
Error-bounded Sampling for Analytics on Big Sparse Data

Ying Yan
Microsoft Research

ying.yan@microsoft.com

Liang Jeff Chen
Microsoft Research

jeche@microsoft.com

Zheng Zhang
Microsoft Research

zheng.zhang@microsoft.com

ABSTRACT
Aggregation queries are at the core of business intelligence
and data analytics. In the big data era, many scalable shared-
nothing systems have been developed to process aggregation
queries over massive amount of data. Microsoft’s SCOPE is
a well-known instance in this category. Nevertheless, aggre-
gation queries are still expensive, because query processing
needs to consume the entire data set, which is often hundreds
of terabytes. Data sampling is a technique that samples a
small portion of data to process and returns an approximate
result with an error bound, thereby reducing the query’s
execution time. While similar problems were studied in the
database literature, we encountered new challenges that dis-
able most of prior efforts: (1) error bounds are dictated by
end users and cannot be compromised, (2) data is sparse,
meaning data has a limited population but a wide range. For
such cases, conventional uniform sampling often yield high
sampling rates and thus deliver limited or no performance
gains. In this paper, we propose error-bounded stratified
sampling to reduce sample size. The technique relies on the
insight that we may only reduce the sampling rate with the
knowledge of data distributions. The technique has been
implemented into Microsoft internal search query platform.
Results show that the proposed approach can reduce up to
99% sample size comparing with uniform sampling, and its
performance is robust against data volume and other key
performance metrics.

1. INTRODUCTION
With the rapid growth in data volume, velocity and vari-

ety, efficient analysis of massive amount of data is attracting
more and more attention in industry. In an Internet company,
extracting and analyzing click streams or search logs help the
company’s mission critical businesses to improve service qual-
ity, find future revenue growth opportunities, monitor trends
and detect root causes of live-site events in a timely fashion.
At the core of these analytics tasks are decision support
queries that aggregate massive amount of data. Nowadays,

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 13
Copyright 2014 VLDB Endowment 2150-8097/14/08.

aggregation queries over big data are often processed in a
shared-nothing distributed system that scales to thousands
of machines. MapReduce and Hadoop are two well-known
software frameworks. Microsoft’s SCOPE is another instance
in this category [4, 22]. It combines MapReduce’s explicit
parallel executions and SQL’s declarative query constructs.
Today inside Microsoft, SCOPE jobs are running on tens of
thousands of machines everyday.

While a shared-nothing distributed system provides mas-
sive parallelism to improve performance, aggregation queries
are still expensive to process. The fundamental cause is
that query processing by default consumes the entire data
set, which is often hundreds or thousands of terabytes. Our
investigation in one cluster reveals that 90% of 2,000 data
mining jobs are aggregation queries. These queries consume
two-thousand machine hours on average, and some of them
take up to 10 hours. They exhaust computation resources
and block other time-sensitive jobs.

One technique to cope with the problem is sampling:
queries are evaluated against a small randomly-sampled data,
returning an approximated result with an error bound. An
error bound is an interval in which the real value falls with
a high possibility (a.k.a. confidence). Such an approximated
result with an error bound is often good enough for analy-
sis tasks. For instance, a study on a product’s popularity
along the time dimension may not care for the accurate sales
number in a particular time, but only the trend. An analy-
sis identifying the most promising sales region may be only
interested in relative positions. A smaller amount of data
to be processed improves not only query response time, but
also the overall system throughput.

Data sampling for aggregation queries has been extensively
studied in the database literature as approximate query pro-
cessing [1, 3, 6, 10, 16]. The theory foundation lies in statis-
tical sampling [11, 15]: given a uniform sample from a finite
or infinite population, what is the estimation’s error bound?
Existing techniques utilize the theory and proceed with dif-
ferent system settings. For example, online aggregation [1]
assumes that data is first shuffled and then processed in a
pipelined execution, updating estimations and error bounds
continuously. Query execution can be terminated whenever
the error bound reaches a satisfactory level. Alternatively,
a number of techniques use different sampling schemes to
build data sketches offline and use them to answer queries
at runtime.

When we tried to apply these known technologies in our
production environment, however, we encounter a few critical
challenges, summarized as below:

1508

• Tight error bounds. Aggregation queries of data mining
jobs in our environment are not standalone queries. Rather,
they are often data providers for later consumers in the
analytics pipeline. As such, the adoption of sampling
is predicated on tight error bounds that must not be
compromised.

• Sparseness of data. From the perspective of sampling,
the sparseness of data depends on both the population and
the value range. A medium or large population may still
be deemed sparse by the theory of statistical sampling, if
the value is distributed over a very wide range. In such
cases, uniform sampling may require sample size as large
as the raw data size in order to satisfy the error bound
requirement. This brings no or negative performance gains,
due to sampling overhead. The phenomena of sparse
data are not uncommon in the production environment.
Indeed, the 80/20 rule applies in many domains in practice.
Figure 1 shows a typical data distribution over which
an average needs to be computed; the pattern is long-
tail. Uniform sampling with 20% error bound and 95%
confidence needs to consume 99.91% of the data.

The unique combination of error bound requirements and
sparse data invalidates most existing techniques. Conven-
tional offline sampling schemes do not provide commitments
to error bounds, but only promise to minimize them [1, 16,
3]. Other techniques, such as online aggregation [10] and
bootstrapping [12], can provide an error bound guarantee.
But they do not target sparse data intentionally. As a result,
their executions often cannot stop early and have to process
almost all data before the error bound requirement can be
satisfied.

Intuitively, to deal with the above problems, error-bounded
sampling must understand the data distribution, which is
the central theme of this paper. This will translate into
a more expensive way of generating samples. Such cost
can be absorbed if samples can be shared among queries.
Fortunately, this is the case in our production environment,
as shown in Table 1. Among the 2,000 jobs we analyzed, 3
inputs (0.1%) are shared by more than 600 jobs and 37 inputs
(1.2%) are shared by over 100 jobs. These jobs often share
many commonalities on targeted attributes, if not completely
the same. It means we can afford higher expenses on building
samples of these inputs for the targeted attributes. Moreover,
the cost of error-bounded sampling can further be amortized,
if we can incrementally maintain samples upon updates. As
we will discuss later, this is the most effective if/when data
distributions change slowly over time.

Table 1: Inputs shared by multiple jobs
No. of Inputs No. of Jobs Sharing

3 ≥ 600
37 ≥ 100
680 ≥ 10
1700 ≥ 2
580 0

1.1 Our Contribution
In this paper, we propose a new sampling scheme to address

the aforementioned challenges. The technique is a variant
of stratified sampling [13] and relies on the insight that we

 50

 100

 150

 200

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Po
pu

la
tio

n

Value

min = 0.1 max = 20777

AVG = 101

Figure 1: Sparseness of one representative produc-
tion Data

can only reduce sampling rates and secure error bounds for
sparse data if we have prior knowledge of its distribution.
Consider the distribution in Figure 1, we can partition the
data into two buckets, one covering the head and the other
covering the rest. The small value range of the first bucket
leads to a small sampling rate. As most of the data fall into
the first bucket, the overall saving is substantial, even though
(in the extreme case) all data in the second bucket must be
included.

Bucket partitioning with bucket-dependent sampling rates
is called a sampling scheme. Applying a sampling scheme
to raw data generates a sample sketch. The total saving
is achieved when we re-write eligible queries to run against
the sketch, instead of the original data. Intuitively, deriving
the best sampling scheme is a data-dependent optimization
problem: given a complete view of the data and a user-
specified error bound, find the sampling scheme such that
the total sampled data is minimized. Unlike existing work
that sets a space constraint, our formalization focuses on
minimizing sample size while securing error bounds. Indeed,
most application users we experienced are interested in result
quality and response time, instead of space constraint.

The first contribution of this paper is identifying new
requirements and challenges of data sampling for aggrega-
tion queries in the production environment. We present an
algorithm for finding an optimal scheme of error-bounded
sampling with the complexity of O(N4) (N being the num-
ber of data points), and a more practical heuristic algorithm
with O(N). The algorithm has an appealing property that
its performance is no worse than the uniform sampling.

The most straightforward application of our technique is
to build a sample sketch before queries are issued. As such,
once data is updated, the sketch must be rebuilt, before
it can answer new queries. This is a nuisance, as data is
continuously updated in the product environment. Our sec-
ond contribution is mechanisms that incrementally maintain
sample sketches when recurring queries have temporal over-
laps of inputs between successive invocations, e.g., landmark-
or sliding-windowed queries. Incremental maintenance en-
ables us to save computation resources for building sample
sketches, without sacrificing error bound guarantees.

Our final contribution is a number of experiments we
have run against real-world production jobs in SCOPE, with

1509

and without our technique. These experiments have shown
promising results: the saving is substantial and across the
board, comparing to uniform sampling. For some production
queries, our approach can save up to 99% of the sample size,
or a thousand times of reduction. Moreover, our technique is
robust against changes of data volume and other performance
metrics. The lessons we learned here is also general: opti-
mizations of big data computing demand a tighter coupling
with data itself.

The remaining of the paper is organized as follows. Sec-
tion 2 introduces preliminaries on data sampling for aggre-
gation queries, and describes when and why existing tech-
niques fail. Section 3 formalizes the problem and presents
an algorithm that delivers the optimal solution, and the
more practical heuristic algorithm. Error-bounded sketch
updates are introduced in Section 4. Experimental results
are reported in Section 5. Section 6 discusses related work.
Section 7 concludes the paper.

2. PRELIMINARIES
We start by introducing sampling principles for aggregation

queries. We limit ourself to queries with a single AVG
aggregation in this and the next section, for ease of exposition
of sampling principles and our new sampling schemes. We
will extend the technique to a wider range of queries in
Section 4.1.

An aggregation query Q specifies a set of GROUP-BY
attributes and an aggregation attribute A over a source—
either a structured table or a unstructured text file (e.g.,
a log file). Let G = {g1, . . . , gm} be the set of non-empty
groups, and Xg = {xg1, . . . , x

g
Ng
} be A’s values in group g.

The AVG value for group g, denoted by Xg, is computed by
aggregating the Ng values in g.

A sample over group g is a subset of ng (≤ Ng) values.
The estimated AVG value for group g based on this sample
is:

X̂g =
xg1 + . . .+ xgng

ng

and the estimation’s error is:

εg = |Xg − X̂g|

A sample is a probabilistic event. Two independent sam-
ples may yield different estimations and errors. We say that a
sampling scheme for group g satisfies the error bound ε0 > 0
under confidence δ ∈ [0, 1], iff among M independent samples
produced by the scheme, at least M · δ estimations satisfy
εg ≤ ε0.

A sampling scheme for query Q is a union of sampling
schemes for all groups G, so that all groups’ estimations are
close to their real values. It is not uncommon that users
may only be interested in groups above/below a certain
population. For instance, revenue analysis may focus on
either top or bottom contributors, depending on application
scenarios. In such cases, we may discard uninterested groups
when designing a sampling scheme.

A common sampling scheme for a group of values is uniform
sampling. That is: each value in group g is randomly kept or
discarded with equal probability. A simple implementation
is to generate a random number for each value to determine
whether or not this value is kept. If we want to sample
a fixed number of values from g, the reservoir sampling
algorithm [18] can be used.

Given a confidence δ and sample size ng, the Hoeffding
equation [11] from statistical sampling defines the estima-
tion’s error bound:

εg = H(ng, δ) = (bg − ag)

√
1

2ng
ln

2

1− δ (1)

where ag and bg are lower and upper bounds of the values in
group g. By this equation, given a user-specified error bound
ε0, we may compute how much data needs to be sampled so
that the estimation’s error bound is at most ε0:

ng = min

⌈

(bg − ag)2 ln 2
1−δ

2ε20

⌉
Ng

(2)

The Hoeffding equation originally targets sampling from
an infinite population. Alternatively, it can be compensated
by a factor for a finite population [15], yielding the sample
size as:

ng =

1

2ε20

(bg − ag)2 ln 2
1−δ

+
1

Ng

 (3)

When the error bound ε0 is large or bg − ag is small,
Equation 2 is equivalent to Equation 3. In other cases,
Equation 3 provides a smaller sample size. Both equations
provide theoretical guarantees on the error bound under
the confidence. We will only be discussing Equation 1 (or
Equation 2) in the following for simplicity. All the techniques
and analysis presented later can also be applied by replacing
Equation 2 with Equation 3.

Error-bounded uniform sampling scheme based on Equa-
tion 2 is straightforward. Its problem, however, is that when
the values in group g spread over a wide range, the mini-
mal data required to satisfy the error bound is close to the
original data. Specifically, ng is proportional to (bg − ag)2
in Equation 2. When bg − ag is large and Ng is not large
enough, ng/Ng will be close to 1. It means that, in order
to satisfy the error bound, sampling can hardly get rid of
any data; query execution over the sample would produce
limited performance gains, or even penalties overall due to
sampling overhead. In this paper, we refer to the data over a
wide range (i.e., large bg − ag) but with a limited population
(i.e., small Ng) as sparse. Even when data volume increases,
sparseness problem still exists, especially when the number
of GROUP-BY attributes increase.

3. ERROR-BOUNDED STRATIFIED SAM-
PLING

Our solution to big sparse data is based on the insight
that we may only reduce the sample size and secure the error
bound if we have better knowledge of Xg. Specifically, if we
partition the range [ag, bg] into buckets [a1g, b

1
g]∪ . . .∪ [akg , b

k
g],

we will be able to reduce sampling rates of individual buckets
due to their smaller (big−aig) in Equation 1, thereby possibly
reducing the total sample size too.

A simple sampling scheme based on the above intuition is
to equally partition the data range and apply the Hoeffding
equation to sub-ranges using the global error bound ε0. While
this simple scheme may reduce the sample size to some

1510

extends, it ignores the data distribution and may not lead
to a small sample. First, equal-length partitions mean that
every sub-range is sampled in the same way, because big − aig
and ε0 are the same across all sub-ranges. But sub-ranges
do not have to have the same error bound, as long as the
global error bound requirement is satisfied. Intuitively, some
sub-ranges are more important than others in influencing the
global estimation and the error bound. This flexibility allows
us to increase the error bounds for less critical sub-ranges
and reduce the total sample size. Second, the number of sub-
ranges is still a parameter that needs to be determined. More
partitions do not necessarily lead to a smaller sample size.
As we will discuss later, the sample size of a sub-range must
be an integer. Due to integer rounding, the total sample size
can only increase when we keep adding more partitions. In
Figure 2, we compare equal-length partitioning and variable-
length partitioning (using the algorithm introduced later).
As we can see, even if we can find the optimal number of
partitions, equal-length partitioning still produces a larger
sample size than variable-length partitioning does.

 100

 200

 300

 400

 500

 600

 700

 800

 50 100 150 200 250 300 350 400 450 500

Sa
m

pl
e

Si
ze

Number of Partitions

Equal Partition
Stratified

42 partitions, size 199

Figure 2: Equal-length partitioning v.s. variable-
length Partitioning

We need an algorithm to find a sampling scheme that
leads to an optimal sample size, while satisfying the global
error bound requirement. In this section, we introduce
error-bounded stratified sampling, a variant of stratified
sampling [13], that aims to minimize the sample size while
satisfying the error bound requirement. For ease of dispo-
sition, we only consider designing a sampling scheme for a
single group of values X = {x1, . . . , xN} and omit all g’s in
sub- or super-scripts.

3.1 Problem Definition
Assume X = {x1, . . . , xN}, xi ∈ [a, b] are sorted. A strati-

fied sampling scheme specifies two types of parameters:

1. Bucket partitioning. The sampling scheme partitions the
range into k buckets, Bi = [ai, bi], i = 1, . . . , k. Bucket
Bi contains Ni values.

2. Buckets’ error bounds. Given bucket Bi’s boundaries
[ai, bi] and its error bound εi, Equation 2 determines
the number of values ni must be sampled out of Bi’s
population Ni. A special case is when εi = 0, ni = Ni,
i.e. all data in the i-th bucket is kept.

Let X̂i be the estimation using the ni values in Bi. The
total sample size is n = n1 + . . .+ nk. The global estimation

X̂ and the error bound ε0 and those from individual buckets
satisfy the following equations:

N = N1 + . . .+Nk (4)

X̂ =
N1 · X̂1 + . . .+Nk · X̂k

N
(5)

ε0 =
N1 · ε1 + . . .+Nk · εk

N
(6)

Problem 1 (Error-bounded Stratified Sampling).
Given N sorted values {x1, . . . , xN}, xi ∈ [a, b], an error
bound ε0 and a confidence δ, find a partition of [a, b] and the
error bound εi for partition Bi, such that

1.
N1 · ε1 + . . .+Nk · εk

N
≤ ε0, and

2. n1 + . . .+ nk is minimized.

Note that in the problem definition, we do not limit the
number of buckets k.

3.2 An Optimal Solution
We present a dynamic programming algorithm that gives

an optimal solution to Problem 1. At the first glance, buck-
ets’ ranges and error bounds are parameters of a stratified
sampling scheme that form the search space. An algorithm
needs to search the space to find an optimal sampling scheme
that yields the minimal sample size. However, error bounds
from individual buckets may not be integers and we cannot
enumerate them to search the whole space. Our algorithm
is derived from an alternative view: while error bounds are
innumerable, sample size can be enumerated. The algorithm
enumerates the sample size from 1 through N (i.e., all data)
and finds the minimal size that satisfies the error bound
requirement.

Consider N sorted values X = {x1, . . . , xN}. We define
Emin(xi,m) to be the minimal error bound that any stratified
sampling scheme can achieve when sampling m values from
[x1, xi] to estimate the AVG value in this range. Note that
[x1, xi] may consist of more than one bucket. When m = 1
or m = i, Emin(xi,m) is given by:

Emin(xi, 1) = H(1, δ) = (xi − x1)

√
1

2
ln

2

1− δ (7)

Emin(xi, i) = 0 (8)

In Equation 7, only one value is sampled. The error bound
is given by the Hoeffding equation with sample size set to
1. In Equation 8, the minimal error bound is 0, because all
data are processed and the estimation is accurate.

When m is between 1 and i, Emin(xi,m) is computed from
one of the two cases: (1) the m values are sampled uniformly
from [x1, xi], or (2) they are sampled from two or more
buckets with different sampling rates. For the first case,
Emin(xi,m) is given by the Hoeffding equation.

For the second case, we decompose the computation of
Emin(xi,m) into two components: let [xc+1, xi] be the right-
most bucket of [x1, xi], and [x1, xc] be the remaining sub-
range. We designate s values sampled from the sub-range,
and the remaining m− s values uniformly sampled from the
rightmost bucket. The global error bound of the m values

1511

from [x1, xi] is given by Equation 6 that combines the two
sub-ranges’ error bounds:

Emin(xc, s) · c+H(m− s, δ) · (i− c)
i

By the definition of Emin(xi,m), we need to find c and s that
lead to the minimal error bound of all possible rightmost
buckets when sampling m valuse.

Combining the two cases, we have:

Emin(xi,m) = min

Edmin(xi,m)

(xi − x1)

√
1

2m
ln

2

1− δ
(9)

Edmin(xi,m) = arg min
1≤c<i

1≤s≤min{c,m−1}

(
Emin(xc, s) · c+

(xi − xc+1)

√
1

2(m− s) ln
2

1− δ · (i− c)
)/

i

By Equation 9, we can compute Emin(xN , 1) through
Emin(xN , N). The optimal solution to Problem 1 is the
minimal m such that Emin(xN ,m) ≤ ε0. Backtracking mmin

will give us buckets’ ranges and sampling rates.

Theorem 1. The complexity of the algorithm based on
Equation 9 is O(N4).

To compute Emin(xN , 1) through Emin(xN , N), there are
O(N2) entries to fill. To compute each entry, the min oper-
ator in Equation 9 iterates through c and s, and compares
O(N2) values. The final step on finding mmin is O(N).
Altogether, the algorithm’s complexity is O(N4).

3.3 Heuristic Algorithms
The algorithm presented in last section has a high com-

plexity. Our experience with SCOPE is that any sampling
algorithm whose complexity is higher than O(N2) will intro-
duce considerable cost that outweighs sampling’s benefits.
In this section, we present a heuristic algorithm that compro-
mises the optimality but improves efficiency. We show that
while the algorithm may not lead to the minimal sampling
size, the derived stratified sampling cannot be worse than
conventional uniform sampling and often lead to significant
improvements.

One cause of the algorithm’s high complexity is variable
error bounds of individual buckets. A simplification is that
we limit each bucket’s error bound to be the same, i.e.,
ε1 = ... = εk = ε0. By Equation 6, the global error bound
requirement is obviously satisfied.

When we set εi = ε0, i ∈ [1, k], an O(N2) algorithm can
find the global optimum: let S(xi) be the minimal sample
size between [x1, xi] while each bucket’s error bound is ε0.
A dynamic programming algorithm that finds the minimal
sample size is illustrated in the following equation:

S(xi) = arg min
1≤j≤i−1

(
S(xj−1)+min

{ (xj − xi)2 ln 2
1−δ

2ε20
, Ni−Nj

})
Instead of seeking the global optimum, we use a local-

optimum search heuristic to further reduce complexity. The
pseudo code is shown in Algorithm 1. Given an array of
sorted values, the algorithm scans the array from the head to
the tail. For each new value encountered, the algorithm tries

to merge it into the current bucket (Line 5). If the merging
extends the bucket’s value range and increases the number
of values to be sampled under the error bound ε0, a new
bucket is created (Line 10 through 12); otherwise, the value
is merged into the bucket and the bucket’s range is updated
(Line 8). The algorithm’s complexity is O(N).

Algorithm 1: A linear algorithm for finding an error-
bounded stratified sampling scheme

Input: An error bound ε0, a sorted array of values
X = {x1, . . . , xN}

Output: A set of buckets B = {B1, . . . , Bk}
1: Bcurr = [x1, x1], Bcurr.SampleSize = 1
2: B = {Bcurr}
3: i← 2
4: while i ≤ N do
5: Let Bt = [Bcurr.lower, xi]
6: Compute Bt.SampleSize by Equation 2
7: if Bcurr.SampleSize + 1 ≤ Bt.SampleSize then
8: Bcurr = Bt
9: else

10: Bnew = [xi, xi], Bnew.SampleSize = 1
11: B ← B ∪ {Bnew}
12: Bcurr = Bnew
13: end if
14: i← i+ 1
15: end while
16: return B

Theorem 2. Given a user-specified error bound ε0, the
stratified sampling scheme given by Algorithm 1 samples no
more data than uniform sampling.

Proof. If the algorithm returns one bucket, stratified
sampling is equivalent to uniform sampling. Next, we prove
that stratified sampling with two buckets samples no more
data than uniform sampling.

Let [x1, xN] be the value range, and [x1, xc] and [xc+1, xN]
be the two buckets’ ranges. From the Hoeffding equation,
we have:

ln
2

1− δ ·
(xN − x1)2

2ε2

≥ ln
2

1− δ

[
(xN − xc+1)2

2ε2
+

(xc − x1)2

2ε2

]
(10)

By case analysis, we can also prove the following inequality:

min
{
x+ y,N

}
≥ min

{
x,N1

}
+ min

{
y,N2

}
(11)

where N = N1 +N2. Putting Equation 10 and 11 together,
we have:

min

{
ln

2

1− δ ·
(xN − x1)2

2ε2
, N

}
≥ min

{
ln

2

1− δ
(xN − xc+1)2

2ε2
, N1

}
+

min

{
ln

2

1− δ
(xc − x1)2

2ε2
, N2

}
The left hand of the inequality is the sample size when
applying uniform sampling. The right hand is the total
sample size when using uniform sampling for two buckets.

1512

For stratified samplings with more than two buckets, we
can prove by induction: let [xj , xN] be the rightmost bucket
and [x1, xj−1] be the remaining range. We first show that
using two or more buckets for [x1, xj−1] is no worse than using
one bucket. Then we show that combining [x1, xj−1] and
[xj , xN] is no worse than uniform sampling over [x1, xN].

Even when the data is uniformly distributed, stratified
sampling can still drive down the sample size through range
partitioning, because inequality functions 10 and 11 are
distribution-oblivious. However, they do not always imply
“the more buckets the better” claim. Intuitively, when xN −
x1 is small enough, adding more buckets would not help.
In particular, the sample size computed by the Hoeffding
equation must be rounded to integers. When adding buckets
only changes decimals, there is no need to do so.

4. OFFLINE SAMPLING
This section develops necessary steps and extensions in or-

der to apply the core algorithm to real-world production work-
loads. We first extend single-AVG queries to a wider scope of
queries. We then discuss generating sampling schemes offline,
which is then used to build sample sketches to answer queries.
Finally, we study the problem of incremental maintenance
of sample sketches in the face of changing data, and present
algorithms for two most common update modes.

4.1 Beyond a Single AVG Aggregation
So far we have been focusing on queries with a single AVG

aggregation. We extend the proposed sampling technique in
two ways: queries with SUM and COUNT aggregations, and
queries with multiple aggregations.

A COUNT aggregation calculates the number of records
from an input. Unlike the average, this number is propor-
tional to input size, a parameter that cannot be derived from
a sample but only through a full scan. Fortunately, this
number is usually computed once when a sample is built.
It is later stored as meta-data and does not need online
computations any more.

Given an AVG estimation and the data size, a SUM aggre-
gation can be easily computed by multiplying the average
and the full data size. The SUM estimation’s confidence is
the same as that of AVG. Its error bound is εavg ·N where
εavg is the error bound of the AVG estimation and N is the
data size. In general, any aggregation that is an algebraic
combination f of basic aggregations (i.e., SUM, AVG or
COUNT) can be estimated by combining their individual
estimations f(e1, . . . , en). The error bound is given by the
minimal and the maximal values f(e1 ± ε1, . . . , en ± εn) can
achieve.

When a query includes more than one aggregation (over
more than one column), we may decompose the original query
into multiple sub-queries, and generate one sample for each
aggregation. This approach requires efforts to decompose
the input query and the subsequent step to join sub-queries’
results. Alternatively, we may produce one sample that
serves all aggregations. This can be done by union sample
schemes of each individual columns. The combined scheme is
essentially a voting machine: a row or record from the input
is sampled if any scheme says so. While this mechanism may
over-sample in the sense that a sample may not be needed for
all aggregations, it ensures that all aggregations’ estimations
can satisfy the error bound requirements.

4.2 Sampling Scheme and Sample Sketches
The output of a sampling algorithm for a group of values is

a sampling scheme. A sampling scheme is a set of buckets B =
{B1, . . . , Bk}, each represented as a triple Bi = 〈li, ui, εi〉.
εi is Bi’s error bound, and determines how many records
Bi is expect to receive, as specified by Equation 2. We use
εi instead of ε0 or ni to deal with the case when we need
to reuse the sampling schemes over changing data, as will
be clear later. Also, if εi = 0, Bi’s sample size ni is as
large as its population Ni. When there are multiple groups
g1, . . . , gn, the sampling scheme is the union of the sampling
schemes of all groups: {Bg1 , . . . ,Bgn}.

We can use a sampling scheme to sample raw data and
produce a sample sketch. A sample sketch is basically a
subset of raw data. In addition to raw data’s columns,
each record in the sketch contains one additional column
ScaleFactor. The value of this column is Ngi

j /n
gi
j , the inverse

of the overall sampling rate of bucket Bgij to which the record
belongs. This column is maintained to facilitate estimating
aggregations that are scale-dependent, e.g., SUM, so that
during query answering we can reconstruct the estimation of
the real scale. A similar technique is introduced in [1].

To answer queries using sketches, we need to rewrite
queries by replacing the input with the sample sketch. Scale-
independent aggregation operators, such as AVG, are un-
changed; scale-dependent aggregation operators, such as
SUM and COUNT, need to incorporate ScaleFactor to recon-
struct the estimation for the raw data’s scale. Similar to the
approach introduced in [1], a SUM aggregation SUM(X) is
rewritten to SUM(X∗ScaleFactor); a COUNT aggregation
COUNT(∗) is rewritten to SUM(ScaleFactor).

Given a sampling scheme, a sketch building processor com-
putes a sample sketch by scanning the raw data. For each
record/row scanned, the processor finds the group gi and
the bucket Bgij that this record falls in. The processor then
determines whether this record should be kept or discarded,
according to its error bound εgij : εgij specifies how many

records (i.e., ngij) must be kept in bucket Bgij . This is imple-
mented by inserting records into a reservoir and randomly
replacing records in the reservoir after it is full. This is also
known as the reservoir sampling algorithm [18]. After all
data is scanned, bucket Bgij ’s population Ngi

j is also known,
from which ScaleFactor can be computed.

Overall, building a sample sketch consists of two steps:
generating a sampling scheme and building a sample sketch.
These two steps need to scan raw data twice, incurring non-
negligible cost. However, this generated sample sketch can be
used by multiple queries many times, effectively amortizing
the cost to a low level.

4.3 Incremental Maintenance of Sample
Sketches

The sampling algorithms proposed in Section 3.3 all have
complexities no lower than O(N), which can still be deemed
expensive when the data scale is very large. While a sample
sketch is only built once and can be re-used by many queries,
re-building a new sketch from scratch upon data updates
will incur significant overhead, especially when updates are
frequent.

A common approach to circumvent this overhead is to
incrementally update the sample sketch, so that each time
only updated data is processed. This approach fits our appli-
cations well, because our production jobs mainly target logs

1513

that continuously receive new data on an hourly or daily ba-
sis. We are particularly interested in two update modes that
are widely observed in production jobs: landmark windowed
queries and sliding windowed queries. Landmark windowed
queries target data from a landmark to present.When new
logs are appended, they are patched to the sample sketch.
Sliding windowed queries focus on logs in a fixed-length win-
dow. As new logs arrive, out-of-interest old logs are removed
from the sketch. In either cases, logs are immutable, and the
queries only see log additions and deletions.

In the following, we first analyze the maintenance guideline
and then discuss detailed maintenance mechanisms of the
two modes.

4.3.1 Error-bounded Maintenance
A sampling scheme of a group of values is represented as
B = {B1, . . . , Bk} and Bi = 〈li, ui, εi〉. When new data is
added or old data is deleted, samples in individual buckets
are changed too. Let Bi’s new sample size and population
be n′i and N ′i after updates. Bi’s new error bound ε′i is
computed by Equation 12:

ε′i =

 (bi − ai)

√
1

2n′i
ln

2

1− δ n′i < N ′i

0 n′i = N ′i

(12)

Incremental maintenance algorithms must ensure that the
global error bound ε′ is still no bigger than the initial error
bound requirement ε0 after the updates, i.e.,

ε′ =
N ′1 · ε′1 + . . .+N ′k · ε′k

N ′1 + . . .+N ′k
≤ ε0 (13)

When the above equation cannot be satisfied, the sample
sketch cannot be incrementally updated; a new sample sketch
must be re-built from scratch.
Remarks Incrementally updating a sample sketch is equiv-
alent to using the old sampling scheme to sample the new
snapshot. While by Equation 13 we can ensure the error
bound requirement is still satisfied, the updated sample’s size
may not be optimal, because the new snapshot may describe
a new distribution, demanding a new sampling scheme to
achieve optimality. Nevertheless, incremental maintenance
is still appealing to our applications. Logs received from
various sources often reflect applications’ states or users’ be-
haviors. These signals usually change gradually, and so do
the underlying data distributions. A sampling system using
an old scheme can still keep the sample size at a low level,
while benefiting from the low maintenance overhead. From
an engineering perspective, we may periodically re-compute
the sampling scheme, e.g., once in a month, and use the same
scheme to incrementally maintain the sample sketch during
the time window.

4.3.2 Landmark Windowed Queries
A landmark windowed query is over the data from a land-

mark to present. Once a sample sketch is built over an old
snapshot, newly added data is incrementally patched to the
sketch. In other words, the maintenance is insertion only.

Maintaining a sample sketch upon data insertions is similar
to the sample building procedure. When a new data record
xi arrives, the maintenance algorithm inserts it to the sketch
with a certain probability. Specifically, the algorithm first
looks up bucket Bi to which this record belongs, and increases

Bi’s population to N ′i = Ni+1. With reservoir sampling, this
new record randomly replaces an existing record in Bi. Since
Bi’s population is changed to N ′i , the ScaleFactor column of
all the records in the bucket are updated as well.

A special case during the maintenance is that a new record
xi may fall out of all existing buckets. It means that this new
value is out of the boundaries of the prior data distribution.
Such new records must all be kept in the sample sketch,
with ScaleFactor = 1. Intuitively, we have no knowledge
of the data distribution out of existing boundaries. The
only way we are able to secure the error bound is that we
sample all of them. It is equivalent to adding a new bucket
Bxi = 〈xi, xi, ε = 0〉 to the sampling scheme B.

By using the above maintenance algorithm, the error bound
in the updated sample sketch is always no bigger than the ini-
tial error bound. This is because the error bounds of existing
buckets never change and the error bounds of new buckets
are always zero. Overall, error bound is still guaranteed.

4.3.3 Sliding Windowed Queries
A sliding windowed query targets data in a fixed-length

window. As new data arrives, it is patched to the sample
sketch. Old data out of interests is removed from the raw
data and the sketch. Let B = {B1, . . . , Bk} be a group’s
sampling scheme. We also use Bi to denote a set of sampled
records in this bucket. Let Nd

i be the number of old records
in the raw data, and ndi be the number of old records in
bucket Bi in the sketch. Let Na

i be the number of new
incoming records in the raw data. While all ndi old records
must be removed from Bi, only a fraction of Na

i records may
be eventually added to the sketch, because not all new data
has to be sampled. We denote this number as nai ≤ Na

i .
After data is removed and added to the sketch, a bucket

Bi’s population becomes

N ′i = Ni −Nd
i +Na

i

The number of sampled records in Bi is

n′i = ni − ndi + nai

Given N ′i , n
′
i and Bi’s boundaries [ai, bi], Equation 12 gives

Bi’s new error bound. The new sketch must satisfy the
global error bound, as specified by Equation 13.

Among all the above variables, Nd
i , N

a
i and ndi are known.

A maintenance algorithm needs to find nai , so that each
bucket knows its reservoir size. This is an integer program-
ming problem: the algorithm aims to find na1 , . . . , n

a
k, such

that the size of the updated sample sketch is minimized:

min
∑k
i=1(ni − ndi + nai)

subject to

∑k
i=1N

′
i ·G(N ′i , n

′
i, ai, bi, δ)∑k

i=1N
′
i

≤ ε0

0 ≤ nai ≤ Na
i

nai ∈ Z

where G(·) is a shorthand for Equation 12. Note that nai has a
finite space, from 0 to Na

i . It is possible that any value in the
space cannot satisfy the global error bound requirement. In
such a case, the sketch cannot be incrementally maintained,
and must be re-built from scratch.

Integer programming is known to be NP-hard. We propose
a heuristic algorithm (see Appendix) to find a maintenance
scheme for the sketch. The idea is to consider buckets with
high populations first. A record added to these buckets

1514

is likely to have more impacts in reducing the global error
bound than the one added to low-population buckets, because
the global error is a weighted sum. The algorithm iterates
through all buckets, from the highest population to the lowest
one, and uses a local optimal heuristic in deciding how much
data to be added to each bucket.

5. EXPERIMENTAL STUDY
In this section, we report an experimental study of error-

bounded sampling. We implemented the proposed techniques
in SCOPE and evaluated their performance. All experiments
were run in a cluster of 200 nodes. To our best knowledge, no
existing techniques target big sparse data with error bound
guarantees. Hence, we compare our approaches against error-
bounded uniform sampling that randomly samples data in
each group. The sample size is given by Equation 2 for each
group. This is also the approach used in a recent system
that promises error bounds [2]. In the following figures, we
use Stratified to denote our approach and Uniform to denote
the uniform sampling.

We drive the experiments with both synthetic and pro-
duction workloads. For the latter, we use log streams that
consist of various search logs whose sizes are 20 TB on aver-
age. We select 50 representative queries out of hundreds of
daily jobs. These queries are in the following template:

SELECT C1, C2 ... Cn,

AggFunc(A1), AggFunc(A2)... AggFunc(Am)

FROM LogStream PARAMS(StartDate, EndDate)

WHERE Predicates

GROUP BY C1, C2 ...Cn;

The number of GROUP-BY attributes n varies from 2 to 5,
and the number of aggregations m ranges from 1 to 3. The
aggregation operators are SUM, COUNT and AVG. These
queries probe different base logs, ranging from one day to
one month. The selectivities of the queries’ predicates vary
from 0.01% to 80%.

All errors in the experiments are reported as relative errors,
to help readers understand approximation introduced by
sampling without revealing application contexts.

5.1 Effects of Data Skewness
Sparse data is the major factor that invalidates most prior

efforts. In this subsection, we evaluate the effectiveness
of our sampling technique over sparse data. We first use
synthetic data sets whose sparseness is quantifiable. We
then randomly select 10 production queries to show the real
sparseness of production data and examine the effectiveness
of our approach.

To quantify data sparseness, we use the Zipf distribution
whose skewness can be controlled by the z-parameter. When
z is 0, the data is uniformly distributed; When z is 1.5, data
is highly skewed (and sparse by our definition). We generate
a number of single-group data sets whose values range from
1K to 100K. Each data set has the same size: 10K. For a
fair comparison, we fix the mean to 500. The aggregation
operator is AVG.

First, we examine the effects of data skewness under dif-
ferent error bound constraints. We fix the value range to
1K, confidence to 95% and vary the error bound and data
skewness. As shown in Figure 3(a), our approach generates
much smaller samples than the uniform sampling under dif-
ferent error bounds. For the uniform sampling, when the

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1% 5% 10% 20% 50%

Sa
m

pl
in

g
R

at
e

(%
)

Relative Error Bound

Stratified Z=0
Stratified Z=0.8
Stratified Z=1.5
Uniform Z=0
Uniform Z=0.8
Uniform Z=1.5

(a) Sampling rate with data skewness

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1% 5% 10% 20% 50%

Sa
m

pl
in

g
R

at
e

(%
)

Relative Error Bound

Stratified 1K
Stratified 10K
Stratified 100K
Uniform 1K
Uniform 10K
Uniform 100K

(b) Sampling rate with value range

Figure 3: Effects of data sparseness

error bound is small, even if data is uniformly distributed
(z = 0), the sampling rate is still close to 100%. When data
is more skewed (z = 0.8 and 1.5), uniform sampling shows
similar performance. The reason is that uniform sampling
is distribution-oblivious; the Hoeffding equation is based on
the value range and the error bound, which in this case yield
a very high sampling rate. By comparison, our approach is
distribution-aware. It creates buckets by data distribution.
When data becomes more skewed, some buckets have higher
populations and smaller sampling rates. Though we may
have to use a high sampling rate for the remaining buckets,
their populations are not significant. Therefore, the total
sample size is small.

Second, we evaluate sampling performance with different
value ranges. We change the value range from 1K to 100K
and fix z to be 1.5. The sampling rates of both approaches are
compared in Figure 3(b). When the value range increases,
by Equation 2, the sample size increases. Therefore, the
uniform sampling generates larger samples. When the value
range increases to 10K, the uniform sampling samples almost
100% of data even when the error bound reaches 20%. When
the value range becomes 100K, it almost needs to sample
the whole data set to satisfy the 50% error bound. By
comparison, our stratified approach always generate small
samples with different value ranges.

Next, we inspect the impact of confidence by varying it
from 50% to 95%, with a fixed value range 1K and an er-
ror bound 5%. As illustrated in Figure 4, as confidence
increases, the sample size of the uniform sampling increases
dramatically However, our approach shows stable perfor-
mance. When the confidence becomes 95%, the uniform
sampling needs to sample 7 times more data than the strati-
fied approach does in order to satisfy a 5% error bound.

1515

From the above experiments, we conclude that our strat-
ified sampling performs much better under different data
sparseness, error bound and confidence settings than the
baseline of the uniform sampling.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

50% 55% 60% 65% 70% 75% 80% 85% 90% 95%

Sa
m

pl
in

g
R

at
e

(%
)

Confidence

Stratified Z=0
Stratified Z=0.8
Stratified Z=1.5
Uniform Z=0
Uniform Z=0.8
Uniform Z=1.5

Figure 4: Effects of confidence

Finally, we evaluate both approaches for real-life produc-
tion workloads. We randomly select 10 production queries
and generate the offline samples using the uniform sampling
and the stratified sampling. The error bound is 5% and
confidence is 95%. The input data volume of those queries
is 8T on average. Since some of the queries’ predicates are
selective, we cannot calculate the sampling rate by using the
original data size as the base. Instead, we use the size of
the data after the predicates’ evaluation as the base. The
results are illustrated in Table 2. We can see that when
using the uniform sampling, the sampling rates range from
57% to 97%. The stratified sampling, on the other hand,
is able to reduce the sampling rate to less than 5%. For
Query 4, the stratified sampling rate is only 0.06%, saving
99% more compared with the uniform sampling. This query
has 5 groups and most of them are big sparse data, and thus
stratified sampling is particularly effective.

5.2 Effects of Data Volume
In this section, we evaluate the performance of both ap-

proaches over the inputs with different data volumes. The
experiments are conducted using production workloads. We
fix the error bound to 5%, confidence to 95% and build of-
fline sample sketches over log streams whose sizes range from
2T to 20T. The performance results we show here are the
average of a number of selected queries.

First, we examine the effects of data volume on the sample
size. As shown in Figure 5(a), as the input volume increases,
both approaches generate larger samples. For the uniform
sampling, the sample size grows linearly with respect to
data volume. This is because when data volume increases,
the value range increases too. By Equation 2, the sample
size increases as the value range increases. For the stratified
approach, the increase of sample size is not dramatic, because
it has resilient performance against different value ranges as
shown in the experiments in Section 5.1. When the input
log grows to be 20 TB, the uniform sampling produces 1340
times more data than the stratified approach.

In addition to sample sizes, machine time is a measure
that sums up the processing time of all participating nodes
in SCOPE. It reflects how many computation resources a
query consume. In Figure 5(b), we use the samples built
from two approaches to answer queries and report machine
time of query processing. As we can see, the machine time

 1

 10

 100

 1000

 10000

2T 4T 8T 12T 16T 20T

 S
am

pl
e

Sk
et

ch
 S

iz
e

(M
)

Data Volume

Stratified
Uniform

(a) Sample size over different data volumes

 100

 1000

2T 4T 8T 12T 16T 20T

M
ac

hi
ne

 T
im

e
(s

)

Data Volume

Stratified
Uniform

(b) Machine time over different data volumes

0%

5%

10%

15%

20%

25%

30%

2T 4T 8T 12T 16T 20TR
es

po
ns

e
T

im
e

N
or

m
al

iz
ed

 b
y

U
ni

fo
rm

Data Volume

Stratified / Uniform

(c) Response time over different data volumes

Figure 5: Effects of data volume

increases linearly with the increase of data size for the uni-
form sampling. This is due to the increase of sample size.
Our stratified approach consumes much less machine time,
because it generates smaller samples for queries to use. A
careful reader may notice that while the samples built from
the uniform sampling are a few hundred times larger than
those built from the stratified sampling, the machine time
of using the former samples is only dozens of times bigger.
The reason is that there is a relatively bigger initialization
cost in the early stages of the query execution pipeline, a
cost that is independent of data volume.

We also measure query execution time in this experiment.
In a parallel environment, query execution time is dependent
on how many machines or nodes are allocated for a query.
In SCOPE scheduling, the number of nodes allocated to a
query is usually determined by the size of the input. Such
scheduling means that it is not completely fair to compare
query execution time when we use samples generated by dif-
ferent approaches for query answering, because these samples
may have very different sizes. At any rate, we normalize

1516

Table 2: Sampling rate of production workload
Sampling Approach Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Uniform 89.85% 75.37% 94.38% 57.11% 81.81% 85.89% 92.64% 96.96% 95.07% 86.71%
Stratified 0.17% 0.14% 0.11% 0.06% 0.1% 4.86% 3.04% 1.5% 2.01% 0.11%

query execution time of the stratified sampling by that of the
uniform sampling and show the results in Figure 5(c). We
can see that the stratified sampling takes only 7% to 23% of
the execution time of the uniform sampling. Savings in query
execution time is not as significant as savings in machine
time, since these queries are scheduled with fewer nodes
because their inputs (i.e. the samples) are smaller. This
means that the our sampling approach saves both execution
time and resources.

5.3 Effects of Error Bounds

 1

 10

 100

 1000

 10000

1% 5% 10% 20% 50%

Sa
m

pl
e

Sk
et

ch
 S

iz
e

(M
)

Relative Error Bound

Stratified
Uniform

(a) Sample size with different error bounds

 0

 200

 400

 600

 800

 1000

1% 5% 10% 20% 50%

M
ac

hi
ne

 T
im

e
(s

)

Relative Error Bound

Stratified
Uniform

(b) Machine time with different error bounds

Figure 6: Effects of error bound

We compare both approaches with different error bounds
in this group of experiments, using production workloads.
Results here are averaged among all selected queries. The
confidence is set to 95%. The input stream is 8 TB. The
sizes of the samples produced by the two approaches are
shown in Figure 6(a). As we can see, when the error bound
increases, the sample size of the uniform sampling decreases
dramatically. Stratified approach is able to produce a small
number of samples with different error bound constraints.

The machine time of using samples to answer queries over
different data volumes is shown in Figure 6(b). For both
approaches, machine time drops with respect to the increases
of error bounds. Comparing with the uniform sampling, the
stratified sampling is much more robust against the change
of error bounds. The machine time saved by the stratified
sampling compared with the uniform sampling is not as

significant as sample sizes because of the query initialization
cost in SCOPE.

5.4 Incremental Maintenance of Samples
In this group of experiments, we evaluate the performance

of the algorithms that incrementally maintain samples for
sliding-windowed queries, by varying window sizes, sliding
steps and error bounds over one-week production log stream
with production workloads. Results here are averaged among
all selected queries. First, we set the sliding step to 3 hours,
window size to 2 days and change the error bound. The
sample sizes through either incremental maintenance or re-
building are shown in Figure 7. The figure shows that in
most cases incrementally updated samples are not signifi-
cantly larger than the rebuilt ones, if maintenance does not
violate the error bound guarantee. In the worse-case scenario,
the updated sample is 50% larger than the one rebuilt from
scratch. This increase is significant. But given that the
sample size is itself very small, such an increase is acceptable
in practice.

An interesting observation of Figure 7 is that sometimes
the sample size after incremental maintenance can even be
smaller than rebuilt samples, e.g., as shown in Figure 7(d).
The explanation is that the heuristic stratified algorithm
assumes that the error bound of each bucket is the same, in
order to lower the algorithm’s complexity. During incremen-
tal maintenance when old data is deleted and new data is
inserted, the maintenance algorithm may adjust the buckets’
error bounds such that the global error bound requirement
is satisfied. It means that some buckets have error bounds
higher than the default one, and therefore produce smaller
samples than the samples before the maintenance. This is
also the reason why we maintain error bound instead of
sample size in the sampling scheme.

During incremental maintenance, it is possible that a sam-
ple after maintenance cannot satisfy the error bound con-
straint and therefore it must be rebuilt. These cases are
highlighted in Figure 7 as circled points. Across the four
figures in Figure 7, the number of rebuilding timestamps
reduces, as the error bound increases. This is understandable:
the larger the error bound, the more space the algorithm has
to adjust each bucket’s error bound and therefore make the
global error bound smaller. Overall, the number of rebuilding
timestamps is not significant for real-life workloads and data;
samples can be incrementally updated in many cases, saving
a fair amount of computation resources.

In the second experiment in this group, we set the error
bound to 15%, sliding step to 12 hours and change the window
size from 2 days to 4 days. We report the results in Figure 8.
Similar to last experiment, the sample size after incremental
maintenance is close to that of the rebuilt sample, except a
handful of cases when the sample must be rebuilt.

6. RELATED WORK
Data sampling for aggregation queries has been studied

in the database literature as approximate query processing

1517

 4
 4.5

 5
 5.5

 6
 6.5

 7
 7.5

 8
 8.5

 9
 9.5
 10

 10.5
 11

 11.5
 12

Mon Tue Wed Thu Fri Sat Sun

Sa
m

pl
e

Si
ze

 (
M

)

Update Timestamp (Step = 3 Hour)

Maintenance
Aways Rebuild
Rebuild TimeStamp

(a) Error bound 5%

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

Mon Tue Wed Thu Fri Sat Sun

Sa
m

pl
e

Si
ze

 (
M

)

Update Timestamp (Step = 3 Hour)

Maintenance
Aways Rebuild
Rebuild TimeStamp

(b) Error bound 10%

 4.5
 5

 5.5
 6

 6.5
 7

 7.5
 8

 8.5
 9

 9.5
 10

 10.5

Mon Tue Wed Thu Fri Sat Sun

Sa
m

pl
e

Si
ze

 (
M

)

Update Timestamp (Step = 3 Hour)

Maintenance
Aways Rebuild
Rebuild TimeStamp

(c) Error bound 15%

 6

 6.5

 7

 7.5

 8

 8.5

 9

Mon Tue Wed Thu Fri Sat Sun

Sa
m

pl
e

Si
ze

 (
M

)

Update Timestamp (Step = 3 Hour)

Maintenance
Aways Rebuild
Rebuild TimeStamp

(d) Error bound 20%

Figure 7: Incremental maintenance with different error bounds

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

Mon Tue Wed Thu Fri Sat Sun

Sa
m

pl
e

Si
ze

 (
M

)

Update Timestamp (step = 12h)

W=4D,Maintenance
W=4D,Rebuild
W=3D,Maintenance
W=3D,Rebuild
W=2D,Maintenance
W=2D,Rebuild
Rebuild TimeStamp

Figure 8: Incremental maintenance with different
sliding window sizes

(AQP). Chaudhuri et al. gave a thorough survey in AQP [6].
According to the optimization goals, sampling techniques
can be classified into two categories: (1) Space constraint—
minimizing the error bound within limited sample space, and
(2) error bound constraint—minimizing the sample size while
satisfying a pre-defined error bound, which is the problem
we addressed in this paper.

For the first category, the maximum available sampling
space (or sample size) is considered as a budget constraint,
a setting that is common in traditional database manage-
ment systems. The optimization target is to minimize the
error bound. A few papers presented biased sampling ap-
proaches for GROUP-BY queries when data distributions
across groups have big variances [1, 16]. Chaudhuri et al.
proposed to build the outliers of data into a separate in-
dex [5]. This approach, however, is only effective when data
skewness is caused by outliers or deviants. Chaudhuri et al.
also proposed a stratified sampling plan for lifted workload
to minimize the errors [6]. Ganti et al. proposed a weight-
based approach that prefers to sample data records that are
asked by most queries [8]. As a result, this approach will
deliver poor error estimations for less frequent queries, which
is unacceptable in many scenarios. Babcock et al. built a
family of precomputed samples to answer queries [3]. For
each incoming query, a subset of samples is selected dynami-
cally to improve the accuracy. Overall, the techniques in the
first category can not be applied directly to solve the error
bounded problem that we are addressing.

Techniques in the second category can provide guarantees
on the error bound. Online aggregation [10] and its vari-
ants[20, 21, 19, 9] process users’ aggregation queries in an
online fashion. It continuously produces aggregated results
together with an error bound and a confidence. Users can
stop the execution whenever the error bound meets their
requirement. Some efforts have been focused on implement-
ing online aggregation in MapReduce environments [7, 14].

SciBORQ is a new system that restricts error bounds for an-
alytical queries [17]. Recent attempts use the bootstrapping
technique over the MapReduce framework [12]. The idea is
to perform multiple sampling iterations until the computed
errors are below the user’s requirements. Nevertheless, these
“on-the-fly” approaches do not target sparse data intention-
ally. As a result, their executions often cannot stop early
and have to process almost all data before the error bound
can be satisfied. In the recent work BlinkDB [2], the authors
build multiple offline samples with different error bounds. In
the online stage, they select the most appropriate sample to
answer a query. However, they apply stratified sampling on
individual groups, which can not be effective when data is
sparse inside each group. As such, these techniques may not
be effective.

The error-bounded stratified sampling technique proposed
in this paper not only solves the error-bound-constrained
problem, but also is effective when data is sparse, a common
setting for in-production workloads.

7. CONCLUSIONS
Sampling as a means to reduce the cost of aggregation

queries is a well-received technique. It is believed that sam-
pling would bring more benefits to approximate queries as the
volume of data increases. Our experience with production
jobs in SCOPE, however, proves that this notion is naive.
As a matter of fact, what we have observed (and reported
in this paper) is that the simple-minded uniform sampling
is ineffective, whose sample size keeps increasing with data
volume, and at the end delivers no performance gains. The
culprit is sparse data (with respective to data range) whose
skewness in distribution gets severe as more and more data
are included. An effective sampling scheme must understand
the nature of the data, divide the data into regions, and
sample them appropriately. The increased cost of sampling
can be amortized over different queries that share them, and
over time by using incremental updates. We have developed
theoretical optimal as well as practical heuristic variants,
and verified our techniques against real-world production
jobs with a real implementation. The important lesson is
that system optimizations are becoming increasingly more
data-dependent.

8. ACKNOWLEDGEMENTS
We would like to thank Haixun Wang for his insightful

comments on this work. We thank An Yan, Redmond Duan
and Xudong Zheng for providing endless support during the
investigation. We would also like to give our acknowledge-
ments to Tao Yang and Xuzhan Sun for their help on the
evaluation.

1518

9. REFERENCES
[1] S. Acharya, P. B. Gibbons, and V. Poosala.

Congressional samples for approximate answering of
group-by queries. In SIGMOD, 2000.

[2] S. Agarwal, B. Mozafari, A. Panda, H. Milner,
S. Madden, and I. Stoica. Blinkdb: Queries with
bounded errors and bounded response times on very
large data. In In Proc. of ACM EuroSys 2013, 2013.

[3] B. Babcock, S. Chaudhuri, and G. Das. Dynamic
sample selection for approximate query processing. In
SIGMOD, 2003.

[4] R. Chaiken, B. Jenkins, P.-Å. Larson, B. Ramsey,
D. Shakib, S. Weaver, and J. Zhou. Scope: easy and
efficient parallel processing of massive data sets.
PVLDB, 1(2), 2008.

[5] S. Chaudhuri, G. Das, M. Datar, R. Motwani, and
V. R. Narasayya. Overcoming limitations of sampling
for aggregation queries. In ICDE, 2001.

[6] S. Chaudhuri, G. Das, and V. R. Narasayya. Optimized
stratified sampling for approximate query processing.
ACM Trans. Database Syst., 32(2), 2007.

[7] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein,
J. Gerth, J. Talbot, K. Elmeleegy, and R. Sears. Online
aggregation and continuous query support in
mapreduce. In SIGMOD, 2010.

[8] V. Ganti, M. L. Lee, and R. Ramakrishnan. Icicles:
Self-tuning samples for approximate query answering.
In VLDB, pages 176–187, 2000.

[9] P. J. Haas. Large-sample and deterministic confidence
intervals for online aggregation. In SSDBM, pages
51–63. IEEE Computer Society Press, 1996.

[10] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online
aggregation. In SIGMOD, 1997.

[11] W. Hoeffding. Probability inequalities for sums of
bounded random variables. Journal of the American
Statistical Association, 58, 1963.

[12] N. Laptev, K. Zeng, and C. Zaniolo. Early accurate
results for advanced analytics on mapreduce. PVLDB,
5(10), 2012.

[13] S. L. Lohr. Sampling: design and analysis. Thomson
Brooks/Cole, 2010.

[14] N. Pansare, V. R. Borkar, C. Jermaine, and T. Condie.
Online aggregation for large mapreduce jobs. PVLDB,
4(11), 2011.

[15] R.J.Serfling. Probability inequalities for the sum in
sampling without replacement. Institute of
Mathematical Statistics, 38, 1973.

[16] P. Rösch and W. Lehner. Sample synopses for
approximate answering of group-by queries. In EDBT,
2009.

[17] L. Sidirourgos, M. Kersten, and P. Boncz. Sciborq:
Scientific data management with bounds on runtime
and quality. In In Proc. of the Intl Conf. on Innovative
Data Systems Research (CIDR, pages 296–301, 2011.

[18] J. S. Vitter. Random sampling with a reservoir. ACM
Trans. Math. Softw., 11(1):37–57, Mar. 1985.

[19] Y. Wang, J. Luo, A. Song, J. Jin, and F. Dong.
Improving online aggregation performance for skewed
data distribution. In DASFAA (1), volume 7238 of
Lecture Notes in Computer Science, pages 18–32.
Springer, 2012.

[20] S. Wu, S. Jiang, B. C. Ooi, and K.-L. Tan. Distributed
online aggregation. PVLDB, 2(1):443–454, 2009.

[21] S. Wu, B. C. Ooi, and K.-L. Tan. Continuous sampling
for online aggregation over multiple queries. In
SIGMOD, 2010.

[22] J. Zhou, N. Bruno, M.-C. Wu, P.-Å. Larson,
R. Chaiken, and D. Shakib. Scope: parallel databases
meet mapreduce. VLDB J., 21(5), 2012.

APPENDIX
A. SAMPLE MAINTENANCE ALGORITHM

The sliding window sample maintenance algorithm’s pseudo
code is shown in Algorithm 2. First, it computes a set of
buckets {B1, . . . , Bq}, q ≤ k that need to be updated, to-
gether with their updated error bounds {ε′1, . . . , ε′q} (Line 2).

It also computes the difference Mi= Na
i − ndi of the updated

buckets (Line 3). This information will be used for adjusting
insertions in the next stage. The algorithm then checks Equa-
tion 13. If it is not satisfied, the algorithm moves to the next
stage to compute nai . In the second stage, the algorithm aims
to find one or more buckets in B′ with Mi≥ 0 to help filling
the gap of the error bound difference ε0 − ε′ (Line 10 to 20).
From Equation 13, the buckets with larger populations can
contribute more to the global error bound. It means given
the same number of insertions, inserting them to buckets
with high populations is more effective in reducing the global
error bound. To implement this heuristic, the algorithm
reorders the buckets with Mi≥ 0 by their populations, and
tries to insert all incoming data into top-ranked buckets.
If the gap ε0 − ε′ can not be filled after all incoming data
has been exhausted, the sketch is under sampling due to
deletions, and must be reconstructed from scratch.

Algorithm 2: Maintenance algorithm for sliding win-
dowed queries

Input: A list of bucket B:{B1, . . . , Bk}
Output: Buckets B with updated error bounds.
1: for i = 1 to k do
2: εi = ε′i ← Update the new error bound
3: Mi= Na

i − ndi
4: end for
5: ε′ ← the global error bound with Equation 13
6: if ε′ ≤ ε0 then
7: return B
8: end if
9: Reorder the buckets whose Mi≥ 0 according to its

population {q buckets}
10: for i = 1 to q do
11: ε′i ← Nε0 −

∑k
j=1,j 6=iNjεj {Compute ε′i by

Equation 6}
12: n′i ← sample size with ε′i by Hoeffding Equation 2
13: if n′i <= ni +Na

i then
14: Update the error bound in Bi to ε′i
15: return B
16: else
17: n′i = ni +Na

i

18: εi = ε′i ← update the error bound
19: end if
20: end for
21: return NULL {Need to be reconstructed}

1519

