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Abstract 
There is a growing interest in making relational DBMSs work 

synergistically with MapReduce systems. However, there are 

interesting technical challenges associated with figuring out the 

right balance between the use and co-deployment of these 

systems. This paper focuses on one specific aspect of this balance, 

namely how to leverage the superior indexing and query 

processing power of a relational DBMS for data that is often more 

cost-effectively stored in Hadoop/HDFS. We present a method to 

use conventional B+-tree indices in an RDBMS for data stored in 

HDFS and demonstrate that our approach is especially effective 

for highly selective queries. 

1. Introduction 
The debate between relational DBMS and MapReduce systems 

for big data management has now converged in the traditional 

RDBMs vendor space to produce hybrid systems that aim to 

balance performance and cost. In such systems, a database is split 

across a parallel RDBMS and a MapReduce [3] system. Data in 

the MapReduce/Hadoop system is stored in HDFS and is made 

“visible” to the RDBMS as an external table. Several large 

database vendors employ this mechanism [1, 4, 5, 6]. Queries can 

now be issued to the RDBMS against data that is split across these 

two data systems. During query execution, a portion of the query 

may be executed as MapReduce jobs in Hadoop, while another 

portion of the query is executed inside the RDBMS.  

This hybrid model has evolved naturally since relational DBMSs 

tend to provide far higher performance on queries compared to 

MapReduce-based systems (and support a larger set of SQL), but 

tend to be far more expensive when measured on the $/TB 

measure (which is often dominated by the installing, licensing, 

and annual service/maintenance fees). Deploying large databases 

purely in a parallel relational DBMS is cost prohibitive for some 

customers, especially since in these large databases all the data is 

not uniformly “hot.” A sizable part of the database is cold data 

that is queried less frequently than the hot data. A natural 

partitioning is to store the hot data in the parallel RDBMS, and 

store the cold data in HDFS. 

This hybrid model works well in practice when the workload 

consists of long-running analytical queries on large tables (which 

can be executed in a cost-effective way by keeping the table in 

HDFS and processing queries using MapReduce jobs), or for 

queries on the small amounts of hot data that is kept in the 

RDBMS. For that later category, fast query times are often the 

norm, as the RDBMS engines have sophisticated query 

optimization and query processing techniques that have been 

designed, refined, and solidified over the last three decades.  

However, a key limitation of these hybrid systems is that even 

simple “lookup” (rifle-shot and range) queries on the large data 

files/tables in HDFS have long latencies. Real customer 

workloads are getting increasingly complicated in practice, and it 

is not unusual to have workloads that demand “interactive” query 

response times on these lookup queries. In fact a number of 

customers of Microsoft’s product in this space (Polybase) have 

this requirement, which motivated the work that is described here. 

The focus of this paper is on designing, evaluating and 

implementing methods to improve the speed of lookup queries on 

data that is stored in HDFS in a hybrid data processing system.  

Our approach to solve the problem described above is to leverage 

the indexing capability in the RDBMS by building an index on the 

external HDFS data using a B+-tree that is stored inside the 

RDBMS. This Split-Index method leverages the robust and 

efficient indexing code in the RDBMS without forcing a dramatic 

increase in the space that is required to store or cache the entire 

(large) HDFS table/file inside the RDBMS.  

A natural follow-up question is how to keep the index 

synchronized with the data that is stored in HDFS. On this aspect, 

we recognize that data that is stored in HDFS cannot be updated 

in place. Rather, HDFS only allows adding new data or deleting 

old data (by adding or deleting files in HDFS). Thus, we can solve 

this index-update problem (which can be thought of as a special 

case of the materialized view update problem) using an 

incremental approach by which we record that the index is out-of-

date, and lazily rebuild it. Queries posed against the index before 

the rebuild process is completed can be answered using a Hybrid-

Scan method that carefully executes parts of the query using the 

index in the RDBMS, and the remaining part of the query is 

executed as a MapReduce job on just the changed data in HDFS. 

Thus, lookup queries continue to be executed efficiently even with 

HDFS data that is undergoing modification.  

While in the empirical evaluation in this paper we focus only on 

single table queries, we note that the Split-Index method also 

provides an opportunity to speed up some analytical join queries 

(as opposed to the simpler lookup queries) on data that sits in 

HDFS. If the query only looks at attributes that are in the index, 
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then even complex join queries can be answered completely 

inside the RDBMS. In other cases, the index can be used as a pre-

filter to reduce the amount of work that is carried out as 

MapReduce jobs. Thus, the Split-Index method also serves as a 

versatile mechanism to cache the “hot” attributes of “cold” HDFS 

data inside the RDBMS, where it can generally be processed 

much faster. Furthermore, this Split-Index method can also be 

used as a mechanism to adapt to changing workloads and system 

configurations; thus, for example, if there is a new hot attribute in 

a HDFS-resident table, or more nodes are added to the RDBMS, 

then one can simply index more attributes of the HDFS file in the 

RDBMS. In other words, one can gradually materialize the most 

commonly accessed components of data in HDFS inside the 

RDBMS and maximize the return-on-investment (ROI) on the 

RDBMS deployment.  

The remainder of this paper is organized as follows. In Section 2, 

we present some background information related to Polybase – 

the system that we use in this paper. In Section 3, we present the 

Split-Index approach. A method to incrementally update the Split-

Index is presented in Section 4, and Section 5 presents the Hybrid-

Scan approach. Our experimental results are presented in Section 

6, and Section 7 contains our concluding remarks. 

2. Polybase Background 
Polybase employs a “split query processing” [1, 2] paradigm to 

achieve scalable query processing across structured data in 

relational tables and unstructured data in HDFS. Polybase 

leverages the capabilities of SQL Server PDW, especially, its 

cost-based parallel query optimizer and execution engine.  While 

using MapReduce provides a degree of query-level fault tolerance 

that PDW lacks, it suffers from fundamental limitations that make 

it inefficient when executing trees of relational operators. 

Polybase relies on the cost-based query optimizer to determine 

when it is advantageous to push SQL operations on HDFS-

resident data to the Hadoop cluster for execution.  

2.1 Polybase Architecture 
Polybase [1] extends the PDW architecture to allow for querying 

data that is stored in HDFS.  As shown in Figure 1, PDW has a 

control node that manages a number of compute nodes. The PDW 

Engine in the control node provides an external interface and 

query requests flow through it. The control node is responsible for 

query parsing, optimization, creating a distributed execution plan, 

issuing plan steps to the compute nodes, tracking the execution 

steps of the plan, and assembling the individual pieces of final 

results into a single result set returned to the user. The compute 

nodes are used for data storage and query processing. 

The control and compute nodes each run an instance of SQL 

Server and an instance of the Data Movement Service (DMS). 

DMS instances are responsible for repartitioning the rows of a 

table among the SQL Server instances on the PDW compute 

nodes. The HDFS Bridge component hosted inside each DMS is 

responsible for all communications with HDFS. It enables DMS 

instances to also import/export data from/to HDFS clusters. 

2.2 External Tables 
Polybase, like Greenplum, Oracle, Asterdata and Vertica, uses an 

external table mechanism for HDFS-resident data [4, 5, 6]. The 

first step in declaring an external table is to create an external data 

source for the Hadoop cluster on which the file resides. The 

external data source contains information about the Hadoop 

NameNode and the JobTracker for the cluster. The JobTracker is 

used to submit a Map job when the PDW optimizer elects to push 

selected query computation to Hadoop. The next step is to create 

an external file format, which contains information about the 

format of the HDFS files. Polybase supports both delimited text 

file, and RCFile.  

The following example illustrates how an external table is created. 

The location clause is a path to either a single file or a directory 

containing multiple files that constitute the external table.  

CREATE EXTERNAL TABLE hdfsLineItem 

  (l_orderkey BIGINT NOT NULL, 

   l_partkey BIGINT NOT NULL,  

   ...) 

WITH (LOCATION='/tpch1gb/lineitem.tbl', 

DATA_SOURCE = VLDB_HDP_Cluster,  

FILE_FORMAT = TEXT_DELIMITED) 

2.3 HDFS-Import 
When compiling a SQL query that references an external table 

stored in HDFS, the PDW Engine Service contacts the Hadoop 

NameNode for information about the HDFS file/directory. This 

information, combined with the number of DMS instances in the 

PDW cluster, is used to calculate the split (offset and length) of 

the input file(s) that each DMS instance should read from HDFS. 

This information is passed to DMS in the HDFS Shuffle operation 

of the DSQL (distributed SQL) plan along with other information 

that is needed to read the file. This additional information includes 

the file’s path, the location of the appropriate NameNode, and the 

name of the RecordReader that the HDFS Bridge should use.  

The system attempts to evenly balance the number of bytes read 

by each DMS instance. Once the DMS instances obtain split 

information from the NameNode, each instance can independently 

read the portion of the file that it is assigned, directly 

communicating with the appropriate Hadoop Data Nodes without 

any centralized control. 

Once an instance of the HDFS Bridge has been instantiated by the 

DMS process, the DMS workers inform the HDFS Bridge to 

create a RecordReader instance for the specified split (offset and 

length) of an input file. The RecordReader then processes the 

rows in the input split and returns only the required attributes (we 

refer to this operation as HDFS-Import). The query is run on this 

imported data in PDW.  

 

Figure 1: The Polybase Architecture 
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The execution path where the external data used inside a query is 

imported during the query execution is called Direct-Import.  

2.4 Push-Down to Hadoop 
When a query involves HDFS resident data, the optimizer can 

submit a Map job to the Hadoop cluster and then import only the 

result of the Map job. We call this approach the Push-Down 

execution path. The optimizer makes a cost-based decision to 

decide whether to use the Push-Down path or the Direct-Import 

path. A simple example where the Push-Down path is cost 

effective is a query with a selective predicate. Using the Push-

Down path, the Filter (i.e. selection) operator can be computed on 

the Hadoop cluster, which results in smaller amount of data being 

imported into PDW. Currently a few operators (Project and Filter) 

are supported in the Polybase Push-Down path.  

We illustrate the Push-Down and the Direct-Import paths using 

the following query: 

SELECT *  

FROM hdfsLineItem  

WHERE l_orderkey = 1 

 

The logical query plan for the above query is simple – it has two 

logical operations: a Scan operator followed by a Filter operator. 

Figures 2 and 3 show the DSQL plans for the Direct-Import and 

the Push-Down paths, respectively. As shown in Figure 2, in the 

Direct-Import path, the entire customer table is first imported into 

PDW. While in the case of the Push-Down path, a Map job 

containing the Filter operation is submitted to the external Hadoop 

cluster. This Map job scans the customer table and materialized 

only those rows that have c_nationkey value equal to 1. After the 

Map job finishes execution, the result of the Map job is imported 

into PDW, and the remainder of the query is executed inside 

PDW. 

Using the Push-Down approach, Polybase can delegate some 

computation responsibility to the external Hadoop cluster, thereby 

reducing the amount of data that is imported from the external 

cluster. If the data pipe between PDW and the Hadoop cluster has 

limited bandwidth, then the Push-Down approach can have 

significant performance advantage over the Direct-Import 

approach. The Polybase paper [1] discusses the crossover point 

between these two approaches in detail.  

3. The Polybase Split-Index 
In this section, we introduce the Polybase Split-Index approach, 

which is used to speed up the query execution time of lookup 

queries. Section 3.1 describes how the index is created and 

Section 3.2 describes how the index is used during query 

execution.  

3.1 Index Creation 
Consider a TPC-H lineitem table stored in HDFS. Creating a 

PDW Split-Index named lineitem_index on the l_orderkey 

attribute of the lineitem table entails the following steps: 

1. Create a PDW table lineitem_index containing five 

columns: l_orderkey (the indexed attribute), filename (the 

name of the HDFS file that holds the record/tuple), offset 

(the offset of the record from the beginning of the file), 

length (the length of the record) and blockNumber (a 

computed column). The pair (filename, offset) acts as a 

Record Identifier (RID) for the row.  The RID and length 

attributes are used to read the required number of bytes of 

the qualifying records during query execution. The 

blockNumber is a computed column (blockNumber = 

offset/16MB), on which the rows of the index table are hash 

partitioned. By distributing the lineitem_index table on the 

blockNumber, we ensure that all rows in a 16MB chunk are 

stored together in the Split-Index. 

2. To populate the linitem_index table, the HDFS-Import 

operation (see Section 2.3) in invoked with a special 

“buildIndex” flag set to true. Next, the DMS workers 

running on each compute node of the PDW appliance 

instantiate an HDFS Bridge instance and pass the special 

flag to the RecordReader instance. When this flag is set, the 

RecordReader calculates the physical pointer (RID, length, 

blockNumber) to the record in addition to the indexed 

attributes. As rows are produced, the HDFS-Import 

operation inserts them into the hash-partitioned PDW table 

lineItem_index, and for each partition creates a clustered B-

tree index on the l_orderkey attribute. 

  
   

Figure 2: Query plan and the corresponding DSQL plan for the 

Direct-Import path 

Figure 3: Query plan and the corresponding DSQL plan for the 

Push-Down path 

Return: 
SELECT * FROM TEMP_1 WHERE 

l_orderkey = 1 

DMS Import: 
Import from the HDFS file, 

hdfsLineitem, into TEMP_1 using a 
round robin distribution 

CREATE in PDW: 
CREATE TABLE TEMP_1 (…)  

Scan 
lineitem 

Filter 

Return 
Result 

 

Execute in Hadoop: 
Run Map job computing filter 
over hdfsLineitem in Hadoop.   

Return: 
SELECT * FROM TEMP_1 

DMS Import: 
Import the result of the Map job 

from HDFS into TEMP_1 

Scan 
lineitem 

Filter 

 

Return 
Result 

CREATE in PDW: 
CREATE TABLE TEMP_1 (…)  
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3. The list of all the HDFS files on which the Split-Index is 

created is stored as an extended property of the PDW Split-

Index table. This information is used to update the index 

incrementally to keep it up-to-date with changes to the 

“master-data” in HDFS. 

In Polybase, we can create an index on any number of columns, 

and on any PDW supported data type.  

3.2 Index-based Query Execution 
To reduce the latency of lookup queries, we enhance Polybase to 

use the Split-Index that is created in PDW. Note that this index 

can be used only when a query includes a predicate that involves 

the indexed attributes. 

In the existing implementation of the HDFS-Import operation, the 

HDFS Bridge is given a range [offset, offset + length] to retrieve 

records from an HDFS file. This operation is called the Range-

Scan operation. To execute the query using the Split-Index 

mechanism, we enhanced the HDFS Bridge to support an Index-

Scan operation (in addition to the Range-Scan operation). With 

the Index-Scan operation, instead of giving the HDFS Bridge a 

range, it is provided a collection of RIDs to retrieve records from 

the HDFS file(s). The HDFS Bridge retrieves records by iterating 

over the list of RIDs.  

Figure 4 shows the DSQL plan for the Index-Scan path using the 

following query: 

SELECT *  

FROM hdfsLineitem  

WHERE l_orderkey = 1  

The execution of this query involves the following steps: 

1. Once the query is submitted to PDW, the PDW Engine (in 

the control node) creates a DSQL plan that uses the 

lineItem_index table in PDW. 

2. Each compute node executes the query: ‘SELECT * FROM 

lineItem_index WHERE l_orderkey=1’ against its 

portion of the Split-Index in PDW. 

3. The results of the above query (i.e. a set of qualifying RIDs) 

are exported to a HDFS directory via the HDFS Bridge 

running in the DMS instances of the compute nodes.  

4. A temporary table is created in PDW to store the result of the 

HDFS-Import-using-Index operation that is described next. 

5. An HDFS-Import-using-Index operation is executed on each 

compute node.  During the execution of this operation, a 

reference to the exported/materialized files containing the 

qualifying RIDs is passed to the HDFS Bridge instances. The 

HDFS Bridge performs a pointer-based join between these 

materialized RIDs and the lineitem files in HDFS.  

6. The required attributes of the qualifying records are then 

imported into the temporary table in PDW that was created in 

Step 4 above. 

There are multiple ways in which qualified RIDs can be passed to 

the HDFS Bridge. We used HDFS files to transfer the qualified 

RIDs to the HDFS Bridge. Other potential options include using 

shared memory or passing a list of RIDs along with the function 

call.  

4. Incremental Index Update 
Compared to data in a traditional database system, rows in 

Hadoop cannot be updated in place. Rather, new rows are added 

by adding new HDFS files to the directory, or existing rows are 

deleted by dropping one or more HDFS files from the directory. 

Given this pattern of data creation and updates, at any given point 

of time the data in the external table can be classified into three 

categories: 1) Existing data that is covered by the existing Split-

Index in PDW, 2) New data that is not indexed, and 3) Deleted 

data that has been dropped in HDFS but is still represented in the 

Split-Index.  

The Split-Index is an offline index, which means that when the 

data is updated, the index is not updated at the same time and 

requires that the administrator/user issue an explicit update 

statement. When an update statement is issued, an incremental 

index update method is invoked, which has the following two 

phases: i) Detecting updates (new or deleted data), and ii) 

Incrementally updating the existing index.  

Recall that with each PDW Split-Index table we also store the list 

of HDFS files that are covered by that index (cf. Section 3.1). We 

use this index metadata to find new and deleted files.  

For new files, the index update first requests the HDFS Bridge to 

scan the new files with the “buildIndex” flag set to true. The 

HDFS Bridge then returns the indexed attribute values and the 

physical pointer to the new records in these files. These records 

are then inserted into the existing PDW Split-Index table, and the 

index metadata is updated to add these new files. 

For deleted files, we update the index using the following SQL 

statement: 

DELETE FROM <index> 

WHERE filename IN (<Deleted Files>)  

These deleted files are also removed from the index metadata.  

 

 

Figure 4: Query plan and the corresponding DSQL plan for 

the Index-Scan path 

Return: 
SELECT * FROM TEMP_1 WHERE 

c_nationkey = 1 

DMS Import: 
Import only qualifying rows of HDFS 
file, hdfsLineitem, into TEMP_1 using 

a round robin distribution 

CREATE in PDW: 
CREATE TABLE TEMP_1 (…)  Index Scan 

lineitem 

Filter 

Return 
Result 

 

DMS Export: 
Export qualifying RIDs in 

hdfsLineitem into a HDFS folder 
“HdfsDir_1”. The following query is 
used to retrieve the qualifying RIDs: 

SELECT * FROM lineItem_index 
WHERE l_orderkey=1 
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5. Hybrid-Scan 
As discussed above, a Split-Index in PDW can potentially be stale 

w.r.t. the data in HDFS. When a Split-Index is stale, we exploit 

the absence of in-place updates in HDFS, and use a Hybrid-Scan 

operation. This operation uses the stale index for ‘existing’ data 

(i.e. it invokes the Index-Scan operation), and it invokes the 

Range-Scan method (cf. Section 3.2) to scan the ‘new’, 

unindexed, data. ‘Deleted’ data is removed from the scan by 

adding the clause “filename NOT IN (<Deleted Files>)” 

to the query that computes the qualifying RIDs. We refer to the 

query execution path that uses the Hybrid-Scan operation as the 

Hybrid-Scan path. The optimizer also has the option of using 

either the Direct-Import path or the Push-Down path. 

6. Experiments  
In this section we present our experimental results. The key goals 

of our experiments are to: 

1. Measure the performance gain of the Split-Index and the 

Hybrid-Scan paths over the Push-Down path for highly-

selective lookup queries. 

2. Understand the cost of index creation and index maintenance.  

3. Understand the sensitivity of the Index-Scan operation to the 

data access pattern. 

4. Understand the space vs. time tradeoffs when the data is 

entirely in PDW or HDFS with/without indexes built on the 

data. 

6.1 Setup 
We used a cluster with 9 PDW nodes and 29 Hadoop nodes. Each 

node has dual 2.13 GHz Intel Xeon L5630 quad-core processors, 

96GB of main memory, and ten 300GB 10K RPM SAS disk 

drives. One drive is used to hold the operating system (OS), 

another to hold the OS swap space, and the remaining eight are 

used to store the actual data (HDFS files, or permanent and 

temporary table space for SQL Server). All the PDW nodes are on 

a single rack and all the Hadoop nodes are spread across the 

remaining two racks. Within a rack, nodes are connected using a 

10 Gb/sec Ethernet link to a Cisco 2350 switch. Between the racks 

these switches communicate at 10 Gb/sec. 

The PDW and Hadoop services on their corresponding nodes 

were run in a single Windows Hypervisor VM configured with 

Windows Server 2012, 88GB RAM, SQL Server 2012, a 

prototype version of PDW V2 AU1, and HDP 2.0 (Windows 

Hadoop 2.2.0). On each node 80 GB of memory was allocated for 

PDW or Hadoop services. 

All experiments were run using a TPC-H lineitem table of 

different scale factors. The lineitem table was loaded into the 

Hadoop cluster as uncompressed text files. All the numbers 

reported in this section are cold cache numbers, which means 

neither PDW nor HDFS data was in memory cache.  

6.2 Index Build Cost 
In this section, we describe the cost associated with building the 

Split-Index. It took 3,265 and 32,714 seconds to build indexes 

over the 1000 and 10000 scale factor TPCH lineitem tables on the 

l_orderkey attribute respectively. The corresponding lineitem 

tables sizes are 1 TB and 10 TB, respectively. The sizes of the 

indexes are ~10% of the original data size (~80GB and ~800GB). 

6.3 Lookup Queries 
In this section, we compare the performance of the Split-Index 

against the Push-Down path, using the following query:  

SELECT * FROM lineitem  

WHERE l_orderkey <= [Variable]  

For the above query, the optimizer has three execution paths. We 

will briefly explain these three execution paths and the costs 

associated with each path.  

1. The Direct-Import execution path: In this path, the 

lineitem table is imported entirely into PDW incurring a 

“Data Import cost.” Then, the remainder of the query is 

executed inside PDW.  

  

Figure 5: Split-Index execution path performance for lookup 

queries using the traditional Push-Down and the proposed Split-

Index method for the 1TB lineitem table 

Figure 6: Split-Index execution path performance for lookup 

queries using the traditional Push-Down and the proposed Split-

Index method for the 10TB lineitem table 
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2. The Push-Down execution path: In this path, a Map job is 

submitted to the Hadoop cluster. The Map job filters the 

rows and stores the output of that job in HDFS. After the 

Map job has completed, the result of the Map job is imported 

into PDW, and the final result is returned back to the user. 

Note that currently PDW doesn’t support returning the result 

directly from HDFS. This path has a “Map cost” and a “Data 

Import cost” associated with it. 

3. Index-Scan execution path: In this path, the qualifying 

RIDs are first materialized into a HDFS directory by running 

a predicate query on the lineitem_index table. After the 

materialization, the HDFS Bridge imports the data only for 

the materialized RIDs. This path has an associated “RID 

Materialization cost” and a “Data Import cost.”  

Note that we do not show the result for the Direct-Import path as 

its performance is dominated by the “Data Import Cost” of 

importing the entire lineitem table, and adding these numbers 

obscures the comparison between the Split-Index and the Push-

Down paths.  

The results for the lookup queries are shown in Figures 5 and 6. 

For this experiment, we vary the selectivity of the predicate on the 

l_ordeykey attribute. The rifle-shot query only retrieves tuples 

with a specific l_orderkey value, whereas the range queries 

retrieve tuples within a range of l_orderkey values. The figure 

shows the time for the two paths: the Push-Down path and the 

Split-Index path. The Push-Down path starts a Map job on the 

Hadoop cluster to evaluate the predicate, and then imports the 

selected records into PDW to evaluate the remainder of the query. 

The Split-Index path, first evaluates the predicate using the B+tree 

in PDW, and materializes a list of “record-ids”. The records in 

this list are then “imported” into PDW, where the remainder of the 

query is processed.  

Figures 5 and 6 also show the breakdown of these costs for both 

methods. As can be seen in the figures, the Split-Index method is 

many orders-of-magnitude faster for highly selective queries. The 

Split-Index method outperforms the Push-Down method because 

the Split-Index method scans and imports only those tuples that 

satisfies the query predicate, while the Push-Down method scans 

the entire lineitem file during the Map job execution phase. 

Consequently, even though the imported data into PDW is the 

same for both methods, the amount of lineitem data that is 

scanned is far smaller for the Split-Index method, resulting in 

significantly better query execution time. For the other queries 

(besides the Rifle-Shot query), the Split-Index approach is faster 

than the Push-Down approach for similar reasons, but as the Data 

Import cost starts becoming a bigger component of the total query 

execution time, the performance gap between the two methods 

reduces. 

6.4 Hybrid-Scan 
We have also implemented the Hybrid-Scan (cf. Section 5) 

method that we described above. Figure 7 shows the results for 

the rifle-shot query from Figure 1 when varying the amount of 

new data that is added to the 1TB lineitem table. As can be seen in 

Figure 7, the Hybrid-Scan method outperforms the traditional 

Push-Down method when there is up to 10% new data, since the 

Hybrid-Scan method benefits from the efficient use of the Split-

Index on existing data. In addition to the amount of new data, the 

crossover point of the Hybrid-Scan method is affected by the 

query selectivity, and the data access pattern. The impact of the 

data access pattern is described below in Section 6.6. 

  

Figure 8: Index update cost when varying the amount of new 

data added to the 100GB scale and the 1TB scale lineitem tables. 

Figure 9:  Index update cost when varying the amount of data is 

deleted from the 100GB and the 1TB lineitem tables. 

 

Figure 7: Rifle-shot query evaluation with the Hybrid-Scan 

method for a 1TB scale lineitem table 
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6.5 Index Maintenance 
In this section, we describe the cost associated with incrementally 

updating the index. Figures 8 and 9 show the results when 

updating the index while varying the amount of data that is added 

or deleted to/from the 100GB and 1TB lineitem tables. (For this 

experiment, we use a 100 scale factor, i.e. 100GB, lineitem table.)  

As shown in Figures 8 and 9, when we add 10% of ‘New’ data to 

the 1TB lineitem table, it takes 2,156 seconds to incrementally 

update the index, which is roughly 66% of the initial index build 

cost. In addition, it takes 5102 seconds to incrementally update the 

index when 10% of the data is deleted from the original 1TB 

lineitem table.  

As can also be seen in Figures 8 and 9, the cost of incremental 

index update is proportional to the size of the lineitem table. 

During these incremental updates, transactional logging 

dominates the overall execution cost. An interesting option, which 

we plan to consider as part of future work, is to use a cost-based 

optimizer to drop and recreate the index if a large portion of the 

data has changed. 

6.6 Data Access Pattern 
In this section, we look at the sensitivity of the Index-Scan 

operation to the data access pattern. The results for this 

experiment are shown in Figures 10 and 11. For this experiment, 

we fix the selectivity factor at 1% and vary the access pattern by 

changing the predicate in the following query: 

SELECT * FROM lineitem  

WHERE l_orderkey <= [Variable]  

The predicates that are used in each query are shown using labels 

on the x-axis of Figures 10 and 11. From these two figures we 

observe that the Split-Index method benefits as the data access 

pattern becomes more sequential, since as the data access pattern 

becomes more sequential, the number of unique file seeks that are 

required is reduced. The Lineitem table generated by the TPCH 

DBGen tool is clustered on the l_orderkey column. Because of 

this clustered layout, the predicate “l_orderkey % 100K < 1K” 

accesses the rows in sequential order, while the predicate 

“l_orderkey%100 = 1” accesses the rows in random seek order.  

When the rows are accessed sequentially, as shown in the last two 

access patterns in Figures 10 and 11, we see significant benefit for 

the Split-Index method over the Push-Down method. Some of 

these performance benefits are the artifacts of HDFS caching and 

HDFS read ahead that is done on the client side. HDFS client 

reads the data in 4KB chunk (this parameter can be update using 

the io.file.buffer.size configuration setting, but we used the default 

value), and when the read pattern in sequential, there are a large 

number of hits (for rows) in the cache. In contrast, when there are 

random seeks, the cache hit rate is very low.  

Please note that we clear the HDFS cache before running any 

individual query, the above mentioned caching occurs during the 

execution of the query. 

6.7 Space vs. Time Tradeoffs 
In this experiment, we analyze the space versus time tradeoff 

between keeping the data in HDFS and indexing the data in PDW. 

The goal of this experiment is to quantify the space versus 

performance tradeoff when all the data is stored in PDW as 

opposed to storing the data in HDFS and selectively building 

indices (i.e. a Split-Index) on increasingly larger number of 

columns in PDW. One way of looking at these experiments is to 

think of the Split-Index as a materialized (index) view on the data 

in HDFS, and we increase the amount of index data that is 

materialized in PDW. To keep this experiment manageable, we 

only consider the case where one index is built. (An interesting 

direction for future work is to consider the more general problem 

of physical schema optimization within the context of the Split-

Index approach that is proposed in this paper.) 

For this experiment, we consider the modified TPCH Query 6, 

which forecasts revenue change: 

SELECT SUM(l_extendedprice*l_discount)  

AS REVENUE 

FROM lineitem  

WHERE l_shipdate >= '1994-01-01'  

  AND l_shipdate <  

   dateadd(mm, 1, cast('1994-01-01' as date)) 

  AND l_discount BETWEEN .06 - 0.01 AND  

               .06 + 0.01 AND l_quantity < 24 

  

Figure 10:  Sensitivity of the Index-Scan operation to the data 

access pattern for the 1TB lineitem table when the selectivity 

factor is fixed at 1%. 

Figure 11:  Sensitivity of the Index-Scan operation to the data 

access pattern for the 10TB lineitem table when the selectivity 

factor is fixed at 1%. 
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To reduce the selectivity factor of the query, we modified the 

l_shipdate predicate to consider dates within a month instead of a 

year (as in the original TPCH Q6). As the Split-Index method is 

sensitive to the data access pattern, we also sorted the 1TB 

lineitem table in HDFS by the l_shipdate attribute, to make 

accesses to the HDFS data more efficient.  

The different configurations that we considered are shown in 

Table 1. There are two categories of approaches. In the first 

category of approach, which consists of the approaches A1, A2 

and A3, the data is stored entirely in PDW, and we use larger 

amounts of disk space in PDW by varying the number of columns 

on which the PDW index is built. In the second category, i.e. the 

approaches A4 – A8, the data is resident in HDFS, and we vary  

the number of columns on which the Split-Index is built.  

The first category of approaches consumes increasing larger 

amount of space in PDW, while the second category of 

approaches takes smaller amounts of space in PDW. The first 

category of approaches is expected to have a higher performance, 

while the second category of approaches potentially has a lower 

cost. Collectively, these methods help gauge the return on 

investment (ROI) from using a more sophisticated data processing 

engine (PDW) while storing large data sets in the relatively 

cheaper HDFS storage.  

The results for this experiment are show in Figure 12. As expected 

the PDW-only approaches (A1 – A3) have far higher performance 

compared to the other methods.  

Figure 12 shows that the approaches A1, A2 and A3 have low 

execution times but have a high PDW disk footprint. In these 

approaches, the lineitem table is resident in PDW. Approaches 

A6, A7 and A8 have low execution times with a moderate PDW 

disk footprint. These approaches employ the Split-Index method 

proposed in this paper. The Push-Down approach (A4) has zero 

disk footprint in PDW, but has a very high execution time. 

Approach A8 has similar execution times as A2 and A3, but the 

disk footprint of A8 is one third that of A2 or A3. This shows the 

effectiveness of the Split-Index in balancing the query execution 

time and the PDW disk footprint. 

An astute reader may have observed that even though the 

approach A3 has a clustered index on four columns, the PDW disk 

space used by the approach A3 (~405 GB) is less than the PDW 

disk space that is used by approach A1 (~417 GB). The reason for 

this anomaly is page compression. Adding the clustered index on 

the columns l_shipdate, l_discount, l_quantity and 

l_extendedprice, results in a data layout that is sorted by these 

attributes, and that ordering of data turns out to provide better 

page compression for this dataset. 

7. Conclusions and Future Work 
In this paper we have implement a traditional database technique, 

i.e. “indexing,” to speed up queries on HDFS resident data. Our 

empirical results show that for lookup queries, our proposed Split-

Index method improves query performance by two to three orders 

of magnitude. We also show how our proposed approach has 

advantage over existing methods (though to a smaller degree) for 

selective range queries. In addition, we exploit the absence of in-

place updates in HDFS to incrementally update the Split-Index, 

and to enable a Hybrid-Scan method that can work with data that 

is only partially indexed by a Split-Index.  

As part of future work, we want to expand our approach to other 

file formats such as the RCFile and the ORCFile. The ORCFile 

has block-level indexing and exploring synergies with that 

indexing method can lead to interesting designs. We also want to 

evaluate the impact of using our methods in cloud settings where 

the network bandwidth is far more limited. We think our approach 

will likely perform even better when the network bandwidth 

between PDW compute nodes and the Hadoop nodes is limited. 

We also want to implement an index advisor that automatically 

identifies the columns that can be cached in PDW given a query 

workload.  

Table 1: Various approaches that were considered for the 

execution of the modified TPCH Query 6 

Approach Description 

A1 lineitem in PDW.  

No Index. 

A2 lineitem in PDW.  

One clustered B+ Tree PDW index on l_shipdate. 

A3 lineitem in PDW.  

One clustered B+ Tree PDW index on (l_shipdate, 

l_discount, l_quantity and l_extendedprice). 

A4 lineitem in HDFS.  

No Split-Index, and use the Push-Down approach. 

A5 lineitem in HDFS.  

One Split-Index on l_shipdate, and use the Index-

Scan approach. 

A6 lineitem in HDFS.  

One Split-Index on (l_shipdate, l_discount), and use 

the Index-Scan approach. 

A7 lineitem in HDFS.  

One Split-Index on (l_shipdate, l_discount, 

l_quantity), and use the Index-Scan approach. 

A8 lineitem in HDFS.  

One Split-Index on (l_shipdate, l_discount, 

l_quantity, l_extendedprice), and use the Index-

Scan approach. 

 

Figure 12: Execution time and PDW disk footprint for the 

different approaches that are described in Table 1. 
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