} to
the server. The server uses the multidimensional tree index
to find the set of records enclosed by the MBR, which are
then filtered by the conditions uThetaiu < 0. The result is
the exact result of the range query, which significantly re-
duces the post-processing cost that the proxy server needs
to take. It is very important if the client is light-weighted
such as mobile phones.

2.4 KNN-R Query Processing
The kNN-R algorithm uses square ranges around the query

point to find the candidate nearest records. In Figure 2, the
inner square range starts from the query point and expands
until k points are included. The exact kNN result should be
in the bounding sphere of the inner range, which in turn is
approximated by the bounding box of the sphere. Figure 2
shows the scenario of finding the candidate set for a 3-NN
query based on square ranges.
The inner range expansion can be achieved by a binary

range search algorithm. The user can set the initial outer
square range with a certain distance from the query point.
In each iteration, the algorithm finds the middle range be-
tween the inner range and the outer range, in which if the
number of enclosed points is larger than k, the outer range is
replaced by the middle range; otherwise, the inner range is
replaced by the outer range. This iterative process can expo-
nentially reduce the search range and find the result quickly.
The records in the final range is sent back to the client for
final kNN filtering. Note that this process utilizes the linear
property of the transformed queries to derive the queries for
the middle range, which does not require the client’s par-
ticipation [5]. Experiments show that this algorithm is very
efficient.

3. DEMONSTRATION
Introduction. The first part uses a poster and slides

to outline the unique features of the RASP query process-
ing approach, and introduces the viewer to the RASP-QS
demonstration system.
Live System. Next, a fully interactive demonstration

of the RASP-QS system will be presented. The user will be
able to use the client-side system to prepare perturbed data,
use the visual range/kNN query composition system to cre-
ate and submit queries to the server, and observe how the
query is processed by the two-stage algorithm for a range
query or the kNN-R algorithm for a kNN query. The visu-
alization of query processing step will be used to help users
understand the query processing steps.
Comparison with Existing Approaches. We will also

compare the performance with other related approaches.
This helps users understand the unique advantages and pos-
sible limitations of the proposed approach.

3.1 Demonstration Workflow
The demonstration uses the following workflow for range

query.

1. The user can choose one of the sample datasets for gen-
erating the corresponding perturbation parameters, i.e.,
the OPE mapping function and the invertible matrix
A. The dataset is perturbed locally in the client pro-
gram and then sent to the server. Each perturbed
record is also associated with the encrypted original

��������	�
���
��

���������

��������
�

���������

����	�
���
�

�����������

��������

�����������	����

��������
�
�����	����

����� 
�����
�

�!�������"���������

������#�
$������

�%����� ������

 �&������

���������

��	
�	����

�


�

���

���	&�

�'(�)���

*'�(���*�

�'

+&��������� ,��-�������

Figure 4: Major components in the demo system
(for range query)

record that is encrypted with a standard encryption
algorithm. Once the server has received the exported
data, it builds a multidimensional R*-Tree index on
the perturbed records.

2. The user formulates a range query, which can be done
visually for two-dimensional data, or by manually typ-
ing in the range definition for higher dimensional data.
The transformed query matrices Qi will be sent to the
server. Users can also visually check these query ma-
trices.

3. On receiving the query matrices, the server will ap-
ply the two-stage query processing, the whole process
of which can also be visualized on the client side, so
that the user can understand how the two-stage algo-
rithm works. The query result (the encrypted original
records) is sent to the client side.

Figure 4 shows the range-query workflow and the major
components in the system. The kNN query processing fol-
lows a similar workflow, while including additional interac-
tions between the client and the server to derive the final
compact range after the iterative inner range expansion al-
gorithm finishes.

3.2 Live System
We introduce the major components of the demonstration

system: data perturbation, query transformation, RASP
range query processing and visualization, and kNN-R query
processing and visualization. The visualization part is sup-
ported by the VISTA multidimensional visualization system
developed by us several years ago [3]. The server process-
ing components will be implemented with C++ and work as
web services, while the client interface is implemented with
Java GUI and/or web pages.

Data Perturbation. We will prepare a set of sam-
ple datasets for the demonstration, which includes at least
one two-dimensional dataset and a few higher dimensional
datasets. The purpose of low dimensional data is for eas-
ier visualization and visual validation. The data perturba-
tion component allows the user to select one of the sample
datasets. The perturbation parameters have to be generated
according to the specific dataset, because the OPE parame-
ters are dataset-specific and the size of matrix A is subject
to the dimensionality of the dataset. The perturbed data
is sent to the server. The server then conducts multidimen-
sional indexing on the perturbed data space.

Range Query Transformation and Processing. The
query transformation and processing method is the key of
RASP query processing. We develop an interactive visual
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Figure 2: Illustration of kNN-R Algo-
rithm for k=3
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Figure 3: Conceptual design for the visualization of query trans-
formation and query result in the demonstration system.

interface to help users understand and appreciate the ideas
behind the method. The query transformation method maps
a linear half-spaces based range query to a quadratic surface
query in the perturbed space. It is easier to understand
this transformation by visualization. Using the simplest
two-dimensional case for example, we can directly visual-
ize the exact distribution of the original data. However, the
perturbed data is in four-dimensional space, which has to
depend on the multidimensional data visualization system
VISTA [3]. Figure 3 illustrates a rectangle range on the
original dataset and its hypothetical corresponding irregu-
lar range in the perturbed data space. In the final demon-
stration system, we will highlight the records enclosed by
the range instead. For each query, we will show the com-
plete set of transformed conditions (i.e., the matrix Θi for
each half-space condition), the enclosed records in the per-
turbed space, and the bounding box that contains the ir-
regularly shaped range for index-aided processing. Several
statistics will be shown, including the number of block ac-
cesses, the number of records in the bounding box, the num-
ber of records in the final result, and the time distribution
in different steps.
kNN Query Processing. In kNN query processing, we

will develop a visualization interface to show the procedure
of the binary square range query, which starts with the ini-
tial inner and outer ranges and progressively extends the
inner range until reaching the tight bound. In each step, we
will visualize the changed inner and outer ranges in the per-
turbed space. Some statistics will be shown as well, such as
the number of iterations, the total block accesses, the num-
ber of records returned by the server, and the total time
cost.

3.3 Performance Comparison
To further understand the advantages of the RASP ap-

proach, we want to show the comparison with the R*-Tree
supported query processing on the original data, and the
sequential scan on the encrypted data (e.g., the work on
range query [2]). These methods will also be implemented
with C++ for fair performance evaluation. We will let the
user generate a batch of random queries with a specific size
of range for a selected dataset. All the queries will be se-
quentially submitted by the client side and processed by the
server. We will show the average query processing time cost

in the server side, the server storage cost, and the client-
side pre-processing and post-processing costs. We expect
that the RASP approach will have much lower storage cost,
query processing time, and client-side processing costs, than
other methods that depend on encryption and linear scan.

4. SUMMARY
The purpose of this demonstration is to show the key

ideas of the RASP-based query processing approach for ef-
ficiently and confidentially hosting query services in public
clouds. This demonstration system will be highly interac-
tive and visual, allowing the users to easily understand the
technical details and appreciate the advantages of this ap-
proach. Users of the demonstration system can manipulate
the system to generate perturbation parameters, observe the
key steps in query processing, and evaluate the performance
of several related approaches. The technical details of the
RASP approach have been published recently in the jour-
nal paper [5], for which this demonstration system will be a
valuable addition. We believe that the RASP approach will
be a significant step towards practical confidential query ser-
vices in public clouds. This work is partially supported by
NSF Award 1245847.
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