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ABSTRACT
Data analysts operating on large volumes of data often rely on vi-
sualizations to interpret the results of queries. However, finding the
right visualization for a query is a laborious and time-consuming
task. We demonstrate SEEDB, a system that partially automates
this task: given a query, SEEDB explores the space of all possible
visualizations, and automatically identifies and recommends to the
analyst those visualizations it finds to be most “interesting” or “use-
ful”. In our demonstration, conference attendees will see SEEDB
in action for a variety of queries on multiple real-world datasets.

1. INTRODUCTION
Data analysts must sift through very large volumes of data to

identify trends, insights, or anomalies. Given the scale of data, and
the relative ease and intuitiveness of examining data visually, ana-
lysts often use visualizations as a tool to identify these trends, in-
sights, and anomalies. However, selecting the “right” visualization
often remains a laborious and time-consuming task.

We illustrate the data analysis process using an example. Con-
sider a dataset containing sales records for a nation-wide chain of
stores. Let’s say the store’s data analyst is interested in examining
how the newly-introduced heating device, the “Laserwave Oven”,
has been doing over the past year. The results of this analysis will
inform business decisions for the chain, including marketing strate-
gies, and the introduction of a similar “Saberwave Oven”.

The analysis workflow proceeds as follows: (1) The analyst poses
a query to select the subset of data that she is interested in explor-
ing. For instance, for the example above, she may issue the query:

Q = SELECT ∗ FROM Sales WHERE Product = “Laserwave”

Notice that the results for this query may have (say) several million
records each with several dozen attributes. Thus, directly perusing
the query result is simply infeasible. (2) Next, the analyst stud-
ies various properties of the selected data by constructing diverse
views or visualizations from the data. In this particular scenario, the
analyst may want to study total sales by store, quantity in stock by
region, or average profits by month. To construct these views, the
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analyst can use operations such as binning, grouping, and aggrega-
tion, and then generate visualizations from the view. For example,
to generate the view ‘total sales by store’, the analyst would group
each sales record based on the store where the sale took place and
sum up the sale amounts per store. This operation can easily be
expressed as the familiar aggregation over group-by query:

Q
′ = SELECT store, SUM(amount) FROM Sales WHERE

Product = “Laserwave” GROUP BY store

The result of the above query is a two-column table that can then
be visualized as a bar-chart. Table 1 and Figure 1 respectively show
an example of the results of this view and the associated visualiza-
tion. To explore the query results from different perspectives, the
analyst generates a large number of views (and visualizations) of
the form described above. (3) The analyst then manually exam-
ines each view and decides which ones are “interesting”. This is
a critical and time-consuming step. Naturally, what makes a view
interesting depends on the application semantics and the trend we
are comparing against. For instance, the view of Laserwave sales
by store, as shown in Figure 1, may be interesting if the overall
sales of all products show the opposite trend (e.g. Figure 2). How-
ever, the same view may be uninteresting if the sales of all prod-
ucts follow a similar trend (Figure 3). Thus, we posit that a view
is potentially “interesting” if it shows a trend in the subset of data
selected by the analyst (i.e., Laserwave product-related data) that
deviates from the equivalent trend in the overall dataset. Of course,
the analyst must decide if this deviation is truly an insight for this
application. (4) Once the analyst has identified interesting views,
the analyst may then either share these views with others, further
interact with the displayed views (e.g., by drilling down or rolling
up), or start afresh with a new query.

Of the four steps in the workflow described above, the ones that
are especially repetitive and tedious are steps (2) and (3), where
the analyst generates a large number of candidate views, and ex-
amines each of them in turn. The goal of our system, SEEDB, is
to automate these labor-intensive steps of the workflow. Given a
query Q indicating the subset of data that the analyst is interested
in, SEEDB automatically identifies and highlights to the analyst the
most interesting views of the query results using methods based on
deviation. Specifically, SEEDB explores the space of all possible
views and measures how much each view deviates from the corre-
sponding view on the entire underlying dataset (e.g. Figure 1 vs.
Figures 2 or 3.) By generating and scoring potential views automat-
ically, SEEDB effectively eliminates steps (2) and (3) that the an-
alyst currently performs. Instead, once SEEDB recommends inter-
esting views, the analyst can evaluate this small subset of views us-
ing domain knowledge and limit further exploration to these views.
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Table 1: Data: Total Sales by Store for Laser-
wave

Store Total Sales ($)
Cambridge, MA 180.55

Seattle, WA 145.50
New York, NY 122.00

San Francisco, CA 90.13
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Figure 1: Visualization: Total
Sales by Store for Laserwave

0

10000

20000

30000

40000

Cambridge, MA New York, NY San Francisco, CA Seattle, WA

Store

To
ta

l S
al

es
($

)

Figure 2: Scenario A: Total Sales by
Store
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Figure 3: Scenario B: Total Sales by
Store

We described our vision for SEEDB, along with the associated
research challenges in a companion vision paper [8]. In this demon-
stration proposal, we present our first SEEDB prototype addressing
some of the challenges listed in that vision paper. In particular,
our current prototype of SEEDB is built as a “wrapper” that can
be overlaid on any relational database system. Given any query,
SEEDB leverages special optimization algorithms and the underly-
ing DBMS to generate and recommend interesting visualizations.
To do so efficiently and accurately, we must address the following
challenges: (a) We must determine metrics that accurately measure
the “deviation” of a view with respect to the equivalent view on the
entire database (e.g., Figure 1 vs. 2), while simultaneouly ensur-
ing that SEEDB is not tied to any particular metric(s); (b) We must
intelligently explore the space of candidate views. Since the num-
ber of candidate views (or visualizations) increases as the square
of the number of attributes in a table (we will demonstrate this in
subsequent sections), generating and evaluating all views, even for
a moderately sized dataset (e.g. 1M rows, 100 attributes), can be
prohibitively expensive; (c) While executing queries corresponding
to different views, we must share computation as much as possible.
For example, we can compute multiple views and measure their
deviation all together in one query. Independent execution, on the
other hand, will be expensive and wasteful; (d) Since analysis must
happen in real-time, we must trade-off accuracy of visualizations
or estimation of “interestingness” for reduced latency. Section 3
describes how we address these challenges.
Related Work: Over the past few years, the research community
has introduced a number of interactive data analytics tools such as
ShowMe, Polaris, and Tableau [12, 7] as well as tools like Profiler
allow analysts to detect anomalies in data. Unlike SEEDB, which
recommends visualizations automatically, the tools place the onus
on the analyst to specify the visualization to be generated. Sim-
ilar visualization specification tools have also been introduced by
the database community, including Fusion Tables [5] and the De-
vise [6] toolkit. There has been some work on browsing data cubes
in OLAP, allowing analysts to find explanations, get suggestions
for next cubes to visit, or identify generalizations or patterns start-
ing from a single cube [9, 11, 10]. While we may be able to reuse
the metrics from that line of work, the same techniques will not
directly apply to visualizations.

2. PROBLEM STATEMENT
Given a database D and a query Q, SEEDB considers a number

of views that can be generated from Q by adding relational opera-
tors. For the purposes of this discussion, we will refer to views and
visualizations interchangeably, since it is straightforward to trans-
late views into visualizations automatically. For example, there are

straightforward rules that dictate how the view in Table 1 can be
transformed to give a visualization like Figure 1. Furthermore, we
limit the set of candidate views to those that generate a two-column
result via a single-attribute grouping and aggregation (e.g. Table 1).
However, SEEDB techniques can directly be used to recommend
visualizations for multiple column views (> 2 columns) that are
generated via multi-attribute grouping and aggregation.

We consider a database D with a snowflake schema, with di-
mension attributes A, measure attributes M , and potential aggre-
gate functions F over the measure attributes. We limit the class of
queries Q posed over D to be those that select one or more rows
from the fact table, and denote the results as DQ.

Given such a query Q, SEEDB considers all views Vi that per-
form a single-attribute group-by and aggregation on DQ. We rep-
resent Vi as a triple (a,m, f), where m ∈M,a ∈ A,f ∈ F , i.e., the
view performs a group-by on a and applies the aggregation function
f on a measure attribute m. We call this the target view.

SELECT a, f(m) FROMDQ GROUP BY a

As discussed in the previous section, SEEDB evaluates whether a
view Vi is interesting by computing the deviation between the view
applied to the selected data (i.e., DQ) and the view applied to the
entire database. The equivalent view on the entire database Vi(D)
can be expressed as shown below that we call the comparison view.

SELECT a, f(m) FROMD GROUP BY a

The results of both the above views are tables with two columns,
namely a and f(m). We normalize each result table into a prob-
ability distribution, such that the values of f(m) sum to 1. For
our example in Table 1, the probability distribution of Vi(DQ), de-
noted as P [Vi(DQ)], is: (Jan: 180.55/538.18, Feb: 145.50/538.18,
March: 122.00/538.18, April: 90.13/538.18). A similar probability
distribution can be derived for P [Vi(D)].

Given a view Vi and probability distributions for the target view
(P [Vi(DQ)]) and comparison view (P [Vi(D)]), the utility of Vi

is defined as the distance between these two probability distribu-
tions. Formally, if S is a distance function,

U(Vi) = S(P [Vi(DQ)], P [Vi(D)])
The utility of a view is our measure for whether the target view is

“potentially interesting” as compared to the comparison view: the
higher the utility, the more the deviation from the comparison view,
and the more likely the view is to be interesting. Computing dis-
tance between probability distributions has been well studied, and
SEEDB supports a variety of metrics to compute utility, including
Earth Movers Distance, Euclidean Distance, Kullback-Leibler (K-
L) Divergence, and Jenson-Shannon Distance. In our demonstra-
tion, conference attendees can experiment with different distance
metrics and examine how the choice of metric affects view qual-
ity. Finally, we note that while other definitions of the comparison
views and utility metrics are possible, for our initial exploration
into visualization recommendations, we chose to focus on the intu-
itive definitions above.

PROBLEM 2.1. Given an analyst-specified query Q on a database
D, a distance function S, and a positive integer k, find k views
V ≡ (a,m, f) that have the largest values of U(V ) among all
the views that can be represented using a triple (a,m, f), while
minimizing total computation time.

3. SEEDB DESIGN
In this section, we present the SEEDB architecture, starting with

an overview followed by a detailed discussion of its components.
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3.1 SEEDB architecture overview
Our SEEDB prototype is designed as a layer on top of a tradi-

tional relational database system. While optimization opportunities
are restricted by virtue of being outside the database, our design
permits SEEDB to be used in conjunction with a variety of existing
database systems. SEEDB is comprised of two parts: a frontend
and a backend. The frontend is a “thin client” that is used to issue
queries and display visualizations. The backend, in contrast, per-
forms all the computation required to generate and select views to
be recommended. Figure 4 depicts the architecture of our system.

User	  	  

Q	  

Backend	  DBMS	  

Selec0on	  
criteria	   SeeDB	  Frontend	  

Query	  Builder	  

SeeDB	  generated	  
visualiza0ons	  

SeeDB	  Backend	  

Metadata	  
Collector	  

Query	  Generator	  

View	  Processor	  Most	  
relevant	  
views	  

View	  and	  
interact	  with	  
visualiza0ons	  

Op9mizer	  

Figure 4: SeeDB Architecture

An analyst uses the frontend to issue queries to SEEDB. We
provide three mechanisms for the analyst to issue queries (further
discussion in Section 3.2). Once the analyst issues a query via
the frontend, the backend takes over. First, the Metadata Collec-
tor module queries metadata tables (a combination of database-
provided and SEEDB specific tables) for information such as ta-
ble sizes, column types, data distribution, and table access pat-
terns. The resulting metadata along with the analyst’s query is
then passed to the Query Generator module. The purpose of the
Query Generator is two-fold: first, it uses metadata to prune the
space of candidate views to only retain the most promising ones;
and second, it generates target and comparison views for each view
that has not been pruned. The SQL queries corresponding to the
target and comparison views are then passed to the Optimizer mod-
ule. We refer to these queries collectively as view queries. Next,
the Optimizer module determines the best way to combine view
queries intelligently so that the total execution time is minimized.
(We discuss optimizations performed by SEEDB in Section 3.3.)
Once the Optimizer module has generated the optimized queries,
SEEDB runs them on the underlying DBMS. Results of the opti-
mized queries are processed by the View Processor in a streaming
fashion to produce results for individual views. Individual view
results are then normalized and the utility of each view is com-
puted. Finally SEEDB selects the top k views with the highest
utility and returns them to the SEEDB frontend. The frontend gen-
erates and displays visualizations for each of these view. We now
discuss SEEDB modules in detail.

3.2 The Frontend
The SEEDB frontend, designed as a thin client, performs two

main functions: it allows the analyst to issue a query to SEEDB,
and it visualizes the results (views) produced by the SEEDB back-
end. To provide the analyst maximum flexibility in issuing queries,
SEEDB provides the analyst with three mechanisms for specifying
an input query: (a) directly filling in SQL into a text box, (b) us-
ing a query builder tool that allows analysts unfamiliar with SQL
to formulate queries through a form-based interface, and (c) using
pre-defined query templates which encode commonly performed
operations, e.g., selecting outliers in a particular column.

Once the analyst issues a query via the SEEDB frontend, the
backend evaluates various views and delivers the most interesting

ones (based on utility) to the frontend. For each view delivered by
the backend, the frontend creates a visualization based on parame-
ters such as the data type (e.g. ordinal, numeric), number of distinct
values, and semantics (e.g. geography vs. time series). The result-
ing set of visualizations is displayed to the analyst who can then
easily examine these “most interesting” views at a glance, explore
specific views in detail via drill-downs, and study metadata for each
view (e.g. size of result, sample data, value with maximum change
and other statistics). Figure 5 shows a screenshot of the SEEDB
frontend (showing the query builder) in action.

Figure 5: SeeDB Frontend: Query Builder (left) and Example Visualizations (right)

3.3 The Backend
The SEEDB backend is responsible for all the computations for

generating and selecting views. To achieve its goal of finding the
most interesting views accurately and efficiently, the SEEDB back-
end must not only accurately estimate the accuracy of a large num-
ber of views but also design ways in which the total processing
time will be minimized. We first describe the basic SEEDB back-
end framework and then briefly discuss our optimizations.
Basic Framework: Given a user query Q, the basic approach com-
putes all possible two-column views obtained by adding a single-
attribute aggregate and group-by clause to Q. The target and com-
parison views corresponding to each view are then computed and
each view query is executed independently on the DBMS. The
query results for each view are normalized, and utility is computed
as the distance between these two distributions (Section 2). Finally,
the top-k views with the largest utility are chosen to be displayed.
The basic approach is clearly inefficient since it examines every
possible view and executes each view query independently. We
next discuss how our optimizations fix these problems.
View Space Pruning: In practice, most views for any query Q
have low utility since the target view distribution is very similar
to the comparison view distribution. SEEDB uses this property
to aggressively prune view queries that are unlikely to have high
utility. This pruning is based on metadata about the table including
data distributions and access patterns. Our techniques include:
● Variance-based pruning: Dimension attributes with low variance

are likely to produce views having low utility (e.g. consider the
extreme case where an attribute only takes a single value); SEEDB
therefore prunes views with grouping attributes with low variance.

● Correlated attributes: If two dimension attributes ai and aj have
a high degree of correlation (e.g. full name of airport and abbre-
viated name of airport), the views generated by grouping the table

1583



on ai and aj will be very similar (and have almost equal utility).
We can therefore generate and evaluate a single view representing
both ai and aj . SEEDB clusters attributes based on correlation
and evaluates a representative view per cluster.

● Access frequency-based pruning: In tables with a large number
of attributes, only a small subset of attributes are relevant to the
analyst and are therefore frequently accessed for data analysis.
SEEDB tracks access patterns for each table to identify the most
frequently accessed columns and combinations of columns. While
creating views, SEEDB uses this information to prune attributes
that are rarely accessed and are thus likely to be unimportant.

View Query Optimizations: The second set of optimizations used
by SEEDB minimizes the execution time for view queries that haven’t
been pruned using the techniques described above. Since view
queries tend to be very similar in structure (they differ in the ag-
gregation attribute, grouping attribute or subset of data queried),
SEEDB uses multiple techniques to intelligently combine view queries.
The ultimate goal is to minimize scans of the underlying dataset by
sharing as many table scans as possible. Our strategies include:
● Combine target and comparison view query: Since the target view

and comparison views only differ in the subset of data that the
query is executed on, we can easily rewrite these two view queries
as one. This simple optimization halves the time required to com-
pute the results for a single view.

● Combine Multiple Aggregates: A large number of view queries
have the same group-by attribute but different aggregation attributes.
Therefore, SEEDB combines all view queries with the same group-
by attribute into a single query. This rewriting provides a speed
up linear in the number of aggregate attributes.

● Combine Multiple Group-bys: Since SEEDB computes a large
number of group-bys, one significant optimization is to combine
queries with different group-by attributes into a single query with
multiple group-bys attributes. For instance, instead of executing
queries for views (a1, m1, f1), (a2, m1, f1) . . . (an, m1, f1) in-
dependently, we can combine the n views into a single view repre-
sented by ({a1, a2 . . . an}, m1, f1) and post-process results at the
backend. Alternatively, if the SQL GROUPING SETS function-
ality is available in the underlying DBMS, SEEDB can leverage
that as well. While this optimization has the potential to signifi-
cantly reduce query execution time, the number of views that can
be combined depends on the correlation between values of group-
ing attributes and system parameters like the working memory.
Given a set of candidate views, we model the problem of finding
the optimal combinations of views as a variant of bin-packing and
apply ILP techniques to obtain the best solution.

● Sampling: For datasets of large size, an optimization that affects
performance significantly is employing sampling: we construct
a sample of the dataset that can fit in memory and run all view
queries against the sample. However, as expected, the sampling
technique and size of the sample both affect view accuracy.

● Parallel Query Execution: The final optimization that SEEDB
employs is taking advantage of parallel query execution at the
DBMS to reduce total latency. We observe that as the number of
queries executed in parallel increases, the total latency decreases
at the cost of increased per query execution time.

4. DEMO WALKTHROUGH
We propose to demonstrate the functionality of SEEDB through

hands-on interaction with a variety of datasets. Our goals are two
fold: (1) demonstrate the utility of SEEDB in surfacing interest-
ing trends for a query and (2) demonstrate that we can return high
quality views efficiently for a range of datasets. We will use four
different datasets in our demonstration:

● Store Orders dataset [4]: This dataset is often used by Tableau [3]
as a canonical dataset for business intelligence applications. It
consists of information about orders placed in a store including
products, prices, ship dates, geographical information, and prof-
its. Interesting trends in this dataset have been very well studied,
and attendees will use SEEDB to quickly re-identify these trends.

● Election Contribution dataset [1]: This is an example of a dataset
typically analyzed by non-expert data analysts like journalists or
historians. With this dataset, we demonstrate how non-experts can
use SEEDB to quickly arrive at interesting visualizations.

● Medical dataset [2]: This real-world dataset exemplifies a dataset
that a clinical researcher might use. The schema of the dataset is
significantly complex and it is of larger size.

● Synthetic data: We provide a set of synthetic datasets with vary-
ing sizes, number of attributes, and data distributions to help at-
tendees evaluate SEEDB performance on diverse datasets.

Scenario 1: Demonstrating Utility. Attendees are provided with
three diverse, real-world datasets to explore using SEEDB. For
each dataset, attendees can issue ad-hoc or pre-formulated queries
to SEEDB. SEEDB will then intelligently explore the view space
and optimize query execution to return the most interesting visu-
alizations with low latency. Attendees can examine the returned
queries visually, view the associated metadata, and perform drill-
downs. To aid the evaluation of visualizations, the demo system
will be configured to also show the user “bad” views (views with
low utility) that were not selected by SEEDB. Similarly, we pro-
vide pre-selected queries (and previously known information about
their results) to allow attendees to confirm that SEEDB does indeed
reproduce known information about these queries. Attendees will
also be able to experiment with a variety of distance metrics for
computing utility and observe the effects on the resulting views.
Scenario 2: Demonstrating Performance and Optimizations.
This scenario will use an enhanced user interface and synthetic
datasets mentioned above. Attendees will be able to easily ex-
periment with a range of synthetic datasets and input queries by
adjusting various “knobs” such as data size, number of attributes,
and data distribution. In addition, attendees will also be able to se-
lect the optimizations that SEEDB applies and observe the effect
on response times and accuracy.

Thus, through our demonstration of SEEDB we seek to illus-
trate that (a) it is possible to automate labor-intensive parts of data
analysis, (b) aggregate and grouping-based views are a powerful
means to identify interesting trends in data, and (c) the right set of
optimizations can enable real-time data analysis of large datasets.
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