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ABSTRACT
There is an increasing interest in executing rich and complex analy-
sis tasks over large-scale graphs, many of which require processing
and reasoning about a large number of multi-hop neighborhoods or
subgraphs in the graph. Examples of such tasks include ego network
analysis, motif counting in biological networks, finding social cir-
cles, personalized recommendations, link prediction, anomaly de-
tection, analyzing influence cascades, and so on. These tasks are
not well served by existing vertex-centric graph processing frame-
works whose computation and execution models limit the user pro-
gram to directly access the state of a single vertex, resulting in high
communication, scheduling, and memory overheads in executing
such tasks. Further, most existing graph processing frameworks
also typically ignore the challenges in extracting the relevant por-
tions of the graph that an analysis task is interested in, and loading
it onto distributed memory.

In this demonstration proposal, we describe NSCALE, a novel
end-to-end graph processing framework that enables the distributed
execution of complex neighborhood-centric analytics over large-
scale graphs in the cloud. NSCALE enables users to write programs
at the level of neighborhoods or subgraphs. NSCALE uses Apache
YARN for efficient and fault-tolerant distribution of data and com-
putation; it features GEL, a novel graph extraction and loading
phase, that extracts the relevant portions of the graph and loads
them into distributed memory using as few machines as possible.
NSCALE utilizes novel techniques for the distributed execution of
user computation that minimize memory consumption by exploit-
ing overlap among the neighborhoods of interest. A comprehensive
experimental evaluation shows orders-of-magnitude improvements
in performance and total cost over vertex-centric approaches.
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Figure 1: An example of neighborhood-centric analysis: iden-
tify users’ social circles in a social network, i.e., cluster each
user’s friends into different (possibly overlapping) groups using
the network structure and the node and edge contents. Figure
shows a small subset of such circles that may be present.

1. INTRODUCTION
Large volumes of graph-structured data are being generated in a

range of application domains including social media, Web, bioin-
formatics, communication, finance, transportation, and many oth-
ers. There is a growing interest in executing complex analytics over
such graph data to get valuable insights about the interconnection
structures among the entities, leading to much work on developing
distributed graph programming frameworks in recent years.

A large number of complex graph analysis tasks can be viewed
as operations on multi-hop local neighborhoods (or subgraphs of
local neighborhoods) of a large number of nodes in the graph. For
example, there is much interest in analyzing ego networks, i.e., 1-
or 2-hop neighborhoods, of the nodes in the graph. Examples of
specific ego network analysis tasks include identifying structural
holes, brokerage analysis, counting motifs, identifying social cir-
cles [4] (Figure 1), link prediction and recommendation using Per-
sonalized Page Rank, computing local clustering coefficients, and
anomaly detection.1 In other cases, there may be interest in analyz-
ing connected/induced subgraphs satisfying certain properties. As
an example, we may be interested in analyzing the induced sub-
graph on users who tweet a particular hashtag in the Twitter net-
work. Similarly, we may be interested in analyzing groups of users
who have exhibited significant communication activity in recent
past. More complex subgraphs can be specified as unions or inter-
sections of neighborhoods of pairs of nodes; this may be required
for graph cleaning tasks like link prediction and entity resolution.

Prior Graph Processing Frameworks: Several vertex-centric dis-
tributed graph processing frameworks have been proposed in recent
1See the extended version of the paper [5] for references and more
details.
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years, including Pregel, GraphLab [3], Apache Giraph, to name a
few. In these frameworks, the users write vertex-level programs,
that are then executed by the framework in either bulk synchronous
or asynchronous fashion. The computation and execution models
in these frameworks fundamentally limit the user program’s access
to a single vertex’s state (including its edges and in some cases
neighbor IDs). Hence, most of the aforementioned tasks cannot
be easily written in these frameworks. For example, to analyze a
2-hop neighborhood to find social circles, one would first need to
gather all the information from 2-hop neighbors through message-
passing (a huge communication overhead), and then reconstruct
those neighborhoods locally. This would require multiple iterations
and would not only duplicate the graph processing functionality,
but will likely be infeasible because of high memory requirements
arising from duplication of state. Customizing these existing frame-
works for analytics that require traversing beyond 1-hop neighbors
may not be practical or efficient. Giraph++, proposed in a recent
work [6], opens up the partition structure to users to optimize execu-
tion, however the basic programming framework is not sufficiently
different to support the aforementioned analysis tasks.

Secondly, most of these frameworks ignore the issues in extract-
ing relevant portions of the underlying graph that an analysis task
may be specifically interested in, and loading it onto distributed
memory. In many cases, the user may only want to analyze a sub-
graph (or several subgraphs) of the overall graph, and may only
need access to a subset of the node and edge attributes. Naively
loading each disk partition of the graph onto a separate machine
may lead to unnecessary distributed communication, especially for
distributed graph analytics, where the number of messages exchanged
typically increases superlinearly with the number of machines used.

Proposed Approach: In this demonstration proposal, we describe
a general, expressive, intuitive, and novel distributed graph process-
ing framework, called NSCALE, aimed at addressing these deficien-
cies of prior graph processing frameworks. NSCALE is an end-to-
end graph processing framework that enables distributed execution
of a wide range of querying and analysis tasks including complex
neighborhood-centric analytics over large-scale graphs in the cloud.
Unlike vertex-centric programming frameworks, NSCALE allows
users to write programs at the level of a subgraph rather than a
vertex. More specifically, in NSCALE, users specify: (a) a set of
subgraphs or neighborhoods of interest, using a high level specifi-
cation language, and (b) a user-specified program that should be
executed on those subgraphs, potentially in an iterative fashion.
The user program is written against a general graph API (specifi-
cally, BluePrints), and has access to the entire state of the subgraph
against which it is being executed. NSCALE execution engine is
in charge of ensuring that the user program only has access to that
state and nothing more, and thus a program written to compute, say,
connected components in a graph, can be used as is to compute the
connected components in all the subgraphs of interest.

User programs corresponding to rich and complex analysis tasks
may make arbitrary and random accesses to the graph they are op-
erating upon. Hence, one of the key design decisions that we made
was to try to ensure that each of the subgraphs of interest was en-
tirely in memory at one of the machines while it is being executed
against. NSCALE has a novel graph extraction and loading layer
(GEL) that aims to achieve that while minimizing the number of
machines needed; GEL extracts the relevant data from the under-
lying graph, employs a cost-based optimizer for data replication
and placement, and also attempts to balance load across machines
to guard against the straggler effect. NSCALE uses a distributed
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Figure 2: System Architecture
ArrayList<RVertex> n_arr = new ArrayList<RVertex>();
for(Edge e: this.getQueryVertex().getOutEdges)

n_arr.add(e.getVertex(Direction.IN));

int maxlinks = n_arr.size()* (n_arr.size()-1)/2;

// compute #actual edges among the neighbors
for(int i=0; i < n_arr.size()-1; i++)

for(int j=i+1; j < n_arr.size(); j++)
if(edgeExists(n_arr.get(i), n_arr.get(j)))

numEdges++;
double lcc = (double) numEdges/maxlinks;

Figure 3: Example user program to compute local clustering
coefficient written using the BluePrints API. The edgeExists()
call requires access to neighbors’ states, and thus this program
cannot be executed as is in a vertex-centric framework.

execution engine that executes user-specified computation on the
subgraphs in distributed memory. The execution engine employs
several optimizations that reduce the total memory footprint by ex-
ploiting overlap between subgraphs loaded on a machine, without
compromising correctness.

2. NSCALE: SYSTEM DESIGN
Figure 2 shows the NSCALE system architecture. Users, ana-

lysts, applications or visualization tools use the NScale user API to
specify the subgraphs of interest and the kernel computation that
needs to be run on the subgraphs. NSCALE supports the storage of
the underlying graph in a variety of different formats and storage
platforms. The Graph Extraction and Loading (GEL) layer is based
on MapReduce (MR); it extracts the relevant subgraphs, loads them
onto distributed memory across a small number of machines, and
instantiates the distributed execution engine. The execution engine
instances execute the user-specified subgraph computation on each
subgraph in parallel and output the data to HDFS. Next, we briefly
elaborate on some of the key components of NSCALE; a more de-
tailed discussion can be found in [5].

2.1 User API
Specification of subgraphs of interest. We envision NSCALE will
support a wide range of subgraph extraction queries, including pre-
defined parameterized queries, and declaratively specified queries
using a Datalog-based language that we are currently developing.
Our current NSCALE prototype, however, supports a limited sub-
set of extraction queries. Specifically, the subgraphs of interest are
specified using four parameters: (1) a predicate on vertex attributes
that identifies a set of query vertices, (2) k – the radius of the sub-
graphs of interest, (3) edge and vertex predicates to select a subset
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Figure 4: GEL: Graph Extraction and Loading

of nodes and edges from those k-hop neighborhoods, and (4) a list
of edge and vertex attributes of interest. This captures a large num-
ber of neighborhood-centric graph analysis tasks, including all of
the tasks discussed in the Section 1.

Specifying subgraph computation. The user programs to be exe-
cuted against the subgraphs is specified as a Java program against
the BluePrints API [1], a generic API that binds to a large number
of graph database backends (e.g., Neo4j) and is used by many open-
source graph processing frameworks. Implementing the BluePrints
API thus enables the use of existing toolkits and programs over
large graphs. Figure 3 shows a sample code snippet of how a user
can write a simple local clustering coefficient computation using
the BluePrints API. The subgraphs of interest here are the 1-hop
neighborhoods of all vertices.

2.2 GEL: Graph Extraction and Loading
Unlike prior frameworks, the graph extraction layer forms a ma-

jor component of the overall NSCALE framework. From a usability
perspective, it is important to provide the ability to read the under-
lying graph from the persistent storage engines that are not natu-
rally graph-oriented. However, more importantly, partitioning and
replication of the graph data are more critical for graph analytics
than for analytics on, say, relational or text data. Graph analytics
tasks, by their very nature, tend to traverse the graph in arbitrary
and unpredictable manner. If the graph is partitioned across a set
of machines, then many of these traversals are made over the net-
work resulting in a significant performance hit. Hence, in NSCALE,
we have made a design decision to avoid distributed traversals al-
together by replicating nodes and edges sufficiently so that every
subgraph of interest is fully present in at least one partition.

We built the GEL module as a 2-stage MapReduce (MR) job
over YARN. Figure 4 shows the overall GEL architecture. Figure 5
shows an example original graph with four query-vertices (orange
nodes) that the user is interested in, the subgraph extraction param-
eters, and the four subgraphs of interest. The output of GEL is a set
of partitions (also called bins) such that each subgraph of interest
is fully contained within at least one partition. The partitions may
overlap and further, vertices/edges that are not part of any subgraph
of interest are not present in any of the partitions.

The first stage of the MR job (JOB1) reads the input graph as well
as an auxiliary input to each mapper that specifies the subgraph ex-
traction query. The mappers of JOB1 filter the underlying graph
data based on the predicates, whereas the JOB1 reducer constructs
the subgraphs of interest. A key challenge here is to minimize the
number of partitions by exploiting the overlap between subgraphs
of interest, while ensuring that the subgraphs are evenly distributed
across the partitions. This problem is a generalization of the set bin
packing problem, itself a generalization of the standard bin packing
problem (both of which are NP-Hard). We have developed a collec-
tion of heuristics to solve this optimization problem; further details
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along with extensive experimental evaluation can be found in [5].
Figure 6 shows an example packing of subgraphs to bins for the
subgraphs extracted in Figure 5 using a shingle-based heuristic that
packs subgraphs with high overlap together to improve utilization
of the bin capacity. The final output of JOB1 is a mapping of the
relevant vertices and edges to partitions (bins).

The second stage MR job (JOB2) takes as input the original graph
data on HDFS and the output of JOB1 as an auxiliary input for each
mapper. The number of reducers in JOB2 is equal to the number
of bins (M ) computed by JOB1 required to hold the required sub-
graphs in memory. The mappers shuffle the required graph data
using the mapping provided by JOB1 onto M reducers. The YARN
framework also distributes the execution engine as a runtime library
and the user specified computation to each reducer. The reducer in-
stantiates the runtime and hands over the graph data to it in memory.
The YARN framework thus provides transparent data and compu-
tation distribution, and fault tolerance for NSCALE.

2.3 Distributed Execution Engine
The distributed execution engine runs as a runtime library inside

the reducers of MR2. At each machine, a thread pool is utilized
to execute the user programs on the subgraphs of interest in par-
allel. If there are more subgraphs of interest than the size of the
thread pool (T ), then the execution proceeds in a batched fashion,
with each batch executing the user programs on T or fewer sub-
graphs of interest. To ensure than a thread only sees the vertices and
edges contained in the subgraph that is assigned to it, we associate
bitmaps with the vertices and edges that indicate which subgraphs
they belong to. These bitmaps are reset at the beginning of each
batch accordingly. Figure 7 shows an example bitmap assignment
for the partitioning shown in Figure 6.

3. EXPERIMENTAL RESULTS
We have experimentally evaluated NSCALE, deployed on a 16-

node Apache YARN cluster, on a variety of real-world datasets
ranging in size from 3M nodes/10M edges to 428M nodes/1.4B
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Figure 8: (a) End-to-End running times and numbers of parti-
tions required for different number of subgraphs; (b) Scalabil-
ity: NSCALE performance on large graphs.

edges (Clue Web Graph). Table 1 compares the performance of
Apache Giraph on YARN with NSCALE for triangle counting on 1-
hop neighborhood, and personalized page rank on 2-hop neighbor-
hood for different datasets. We see that for these two neighborhood-
centric analysis tasks, Giraph does not scale to larger graphs – it
quickly runs out of memory (OOM) and does not complete (DNC)
the computation. Even for smaller graphs, depending on the type
of application and the size of neighborhood, NSCALE performs 3X
to 5X times better in terms of CE , the computational effort in node-
secs (the total sum of the time taken in seconds across the nodes in
the cluster) and consumes much less (up to 6X) total cluster mem-
ory. Figures 8(a), and 8(b) show that NSCALE scales well both
as the #subgraphs extracted increases, and for datasets of different
sizes. A more comprehensive discussion can be found in [5].

4. DEMO PLAN
Demo Setup. We will deploy NSCALE on a private 16 node cluster
that runs Apache YARN (MRv2) with 15 data nodes and 1 resource
manager. Each data node has 2x 4-core Intel Xeon E5520 proces-
sors, 24GB RAM and 3x 2 TB disks. The resource manager has
2x 6-core Intel Xeon X5650 processors, 48GB RAM and 3x 2TB
disks. We will have different datasets ranging from graphs with a
few million nodes and edges up to several 100s of millions nodes
and few billion edges in the form of edge lists stored on HDFS on
the NSCALE cluster. For comparison with a pure vertex-centric ap-
proach we will run Apache Giraph using the same data from HDFS
on the same cluster. In order to visualize the performance we will
use a web console to connect to the cluster and show the progress
of the analysis tasks submitted and the output generated on HDFS
by the two systems.

Demo Conduct. We will connect to the cluster remotely and demon-
strate NSCALE’s end-to-end functionality using different applica-
tions scenarios such as local clustering coefficient computation, mo-
tif counting (triangles, feed-forward loops, etc.), determining weak
ties, link prediction, recommendation using personalized PageR-
ank, and several other neighborhood-centric graph applications. To
compare performance with Apache Giraph, we will run several queries
on different datasets, with different size neighborhoods, and num-
ber of query-vertices. We give an example walk through for a

Dataset
Triangle Counting (1-hop) Personalized PageRank (2-hop)
NSCALE Giraph NSCALE Giraph

CE
(Node-
Secs)

Mem
Reqd
(GB)

CE
(Node-
Secs)

Mem
Reqd
(GB)

#Query
Ver-
tices

CE
(Node-
Secs)

Mem
Reqd
(GB)

CE
(Node-
Secs)

Mem
Reqd
(GB)

EU 264 15 1012 27 3200 52 3 782 18
N’Dame 477 17 1518 31 3500 119 9 1058 32
Google 663 25 1978 36 8750 786 31 DNC OOM
WikiTalk 822 21 DNC OOM 12000 3450 79 DNC OOM

Table 1: Baseline Comparisons

Figure 9: NSCALE: Web DashBoard

neighborhood-centric application on a graph data set.

Example walk through. Users will be able to choose a social net-
work or a graph data set and and the neighborhood-centric appli-
cation, e.g., personalized page rank computation. The job would
then be submitted to both NSCALE and Giraph which would then
compute the personalized page rank with respect to a set of query-
vertices in their 2-hop neighborhood, and for each query-vertex,
display the top k nodes that are closest in rank to the query vertices.

Web DashBoard. We have built a web based interface (Figure 9)
for the demo, which will enable users to submit pre-specified com-
putations on different graph datasets and see results as they become
available. These choices will be passed to an underlying script that
will submit the analysis tasks to both the systems on the cluster. The
VLDB attendees will be able to play around with different graph
analysis tasks, vary parameters using the web interface, and also
be able to see different subgraph computations written using the
BluePrints API and compare them with the vertex programs writ-
ten for Apache Giraph for the same graph analysis tasks.
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