
Ocelot/HyPE: Optimized Data Processing
on Heterogeneous Hardware

Sebastian Breß]?1 Max Heimel†2 Michael Saecker+3

Bastian Köcher†4 Volker Markl†5 Gunter Saake?6

]TU Dortmund University, †Technische Universität Berlin, +Parstream GmbH, ?University of Magdeburg
1sebastian.bress@tu-dortmund.de 2,5firstname.lastname@tu-berlin.de 3michael.saecker@parstream.com

4bastian.koecher@campus.tu-berlin.de 6gunter.saake@ovgu.de

ABSTRACT
The past years saw the emergence of highly heterogeneous
server architectures that feature multiple accelerators in ad-
dition to the main processor. Efficiently exploiting these
systems for data processing is a challenging research problem
that comprises many facets, including how to find an opti-
mal operator placement strategy, how to estimate runtime
costs across different hardware architectures, and how to
manage the code and maintenance blowup caused by having
to support multiple architectures.

In prior work, we already discussed solutions to some of
these problems: First, we showed that specifying operators
in a hardware-oblivious way can prevent code blowup while
still maintaining competitive performance when supporting
multiple architectures. Second, we presented learning cost
functions and several heuristics to efficiently place operators
across all available devices.

In this demonstration, we provide further insights into this
line of work by presenting our combined system Ocelot/HyPE.
Our system integrates a hardware-oblivious data processing
engine with a learning query optimizer for placement deci-
sions, resulting in a highly adaptive DBMS that is specifically
tailored towards heterogeneous hardware environments.

1. INTRODUCTION
In the last few years, it became apparent that the tradi-

tional performance drivers in processor design – frequency
and parallelism – are increasingly hitting limitations. This
forces hardware manufacturers to rely to a greater extent on
designing specialized hardware that is tuned towards certain
types of computations [2]. The effect of these developments
– which can already be seen today and is expected to sig-
nificantly increase in the future – is a move towards highly
heterogeneous server hardware. Accordingly, in order to
keep up with the performance requirements of the modern
information society, tomorrow’s database systems will need
to exploit and embrace this increased heterogeneity.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 13
Copyright 2014 VLDB Endowment 2150-8097/14/08.

Efficiently running data operators on highly specialized
hardware such as graphics cards, many-core accelerator cards,
modern NUMA architectures, or FPGAs is a highly active
research area, and several authors came up with specifically
tailored algorithms and data structures for this task [6, 11].
However, integrating those findings into a complete system
that can fully exploit highly diverse hardware environments
still poses several challenges.

In prior work, we discussed solutions for two of those
challenges. First, we demonstrated how hardware-oblivious
operators can help to manage the inevitable code blowup
that is caused by having to develop and maintain multiple
device-specific variants of each operator. The general idea
behind this approach is to avoid device-specific optimizations
and instead implement operators in a generic and abstract
form that can be automatically mapped to a specific de-
vice at runtime. We demonstrated the feasibility of this
approach through our hardware-oblivious engine Ocelot [8].
Second, we discussed the so-called operator placement prob-
lem, which deals with selecting a suitable device for each
operation. Solving this problem is challenging, and multiple
authors have suggested solutions [6, 10, 13]. We build on
our optimizer library HyPE, which tackles this problem by
utilizing learning cost functions and a set of optimization and
scheduling heuristics that take multiple factors – including
the estimated operator runtime, the current device load, the
current data placement, etc. – into account [4].

In this demonstration, we present our combined system
Ocelot/HyPE, which integrates these prior projects. This
allows our system to a) run efficient data operators on a vast
number of different architectures, b) learn device-specific
cost functions for these operators, and c) automatically find
optimized operator placements across the available devices.
In summary, it is a major step towards our goal of build-
ing a fully-fledged DBMS that can efficiently exploit highly
heterogeneous environments.

We will provide detailed insights into the inner workings of
our system, present how to integrate new operators, demon-
strate how the system learns cost functions, and discuss the
operator placement routines. In order to demonstrate the
adaptivity of our system, we will allow users to issue queries
on a heterogeneous server containing a multi-core CPU and
two graphics cards. The user will also be able to interactively
assign operators from a query plan to study the performance
behavior of database operators on different processors.

1609

Query Rewriter

MonetDB Op�mizer & Execu�on Layer

MonetDB SQL Frontend

MonetDB Paralleliza�on

Ocelot

Operators

MAL BindingHost CodeKernel
MonetDB Operators

MonetDB Storage Layer & Data Layout

Memory Manager

OpenCL
Management

OpenCL

Figure 1: Ocelot’s Architecture, taken from [8].

2. BACKGROUND
In this section, we provide an overview over our previous

systems Ocelot and HyPE, and also discuss the related work
for this demonstration.

2.1 Ocelot
Providing efficient data processing in highly heterogeneous

environments requires database vendors to implement several
device-specific variants of each operator. This is a very
challenging and resource-intensive task that effectively limits
the number of different architectures a single engine can
reasonably support. In prior work [8], we introduced the
notion of a hardware-oblivious database as a way to cope
with this overhead. The general idea behind this approach
is to avoid hand-tuned implementations and instead rely on
hardware abstractions and self-tuning to generate device-
specific operators at runtime.

In order to demonstrate that a hardware-oblivious ap-
proach is feasible and can offer competitive performance,
we contributed Ocelot, a prototypical hardware-oblivious
database engine integrated into the in-memory column-store
MonetDB [1]. Figure 1 illustrates the system architecture
of Ocelot: The central part is a set of hardware-oblivious
relational operators, which were implemented using the ab-
stract parallel programming library OpenCL1: OpenCL is an
open programming standard by the Khronos Group that is
supported across a wide variety of platforms from all major
hardware vendors – including CPUs, iGPUs, dGPUs, accel-
erators such as Xeon Phis, and even FPGAs. Furthermore,
Ocelot includes a memory manager that tracks data place-
ments across devices to avoid unnecessary transfers, and a
set of APIs to manage the interaction with the OpenCL
runtime.

2.2 HyPE
HyPE is a learning query optimization framework for het-

erogeneous hardware environments. It is composed of three
layers: The cost estimator, the device- and algorithm selec-
tor, and the hybrid query optimizer [3]. Figure 2 summarizes
this architecture.

The task of the cost estimator is to produce accurate run-
time estimates for a given algorithm invocation on a given
device. Instead of going the traditional way of using analyt-
ical cost models, we leverage query feedback and machine
learning techniques for this task. Figure 3 visualizes this
approach. The advantage of using query feedback is that

1www.khronos.org/opencl/

Query Optimizer

Learning Cost Estimator

Algorithm Selector

hybrid CPU/CP DBMS

HyPE Components DBMS Adapter

c
o
s
t

e
s
ti

m
a
ti

o
n

a
lg

o
ri

th
m

lo
g

ic
a
l

q
u

e
ry

 p
la

n

o
p

e
ra

to
r

o
p

e
ra

to
r

h
y
b

ri
d

q

u
e
ry

 p
la

n

Figure 2: HyPE’s Architecture, taken from [3].

we arrive at very flexible cost models that do not require
any upfront knowledge about the underlying hardware or
algorithms. In particular, our system trains (L2) linear re-
gression models in multi-dimensional feature spaces using a
mini-batch online learning approach. These models produce
highly accurate estimates with virtually no impact on the
query performance. Based on the models from the cost esti-
mator, the device- and algorithm selector chooses a suitable
processor and algorithm for a given database operator. This
decision can happen according to a list of potential heuristics.
In particular, HyPE integrates heuristics that optimize for
response time and throughput. For further details on these
heuristics, please refer to [5].

Finally, the hybrid query optimizer is build on top of the
other two components and uses them to identify a suitable
operator placement for a given logical query plan. The
optimizer has two different strategies: It can either traverse
a set of potential plans and use the cost estimator to select
the cheapest one, or it can utilize an adaptive strategy that
requests a processing device for each operator at runtime
from the processor allocator.

2.3 Related Work
In a prior demonstration [7], we already discussed parts

of this ongoing work. In particular, we demonstrated the
internals of the learning cost models and how to utilize them
to dynamically pick the optimal algorithm variant for a given
device. However – in contrast to this work –, we specifically
did not cover the multi-device case, the operator placement
problem and the system integration aspects.

The major distinction of our work compared to other
comparable approaches is our use of dynamic cost models.
He et. al. [6] – and more recently Karnagel et. al. [10]
and Yuan et. al. [13] – suggested the use of analytical cost
models that have to be calibrated for the given architecture by
adjusting certain constants. This approach requires extensive
calibration before system start-up, which can require a fairly
significant amount of time. Furthermore, dynamic models
are more flexible than their analytical counterparts, given
that they can automatically capture even fairly complex
relations between input features and runtime, and that they
can easily adapt to changes in the system environment and
the user behaviour.

1610

Operation O

Algorithm Pool

CPU Decision Component

Ai

Dataset D

A1,
A2,...,
An

Optimization Heuristic

Test(A1,D),
Test(A2,D),...,
Test(An,D)

Estimation Refinement

GPU Estimation Component

Figure 3: HyPE’s underlying decision model.

Ocelot
Operators

HyPEMonetDB
Backend

MonetDB
Frontend

Optimizer
Pipeline

Ocelot
Optimizer

HyPE
Optimizer

Feedback on Operator Timings

MAL Plan

Hybrid
MAL Plan

MAL Plan with
Decisions

Query
Optimi-
zation

Plan Rewriting

Figure 4: Overview over the Ocelot/HyPE system.

3. SYSTEM OVERVIEW
In this section, we provide details on the integration aspects

in our combined system.

3.1 Motivation
Due to its flexible engine, Ocelot already offers the possibil-

ity to place operators across all available devices. However,
this placement has to be specified manually, meaning the
user has to annotate a specific device for each operator in
the query plan. While this approach might be feasible for
recurring queries that are specified ahead of time, it is im-
practical for ad-hoc scenarios. In these cases, it becomes
mandatory to decide the placement automatically and with-
out user interaction. Otherwise, we will not be able to fully
exploit the heterogeneity of the machine. Accordingly, inte-
grating a specialized optimizer such as HyPE to automate
the placement decisions is the logical next step towards our
goal of building a DBMS for heterogeneous systems.

3.2 Integration
HyPE is implemented in a very straightforward modular

fashion, which allowed us to integrate it fairly seamlessly. Ba-
sically, there were only two required steps: First, we needed to
register Ocelot’s operators to HyPE, which was easily accom-
plished using HyPE’s APIs. Second, we needed a mechanism
to convey the placement decisions from HyPE to Ocelot, and
subsequently feed query runtimes from Ocelot back to HyPE.
This step was implemented by directly integrating HyPE
into the query optimization pipeline of MonetDB.

The query optimizer of MonetDB is structured as a list
of sequential optimizer stages, where each stage transforms
a plan into a more efficient, but equivalent one. The final
optimized plan is then executed by MonetDB’s plan inter-
preter [9]. This modular design allowed us to easily integrate
HyPE’s decision logic into the query optimizer. In particular,
we only had to add a new optimizer stage that runs before

Figure 5: User interface for the demonstration.

Ocelot injects its operations into the MonetDB plan. This
newly added optimizer stage works as follows:

1. Before executing the query, we transform the given
MonetDB query plan into the internal representation
used by HyPE and hand it over.

2. HyPE chooses a physical plan according to a query
optimization heuristic which is specified by the user
(See Section 2.2 for a list of available heuristics).

3. Then, the HyPE optimizer step retrieves the scheduling
decisions from the resulting HyPE plan and assigns
them to their corresponding MAL operators.

4. Afterwards, the Ocelot optimizer step replaces a MAL
operator with the respective Ocelot operator and sets
the processing device decided by HyPE.

5. Finally, MonetDB executes the query plan. After the
query has finished, Ocelot retrieves the measured execu-
tion times of all operators and sends them as feedback
to HyPE. This information is then used to adjust the
learned cost models.

In general, HyPE optimizes the plan ahead of query execu-
tion. However, depending on the chosen heuristic, HyPE
can also rewrite the query plan during execution, and hence,
re-optimize the plan at runtime (e.g., in case cardinality
estimates exceed an error threshold).

4. DEMONSTRATION SETUP
During the demonstration, we will use remote access to a

server, which runs the combined Ocelot/HyPE system. The
actual configuration of this server is unclear as of yet, but

1611

will contain at least two graphics cards and a multi-core
CPU. Based on this setup, we will demonstrate and explain
the following aspects:

Hardware Obliviousness: The demonstration will show
how a database can be designed and implemented in a
hardware-oblivious manner from the operator level up to the
query optimizer. Additionally, we will prepare a poster with
further details of the system’s architecture and will illustrate
the process of query processing in Ocelot.

Automatic Operator Placement: We will provide an
interactive user interface – illustrated by Figure 5 –, in
which a user can either choose a query from a list of queries
from the Star Schema Benchmark [12] or issue own ad-hoc
queries. The user interface will forward the query to our
system and display the resulting query plan, visualizing
the placement decisions made by HyPE. The user can then
interactively modify these decisions to explore the effects on
query response time. Furthermore, the interface also allows
the user to choose between the different query optimization
heuristics (c.f. Section 2.2) and compare their impact on the
placement decisions.

Performance of Query Processing. In the demon-
stration, we will also display the run-time of each database
operator in the executed query plan to provide the user with
detailed performance information. This allows the user to
gradually adjust the query plan, finding iteratively the opti-
mal processor for the most performance critical operations.
Finally, we will show the performance differences of the com-
bined Ocelot/HyPE system compared to Ocelot and vanilla
MonetDB running on a single device.

5. SUMMARY
It is still an open problem to optimize database queries

for heterogeneous CPU/co-processor systems. The two main
issues are (1) that the analytical cost models used so far
do not scale for an increasing number of heterogeneous (co-
)processors and (2) that today’s query optimization strategies
do not consider properties of co-processors sufficiently (e.g.,
limited memory or (un-)suitability for certain operations).

In this demonstration, we show an alternative database
design, which learns the cost models during query process-
ing and performs query optimization in consideration of
data locality and the load condition across (co-)processors.
The combined Ocelot/HyPE system demonstrates that it is
possible to perform cost-based query optimization without
detailed knowledge of the hardware by learning the perfor-
mance behavior of database operators. By using execution
times as cost measure, we can also keep track of the compu-
tational load across all (co-)processors, which enables us to
steer the parallelism between CPUs and co-processors.

In future work, we plan to evaluate our system on other co-
processors (e.g., APUs or Xeon Phis) and compare them with
other co-processor-accelerated DBMSs, such as OmniDB [14]
and CoGaDB [3].

Acknowledgements
This work was partly funded by the German Federal Ministry
of Education and Research under funding code 01IS12056.
Furthermore, we thank Jens Teubner from TU Dortmund
University for the fruitful feedback and discussions.

6. REFERENCES
[1] P. A. Boncz, M. L. Kersten, and S. Manegold. Breaking

the memory wall in monetdb. Commun. ACM,
51(12):77–85, 2008.

[2] S. Borkar and A. A. Chien. The future of
microprocessors. Communications of the ACM,
54(5):67–77, 2011.

[3] S. Breß. Why it is time for a HyPE: A hybrid query
processing engine for efficient GPU coprocessing in
DBMS. The VLDB PhD workshop, PVLDB,
6(12):1398–1403, 2013.

[4] S. Breß, F. Beier, H. Rauhe, K.-U. Sattler,
E. Schallehn, and G. Saake. Efficient co-processor
utilization in database query processing. Information
Systems, 38(8):1084–1096, 2013.

[5] S. Breß, N. Siegmund, L. Bellatreche, and G. Saake.
An operator-stream-based scheduling engine for
effective GPU coprocessing. In ADBIS, pages 288–301.
Springer, 2013.

[6] B. He, M. Lu, K. Yang, R. Fang, N. K. Govindaraju,
Q. Luo, and P. V. Sander. Relational query
co-processing on graphics processors. In ACM Trans.
Database Syst., volume 34. ACM, 2009.

[7] M. Heimel, F. Haase, M. Meinke, S. Breß, M. Saecker,
and V. Markl. Demonstrating self-learning algorithm
adaptivity in a hardware-oblivious database engine. In
EDBT, pages 616–619, 2014.

[8] M. Heimel, M. Saecker, H. Pirk, S. Manegold, and
V. Markl. Hardware-oblivious parallelism for
in-memory column-stores. PVLDB, 6(9):709–720, 2013.

[9] S. Idreos et al. MonetDB: Two decades of research in
column-oriented database architectures. IEEE Data
Eng. Bull., 35(1):40–45, 2012.

[10] T. Karnagel, M. Heimel, M. Hille, M. Ludwig,
D. Habich, W. Lehner, and V. Markl. Demonstrating
efficient query processing in heterogeneous
environments. In SIGMOD. ACM, 2014. to appear.

[11] R. Mueller, J. Teubner, and G. Alonso. Data
processing on FPGAs. PVLDB, 2(1):910–921, 2009.

[12] T. Rabl, M. Poess, H.-A. Jacobsen, P. O’Neil, and
E. O’Neil. Variations of the star schema benchmark to
test the effects of data skew on query performance. In
ICPE, pages 361–372. ACM, 2013.

[13] Y. Yuan, R. Lee, and X. Zhang. The yin and yang of
processing data warehousing queries on GPU devices.
PVLDB, 6(10):817–828, 2013.

[14] S. Zhang, J. He, B. He, and M. Lu. OmniDB: Towards
portable and efficient query processing on parallel
CPU/GPU architectures. PVLDB, 6(12):1374–1377.

1612

