
AZDBLab: A Laboratory Information System for
Large-Scale Empirical DBMS Studies

Young-Kyoon Suh
University of Arizona
yksuh@cs.arizona.edu

Richard T. Snodgrass
University of Arizona
rts@cs.arizona.edu

Rui Zhang
Dataware Ventures

ruizhang@datawareventures.com

ABSTRACT
In the database field, while very strong mathematical and
engineering work has been done, the scientific approach has
been much less prominent. The deep understanding of
query optimizers obtained through the scientific approach
can lead to better engineered designs. Unlike other domains,
there have been few DBMS-dedicated laboratories, focusing
on such scientific investigation.

In this demonstration, we present a novel DBMS-oriented
research infrastructure, called Arizona Database Laboratory
(AZDBLab), to assist database researchers in conducting
a large-scale empirical study across multiple DBMSes. For
them to test their hypotheses on the behavior of query
optimizers, AZDBLab can run and monitor a large-scale
experiment with thousands (or millions) of queries on
different DBMSes. Furthermore, AZDBLab can help users
automatically analyze these queries. In the demo, the
audience will interact with AZDBLab through the stand-
alone application and the mobile app to conduct such a
large-scale experiment for a study. The audience will then
run a Tucson Timing Protocol analysis on the finished
experiment and then see the analysis (data sanity check and
timing) results.

1. INTRODUCTION
In the database field, while very strong mathematical and

engineering work has been done, the scientific approach has
been much less prominent. Much work has focused on
proposing new algorithms for optimizing DBMS performance
and on building system components for new needs, but the
community has not devoted much attention on scientifically
understanding DBMS as an experiment subject. The deep
understanding of query optimizers obtained through the
scientific approach can lead to better engineered designs.

There, however, have been few DBMS-dedicated
laboratories for supporting such scientific investigation, while
prior work mainly has focused on networks and smartphones
as we will discuss in Section 3.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain
permission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 13
Copyright 2014 VLDB Endowment 2150-8097/14/08.

In this demonstration, we present a novel DBMS-oriented
research infrastructure, called Arizona Database Laboratory
(AZDBLab), to assist database researchers to conduct a
large-scale empirical study across multiple DBMSes.

AZDBLab presents to a scientist an electronic lab
notebook. Within this environment, the user can design
massive experiments with thousands (or millions) of queries.
The user can then begin and monitor many runs of the
experiments on different DBMSes over a long period of time.

In addition, AZDBLab provides an integrated and robust
database experiment environment. In AZDBLab, a user
can record both independent variables (those controlled by
the experimenter) and dependent variables (those resulting
from the experiment) and perform analyses on the
experiment data. For instance, the user can easily combine
the completed runs in a study and then analyze in an
automated way for the study the query execution (QE)
results. In addition, AZDBLab has been sufficiently robust
to collect data over 8,277 hours (almost a year) running
about 2.4 million query executions.

The design and implementation of AZDBLab has been
very challenging. AZDBLab has been developed for seven
years by many people, each contributing to different pieces
of code. AZDBLab has reached 60K source lines of code.
AZDBLab runs on a hardware lab of dedicated machines,
one each for each subject DBMS and one to host the DBMS
that stores the lab notebooks on a labshelf. Having dedicated
hardware provides a clear environment for running large-
scale, extensive experiments taking days, weeks, or months.
A total of seven relational DBMSes (four commercial and
three open-source) supporting SQL and JDBC are currently
integrated into AZDBLab We will plug more DBMSes into
AZDBLab for more solid scientific studies.

The key contributions of this demonstration are as follows.

• We present a novel research infrastructure, AZDBLab,
dedicated for a large-scale scientific DBMS study.
AZDBLab provides a rigorous abstraction for
empirically studying across multiple DBMSes from a
variety of perspectives (termed database ergalics [2]).

• AZDBLab supports seamless data provenance
collection within an empirical DBMS study. A
database researcher can design and run a substantial
experiment with many queries, see the query execution
results, perform data sanity check and analysis and
make tables, figures, and graphs for the study in an
automated, integrated fashion. Note that the data
provenance of the study is collected into a labshelf,
managed by a central DBMS server.

1641



• For conducting large-scale experiments, AZDBLab
provides several decentralized monitoring
schemes: a stand-alone Java application (named
Observer), an Ajax [1] web app, and a mobile app.

• AZDBLab provides a reusable GUI architecture.
Observer’s GUI consists of the tree nodes in the left-
hand side and the tabbed viewers in the right-hand
side. The tree nodes represent experiment data, while
the corresponding tabbed viewers provide the detailed
information on the selected data. We have adapted
the GUI to several diverse projects.

• AZDBLab provides rich extensibility. A variety of
plugins provides AZDBLab with various analytics and
different views of the collected query execution data.

2. MOTIVATION
There are questions concerning fundamental limits of

DBMS architectures that simply cannot be answered by
investigating a single algorithm or even a single DBMS.
Rather, addressing such questions requires the development
of predictive models across multiple DBMSes.

The objective behind this scientific approach is to
understand DBMSes as a general class of computational
artifacts, to come up with insights and ultimately with
predictive models about how such systems, again, as a
general class, behave by studying multiple DBMSes at a
time. These models are articulated and thoroughly tested,
in order to understand more deeply the behavior of query
optimization and evaluation across multiple DBMSes. They
can be eventually used to improve DBMSes through
engineering efforts that benefit from the fundamental
understanding by this perspective.

AZDBLab has been around over seven years to help us
achieve this overarching goal: to predict important
characteristics of DBMSes to determine fundamental
limits. AZDBLab allows us to perform substantial
experiments (with thousands or more of queries) that
quantitatively study these fundamental questions concerning
many of the components of a DBMS. These cover (i)
cardinality estimation (identifying what affects the accuracy
of cardinality estimates), (ii) operator impact (characterizing
how specific types of operators, e.g., join, projection, sorting,
affect the accuracy of cardinality estimates, execution time
estimates, and optimal plan selection), and (iii) execution
plan search space (determining its detailed inner structure).

As an experiment tool, AZDBLab coordinates the
running, data collection and analysis of such large-scale
experiments. It has been broadened to support experiment
replication, provenance maintenance, more variety of
experiment scenarios, and more DBMSes.

3. RELATED WORK
Although many labs have been established and widely

used, their application domains are different from DBMSes.
PlanetLab [6] is known as one of the most popular
platforms for network research. It allows people to deploy
and assess network service [6]. MoteLab [4] was a public
testbed for wireless sensor network researchers. Its service
was stopped in January 2014.

There are also available mobile computing research labs:
CrowdLab [7], SmartLab [5], etc. None of these labs are,
however, DBMS-centric.

One of the closest tools related to AZDBLab is Picasso [10].
The Picasso tool can also help study query execution plan
choices of (three) different DBMSes’ cost-based query
optimizers, by generating plan and cost diagrams for TPC-H
queries. Both Picasso and AZDBLab systems use the
“EXPLAIN” command, to see the execution plan of a query
submitted to DBMSes. Unlike AZDBLab, the Picasso tool
neither actually runs queries nor collects the query execution
provenance for further analysis.

Using AZDBLab, our empirical DBMS study has yielded
two structural causal models; one that identifies across four
DBMSes some of the causes of varying query time measures [3]
and one that identifies several of the causal factors of
suboptimality, when the DBMSes choose a wrong plan. Also,
we are currently working on developing another structural
causal model to explain DBMS thrashing [11].

4. AZDBLAB SYSTEM OVERVIEW
Figure 1 presents the architecture of AZDBLab. In this

section, we describe each component of AZDBLab.

ExecutorExecutor

Experiment 
Subject
(DBMS)

Run an experiment
based on a scenario
‐ Populate tables
‐ Change table cardinality 
‐ Execute and time 
queries defined in the 
experiment

LabShelf
DBMS

‐ Create a user and 
a lab notebook
‐ Load an experiment
‐ Launch/pause/resume
an experiment 
‐ Analyze the results 
of the completed 
run using plugins

Store experiment and analysis results

‐ Poll any pending 
experiment
‐ Update experiment
status
‐ Store experiment 
results (query 
execution time, query 
plan, plan operator 
estimates, process 
information)

‐ Run observer
‐ Select a labshelf ObserverObserver

Analysis Plugins

Experim
ent/

Scenario Plugins

Same 
(local) 

machine

Web
Access

Phone
App

Monitor
experiments

Monitor
experiments

Figure 1: AZDBLab architecture

4.1 LabShelves
A labshelf comprehensively stores all the data provenance

related to experiments. It is a fully append-only database [9].
The schema of a labshelf captures who, what, when, which,
where, why, and how, complying with the 7-W model [8].
The labshelf schema has been evolving for collecting and
analyzing a variety of data relevant to QE. The labshelf
data are currently managed by a dedicated DBMS server
running on a separate machine.

4.2 Decentralized Monitoring Schemes
In this section, we present a variety of novel, decentralized

monitoring schemes being in use in AZDBLab.

4.2.1 Observer
Observer is an integrated GUI for conducting experiments

involving a large number of queries and analyzing the results.
The GUI is implemented with Java Swing API. When
launching Observer, a user can see the main GUI in Figure 2.

1642



Figure 2: AZDBLab Observer

The Observer GUI has a tree-structured form. A left-
hand tree node is associated with data corresponding to
experiment provenance. For instance, ‘Users’ node contains
users in a labshelf selected by the user. In the figure, under
the ‘Users’ node, we can see a labshelf user (node), named
‘yksuh’. In the right-hand side, more detailed information
on a chosen left-hand node is provided in tabbed views. For
the selected plan node (‘Plan # 2’) to be discussed shortly,
the corresponding, expanded plan tree is exhibited with
various operator-wise cost estimates, as shown in Figure 2.

This GUI allows the user to proceed with running a
scenario-based experiment. A scenario specifies what an
experiment is concerned about and what specific steps should
be executed. To run the scenario on AZDBLab, the user first
needs to write the corresponding code in Java. For example,
a scenario source code, called ‘onepass’, can be written to
study the query suboptimality phenomenon such that when
the execution plans of a query change between two adjacent
cardinalities (called a change point), the actual elapsed time
of that query at a lower cardinality is greater than that of a
higher cardinality. Once the scenario code is ready, it can
be brought as a plugin into AZDBLab.

Besides, the user needs to write and load into AZDBLab a
simple XML experiment specification, which contains
scenario name, schema definition, table population
direction, query details, etc. Figure 2 shows several
experiments such as ‘op-1M-1q-1’ under the ‘onepass’ node.

The user can then schedule any of these experiments on
a specific DBMS. This scheduled experiment instance is
termed as ‘experiment run’ and its status is in ‘pending’.
Observer updates its GUI to show the pending run.

If an executor, to be discussed in Section 4.3, has any
assigned pending run, the executor starts to execute that
pending run, whose status then is updated to ‘running’.
As the run proceeds, the user can monitor the run’s status
through this GUI. Note that the user can also pause and
resume the running run if necessary. Once the run is
completed, the user can check the experiment results of the
run. In Figure 2, two completed onepass runs of DBMS X

and PostgreSQL DBMS are illustrated. For another study,
we have implemented a new scenario and an analysis plugin
to observe a totally separate phenomenon, thrashing [11].

4.2.2 Web Apps
AZDBLab also provides a web app using Ajax [1]. A user

can access the web app running on an AZDBLab web server
and make a request through a web browser. The web app
then invokes an AjaxManager (a Java class), which interacts
with the labshelf DBMS server to pull the requested data
in a labshelf. The server then responds to the user with
the data. The web app provides the same functionalities
and GUI as Observer, without requiring direct access to the
labshelf server, thereby achieving greater security.

4.2.3 Mobile Apps
To more flexibly monitor the executing runs we also make

mobile apps available for the user. We have built the mobile
apps on both Android and iOS.

The mobile apps provide simple functionalities, compared
to Observer. The user cannot conduct query execution data
analysis through the mobile apps, but the user can set up a
convenient monitoring environment on the mobile apps.

1643



The mobile apps also make a request to the same
AZDBLab web server, which invokes methods from
AjaxManager. As mentioned earlier, AjaxManager then
connects to the labshelf server and retrieves the data
corresponding to the user’s request regarding user logins,
and experiment and executor statuses.

(a) Main (b) Exp. Runs (c) A running run

Figure 3: AZDBLab mobile app

Figure 3 illustrates the AZDBLab mobile (iOS) app.
When a user starts the mobile app, the user is presented
with a login screen, into which the user’s credentials must
be provided. Once the credentials are validated, the user
can see the main screen consisting of four menus, as shown
in Figure 3(a). ‘Experiment Runs’ lists all the runs in a
chosen labshelf, as illustrated in Figure 3(b). An item in blue
indicates a currently running run, one in white a pending
run, and one in gray a paused run. A running run on
PostreSQL is exhibited in Figure 3(c). The ‘Executors’
menu provides currently running executors, the ‘Observer’
menu shows the same view as the web app’s one, and the
‘About’ menu provides a description of AZDBLab.

4.3 Executor
An executor conducts an experiment on a co-located

DBMS, as illustrated in Figure 1. The executor is a stand-
alone Java application, utilizing a DBMS experiment subject
plugin. A user can launch an executor and schedule a
pending run to the executor. The executor can begin the
experiment by loading the run’s scenario and experiment
subject plugins. The executor then creates and populates
tables, executes queries, records QE results into AZDBLab,
and finishes the run, as explained in Section 4.2.1. If any
exception occurs during the experiment, the executor can
pause the run. Later, the user can unpause the run. Multiple
executors can be in action, perhaps using distinct instances
of the same DBMS, each on a different machine. To avoid
undesirable latency by network traffic, we ensure that the
executor must run on the same machine hosting a DBMS.

5. DEMONSTRATION
Our demo consists of two parts: 1) running experiments

with hundreds of queries on different DBMSes and 2) then
analyzing QE results from the completed runs.

The goal of the first part of this demo is to show how
a database researcher can schedule and run a large-scale
experiment in AZDBLab. The steps are as follows.

Step 1: An auditor launches Observer and selects a
labshelf. The user then creates a labshelf user and the
user’s lab notebook. In turn, the user loads into the user’s
notebook an XML experiment specification guiding table
population and referring to queries.

Step 2: The user selects a DBMS, schedules a run of the
experiment on the DBMS and then launches an executor for
that DBMS. After that, the user can see on console that the
experiment gets started on the DBMS. The user may add
other DBMSes in order to run the same experiment.

Step 3: The user monitors the run’s status via Observer
(or the iOS app). At the end, the user will see the run done.

In the second part of this demo, the audience will see how
the user can conduct a study on the completed runs.

Step 4: The user creates a paper under her notebook and
the study under that paper in the Observer GUI.

Step 5: For the study, the user chooses the completed
runs via dialog box and executes Tucson Timing Protocol
(TTP) on the runs. The automated protocol performs a
series of sanity checks on QEs of the runs, shows validation
results, and calculates query time on the passed QEs.

Step 6: The user finally produces a PDF document
containing the protocol analysis results. The user can also
create graphs showing the estimated costs of a plan operator
(e.g., hash join) over increasing cardinalities. The analysis
results and graphs can be used for producing the paper.

6. ACKNOWLEDGEMENT
We thank to T. Buchanan, S. Currim, B. Dicken,

M. Johnson, P. Kaslo, A. Kvochko, T. Lowry, H. Zuniga,
and others for their contributions to AZDBLab.

7. REFERENCES
[1] W3C, “XMLHttpRequest”, January 2014.

[2] R. T. Snodgrass, Database Ergalics, http://cs.
arizona.edu/~rts/ergalics, viewed Mar 28, 2014.

[3] S. Currim, R. T. Snodgrass, Y-K. Suh, R. Zhang,
M. Johnson, and C. Yi, “DBMS Metrology: Measuring
Query Time,” in SIGMOD, pp. 261–272, 2013.

[4] G. Werner-Allen, P. Swieskowski, and M. Welsh,
“MoteLab: A Wireless Sensor Network Testbed,” in
IPSN, pp. 483–488, 2005.

[5] G. Larkou, C. Costa, P. G. Andreou,
A. Konstantinidis, and D. Zeinalipour-Yazti,
“Managing Smartphone Testbeds with SmartLab,” in
LISA, pp. 115–132, 2013.

[6] L. Peterson, A. Bavier, M. E. Fiuczynski, and S. Muir,
“Experiences Building PlanetLab,” in OSDI,
pp. 351–366, 2006.

[7] E. Cuervo, P. Gilbert, B. Wu, and O. P. Cox,
“Crowdlab: An Architecture for Volunteer Mobile
Testbeds,” in COMSNETS, pp. 1–10, 2011.

[8] S. Ram and J. Liu, “Understanding the Semantics of
Data Provenance to Support Active Conceptual
Modeling,” in ACML, pp. 1–12, 2006.

[9] R. T. Snodgrass, Developing Time-Oriented
Database Applications in SQL, July 1999.

[10] R. Naveen and J. R. Haritsa, “Analyzing Plan
Diagrams of Database Query Optimizers,” in VLDB,
pp. 1228–1239, 2005.

[11] A. Thomasian, “Two-Phase Locking Performance and
Its Thrashing Behavior,” in ACM TODS, pp. 579–625,
1993.

1644


