
An Integrated Development Environment for Faster Feature
Engineering

Michael R. Anderson Michael Cafarella Yixing Jiang Guan Wang Bochun Zhang
University of Michigan
Ann Arbor, MI 48109

{mrander, michjc, ethanjyx, wangguan, bochun}@umich.edu

ABSTRACT
The application of machine learning to large datasets has
become a core component of many important and exciting
software systems being built today. The extreme value in
these trained systems is tempered, however, by the difficulty
of constructing them. As shown by the experience of Google,
Netflix, IBM, and many others, a critical problem in building
trained systems is that of feature engineering. High-quality
machine learning features are crucial for the system’s per-
formance but are difficult and time-consuming for engineers
to develop. Data-centric developer tools that improve the
productivity of feature engineers will thus likely have a large
impact on an important area of work.

We have built a demonstration integrated development en-
vironment for feature engineers. It accelerates one particular
step in the feature engineering development cycle: evaluating
the effectiveness of novel feature code. In particular, it uses
an index and runtime execution planner to process raw data
objects (e.g., Web pages) in order of descending likelihood
that the data object will be relevant to the user’s feature
code. This demonstration IDE allows the user to write ar-
bitrary feature code, evaluate its impact on learner quality,
and observe exactly how much faster our technique performs
compared to a baseline system.

1. INTRODUCTION
Many of today’s most compelling software systems, such

as Google’s core search engine, Netflix’s recommendation
system, and IBM’s Watson question answering system, are
trained systems that use machine learning techniques to ex-
tract value from very large datasets. They are quite difficult
to construct, requiring many years of work, even for the most
sophisticated technical organizations. One reason for this
difficulty appears to be feature engineering, which we have
discussed previously [1].

A feature is a set of values distilled from raw data objects
and used to train a supervised machine learning system. For
example, consider a Web search engine that uses a trained

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 13
Copyright 2014 VLDB Endowment 2150-8097/14/08.

regressor to estimate the relevance of a given Web page to
a user’s query; suitable features might include whether the
user’s query appears in italicized type, whether the user’s
query is in the document’s title, and so on. Human-written
features are generated by applying user-defined feature code
to a raw data object. Good feature code is not only correct
from a software engineering point of view, but it also produces
a useful feature for the machine learning task at hand.

Features have two important characteristics. First, good
features are crucial for the overall performance of trained
systems [1]. Public accounts from the engineering teams of
successful trained systems indicate that their success comes
from slow development of many good features, rather than
statistical breakthroughs [5, 7].

Second, features are difficult for engineers to write. Be-
cause the raw input data is large and diverse (as in a Web
crawl), the “specification” of the feature is always unclear. It
is often difficult for the engineer to predict whether a particu-
lar feature will in fact improve the learned artifact’s accuracy;
the programmer may struggle to implement a feature func-
tion that will ultimately serve no useful purpose. As a result,
feature development involves many small code-and-evaluate
iterations by the engineer.

Unfortunately, each such iteration can be time-consuming.
Every evaluation entails applying the novel feature function
to a massive input dataset, using the resulting feature data
to train a machine learning artifact, and then testing the ar-
tifact’s accuracy. Our demonstration integrated development
environment (IDE) aims to speed up this code-and-evaluate
loop. Its intended impact on engineer productivity is de-
signed to be akin to that of giving the engineer a faster
compiler: she will not necessarily write better code, but she
should be able to evaluate the effectiveness of her code more
quickly. Our system should thus improve the productivity of
feature engineers, thereby enabling trained systems that are
either more accurate or less expensive to construct.

Modern Feature Engineering — Today there is no ex-
plicit support for feature engineering in most software stacks.
When developing novel feature code, a feature engineer uses
the following evaluation sequence:

1. The engineer uses a bulk data processing system, such
as MapReduce [4], to apply the feature functions to a
large raw dataset. This job is very time-consuming due
to the large input, but it produces the desired set of
feature vectors.

2. The feature vectors are used to train a machine learning
artifact, generally using a standard software toolkit,

1657



such as Weka [6]. The precise runtime cost of this step
is dependent on the chosen machine learning technique.

3. The resulting artifact—say, a text classifier that deter-
mines whether a news story is related to politics, sports,
or entertainment—is evaluated for accuracy using a
holdout set of labeled data. If the artifact’s accuracy
is not sufficient, the engineer modifies her feature code
and returns to the first step. If the artifact’s accuracy
is acceptable, the engineer’s job is complete.

The runtime costs of machine learning, reflected in the
second step here, are well-known and are an active area of
research. We focus instead on the first step: the time spent
in bulk data processing. Current systems simply process the
entire raw input dataset in an arbitrary order, and always
process the data in full. If instead the bulk data processor
chose to process the most promising raw inputs first, the
engineer could terminate the processing task early and still
be able to evaluate the current iteration of the feature code.

Technical Challenge — The technical core to our work is
a bulk data processing system that performs input selection
optimization. Instead of blindly processing every raw input,
our processor chooses inputs that will best exploit the user’s
feature code. For example, if the user’s feature code is
most useful when applied to news-oriented Web pages, the
processor should locate news pages for processing first. In
contrast, if the user’s feature code is designed to predict
e-commerce prices, the processor should instead focus on
pages from Amazon.com. Because the feature code changes
with every invocation of the system, the “usefulness” of an
input can change with each iteration; preprocessing the input
data to determine input utility is impossible, so the system
must locate and choose useful inputs on the fly.

This problem is somewhat similar to that of active learning,
in which a learning system is given a budget of supervised
data labels [8]. The system must choose which training fea-
ture vectors to label that will maximize overall improvement
to the artifact’s accuracy. Unlike active learning, however,
we wish in our setting to avoid the time costs associated with
obtaining the feature vectors themselves. This difference
makes most active learning techniques irrelevant.

Our technical solution combines a runtime planner with
domain-independent indexing and is called Zombie. Its
technical details are described in a separate paper currently
under preparation. This paper describes the working IDE
that is built on top of the Zombie technique.

Demonstration — Our IDE allows the user to enter arbi-
trary feature function code and then apply that function to
a large input set of Web pages. The user can process the
features using either a standard Baseline data processing
system or using our Zombie system. All tasks run on a
configurable number of machines on Amazon’s EC2 service.

In the rest of this paper we will provide an overview of
our system’s approach to evaluating feature code and its
architecture (Section 2). We also describe its user interface
(Section 3) and details of our live demonstration (Section 4).

2. SYSTEM FRAMEWORK
We now examine our feature development system’s inputs

and outputs in more detail.

Figure 1: Snapshots over time of Zombie’s perfor-
mance compared with Baseline.

2.1 Inputs and Outputs
In addition to novel feature function code, an engineer who

uses the feature IDE must supply a handful of parameters
to configure the overall learning task:

• A large raw dataset, such as a Web crawl. The IDE will
obtain feature vectors by applying the user’s functions
to each element in this dataset.

• A method for providing a supervised label for the gen-
erated feature vectors. This could be a database of
human-provided labels or an algorithmic “distant su-
pervision” technique [9].

• A machine learning training procedure that consumes
the labeled feature vectors and produces a learned
artifact, such as a näıve Bayes classifier. This procedure
is likely drawn from a machine learning library.

• A method for scoring the learned artifact’s quality.
This could simply measure the accuracy of the learned
artifact over holdout set of labeled training vectors.

The engineer’s feature code will change repeatedly. In
contrast, these four parameters will remain static for the
life of an engineering task. They define the environment
in which the user’s feature code must be successful. For
our demonstration, we will preconfigure these values to de-
scribe a four-way classification task that consumes a dump
of Wikipedia, uses synthetic labels derived from semantic
tags on those pages, and employs multiclass näıve Bayes
classification. While this is a simple task designed to allow
demo users to quickly complete a full evaluation sequence, it
takes full advantage of the behavior of the Zombie system.

When the user has completed a draft of the feature code
and is ready to begin Step 1 of the above evaluation sequence,
she clicks “Go” on the IDE’s main interface. The feature
development system then applies the feature function code
to each element in the raw input set. Since the raw input
set can be extremely large, this function application step is
often very time-consuming. A standard feature development
system might use MapReduce; our IDE uses the Zombie
system for choosing which raw inputs to process first.

Runtime Output — One way the engineer can save time is
to terminate function application early and simply train the
artifact using whatever feature vectors were in fact generated.
Doing so with the Baseline system will likely cause many
high-value vectors to be dropped from the output. Zombie,
however, locates and selects the most useful items early in

1658



the function application process, so that early termination
will lose comparatively fewer high-value vectors. For a given
amount of processing time, our Zombie-powered IDE can
produce a set of training vectors that is more useful than
that produced by MapReduce’s blind scans of the input set.
Of course, there is no secret raw data available to our our
system: if it is run to completion, Baseline and Zombie
will produce identical training sets.

Figure 1 shows graphs for a single run of the IDE on a
single set of user-written feature code. The x-axis is time
spent in feature function execution, and the y-axis shows the
number of high-value raw data items processed so far. In
this dataset 0.5% of the items are high-value, but a real-life
dataset may likely have even fewer: consider a task requiring
web pages of computer science faculty. Given a crawl of
roughly 5 billion pages and an estimated 50,000 computer
science faculty in the US, the high-value percentage falls to
0.001%. Even limited to academic domains, the high-value
percentage would be far less than 1%.

Describing raw inputs as “high-value” or “low-value” is
a helpful but unnecessary simplification. Our system also
works with data items that have fine-grained differences in
utility. Further, it works with pages whose utility depends
on whether similar items have been seen previously. For
example, a web page from a faculty member of a yet-unseen
institution may have more utility than one from an institution
that has already provided several pages.

The tan upper line of Figure 1 describes the raw data items
processed by Zombie, while the lower blue line describes the
raw data items processed by Baseline. As the IDE runs, it
continually updates the graph with new results. The engi-
neer can use this information to decide when the generated
training vector set is “good enough” and then terminate the
function application. Clearly, the Zombie line indicates it is
able to find many more high-quality raw inputs early on; a
user who terminates after, say, 25 seconds of execution would
find that Zombie yields 3-4x as many high-value inputs as
the traditional Baseline system. After roughly 75 more sec-
onds of execution, both mechanisms have found an identical
training set. Of course, in non-demonstration settings these
runtimes would be tens of minutes or even hours.

2.2 Our Approach
The core novel functionality of our IDE is supplied by the

Zombie execution system. It must decide which raw data
inputs will yield the biggest payoffs to the learned artifact,
without actually spending the computation time necessary
to convert the raw inputs to feature vectors. In some ways
this task resembles that of a multi-armed bandit problem [3],
in which an agent must simultaneously gather information
about the payouts of the bandit arms while exploiting the
best of those arms to maximize overall utility. There are
good optimal policies for agents faced with a multi-armed
bandit problem, which we use for Zombie.

A standard bandit has two main components: a set of
bandit arms and a reward function that determines the utility
given by a “pull” of one of those arms. We obtain the set of
arms by performing an initial clustering of the raw inputs,
which is independent of any feature code. The Zombie
planner can decide to “pull” by choosing a random element
from a cluster and processing it using the programmer’s
feature functions. The pull’s reward is given by some measure
of the resulting feature vector’s impact on the quality of

User Client

Web Application Server
Local machine
Amazon EC2

Master Node

Zombie
Worker

Zombie
Worker

Zombie
Worker

Baseline
Worker

Baseline
Worker

Baseline
Worker

Zombie
Index

Raw 
Corpus

Figure 2: The IDE’s basic runtime architecture.

the learned artifact. We use the upper confidence bound
algorithm UCB1 [2] to repeatedly determine which arm (that
is, cluster of inputs) to examine next.

2.3 System Architecture
Figure 2 shows the IDE’s basic architecture. A web front-

end server presents an interface to the user and spawns any
needed jobs on machines at Amazon’s EC2 service.

When the engineer is writing a new feature function, all
communication is between the web application and the en-
gineer’s browser. When the developer decides to evaluate
the feature code, then the IDE starts to use the Amazon
EC2 service. It launches a series of Worker machines, which
apply the user’s feature code to the raw data inputs, thereby
obtaining usable feature vectors. The Baseline Workers
simply scan through the entire raw input data. The Zombie
Workers attempt to choose inputs intelligently through use of
the feature-independent index described above. Each Worker
runs on a different region of the input set, and reports results
back to a Master Node every few seconds. The Master Node
collates responses from the Workers and presents ongoing
statistics to the user’s browser. The Baseline Workers are
present for comparative illustration only and in real-world
operation would be omitted, with their computing resources
instead used as Zombie Workers.

Although the feature engineer ultimately aims to build a
high-quality learned artifact, in this demonstration system
we want to illustrate how effectively Zombie chooses useful
inputs. Thus, as described below in Section 3, the IDE
emphasizes runtime execution statistics like those in Figure 1.

3. USER INTERFACE
The Zombie IDE is a web application with two primary

pages. The first page, shown in Figure 3, is a window where
the feature engineer can write feature code and configure
details of the learning task. A realistic user of our system
would spend all of her programming time using this interface.
For our demonstration system, the user can either write novel
feature code or choose from several pre-written functions.
We plan to add more features to the IDE’s editor in the
future, as described in Anderson, et al. [1].

The second page of the interface is shown in Figure 4. With
this runtime control panel, the engineer starts the feature
function application and evaluation process. The lower third
of the page is for job control: the user chooses how many
worker machines to use and when to start and stop.

The upper two-thirds of the page is devoted to a live display
of Zombie’s ability to find high-value inputs. This display

1659



Figure 3: The IDE’s code editor. For demonstration
purposes, users can either write code from scratch
or choose from among several pre-written functions.

is a live version of the basic performance curves shown in
Figure 1 and is updated every few seconds. The user can
watch this display and decide when to terminate processing
early. Our model of the feature engineer suggests she will
repeatedly modify feature code using the editor (Figure 3)
and then evaluate the code by switching to the runtime
control panel (Figure 4).

4. DEMONSTRATION DETAILS
Our demonstration system allows conference attendees to

test Zombie on a real text classification task. Users can either
choose from several pre-written feature functions or can write
their own arbitrary feature code. To allow users to observe
meaningful differences between Baseline and Zombie in
just a short demo-style interaction, we will configure the
system to process a text corpus that is unrealistically small
but functions well for demonstration purposes.

If attendees choose to write their own feature code, we
will suggest the following script to illustrate how a feature
engineer can be more productive when using our IDE:

1. The feature engineer is interested in building a classifier
for news pages on the Web, wanting to mark each page
as politics, sports, entertainment, or other. The raw
dataset is a dump of Wikipedia pages. The engineer
wants to iteratively develop a set of features, but of
course, each change to the feature code can require a
time-consuming evaluation process. For this task, the
other category is much more common than the others;
Zombie should prioritize the non-other raw inputs.

2. The feature engineer writes two feature functions. Fea-
ture function A is fast and simply tests for the pres-
ence of a handful of politics-relevant words: president,
politician, etc. Feature function B is time-consuming,
entailing a natural language parse of the input page.

3. The feature engineer applies function A, followed by
function B. For each function, the IDE runs Zombie in
parallel with Baseline. Zombie should find relevant
feature vectors faster than Baseline, despite a modest
amount of additional system overhead. The conference
attendee will see that Zombie offers a very large ad-
vantage when evaluating the time-consuming function
B, but a lesser one when evaluating A. The attendee
can further modify the feature code to see its impact
on Zombie’s performance delta over Baseline.

Figure 4: The IDE’s runtime control panel.

Finally, we will log all feature functions written by confer-
ence attendees. These functions will inform our own research
and suggest interesting test scenarios for future users.

5. CONCLUSION
Our demonstration feature engineering IDE showcases the

Zombie system. By choosing raw data inputs intelligently,
rather than the flat scan that is standard today, it can sub-
stantially reduce the amount of time that feature engineers
idle away unproductively. We believe our demonstration IDE
is an important first step toward a data-centric development
environment for feature engineers.

6. ACKNOWLEDGMENTS
This project is supported by National Science Foundation

grants IGERT-0903629, IIS-1054913, and IIS-1064606, as
well as by gifts from Yahoo! and Google.

7. REFERENCES
[1] M. Anderson, D. Antenucci, V. Bittorf, M. Burgess,

M. Cafarella, A. Kumar, F. Niu, Y. Park, C. Ré, and
C. Zhang. Brainwash: A data system for feature engineering.
In CIDR, 2013.

[2] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis
of the multiarmed bandit problem. Machine Learning,
47(2-3):235–256, 2002.

[3] S. Bubeck and N. Cesa-Bianchi. Regret analysis of stochastic
and nonstochastic multi-armed bandit problems. Machine
Learning, 5(1):1–122, 2012.

[4] J. Dean and S. Ghemawat. MapReduce: Simplified data
processing on large clusters. In OSDI, 2004.

[5] D. Ferrucci et al. Building Watson: An overview of the
DeepQA project. AI Magazine, 31(3):59–79, 2010.

[6] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,
and I. H. Witten. The WEKA data mining software: An
update. SIGKDD Explorations Newsletter, 11(1):10–18, 2009.

[7] S. Levy. How Google’s Algorithm Rules the Web. Wired,
February 2010.

[8] B. Settles. Active learning literature survey. Computer
Sciences Technical Report 1648, University of
Wisconsin–Madison, 2009.

[9] C. Zhang, F. Niu, C. Ré, and J. W. Shavlik. Big data versus
the crowd: Looking for relationships in all the right places. In
ACL, 2012.

1660


