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ABSTRACT
While the notion of a Distributed DBMS has been familiar to the 
IT industry  for  several  decades,  within  telecom networks  the  
subscriber data management based on DDBMS technology is a 
novel addition to a service provider's infrastructure.

Service providers are used to telecom networks that are efficient,  
reliable and easy to maintain and operate, in part thanks to the  
node  model  used  in  designing  such  networks.  A  DDBMS 
spanning  a  large  geographical  area  however  incurs  into 
distributed  systems  issues  not  previously  seen  in  telecom 
networks.

Identifying and delivering the right set of trade-offs that satisfies 
the  service  providers’ needs  while  staying  within  the  known 
physical  bounds  of a  distributed  system is  therefore  crucial  if 
DDBMS are to conquer the subscriber management space within 
telecom networks.

1. INTRODUCTION
Telecom networks have used databases  to hold subscriber  data  
since  the  advent  of  the  Global  System  for  Mobile  (GSM) 
standard  [1].  In  GSM  networks,  the  Network  Function  (NF) 
known as Home Location Register  (HLR) performs the task of 
managing the data of the subscribers of the network. The HLR, 
in  addition  to  holding  subscriber  data,  cooperates  in  many 
network procedures  with  multiple  NFs in  order  to provide  the 
services  the users  demand from the network.  Two of the most  
relevant procedures are authentication/authorization and location 
management, but there are many others.

In modern IP Multimedia  Subsystem (IMS)  [2] and 4G System 
Architecture  Evolution/Long-Term  Evolution  (SAE/LTE)  [3] 
networks,  the  subscriber  management  NF  is  realized  by  the 
Home  Subscriber  Server  (HSS),  an  extension  of  the  HLR 
supporting  the  additional  or  improved  services  these  networks 
provide to their  users.  As opposed to HLR, HSS is capable  of 
supporting  fixed  networks  in  addition  to  mobile  cellular 
networks.

Both HLR and HSS manage massive amounts of data about all 
the subscribers  in a telecom network.  Following the traditional  
node-based design of a telecom network, every NF is realized by 

multiple  independent  nodes,  such that  failure  of a single  node 
does  not  affect  the  rest  of the  network.  Each  node  holds  one 
partition of the whole subscriber data space, thus when one node 
fails the subscribers whose data are held in the failing node lose 
access  to  the  network.  This  node-based  design  has  allowed 
telecom networks to keep pace with technological advances and 
new services  while  retaining  the  reliability  properties  users  of 
those networks have learned to expect.

But not everything in a node-based network is good news for the 
service  provider  that  operates  it.  According  to  the  description 
above subscriber data are spread across vertical  silos,  each silo 
owning just  one partition  of the  subscriber  space.  These  silos 
pose two major challenges to the service provider:

1. Managing  all  these  silos  implies  increased  operating 
costs and complexity. Data duplication, where pieces of 
data with the same meaning are stored across different 
silos (e.g. HLR and HSS), is of special concern since it  
requires coordinated data management across silos.

2. Performing  business  intelligence  and  operative 
research  over  subscriber  data  becomes  a  formidable 
task,  since  there’s  no  standardized  way  of  fetching 
subscriber data from the silos

To overcome the  above challenges,  3GPP (the  standardization 
body behind  the  highly-successful  3G  and  4G  standards)  [4] 
came up with a User Data Consolidation (UDC) architecture [5]. 
In  this  architecture,  all  subscriber  data  are  consolidated  in  a  
single  subscriber  database  – the User  Data  Repository (UDR), 
while participation in network procedures is left for application 
front-ends (FE)1. This database is mandated to support an LDAP-
based interface  [6] to read/write  subscriber  data.  The structure 
and semantics  of subscriber  data  are  not detailed  by the  UDC 
specifications.

Since the UDR has to be accessed by every application FE in a  
service provider network, in most cases it cannot be a centralized 
database  located  at  a  single  place.  Instead,  it  becomes  a 
distributed  database,  with  data  spread  across  multiple  storage 
sites  and Points  of Access (PoA) wherever  FEs are  located.  In 
between the storage sites and the PoA a distributed middleware  
creates  the  illusion  that  one  single  data  space  exists.  The 
distributed nature of the UDR combined with the particularities  
of a telecom network is what poses the issues that are described  
in this paper.

1  Examples  of application front-ends are  the HLR-FE and the 
HSS-FE, named after their non-DLA counterparts. These front-
ends cooperate  in the same network procedures  as their  non-
DLA versions, but when a FE needs subscriber data to execute 
its  part  of a network procedure  it  reads  those data  from the 
UDR.
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Nailing down those issues applying the proper choice of database 
technologies  and  associated  trade-offs  is  crucial  for  UDC  to 
become  the  next-generation  target  architecture  in  present  and  
future telecom networks.

2. DESCRIPTION OF THE PROBLEM
2.1 The 3GPP telecom network
As has been mentioned in the introduction, traditionally telecom 
networks have been built following a node-based design, where a 
NF,  e.g.  HSS,  is  realized  by multiple,  independent  instances.  
These  instances  are  spread  across  the  geographic  area  of 
coverage of a service provider,  such that  there  is  always a NF 
instance close to a user of the network service. Telecom networks 
are designed this way for resiliency reasons: when one instance 
of a  NF fails,  only the  users  making use  of that  instance  are  
affected. While it can be argued this is a property also of well-
designed  distributed  systems,  as  long  as  some  interaction 
between the parts of a system exist it cannot be guaranteed that a 
severe  problem  in  one  of  the  parts  will  not  bring  the  whole  
system down. Spreading NF instances geographically is done for 
efficiency  reasons:  traditionally,  long-distance  backhaul  of  IP 
traffic has been both limited in bandwidth and expensive, hence 
deploying NF instances close to the users decreases the need of 
backhauling  control  plane  IP traffic  to  a  central  control  plane 
processing data center2.

The following figure illustrates  the traditional  building practice 
for  a  telecom  network  operated  by  a  multi-national  service 
provider.

2.2 Telecom networks and UDC
In 3GPP UDC networks,  subscriber  management  NFs  become 
stateless  application  front-ends,  while  actual  subscriber  data  
management  takes  place  at  the  UDR  NF.  This  is  a  major 
departure  from  the  pre-UDC  building  practice,  since  due  to 
distribution  of  subscriber  data  across  the  network  in  a  UDC 
network there’s a high chance (up to 100% depending on UDR 
NF architecture) that for every network procedure, control plane 

2  This  aspect  is  less  relevant  every  day  with  the  advent  of 
massive  bandwidth  optical  networks.  Currently  service 
providers  consider  that  centralizing NF instances  at  a  single 
data  center  is  superior  in  terms  of  operating  costs  to  the 
traditional geographically-spread deployments.

IP traffic has to be back-hauled to a remote location. This turns  
the  IP back-bone  network  into an  integral  part  of the  telecom 
network, and leads the service provider to put more effort in IP 
network  resiliency  and  latency  than  in  NF  reliability  and 
deployment in order  to keep the service levels  unchanged with 
respect to a pre-UDC network.

This increased investment in IP network resiliency and latency is 
compensated  by  operating  expense  savings  thanks  to  higher 
flexibility  across  the  telecom  network  –i.e.  application  FEs 
become state-less  processing nodes hence any FE instance  can 
serve  any user,  enabling  statistical  multiplexing  and  resource 
sharing- and subscriber data consolidation into one single NF –
the  UDR,  removing the  need  for  data  redundancy control  and 
coordinated data management-.

Additionally,  the  prospects  of  improved  operational  efficiency 
and  business  management  enabled  by  data  mining  over  the 
subscriber data stored in the UDR is propelling service providers 
to move to a DLA telecom network. This aspect however remains 
to be realized mainly due to business and regulatory issues.

2.3 Architectural framework of a UDR NF 
realization
The  UDR NF  is  the  UDC network’s  Single  Point  of  Access 
(SPoA) for subscriber  data.  Since a telecom network may grow 
up  to  hundreds  of  millions  of  subscribers  and  span  whole 
continents while  keeping a high Quality of Service (QoS) level 
any  realization  of  the  UDR  NF  must  fulfill  a  number  of 
requirements:

1. It  must  provide  enough  storage  for  the  service 
provider’s full subscriber base

2. It must be able to accommodate a growing subscriber  
base with little operating expense associated

3. It must be resilient, on average any given subscriber’s  
data must be available 99.999% of the time

4. It must be fast, with a target average response time of 
10ms  (excluding  network  delays)  for  index-based 
single subscriber queries

5. It must be cheap and easy to operate, which implies it  
must provide ACID guarantees

The above can be summarized in that the UDR NF must be fast, 
resilient,  ACID,  scalable and  huge, abbreviated  FRASH. Those 
requirements  led  us  to  an  architectural  framework  having the 
following characteristics:

• To be  fast,  data  are  stored  in  volatile  media  (RAM 
memory)

• To be resilient, all the elements in the architecture are 
redundant and geographically spread

• To  be  ACID,  storage  provides  support  to  grouping 
operations into transactions that execute atomically

• To  be  scalable,  storage  is  split  into  elements  of  a 
limited size so growth can be tackled in small steps 

• To be huge, the architecture is able to accommodate a 
high number of storage elements

Figure 1. Traditional building practice of a multi-national 
telecom network.
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The  diagram  in  figure  2  shows  a  representation  of  a  multi-
national  UDR  NF  following  the  just  described  architectural 
framework.

In the UDR NF shown, every SE holds a primary copy of one 
partition and one or two secondary copies of other partitions. For 
instance,  if  subscriber  data  space  were  spread  across  three 
partitions,  the top-most SE in figure 2 might hold the primary 
copy of partition 1 and secondary copies of partitions 2 and 3; 
the middle  SE might hold the primary copy of partition 2 and 
secondary copies of partitions 1 and 3; and the bottom SE should 
then hold the primary copy of partition 3 and secondary copies of 
partitions 1 and 2. Given that data distribution policy, the UDR 
from figure 2 can continue  providing service for 100% of the 
subscriber base as long as one PoA and one SE are reachable. 

Partitions are further split into sub-partitions in order to address 
the scalability properties  of the UDR. A single subscriber data 
partition typically amounts to  circa 200 GB. The 200 GB size 
comes imposed by the available RAM memory in one SE's HW 
platform, so it  can be expected to double with every new HW 
generation.

2.4 Operation of the Telecom Network
A UDC Telecom Network is operated exactly the same way as  
any  other  telecom  network,  i.e.  following  the  Telecom 
Management Forum (TMF) specifications [7] with the help of an 
Operations  Support  System,  OSS.  All  Operation  and 
Maintenance  (OaM)  on the  network  is  performed  through the  
OSS,  which offers  the  operator  a  consolidated  view of all  the 
nodes in the network.

With respect to subscriber management, a UDC network is very 
different from its predecessors. In pre-UDC networks subscriber 
management  is  performed  directly  on the  nodes  involved.  For 
instance,  in order  to create  a subscription in the network,  also 
known as “provisioning” a subscription,  many write  operations 
need to be issued on multiple nodes:

• Subscription  data  are  created  on one  instance  of the  
subscriber data management NF, e.g. the HSS

• Data location information is created in all instances of 
signaling  routing  NF,  e.g.  the  Subscription  Location 
Function  (SLF).  This  information  consists  of  binary 
tuples  containing  the  identities  associated  to  the 
subscription,  e.g.  Mobile  Subscriber  Integrated 
Services  Digital  Network  (MSISDN)  number  and 
IMPU (IMS Public Identity), and the address of the NF 
instance containing the data for that subscription

Provisioning  operations  are  executed  with  the  support  of  a 
Provisioning System,  PS.  All  the  operations  associated  with  a 
single  provisioning  procedure  need  to  be  handled  as  a 
transaction.  Since  NF  instances  do  not  provide  support  for 
transactional  operations  this  turns  into  very complex  PS  logic 
that  needs  to  take  care  of  executing  provisioning  operations 
transactionally across multiple nodes.

In a  UDC network  however,  the  PS has  one single  place that 
needs  to  be  written  (the  UDR),  which  provides  support  for 
handling a provisioning procedure as a transaction.  This allows 
simplification of the PS logic to a large extent, and solves corner  
cases  that  could  not  be  solved  in  pre-UDC networks  and  that 
normally end up requiring manual intervention on the nodes to 
restore the network to a consistent state.

Figures  3  and  4  illustrate  the  difference  between  pre-UDC 
networks  and  UDC  networks  respectively  with  regards  to 
provisioning.  Notice  that  in  figure 4,  every UDR element  is  a 
part  of  the  whole  distributed  UDR NF,  being  all  parts  inter-
connected through the multi-national IP back-bone network.

2.5 Conflicting Demands on Data 
Management in UDC Networks
Unfortunately  the  FRASH requirements  on  the  UDR  NF  are 
conflicting, as the reader savvy in DDBMS technology will have 
noticed. Conflicts arise when trying to maximize two or more of 
the FRASH characteristics. For instance, fast data access enabled 
by storage in  volatile  media  very often conflicts  with  resilient 
data access since on unplanned events contents of volatile media  
may vanish,  thus  rendering  data  of  a  number  of  subscribers 
unavailable. As another example, huge and scalable data storage 
by means of a high number of limited-size storage elements may 
go  against  fast data  access  since  data  location  management 
becomes more complicated.

The  best  known  theoretical  framework  to  understand  and 
analyze the relationships between conflicting characteristics in a 
distributed  system  is  the  CAP  (Consistency-Availability-
Partition tolerance) theorem [8]. In our discussion of the UDR 
NF,  Consistency  is  represented  by  ACID properties;  while 
Availability  and  Partition-tolerance  is  represented  by  the 
resilience property.  The other  properties  –fast,  scalable,  huge- 
are  not linked  by the CAP theorem,  although they are in  turn  
constrained by the acid and resilient properties. For instance, the 
larger the data set stored by the UDR, the harder is to maintain a 
fast  and  scalable  data  location  stage,  ACID  properties  of 
transactions  spanning  many  storage  elements  and  99.999% 
available  data  in  the  presence  of  multiple  storage  element  
failures.

Figure 2. Architecture of a UDR NF realization

.
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Figure  5  shows  the  relationships  between  the  FRASH 
characteristics  of the  UDR NF.  The grayed oval in  the  figure 
represents the scope of the CAP theorem. An arrow between any 
two characteristics represents a restriction, such that increasing 
one of them forces to decrease the other. In the coming sections  
we  will  illustrate  where  along  those  arrows  the  UDR  NF 
realization described in this paper sits.

With the advent of grid databases like HBase [9] and a myriad of 
NoSQL3 databases like Cassandra [10] and MongoDB [11], new 
trade-offs not covered by the CAP theorem have arisen.  A new 
term  that  covers  this  kind  of  databases  is  PACELC  [12]. 
PACELC  stands  for  “On  a  Partition  be  either  Available  or 
Consistent,  Else  favor either  Latency or Consistency”,  thereby 
introducing latency in the equation. Scalability and size have not 
been included in any theoretical  framework to the best  of our 
knowledge.

The UDR NF is also covered by the PACELC term. The service 
demands  when there  is  a  partition  in  the  IP network  deserve 
special  attention.  On a partition,  the system may decide to be  
either  Available  or  Consistent  (R  or  A in  FRASH).  In  many 
applications  of  DDBMS  technology  it  is  acceptable  to  stop 
business  for  a  few  seconds  or  even  minutes  on  unexpected 
events.  That’s  not  the  case  of  the  UDR;  as  we’ve  already 
mentioned,  on  average  data  of any given  subscriber  must  be 
available 99,999% of the time4. Hence if the observation period 
is  one  year,  on  a  network  partition  lasting  more  than  a  few 
seconds the UDR NF must make adjustments so subscriber data 
can be accessed despite the network problems. In the following 
section we’ll see how this C vs. A&P conflict materializes under  
a possible set of design choices for a UDR NF realization. 

3. DESIGN CHOICES
Given the architectural  framework introduced in section  2.3, in 
this section we present a possible set of additional design choices 
for a first realization of a UDR NF. We believe this approach is  
illustrative of the iterative process typical of the introduction of a 
technology in a new realm where it hasn’t been used before.

3.1 Resilience
Resilience is not negotiable: data availability must remain at or 
above  99.999%  at  all  times.  This  has  been  the  trademark  of 
telecom networks for ages and the world is still not ready to trade 
reliability in communication for other benefits5.

RAM-based  data  storage  is  established  in  the  architectural 
framework as the premise to provide the speed of access required  
to keep the network service responsive. However RAM memory 
is  inherently  unreliable,  so  some  adjustments  to  improve 
resiliency of data are necessary. Since by virtue of the F-R arrow 
from  figure  5  speed  of  access  would  be  decreased,  the 
adjustments imply a trade-off between these two factors.

Two design decisions make sense in this scope:

1. To  protect  data  against  individual  storage  element 
failures, every storage element saves data in RAM to 
local persistent storage (i.e. SATA or SAS hard disk) 
on a periodic basis

3  HBase can also be classified as a NoSQL database, although it 
uses  the  more  traditional  concept  of  tuples  stored  in  tables  
where  the  others  use  the  concept  of  documents  stored  in  a 
storage pool

4  This is an average, i.e. if one subscriber’s data is not available 
at  all  during the observation period but  data  of 99,999 other 
subscribers  has  been  available  100%  of  the  time  then  the 
average availability for the 100,000 subscribers is 99,999%

5  In most  available  disaster  movies,  during  the  catastrophe’s 
algid  moments  when  all  computer  systems  are  down  the 
telephone system keeps working 

Figure 5. Relationships between the UDR NF FRASH 
characteristics

Figure 3. Provisioning in pre-UDC networks

Figure 4. Provisioning in UDC networks
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2. To  protect  data  against  unforeseen  events,  every 
piece  of  data  is  duplicated  in  two  or  more 
geographically-disperse locations

The storage elements (SE) should guarantee data accessibility on 
failures  of  internal  parts  of  the  element  by  means  of  intra-
element  redundancy; hence what  remains  is  availability  in  the  
presence  of  complete  SE  failures  or  catastrophes  affecting 
multiple elements.

These decisions are a compromise between F and R since they 
enable decent data accessibility with very little decrease in speed 
of access; the storage engine is slightly slowed down since it is  
deprived of some computing resources needed for storage to disk  
and replication6.

But the most relevant trade-off in a UDR system materializes due  
to the second decision above. Introducing data duplication in the  
system implies  some kind of replication between copies,  which 
takes us into the realm of the CAP theorem and the C vs. A&P 
trade-offs.  The number  of possible  scenarios  and the decisions 
the system has to take in each scenario would take a full paper by 
themselves.  We provide some details  once we explain how the 
multiple  copies  of every piece of data  can be kept  in  sync, in  
sections 3.2 and 3.3.

3.2 ACID
Consistency in  subscriber  data  is  very important  for  a  service 
provider;  after  purchasing  a  cell  phone  subscription  from  a 
service provider,  we all  expect  that  after  sliding the  SIM card 
into the  phone  and  powering  it  on service  is  up  immediately.  
Also if you set up a pay-call barring for the line, you wouldn’t be 
very  happy  if  you find  your  kids  speaking  on  it  to  a  hi-toll 
number.

The above issues may arise if the UDR NF does not fulfill ACID 
properties  for  provisioning  operations.  A  partially  executed 
provisioning transaction may render a subscription unusable. An 
alteration  in  the  order  of  concurrent  transactions  from  an 
application  front-end  may  revert  changes  to  the  subscription 
status without the user noticing it.

Compliance to the ACID rules may have a huge impact in speed  
of access to the data. Thus a compromise along the F-A link from 
figure  5 is  necessary.  This  is  one of the  hardest  choices  since 
usually a service provider wouldn't compromise on any of F or A. 
Our  telecom  network  expertise  however  advocates  for  not 
jeopardizing F as the lesser  evil: one angry customer switching 
carriers  is less  evil  than a constant  churn due to poor network  
performance. Hence the following decisions lend the compromise 
more towards the F end of the link:

1. ACID  properties  are  guaranteed  for  transactions 
running on the same storage element only, i.e. SE are 
transactional.  This  prevents  from  having  to  run 
consensus  protocols  like  e.g.  2-Phase  Commit  (2PC) 
across geographically disperse locations, which may be 
expensive.

2. The level of isolation between concurrent transactions 
on  a  storage  element  is  set  to  READ_COMMITED 
[13],  to  prevent  locking  from  delaying  reads  on 

6  It  is  possible  to  configure  storage  elements  to  dump 
transactions  to  disk  before  committing  for  100%  guaranteed  
durability,  but  that  would  slow  down  storage  elements  too 
much (the  F-R trade-off point  would slide  too much towards  
the R end).

subscription  data  (reads  are  mostly  issued  by 
application front-ends).

Obviously,  for  transactions  running  over  multiple  storage 
elements  no  ACID guarantees  are  provided,  and  the  level  of 
isolation afforded to those is READ_UNCOMMITTED [13].

To minimize potential consistency problems, clients of the UDR 
should limit  transactions spanning multiple  SEs to a minimum. 
Application FEs always work against one single storage element  
(the  one  containing  the  subscription  involved  in  the 
corresponding network procedure), and the PS should attempt to 
group  operations  into  transactions  addressed  to  as  few  SE  as 
possible. Nevertheless, the PS still needs to contain logic dealing 
with  unexpected  outcomes  due  to  the  lack  of  transactionality 
between SEs.

The  second decision  from section  3.1 introduces  an  additional 
facet to ACID properties. It would be useless to invest computing 
resources and execution time in guaranteeing atomic transactions 
if  the  multiple  copies  of a  data  piece are  not kept  in  sync. In 
database  replication  setups,  concurrent  write  operations  on 
different  copies of data may lead to different  outcomes at each 
copy. Individual copy failures are another source of inconsistency 
in these scenarios.

To maximize consistency hence ACID properties  across copies, 
copies are not all equal. At every point in time for each piece of 
data there is one copy handling all writes to that data. That copy 
is  referred  to  as  the  master copy.  The  master  copy replicates 
writes to the other copies of the data, which we will refer to as 
the  slave copies.  The  replication  mechanism  is  such  that  it 
guarantees  the  serialization  order  of  writes  replicated  to  any 
slave  copy is  exactly the  same as  that  imposed  by the  master 
copy.  Since  no  writes  can  be  applied  to  a  slave  copy,  the  
serialization  order  guarantee  above  is  enough  to  maintain  all  
copies in sync with respect to the actual data they hold.

What  happens  when  contact  between  replicas  is  lost  due  to 
network partitions? Since writes can only be applied at a master  
replica, as long as a transaction can access the master replica it  
will be executed. This means if the client issuing a transaction is 
on the side of the partition that contains the master replica for the 
piece  of  data  the  transaction  affects  the  outcome  of  the 
transaction will  be successful,  otherwise it  will  be failure.  The 
failure  cases  decrease  the  overall  availability  of  data,  hence 
sliding the trade-off point along the R-A link towards the A end 
(or, in CAP terms, we favor Consistency over Availability on a 
partition).

3.3 Fast
A  fundamental  property  of  any  telecom  network  is  its 
responsiveness.  We all  have felt  frustrated  when it  takes more 
than a few seconds for our cell phone to register  in the mobile  
network.  This  not to mention the disappointment  caused by an 
outgoing call attempt taking more than one second to start.

Mostly every action a user performs with her cell phone involves 
some network procedure, and every network procedure involves 
one or more accesses by the application front-end involved (e.g.  
HLR-FE)  to  the  UDR NF.  Hence  it  is  crucial  that  processing 
transactions from application front-ends is as fast as possible, in 
order to not jeopardize responsiveness of the whole network.

Transactions from the PS are not so fatally affected by excessive 
delays.  However,  excessive  delay  in  processing  provisioning 
transactions  may  have  other  types  of  impacts.  The  average 
service  provider  keeps  a  continuous  flow  of  provisioning 

1478



operations going at any one time. There are periods, dubbed low 
traffic  hours, during which this flow falls down to a minimum. 
However,  out  of  those  periods  long  delays  in  processing 
provisioning transactions might cause a back-log of operations to 
grow  at  the  PS.  If  this  back-log  overflows  for  some  reason, 
dropping operations in the way, outcome would be fatal.  Some 
service providers  perform batch provisioning, which consists  of 
issuing  a  huge  batch  of  provisioning  operations  during  a 
relatively short period of time. Batch provisioning is more likely 
to  cause  back-logs  in  the  presence  of  excessive  delays  in 
processing provisioning transactions.

Speed of access is guaranteed from the architectural  framework 
by  RAM-based  data  storage.  However,  as  in  any  distributed 
system, network delays play a key role in the response time of 
the system so additional architectural measures need to be taken 
in order to keep average speed of access as high as possible.

3.3.1 General for all transactions
In  general  for  any  transaction  the  architecture  provides  the 
following mechanisms to enhance speed of access to data:

1. Every  point  of  access  to  the  UDR  is  capable  of 
resolving  data  location  locally  to  the  PoA,  without 
incurring  in  long  packet  exchanges  with  remote 
locations over the IP network.

2. Replication  of  writes  from  the  master  to  the  slave 
copies is performed asynchronously, so execution of a 
transaction  does  not  have  to  wait  until  the 
corresponding  write(s)  have  been  propagated  to  the 
slave replica(s). Since the slave replicas are distant –in 
geographical terms- from the master replica in order to 
cater  for  natural  disasters,  waiting  for  a  write  to  be 
propagated to a slave replica most probably implies  a 
slow  exchange  of  IP  packets  over  the  IP back-bone 
network.

The  first  decision  above  favors  speed  of  access  (F)  despite 
scalability (S) and size (H); for scalability, on scale-out new data  
location stages have to be deployed and sync’d with those already 
in  place,  which makes  the  procedure  longer  and  more failure-
prone.  For  size,  storage of the  identity-location  maps  deprives  
storage elements from memory they could use to store more data.  
Data  location uses  identity-location maps  since the  UDR must  
support  multiple  indexes  (one  index  per  subscriber  identity,  
i.e.  MSISDN,  IMSI,  IMPU  etc.)  and  must  support  also  the  
selective placement of subscriber data (due to e.g. regulatory or 
security  reasons,  where  data  for  subscribers  belonging  to  a  
country  or  organization  must  be  located  at  a  predetermined 
place).  Using identity-location maps however has  proven to be 
problematic  due  to  the  state-full  characteristics  of  the  data 
location stage; a discussion of possible alternatives comes later in 
this paper (see section 3.5). 

The second decision above moves the trade-off point away from 
A and closer to F along the F-A link.  Asynchronous replication 
does  not  guarantee  that,  in  case  of  failures,  all  transactions 
committed  at  the  master  are  successfully  replicated  to  the 
slave(s).  Hence,  a  transaction  committed  on  the  master  with 
ACID  guarantees  might  not  be  durable  if  a  severe  failure  
prevents  the  transaction  from being  replicated  to  at  least  one 
slave.

3.3.2 Transactions from application front-ends
The  following  measures  guarantee  fast  access  to  data  from 
application front-ends:

1. There is always a point of access to the UDR close –in 
network  terms-  to  any  one  application  front-end,  as 
long as  the cost of doing so justifies  it.  This  enables 
fast  IP  packet  exchanges  between  application  front-
ends  and  the  UDR,  improving  fault  detection  and 
enabling efficient processing of erroneous transactions.

2. Read operations on slave copies are allowed. This may 
be useful if a slave copy of the data being read is co-
located with the PoA receiving the read request  from 
the application front-end. If that’s the case all IP packet 
exchanges  take  place  over  a  fast  local  network,  as 
opposed to the slower IP back-bone.

The second decision above moves the F-A trade-off even further  
towards  the  F  end:  since  asynchronous  replication  does  not 
guarantee  real-time  sync  between  replicas,  there’s  a  certain 
chance that  a read operation on a slave replica gets stale  data,  
decreasing the consistency of read operations.

3.3.3 Transactions from PS
For data access from PS we’ve taken the following measures:

1. An instance of the PS is always co-located with a UDR 
PoA. This is just not feasible for application front-ends, 
since  there  are  too  many of  them,  but  in  a  typical  
telecom network there are just one or two PS instances.

2. Read operations on slave copies are disallowed.

The second measure above may seem out of place here, since it 
moves the speed  compromise  away from the F end of the F-A 
link.  But that’s  not actually the case.  It is still  an architectural  
decision related with speed of access, hence here’s where it must  
lie.

The reason for compromising on F in favor of A for transactions 
from the PS lies in the fact that provisioning operations must be 
executed  in  atomic  transactions,  or  at  least  as  atomic  as  the 
architecture allows it.  Since the architecture does not guarantee 
ACID  properties  on  transactions  spanning  multiple  storage 
elements, it is not possible to read from a slave replica and write  
on the master replica within one atomic transaction. Combining 
that  with  the  eventual  consistency  afforded  by  asynchronous 
replication, the chance of the PS reading stale data is too high.

This  all  makes  sense,  since  it  is  a  consequence  the  previous 
decisions favoring F over A in general  for all  transactions (see 
section 3.3.1); if we now want to move the trade-off point closer 
to A for the PS type of transactions, we need to sacrifice some of 
F to achieve it.   

3.4 Scalable
Scalability is a characteristic most service providers demand. By 
“scalability”  we don’t  mean  just  the  ability to  scale,  which is 
nowadays  taken  for  granted  in  DDBMS  technology,  but  the 
ability  to  do  it  easy  and  cheap.  Most  service  providers  have 
embarked  in  a  journey to decrease  operating expenses  of their  
networks, therefore they appreciate the ability of the UDR NF to 
seamlessly scale with transaction load, subscriber base, or both.

When  talking  about  scalability  we  can  refer  to  more  or  less  
“local”  scalability (the ability to increase  the capacity of every 
constituent element of a system), also known as “scale-up”, and 
“global” scalability (the ability to add new constituent elements  
to  a  system),  also known as  “scale-out”.  Scale-up  is  normally 
bound by the physical limits of the execution platform where the 
UDR runs, whereas scale-out is usually bound by practical limits  
in the UDR NF architecture.
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3.4.1 Scale-up
By default,  the  execution  platform of the  UDR NF shall  be  a 
blade cluster. This allows adding more blades to the cluster when 
additional  capacity  is  needed.  To  maintain  high  availability 
figures,  the  cluster  should  be  compliant  to  the  Service 
Availability Forum (SAF) specifications [14] so it provides Fault  
Tolerance and High Availability to the UDR processes.

A number of storage elements run on every blade cluster. Every 
SE is  composed  of two to four  blades  to  provide  for  internal 
redundancy within  the  SE  and  shares  nothing  with  any other 
local or remote SE .

Additionally,  the  UDR NF runs a  distributed,  state-less  LDAP 
server providing the northbound interface to clients of the UDR. 
The LDAP server processes may be deployed to blades devoted 
to  LDAP processing  only,  or  they can  share  blades  with  SE. 
Since LDAP server processes are processor-hungry whereas SE 
processes  are  RAM-hungry, combining both kinds of processes 
on the same blade offers the best resource utilization chances.

The  PoA to  the  UDR might  be  provided  by a  L4-capable  IP 
balancer  running  in  a  few blades  of the  cluster.  The  balancer 
spreads LDAP traffic over all the LDAP servers available in the  
local blade cluster.

To scale up LDAP processing capacity, more LDAP servers can 
be deployed to the blade cluster. LDAP processing capacity of a  
cluster  is  thus  bound  by  the  number  of  blades  that  can  be 
installed in a cluster and the capacity left in those blades by the 
SE and  any platform processes  running  in  the  cluster.  The  IP 
balancer realizing the PoA to the UDR automatically detects new 
LDAP server instances deployed to the blade cluster so growth in 
LDAP processing capacity is automatic.

To scale up data storage capacity, more SE can be deployed to 
the blade cluster.  Since data  are  stored in  RAM memory, data 
storage capacity is  bound by the number  of blades  that  can be 
installed in a cluster and the amount of RAM left by the LDAP 
servers and any platform processes running in the cluster.

3.4.2 Scale-out
Scale-out  is  achieved  by  deploying  additional  blade  cluster  
instances,  containing LDAP servers and SE as needed.  The SE 
deployed  with  the  additional  blade  cluster  have  the  same 
restrictions as those deployed for scale-up.

In  every  new  blade  cluster  deployed,  a  data  location  stage 
instance is created automatically to increase F. This distribution  
stage  instance  syncs  its  identity-location  maps  with  peer 
instances in other blade clusters without requiring any additional  
procedure,  thus  realizing  the  first  decision  from section  3.3.1; 
however,  this  synchronization  takes  some  time,  during  which 
operations issued on the PoA realized by the new blade cluster 
cannot be handled. Therefore data availability (R) is affected by 
the  data  location  sync  mechanism  introduced  to  facilitate  S. 
Possible alternatives to identity-location maps are discussed later  
in this paper (see section 3.5).

3.5 Huge
In order to accommodate data for a huge number of subscriptions, 
a high number of storage elements needs to be supported by the 
UDR. The architecture must not set any unreasonable bound on 
the number of storage elements it can handle, and must provide  
an efficient mechanism to resolve the key-to-location mapping in 
the data location stage.

When  running  on  a  state-of-the-art  execution  platform,  tests 
show that a 2-blade SE can hold up to 2·10E+06 subscribers with 
the average profile so that means that assuming a limit of 16 SE 
per blade cluster a single blade cluster instance should provide a 
capacity of 32·10E+06 subscribers (enough for a small country), 
while assuming a limit of 256 SE per UDR system the total UDR 
NF capacity sits around 512 million of subscribers. That’s more 
than the population of the USA and roughly half the population 
in  mainland  China,  and certainly more than any single  service 
provider needs for the time being7.

Huge data means huge transaction load. Again based on tests, a 
single LDAP server running on a state-of-the-art blade in a UDR 
system supports a load of 10E+06 indexed read/write queries of 
single  subscriber  per  second.  Assuming  a  limit  of  32  LDAP 
servers  per  blade  cluster,  this  throws  a  total  transaction 
processing capability of 36·10E+06 LDAP read/write operations 
per blade cluster per second. If again we choose a limit  of 256  
blade  clusters  for  a  UDR  NF,  a  single  UDR  NF  supports  a 
maximum  of  9,216·10E+06  LDAP  read/write  operations  per 
second.

One  interesting  conclusion  from the  figures  above  is  that  on 
state-of-the-art HW the UDR architecture can support around 18 
LDAP read/write  operations per subscriber  per  second. Typical 
mobile  network  procedures  cause  between  1  and  3  LDAP 
operations8.

Being  a  distributed  DBMS,  the  UDR  contains  sharding 
mechanisms  to  distribute  data  across  locations.  The  more 
distributed  data  are  the  lower  the  chances  that  one  LDAP 
read/write operation issued by an application front-end finds the 
subscriber  data  in  a close location.  The higher  the chance that  
data have to be brought from a remote location over the IP back-
bone, the higher the chance the operation fails (the IP back-bone 
is inherently less reliable than a local IP network). Hence, if we 
assume the number of different locations grows with the number 
of subscribers (which seems reasonable given the physical limits  
of population per square mile), the more subscriber data are held 
in the UDR the lower the availability of those data  is.  This is  
represented by the H-R link in figure 5.

To counter the decreased availability caused by data distribution, 
the UDR might allow the PS to specify in what SE it wants data 
of  a  subscription  to  be  placed,  i.e.  selective  location.  This  is 
useful  in  telecom networks  since  it  is  known  that  users  stay 
within the home region of the subscription most of the time, so if  
the  data  of a subscriber  can be pinned  to a location close –in 
network terms- to the application front-ends in the home region 
of the subscription, chances of having to surf the IP back-bone to 
obtain  that  subscriber’s  data  decrease  enormously.  Only when 
the  user  leaves  her  home  region  (she  roams),  the  application 
front-end serving that user might have to go to a remote location 
to fetch the subscription data.  This  ability of the UDR system 
allows balancing the trade-off point along the H-R link.  Notice 

7  The  16 SEs  per  blade  cluster  and the  256  SEs per  NF are  
artificial  limits  used  for  the  calculations.  If trans-continental 
mergers end up taking place, like e.g. a large American service 
provider  merging with  a  large  European provider,  the  512M 
figure might be challenged but the architecture should be able  
to accommodate more SEs.

8  Network procedures  in  the  3GPP IP Multimedia  Subsystem 
(IMS)  are  somewhat  heavier.  A single  typical  IMS network 
procedure may cause 5 or 6 LDAP read/write operations.
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that, as already mentioned above, other criteria like regulatory or 
security reasons can invalidate this mechanism. 

Also with the high number of data pieces distributed across many 
locations comes increased  processing time in the  data  location 
stage. The data location stage has not been realized by means of 
hashing, which grows as O(1) in processing cost, since the UDR 
must support multiple indexes (one index per subscriber identity, 
i.e.  MSISDN,  IMSI,  IMPU  etc.)  and  must  support  also  the 
selective placement of subscriber data described above. A state-
full  data  location  stage’s  processing  cost  typically  grows  as 
O(logN),  being N the  number  of subscribers  in  the  UDR NF. 
Thus a high amount of data  has a certain impact in processing 
time, represented by the H-F link in figure 5. Nevertheless, this  
impact is very small and can be neglected it in most calculations,  
hence the link has been represented with a dotted line to mean 
it’s a rather weak link.

The state-full data location stage introduces a subtle trade-off in 
the F-R-S triangle. If the identity-location maps are provisioned, 
e.g. by PS, on scale-out the new data location stage needs to copy 
all the provisioned data from a peer stage in another cluster thus  
affecting R as  was mentioned in  section 3.4.2.  However if the 
maps are built on the fly and cached instead, R is not affected but  
every cache miss implies locating the subscriber data by querying 
multiple  or even all  the  SE in the system. Those data  location 
queries  may become a hurdle  to scalability. In this  paper we're 
assuming the maps are provisioned (given F, we favor S over R), 
which in the end might not be a consistent  choice according to 
the descriptions of R and S provided above. Hence a change to a 
cached data location stage seems likely in the near future.

There are alternatives to identity-location maps for data location. 
One such alternative would be to use consistent hashing to index 
locations.  To  apply  consistent  hashing  to  the  UDR,  we  need 
multiple  replicas  being  each  replica  indexed  by  a  different 
identity.  The  high  number  of current  and  future  identities  the 
UDR has to support might render this approach impractical. 

3.6 Summary
The following figure depicts  the effect of the design decisions  
described  in  this  section on the  FRASH relationships  graph in 
figure 5.  Red points are for provisioning transactions while blue 
points represent application front-end transactions. In spite of the 
figure,  we  argue  that  the  UDR NF described  in  this  paper  is 
PA/EL for transactions  coming from application  front-ends  but 
PC/EC for transactions coming from PS instances.

4. A CRITIQUE OF DESIGN 
DECISIONS
Comparing the different considerations and approaches outlined 
above, the following conclusions may be drawn.

4.1 Resilience vs. ACID
This  trade-off falls  within  the  scope  of the  CAP theorem.  By 
default on a network partition the UDR NF realization described 
favors Consistency over Availability,  for both provisioning and 
application FE transactions.  This  decision could raise  concerns 
amongst service providers.  On a network partition,  while  most 
transactions  coming  from  application  front-ends  proceed 
successfully  since  those  transactions  are  composed  of  mostly 
reads,  transactions  coming from a PS almost  always fail  since 
most provisioning transactions involve writes to subscriber data.

Provisioning transactions turn out to be more valuable (or costly, 
depending  on  how one  looks  at  the  problem)  that  one  might 
initially estimate.  More  often each day,  activation of a  mobile 
network  subscription  takes  place  in  an  unattended  fashion, 
triggered by the back-office system when a brand new user walks  
out of the phone shop and activates  a device containing a SIM 
card associated to the subscription. If the activation fails because  
there’s a network partition at that moment, two very bad things 
happen:

1. The new user gets disappointed with the service (and 
most probably walks back into the shop and complain 
to the desk staff)

2. The service provider needs to send someone to check 
what’s  happened,  wait  until  network  service  is 
restored, and complete the activation manually.

The first event above will cause churn in the long run, hence the  
provider’s income will decrease. But with immediate effect, the 
provider  needs  to  cover  the  costs  of  the  manual  intervention 
required to complete the activation.

When using batched provisioning, a network glitch as short as 30 
seconds may cause a batch that’s been running for hours to fail.  
At the very best, if the batch is able to finish the provider needs 
to  send  someone  to  check  what  parts  of the  batch  failed  and 
apply  those  parts  manually.  This  again  incurs  a  cost  for  the 
service provider.

In general,  service providers demand that on network partitions 
the  UDR NF keeps  taking writes  stemming from provisioning 
transactions, or in other words, do not decrease Availability on a 
partition.  Of  course  this  means  jeopardizing  Consistency,  as 
we’ll see in the next section.

4.2 Fast vs. ACID
This trade-off is outside the CAP limits, but is considered by the 
PACELC taxonomy.  By default,  in  the  absence  of  a  network 
partition the UDR NF realization described tends to be fast. For 
provisioning transactions it tries to compensate a bit towards the 
ACID end,  but  in the best  case a compromise between both is 
reached. This makes a lot of sense, since from the architectural  
framework the system has been designed to be this way.

Again, this decision could generate service provider challenges. 
The reason is that on a failure of a storage element, durability of 
the latest transactions is not guaranteed. Given the relevance that  
provisioning transactions have for the service provider  (see the 
previous section), this is an undesirable effect that most service 

Figure 6. Trade-offs created by the design decisions on 
UDR NF FRASH characteristics

.
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providers  would  like  to  see  fixed  to  some  extent,  even  if  it  
implies losing in some other characteristic.

Becoming more  ACID would  imply being slower  (F)  and  less 
available (R), ant to some extent less scalable (S).  The reasons 
for this have already been exposed. What is not so clear is how 
much of F, R and S are service providers willing to sacrifice for 
guaranteed durability of provisioning transactions.

5. EVOLUTION
In the light of the critique from the previous section, a UDR NF 
realization as the one described above might need to make some 
changes to better cater for a service provider’s needs.

First and foremost, some sort of multi-master operation would be 
very convenient  so writes  can be  addressed  to  more  than  one 
single replica. This would allow the provisioning transactions to 
proceed on network partition events.

The CAP theorem [8] states that if we increase Availability on a 
partition incident we’ll lose some Consistency. This is indeed the 
case  when conflicting write  transactions  come from clients  on 
different sides of the partition: since communication between the 
masters  is  impossible,  they have  no way of checking  that  the 
conflicting  transactions  are  consistent  with  a  single,  common 
view of the data.  Hence they’ll  apply the transactions on their  
respective  views  of that  data,  with  such views  diverging with 
every write  they receive.  Once the partition incident  is  over,  a 
consistency restoration process must run across the whole UDR 
NF,  trying  to  merge  the  different  views  into  one  single,  
consistent view.

Second, the service provider has to be allowed to tune the degree 
of durability it  wants for provisioning transactions.  The biggest 
hurdle  here  is  not  technical  but  human: the  service provider’s  
technical staff has to be made to understand that with increased 
durability (hence consistency) comes decreased speed of access.  
Actually,  the  latency  penalty  for  achieving  close  to  100% 
guaranteed  durability  is  so  high  that  some  unwary  service 
providers might think it twice before going down that way.

One  very elegant  and  powerful  durability  tuning  solution  has 
been  implemented  in  Apache Cassandra  [10].  In Cassandra,  a 
client  is able  to specify the durability guarantees  it  wants  on a  
per-transaction  basis.  Under  the  hood  Cassandra  uses  a 
consensus  protocol  across  an  ensemble  of  replicas;  the  more 
replicas are involved in the transaction, the higher the durability 
guarantees.

In a UDR NF a similar approach is hardly affordable, since the  
latency increase would be too high.  Instead,  most probably the 
UDR NF should apply provisioning transactions in sequence to 
two replicas, committing the transaction only when both replicas 
report  success.  To avoid incurring the penalties  of a consensus 
protocol, the UDR shall have to work in cooperation with the PS 
so when a  transaction fails  to commit,  leaving just  one of the  
replicas  updated  is  acceptable.  Most  probably  this  limitation 
forces to restrict the dual-in-sequence replication of transactions  
to simple transactions that are idempotent or easy to roll-back.

6. CONCLUSIONS AND FUTURE 
WORK
In this paper we’ve characterized one possible realization of the 
3GPP UDC architecture  network function known as UDR. The 

UDR is a huge distributed DBMS with stringent requirements on 
latency, resilience, scalability and low cost of operation.

We’ve described an architectural framework guiding the design 
of the system, and the set of additional decisions made in order  
to reach optimum trade-offs within the physical limits of a huge 
distributed system. We’ve extended the CAP conjecture and the 
PACELC taxonomy with  size  and  scalability  characteristics  to 
fully understand the limitations and following decisions.

Finally  we’ve  exposed  weak  points  in  the  initial  architectural  
framework  and  associated  decisions,  and  possible  corrections 
that  might  have  to  be  made  for  compensating  some  not  well 
tuned trade-offs.

Future  challenges  that  any UDR NF realization  will  probably 
face include how to compensate  for the lack of consistency the  
increased resiliency service providers  demand will  bring about.  
In  that  regard,  one  promising  alternative  to  the  master-slave 
replication approach described above lies on efficient distributed  
agreement protocols like e.g. Paxos [15] or similar solutions [16].

 Also  a  very  challenging  aspect  will  be  how  to  increase  
consistency for transactions coming from application front-ends 
without heavily impacting the latency those front-ends perceive.
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