
Interactive Outlier Exploration in Big Data Streams

Lei Cao, Qingyang Wang, and Elke A. Rundensteiner
Worcester Polytechnic Institute, Worcester, MA USA

(lcao,wangqy,rundenst)@cs.wpi.edu

ABSTRACT
We demonstrate our VSOutlier system for supporting interactive
exploration of outliers in big data streams. VSOutlier not only sup-
ports a rich variety of outlier types supported by innovative and
efficient outlier detection strategies, but also provides a rich set of
interactive interfaces to explore outliers in real time. Using the
stock transactions dataset from the US stock market and the mov-
ing objects dataset from MITRE, we demonstrate that the VSOut-
lier system enables analysts to more efficiently identify, understand,
and respond to phenomena of interest in near real-time even when
applied to high volume streams.

1. INTRODUCTION
In recent years as the volume and velocity of data streams ad-

vance to new levels, the discovery of precious knowledge from this
big data has become more critical than ever before. Often important
insights extractable from stream data sources correspond to “abnor-
mal phenomena”. Many modern applications, including credit card
fraud detection, network intrusion prevention, and stock investment
tactical planning, rely on efficiently finding abnormal phenomena
in such big data streams. For example, when seeking short-term
investment opportunities in the stock market, investors may look
for the outlier stocks whose behavior significantly differs from that
of the majority of their peer stocks. Such abnormal stocks may be
either hot spots or forgotten treasure in the market.

To facilitate analysts to find and interpret the outliers hidden in
big data streams, several major challenges have to be conquered.
First, although a number of outlier definitions such as distance-
based outlier [9, 14], density-based outlier [4, 13], angle-based out-
lier [11] and so on, have emerged in the literature that all aim to
isolate abnormal events from normal events, no single outlier def-
inition can effectively model all real world scenarios. Each of the
definitions has respective strength in capturing outliers with some
particular properties while not being suitable for other scenarios.
Obviously designing one designated system for each single partic-
ular application is not economically feasible. A general platform
that can support a broad range of outlier types is indispensable to

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 13
Copyright 2014 VLDB Endowment 2150-8097/14/08.

satisfy these diverse requirements. However most previously pre-
sented stream outlier detection systems [7] only focus on one par-
ticular type of outlier, namely the distance-threshold outlier [9]. To
the best of our knowledge no existing system supports the effective
discovery of a rich variety of diverse yet common outlier types in
big data streams.

Second, advanced computational methods have to be designed to
continuously discover stream outliers in real-time. Although in [7]
several distance-threshold outlier detection algorithms [1, 10] have
been demonstrated, they cannot handle big data streams in real-
time due to the expense of the exhaustive neighborhood searches
that they rely on to locate outliers. Yet such big data streams are in-
creasingly common in modern streaming applications. As an exam-
ple the US stocks market continuously receives around 1M transac-
tion requests per second [12]. Worst yet, no effective technique has
been proposed to support other typical outlier types such as kNN
outliers [14, 2], LOCI [13], or ABOD [11] in the streaming context.

Third, it is imperative to design an effective visual interactive
support system to enable analysts to directly interact with the out-
lier detection processes. First analysts often do not have enough
priori knowledge about the characteristics of the continuously ar-
riving streaming data to be able to choose an outlier detection tech-
nique that best fits their need beforehand. Second the characteris-
tics of the input stream might significantly change during the out-
lier detection process. Therefore analysts may need to interactively
adjust the parameter settings or even switch to other techniques to
keep the outlier detection process optimally tuned. Clearly an ef-
fective visual display is needed for analysts to make sense of the
identified candidates and hence make informed decision. Unfor-
tunately state-of-the-art stream outlier detection systems [7] have
paid little attention to tackle the question of what an effective vi-
sual interface may entail to support analysts in their exploration of
outliers.

In this demonstration, we present our VSOutlier system that over-
comes the above challenges by offering both real-time responsive-
ness as well as interactive outlier exploration in big data streams.
In particular we make the following contributions:

1) We design the VSOutlier system which is the first to support
a rich variety of common outlier types in an efficient and integrated
system. Furthermore all the detection algorithms are developed
based on one key novel outlier detection optimization strategy [5].
We demonstrate that our algorithms outperform the state-of-the-art
techniques 2 to 3 orders of magnitude in response time, finally ren-
dering online outlier detection practical in big data stream.

2) We provide interfaces to allow analysts to visually select any
outlier type they wish to work with by only “one click” and dy-
namically adjust parameter settings of queries at run time. The
detected outliers as well as their key characteristics and evolution

1621



over time are displayed through effective visual interfaces. Fur-
thermore we design comparison views which enable the users to
contrast and correlate the outlier output detected by distinct outlier
queries with diverse parameter settings. We also design the run-
time performance monitoring view that provides the analysts the
key metrics related to the efficiency of any outlier detection algo-
rithm.

2. ARCHITECTURE OF VSOUTLIER

Data GrabberData GrabberData GrabberData Grabber

Back EndBack EndBack EndBack End

WorkbenchWorkbenchWorkbenchWorkbench

Data Dispatcher

Source Wrapper Source Wrapper

Streaming Streaming Streaming Streaming 

DataDataDataData

Deviation 

Based

Angle 

Based

Distance 

Based

Density 

Based

Visual EngineVisual EngineVisual EngineVisual Engine Visual EngineVisual EngineVisual EngineVisual Engine Visual EngineVisual EngineVisual EngineVisual Engine

V
S
O
u
tlie

r
V
S
O
u
tlie

r
V
S
O
u
tlie

r
V
S
O
u
tlie

r

Task Manager

F
ro
n
t 

F
ro
n
t 

F
ro
n
t 

F
ro
n
t 

E
n
d

E
n
d

E
n
d

E
n
d

Figure 1: VSOutlier System architecture

As depicted in Figure 1 the VSOutlier is composed of three key
components: visualizer, workbench, and data grabber. At the front
end our VSOutlier visualizer supports visual stream outlier analyt-
ics. It allows the analysts to submit mining requests and navigate
through responses in a visual manner. The requests are passed to
the workbench for efficiently detecting different types of outlier.
The workbench is composed of numerous mining modules, each
corresponding to a particular outlier type. Key optimization princi-
ples are applied in these mining modules to minimize the CPU and
memory consumption. The data grabber wraps and integrates data
sources from live streams and feed them to miner.

3. THE EFFICIENT OUTLIER WORKBENCH
The detection algorithms supported in the outlier mining work-

bench all leveraged our novel outlier detection strategy called LifEspan-
Aware Probing, or in short LEAP. LEAP is capable of continuously
detecting outliers in sliding window streams with low CPU and
memory resource utilization. LEAP is built on two fundamental op-
timization principles namely minimal probing and lifespan-aware
prioritization as described below.

3.1 Minimal Probing Optimization
Given a dataset D the points in D are classified either as outliers

or inliers. Thus, the process of identifying outliers in D is equiv-
alent to the process of eliminating inliers from it. In fact, initially,
each point pi in the dataset is a potential outlier candidate, until
one has acquired enough evidence to show that pi is an inlier. For

example in distance-threshold outlier definition [9] outliers are de-
fined as data points with fewer than k neighbors in the database,
where a neighbor is a data point that is within a distance R. In the
processing of identifying distance-threshold outlierS until finding
that pi has at least k neighbors and thus qualifies as inlier, pi can-
not be safely removed from the outlier candidate set. We use the
concept of minimal evidence to describe the least amount of infor-
mation needed to prove pi’s inlier status.

The size of minimal evidence set for a point pi is usually much
smaller than the size of pi’s complete neighborhood. For example
for distance-threshold outlierS, the minimal evidence for any point
pi is composed any k points that are within R range from pi. For
other outlier types, such as kNN outlier [14] where outliers are the
n data points with the highest distance values to their respective kth
nearest neighbor among all data points in the database, the cardi-
nality of the minimal evidence for a point pi is also bounded by a
constant value k [5].

This observation leads us to an important optimization. That
is, to identify whether a point pi is an outlier in a dataset D, one
may not need the distance between pi to every other point in D.
Therefore the state-of-the-art techniques [1, 16, 10] which rely on
complete neighborhood searches to determine the status (outlier or
inlier) of each data point are not efficient.

Instead, searching through a small subset of points can be suf-
ficient to obtain the minimal evidence and thus prove that pi is an
inlier. Due to the rarity of outliers, the majority of points in the
dataset could be labeled as inliers in this way. Therefore we present
an optimization principle referred to as minimal probing. The key
idea of minimal probing is to replace the complete neighborhood
searches, such as range query searches, with a lightweight opera-
tion called probing.

The goal of probing for a point pi is the discovery of the mini-
mal evidence for pi in the current window rather than its complete
neighbor set. Probing is fundamentally more efficient compared to
a complete neighborhood search as demonstrated in [5] by both a
theoretical proof and a through experimental evaluation for several
real data streams, since it significantly reduces the number of data
points that need to be evaluated.

3.2 Lifespan-Aware Prioritization Optimiza-
tion

In this work we apply the periodic sliding window semantics
as proposed by CQL [3] to define substreams of interest from the
otherwise infinite data stream. The substream of interest, namely
the current window Wc, periodically slides along the stream. All
data points will thus eventually be purged from the current win-
dow. Therefore although the minimal evidence may be sufficient
to prove a point’s inlier status in the current window, it will not
necessarily remain sufficient in the next window if some of its el-
ements expire. Intuitively unlike in static environments, locating
more evidence beyond just the minimal evidence for a given point
may thus be beneficial in streaming environments. This additional
evidence may help us to determine the status of this point in future
windows. However this solution could potentially break the princi-
ple of minimal probing, namely to stop immediately once acquired
this minimal evidence, making the lightweight probing operation
cumbersome again.

Next we introduce the second optimization principle for our prob-
ing process that successfully tackles these conflicting requirements.
This principle enables probing to always acquire the best minimal
evidence, namely the minimal evidence that will not expire earlier
than any other possible minimal evidence yet without sacrificing its
efficiency. On the one hand, the probing process for pi should ac-

1622



Figure 2: VSOutlier visual interfaces

Figure 3: Juxtaposed view

quire the best minimal evidence of pi. On the other hand, we want
the probing process to stay lightweight, so that it stops immediately
once it has gotten the minimal evidence of pi in the current window.
Our solution, termed lifespan-aware prioritization, is to prioritize
the order in which the probing operation processes the data points.
More specifically, given a point pi in Wc, the lifespan-aware prior-
itization principle guides the probing operation to evaluate the sta-
tus of pi by always testing the later arriving data points first. The
specified probing operation augmented with the lifespan-aware pri-
oritization principle is named LEAP.

This principle utilizes the insight that the data points that arrived
later in the window are guaranteed to have a more decisive im-
pact on the outlier detection process compared to earlier ones. This
is so because the younger a data point pi is, the longer its neigh-
bor relationships (if any) with other points will persist into the fu-
ture. Therefore LEAP is guaranteed to produce the best minimal
evidence. Furthermore LEAP stops immediately as soon as a min-
imal evidence is acquired. Thus it remains lightweight.

4. INTERACTIVE VISUAL EXPLORATION
OF OUTLIERS

VSOutlier provides one visualizer for each analyst to explore
stream outliers. In general it includes five different types of views
classified by their function.

The outlier view. For a single outlier detection query, this outlier
view not only displays the detected outliers, but also their evolution
information over time.

As shown in Figure 2 users can toggle if to display all data points
or the outliers only with each outlier depicted by a colored dot. The
most important characteristic of an outlier, such as the count and
the distribution of its neighbors for distance-threshold outlier and
the kNN neighbors for kNN outlier, is also displayed if the user
chooses the zoom in function. Along the time horizon, a sequence
of these outlier views corresponding to adjacent windows are or-
ganized together to convey the progression and stability of outlier
states over time.

Our visual display helps users to pinpoint the root cause of the
status migration for a given outlier as shown in Figure 4. For ex-

1623



0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8

Window 122 Window 123 Window 124

Figure 4: Outlier status migration

ample given a distance-threshold outlier we use color to convey the
arrival of its new neighbors and expiration of old neighbors. More
specifically we use gray dots to represent the neighbors it is losing
and blue dots to indicate the new neighbors it is gaining in each
window.

The query view. V SOutlier allows analysts to chose the par-
ticular type of outliers they aim to detect from a pull-down menu.
Users can activate or remove any outlier detection query at run
time. Multiple outlier types can be supported simultaneously as
shown in Figure 2.

Furthermore users are given the option to dynamically adjust the
parameter settings of any active outlier detection query, such as the
parameters k and R of distance-threshold outlier, the parameters n
and k of kNN outlier, and the parameters α and r of LOCI, and so
on.

The comparison view. Our comparison views empower ana-
lysts to compare and contrast the outlier output detected by distinct
queries with different parameter settings and even different outlier
types. This can help users to determine the proper outlier type and
its corresponding parameter setting for the current streaming data.
V SOutlier provides two visualization mechanisms, namely “jux-

taposed” and “integrated” visualization [15] for the comparison
view. In the juxtaposed visualization, the outliers detected by dif-
ferent queries are visualized separately as shown in Figure 3. The
key advantage of this technique is that it minimizes the interference
between the visualization of different queries.

The integrated display visualizes the outliers detected by differ-
ent queries in an integrated view, and thus more explicitly shows
their commonalities and differences in a single display. For a group
of outlier detection queriesQG, V SOutlier adopts a color coding
to display and distinct the outliers identified by different queries in
QG (Figure 2. Data points in the red color are identified as outliers
by query Q1, while the green ones are those identified by query
Q2. The pink colored dots represents the outliers recognized by
both Q1 and Q2.

The monitoring view. Our runtime performance monitoring in-
terface enables analysts to monitor the key metrics related to the
efficiency of any outlier detection algorithm, such as the number of
outlier produced, the number of input consumed, the peak memory
utilized, the processing time per tuple, etc..

5. VSOUTLIER DEMONSTRATION
We will demonstrate the novel features of VSOutlier based on

two scenarios of detecting outliers in the STT data recording stock
transactions from NYSE [8] and the GMTI data recording informa-
tion of moving objects [6]. Through this demonstration, the audi-
ence will experience the impact of utilizing V SOutlier technique
for the exploration of outliers in data streams.

1) demonstration of the power of the VSOutlier system for si-
multaneously supporting the detection of various outlier types and

the dynamic adjustment of the parameter setting. This empowers
analysts to explore the cutting-edge outlier detection approaches to
mine abnormal phenomena from big data streams while adapting
to highly dynamic stream environments.

2) the visual view displaying the detected outliers, including ab-
normal transaction records in NYSE stock trades and isolated mov-
ing objects in the GMTI stream and their evolution over time (Sec-
tion 4). The audience will be able to not only observe the outliers
in each window, but also track how they evolve (appear,disappear).

3) demonstration of the strengths of the comparison views for
displaying the outliers detected by various outlier types with dif-
ferent parameter settings (Section 4). The audience will be able
to compare and contrast these outliers detected. This effectively
guides the analysts to determine what outlier type and parameter
settings are proper for the given context.

4) demonstrate of our runtime performance monitoring view by
contrasting our LEAP strategy-based distance-threshold outlier al-
gorithm against the alternative methods in [10]. This demonstration
confirms the 2 to 3 orders of magnitude performance gain of LEAP
strategy in response time (Section 3).

6. CONCLUSION
We demonstrate that our VSOutlier system that provides a rich

experience to data analysts through visual display of outliers and
dynamic parameter adjustment. The performance of both our LEAP
strategy and the state-of-the-art algorithms can also be compared
using our monitoring interface.

7. ACKNOWLEDGEMENTS
This project is supported by NSF grants IIS-1018443 and IIS-

0917017.

8. REFERENCES
[1] F. Angiulli and F. Fassetti. Distance-based outlier queries in data streams: the

novel task and algorithms. Data Min. Knowl. Discov., 20(2):290–324, 2010.
[2] F. Angiulli and C. Pizzuti. Fast outlier detection in high dimensional spaces. In

PKDD, pages 15–26, 2002.
[3] A. Arasu, S. Babu, and J. Widom. The cql continuous query language. VLDB J.,

15(2):121–142, 2006.
[4] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. Lof: Identifying

density-based local outliers. In SIGMOD Conference, pages 93–104, 2000.
[5] L. Cao, D. Yang, Q. Wang, Y. Yu, J. Wang, and E. A. Rundensteiner. Scalable

distance-based outlier detection over high-volume data streams. In ICDE, 2014.
[6] J. Entzminger, J.N., C. Fowler, and W. Kenneally. Jointstars and gmti: past,

present and future. Aerospace and Electronic Systems, IEEE Transactions on,
35(2):748 –761, Apr. 1999.

[7] D. Georgiadis, M. Kontaki, A. Gounaris, A. N. Papadopoulos, K. Tsichlas, and
Y. Manolopoulos. Continuous outlier detection in data streams: an extensible
framework and state-of-the-art algorithms. In SIGMOD Conference, pages
1061–1064, 2013.

[8] I. INETATS. Stock trade traces. http://www.inetats.com/.
[9] E. M. Knorr and R. T. Ng. Algorithms for mining distance-based outliers in

large datasets. In VLDB, pages 392–403, 1998.
[10] M. Kontaki, A. Gounaris, A. N. Papadopoulos, K. Tsichlas, and

Y. Manolopoulos. Continuous monitoring of distance-based outliers over data
streams. In ICDE, pages 135–146, 2011.

[11] H.-P. Kriegel, M. Schubert, and A. Zimek. Angle-based outlier detection in
high-dimensional data. In KDD, pages 444–452, 2008.

[12] A. Nazaruk and M. Rauchman. Big data in capital markets. In SIGMOD
Conference, pages 917–918, 2013.

[13] S. Papadimitriou, H. Kitagawa, P. B. Gibbons, and C. Faloutsos. Loci: Fast
outlier detection using the local correlation integral. In ICDE, pages 315–326,
2003.

[14] S. Ramaswamy, R. Rastogi, and K. Shim. Efficient algorithms for mining
outliers from large data sets. In SIGMOD Conference, pages 427–438, 2000.

[15] Z. Xie, S. Huang, M. O. Ward, and E. A. Rundensteiner. Exploratory
visualization of multivariate data with variable quality. In IEEE VAST, pages
183–190, 2006.

[16] D. Yang, E. Rundensteiner, and M. Ward. Neighbor-based pattern detection
over streaming data. In EDBT, pages 529–540, 2009.

1624


