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ABSTRACT

With the increasing prevalence of versatile mobile devaras the
fast deployment of broadband mobile networks, a huge voloine
Mobile Broadband (MBB) data has been generated over time. Th
MBB data naturally contain rich information of a large numbe
of mobile users, covering a considerable fraction of whae-p
ulation nowadays, including the mobile applications they as-

ing at different locations and time; the MBB data may preskat
unprecedentedly large knowledge base of human behaviathwhi
has highly recognized commercial and social value. Howeter
storage, management and analysis of the huge and fast growin
volume of MBB data post new and significant challenges to the
industrial practitioners and research community. In tleésndn-
stration, we present a new, MBB data tailored, distributeal\gic
system name@®ceanST which has addressed a series of problems
and weaknesses of the existing systems, originally dedidoe
more general purpose and capable to handle MBB data to some ex
tent. OceanST is featured hiy éfficiently loading of ever-growing
MBB data, (i) a bunch of spatiotemporal aggregate queries and
basic analysis APlIs frequently found in various MBB datali@pp

tion scenarios, andi{) sampling-based approximate solution with
provable accuracy bound to cope with huge volume of MBB data.
The demonstration will show the advantage of OceanST insianu

of 5 machines using 3TB data.

1. INTRODUCTION

With the fast deployment of 3G/4G cellular networks and the i
creasing popularity of mobile devices, it allows people toess
the Internet (almost) anytime and anywhere. It is reported t
more than 96% Hong Kong citizens use mobile phones to access
the Internet every day [2]. When mobile users access thenkte
the system logs, called Mobile Broadband (MBB) data, recimtu
information includinguser id (i.e., IMSI, International mobile Sub-
scriber Identity))ocation (longitude, latitude)time-stamp, mobile
device type, mobile App type, package size, and etc. The MBB
data may present unprecedentedly large knowledge baserarhu
behavior in terms of the scale of the population covered &ed t
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fine-grained spatiotemporal granularity. The MBB datadpgneat
opportunities to build a full angle picture about crowds jekhen-
able a wide range of applications to improve the experiefitbeo
mobile users and to help decision making of business/gaveni
in a wide range of application scenarios, e.g., locatiosetdamar-
keting, mobile App recommendation, population movemetiepa
in a city, the home-work location analysis, the public tafpti-
mization, and etc.

It is highly challenging to handle the MBB data because of the
huge volume and the velocity of new data arriving. For examnpl
5TB MBB raw data is generated every day in November 2013 in
Shenzhen, a city in China with 10 million population. Acdogl
to our experiences working on the MBB data in the past fewsgjear
we have identified three desirable features that a large-8¢8B
data analytic system must possess.

e Support the distributed data storage architecture to accom
modate the huge volume of MBB data which have been col-
lected over time, and the efficiency of loading the ever-gnow
new MBB data to the storage architecture periodically;
Support efficient spatiotemporal query processing, inipart
ular, a bunch of spatiotemporal aggregation queries and ba-
sic analysis APIs over distributed data storage systernesin
almost all interesting problems of the MBB data we have ob-
served are spatiotemporal information relevant. Impalgtan
the practical value of MBB data focuses on the aggregated
behaviour of population because querying the information
of individual user is usually problematic due to privacy €on
cerns;

e Support sampling-based approximate solution of spatiotem
poral aggregation queries and basic analysis APIls, whieh ar
much more efficient with theoretically provable error bound
because the exact solution is often very time consuming.

We have investigated the existing distributed systems af sp
tial/spatiotemporal data management [3, 4, 6, 1]. None efth
possesses all of the above three desirable features. Ttersys
proposed in [3] is a spatial data warehousing system thaiqes
spatial querying based on Hadoop MapReduce through spatial
titioning. The system proposed in [4] is also based on Hadoop
MapReduce with high-level language support for spatiad.digbw-
ever, they cannot properly manage the temporal aspect of MBB
data without significant extension. MongoDB [1] is a highfpemance
NoSQL database with built-in support of spatiotemporaidas.
MongoDB scales horizontally using sharding. The user cheas
shard key, which determines how the data in a collectionheiltliis-
tributed. The data is split into ranges (based on the shardae
distributed across multiple shards. MongoDB can run oveltimu
ple servers, balancing the load and/or duplicating dataép khe
system up and running in case of hardware failure. Howeter, t
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Figure 1. Thestructure of OceanST.

poor loading efficiency of MongoDB has been observed in bath o
practice and by the previous study [6]. CIoST [6] is a spatiot
poral database based on Hadoop MapReduce. While it dirieetly
herits the proven scalability of Hadoop MapReduce, it atsoas
much more efficient parallel data loading compared to MorigjoD
due to the deliberated designed hierarchical partitiosimgtegy.
The weakness of CloST to work as a MBB data analytic system
is that it only supports relatively simple spatiotemponaéry, i.e.,
retrieving the records in the spatiotemporal query randglewthe
MBB data analytic system mainly supports spatiotemporgleg
gate query and analysis, i.e., the (exact/approximatéstta of
the records in the spatiotemporal query range.

In contrast, OceanST holds all three desirable featuregeif-a
able MBB data analytic system. First, the high loading edficly is
achieved in OceanST by borrowing the ideas from CloST. S&con

of Time. Then, each level-1 partition is divided into a numbé
level-2 partitions according to a spatial index on locatftongi-
tude, latitude). Finally, each level-2 partition is further divided into
a sequence of level-3 partitions according to finer rangéGoé.
Level-3 partitions contain actual MBB records and the hidaeel
partitions serve as indexes for level-3 partitions. Theldvpar-
tition is named as a bucket, a level-2 partition as a regiod, &
level-3 partition as a block which corresponds to a block dile
64MB. Each bucket can independently perform data loadiry an
storage optimizing, we can gradually append data or turraggo
structures one bucket after another such that the highrigaeifi-
ciency is achieved.

While the hierarchical partitioning strategy allows us trg-
lelize the relatively simple spatiotemporal query in Clo®Tre-
trieve records, it is insufficient in OceanST to properly o spa-
tiotemporal aggregate query and analysis of the MBB daté;twh
are mainly interested in the exact/approximate statistiche re-
trieved records. Therefore, two additional data strustheere been
developed in OceanST, namely, in-block index and inveiitd |

In-block index. The in-block index aims to refine the spatiotem-
poral granularity of the index structure. It is insensildestan the
entire block file, if only a fraction of MBB data records in thiock
file are relevant to the query. For example, the query “cobat t
mobile users whose trajectories are in 100 meters along @-spe
fied road in a time period” may involve many block files whicke ar
partially relevant to the spatiotemporal query.

In OceanST, the size of each leaf node corresponds to theltdefa
memory page (4KB) of the operating system. In block file, the
records are grouped luger id, and in the same partition the records
are sorted otime. Clearly, all records in the same group belong to
the same user and they are organized in the sequence of e th

OceanST is based on Spark MapReduce [7] which is an in-memory the records are collected. A'Btree is built to index theser id

MapReduce solution, i.e., the data in OceanST are processed
peatedly in memory, so that the query results can be obtammth
faster than Hadoop MapReduce solution which is disk-bdsed
in particular, the new spatiotemporal index structuresehaeen
developed to process exact/approximate spatiotempogaegate
queries and basic analysis APIs over the distributed stosyg-
tem. Third, a set of novel approximate solutions based odaian
sampling have been developed to handle huge volume of MBB dat
with theoretically provable error bound.

In the demonstration, the advantage of OceanST is illueiray
comparing against CloST [6] and MongoDB [1] on a cluster with
5 machines using the real-world MBB data of 3TB.

2. STRUCTURE OF OCEANST

OceanST has three layers, namely, the distributed dataggtor
layer, the functional layer, and the application layer, la®s in
Figure 1.

2.1 Distributed Data Storage L ayer

All MBB data records are in the forruger id, time, longitude,
latitude, attributel, attribute2,- - -] where the first four attributes
together uniquely identify a MBB data record. Taributel, at-
tribute2, - - - are additional attributes such device type, mobile
App type, package type and etc. All the records and indices are
stored as regular files on HDFS. To achieve high loading effixy,
the hierarchical partitioning strategy of CloST is appliddnder
this strategy, the MBB data are first divided into a numbeewoél-

1 partitions according to hash valuesusér id and coarse ranges

!Note that both Hadoop MapReduce and Spark MapReduce are on

HDFS which is designed to scale to tens of petabytes of storag
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by maintaining the offset of the corresponding group in tleelk

file. As a consequence, given aser id, the trajectory of the user
can be easily retrieved without accessing the trajectariexther
users. In addition to the Btree, a 3-dimensional quadtree (i.e.,
ontime, latitude andlongitude) is built in block file to index MBB
data records. Given a spatiotemporal query range, for ebearald

user ids whose MBB data records are contained by the range are
retrieved using the quadtree; then the complete trajectbtiiese
users can be accessed in block files using theti@e.

Inverted Index. OceanST has a mechanism to allow various in-
verted indices which indicate the index leaf nodes (in tligr8ensional
quadtree) associated with the attribute value of interéstr ex-
ample, suppose“iPhone” is a value of attributebile App type;
“iPhone” keeps a list of index leaf nodes which contain theB/B
data record(s) with “iPhone” imobile App type attribute; in par-
ticular, each leaf node in the list can be attached with veriag-
gregated information such as the number of users using fi&ho
in this leaf node. As a result, the aggregate query, e.g.atvwh
the total number of users usinBhone in a spatiotemporal query
range?”, can be answered efficiently. Another motivatiorihef
inverted index is to support the approximate solution in &&T
which is based on randomly sampling the leaf nodes of MBB data
index. Given the sampling budget (i.e., a certain percentdgn-
dex leaf nodes to be sampled), the finer the granularity éslebss
variance the approximate solutions is [5]. The storage efith
verted index is reasonable since the number of leaf nodesack
smaller than the original MBB data and the number of attetwat-
ues requiring inverted index is very limited in practice.

2.2 Functional Layer
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Figure 22 Random sampling based spatiotemporal aggregate
query and basic analysisAPI.

The functional layer consists of a bunch of spatiotempogal a
gregate queries and basic analysis APIs which work indegpehd
or support various complex analytic tasks found in the apgibn
layer. OceanST provides two types of solutions, egact andap-
proximate. The approximate solutions are based on randomly sam-
pling the MBB data. The approximate solution is a must begaus
exact solution may involve considerably large volume of Mia
and thus very time consuming. In this case, a theoreticatiyre
bounded approximate solution is promising.

2.2.1 Exact Solution

The spatiotemporal aggregate queries in OceanST inclug,
distinct count, maximum, average, minimum, sum, and etc. Given a
spatiotemporal query range, for examplevint returns the number
of mobile users who are in the rangeaximum returns the mo-
bile App which is used by most mobile users in the rarayerage
returns the average movement speed of mobile users.

The basic analysis APls include a number of basic analysis-fu
tions. Some of them arer)(given two spatiotemporal ranges, iden-
tify the most frequent path, the path distribution and ttetriiution
of transportation tools used by the mobile users travelbieigveen
them; (i) given the current location, a temporal range and a mobile
user, predict the next locations of the user and the nextlmaliP
to be used by the user with a probability by mining the histari
data; (ii) given a spatiotemporal range, identify the top-k location
from which the mobile users come fromiy) given a spatiotem-
poral range, identify the top-k locations to which the mehikers
go; (v) given a spatial region, partition it into subregions adomy
to the density of mobile users at different time slots of a égg,.
hourly; (vi) find out the home and work locations; and more.

2.2.2  Approximate Solution

The spatiotemporal aggregate query and basic analysis &Pl p
cessing with large volume of disk-resident MBB data takeyver
long time to produce exact answers. Hence, the approxinmate s
lution is promising in many application scenarios whichénatrin-
gent response time requirements and accept approximatewéh
theoretical error bound.

By utilizing the well-established spatiotemporal indexl aspe-
cific inverted list to trajectory data, we have developedioam in-
dex sampling (RIS) algorithm in OceanST to estimate the answ
with a guaranteed error bound. An example is shown in Fig(ag 2
wherery, ro, r3 are three trajectories belonging to different mobile
users,R is the spatiotemporal query range of querand the small
gray blocks are leaf nodes of the MBB data index in a block file.
Now, we use spatiotempordaistinct count query as an example
to show how to estimate the answer. Ltdenote the sampling
budget, i.e., the maximum number of index leaf nodes alloteed
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Figure 3: OceanST graphic user interface.

collect. In our analysis, we assume ttatis always sufficiently
large. We uniformly at random pick up index leaf nodes from
the leaf node set covered by the spatiotemporal query raritge w
replacement. In OceanST, we have developed an asymplyptical
unbiased estimator to thdéstinct count query and proved the rela-
tionship between the accuracy and sampling budget. An agiim
is a function of a sequence of observations that outputstanae

of an unknown population parameter.

The proposed RIS algorithm properly deals with a single spa-
tiotemporal aggregate query with a guaranteed estimationigound.
However, when it comes to OceanST, a large-scale MBB data an-
alytic system, a large number of spatiotemporal aggregaeeiep
may come concurrently. These queries may have overlaped sp
tiotemporal query ranges. As illustrated in Figure 2(b) weh&;
and R) are the spatiotemporal query ranges of two queries which
arrive concurrently and overlap with each other. A naivehuoét
for handling concurrent queries is to perform single randiodex
sampling (RIS) algorithm individually for each query. Hoxge,
by reusing the samples obtained in the overlapped rangesoieg,
the estimation accuracy can be significantly improved. 1adDST,
we propose concurrent random index sampling (CRIS) alyorit
that performs stratified sampling and overlapping sampleg®n
concurrent spatiotemporal aggregate queries. As illtextrim Fig-
ure 2(b), the small blocks are samples used in the estimabon
theoretical results show that CRIS can achieve higher estm
accuracy for each concurrent trajectory aggregate quetly,less
sampling budget than simply running RIS for each query.

Our extensive evaluation results indicate that both RISGRtS
outperform exhaustive search for single and concurrentapm-
poral aggregate queries by two orders of magnitude in tefrtigeo
query processing time and they guarantee the answer agonirac
0.003 to 0.2 in normalized mean square error.

2.3 Application Layer

The application layer incorporates the graphic user iatar{GUI)
and the complex analytic tasks. The GUI provides an effestiaty
to directly communicate with the queries and APIs in the fiomal
layer. As shown in Figure 3, the temporal query range (androth
parameters) are input using the text fields in the left sidbeinter-
face; the spatial range is specified on the map by clickingdaag-
ging mouse; the output is visualized. One more example wisho
in Figure 4; we select a rectangle in the middle of Figure 4(®)
input a temporal range; the results of some spatiotempggiea
gate queries are visualized as shown in Figure 4(b)-(e).

Using the queries and APlIs in the functional layer as thedbuil
ing blocks, various complex analytic tasks can be built. usstise
the business scenarios of outdoor advertising as examiplén(
advertising agency wants to know the number of peoples wéo ar
covered by an outdoor advertising panel (i.e., the peopssipg
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Figure 4: An example of spatiotemporal aggregate query. (a)
the spatial query range, (b) the distribution of mobile users,
(c) the speed distribution of mobile users, (d) the mobile App
distribution, (e) thedistribution of maobile users at different lo-
cations

the effective region of the panel) in a certain time periadihsin-
formation is the basis to set the price on the pandlg{ven a cus-
tomer whose budget &50, 000, which panels from many options
can cover the maximum number of (distinct) peoples and tta to
cost is under the budgetiii) the advertising agency owns a large
number of outdoor panels of different prices and many custem
of different budgets, the problem is how to assign the outgan-
els to customers so as to maximize the benefit of the advegtisi
agency. In such complex analytic tasks, thant or distinct count
query of OceanST provide the fundamental information, the
number of mobile users covered by a spatiotemporal rangee si
mobile users are random sample of the entire population.erOth
examples of complex analytic tasks can be found in goverhmen
agency in the traffic congestion analysis, the movemenepatif
population in a city, the event recognition, and etc. In stagks,
the basic analysis APIs in the functional layer such as tie gia-
tribution between locations, the prediction of the nexakbans and
the distribution of population are closely relevant.

3. DEMONSTRATION

The demonstration will be conducted on a cluster with 5 ma-
chines. Each machine hag six-cores Intel X567@.93GHz pro-
cessors an@4GB memory. All machines run on Suse Linux En-
terprise Servell1l. Spark-0.7.3 is selected as the running system.
Around 3TB MBB data are used in the demonstration. We also

first scenario is to proceghstinct user count query, given a spa-
tiotemporal query range; the second scenario is to pratgsisute
distribution query which returns requested attribute’s (for example,
mobile APP usage) distribution in a spatiotemporal quengea In
the approximate solution, the balance of accuracy and ponse
time will be demonstrated in the same scenarios. The demaenst
tion will report the query response time when the spatiotelp
query range varies, in specifit) temporal ranges anth spatial
ranges are used. All temporal ranges have the same startiag t
and all spatial ranges are rectangle bounding boxes witkahee
centroid.

The third phase will demonstrate the performance of OceanST
and its advantage against CloST and MongoDB. We focus on two
important performance indicators for the large MBB data i
system: data loading time and query/API response time. atee d
loading time of OceanST is consumed for loading data intce@8&
block files and for building index. For example, it takes abbli
minutes for building index and takes abalit minutes for writing
blocks in OceanST and CloST to lodd7GB MBB data; Mon-
goDB failed to load this data within an acceptable time (c&nn
finish after5 days). In our experience, MongoDB také® hours
to load 3GB data and shuffling them across the three sharded ma
chines. The demonstration, therefore, only compares therpe
mance between OceanST and CloST on processing the queries in
the three scenarios in the second phase. In all settingstibsgm-
poral query range, OceanST returns the exact solutionsst &
times faster than CloST, the sampling based approximatgicol
achieves another 10 times acceleration with high accuracy.
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