
CAP Limits in Telecom Subscriber Database Design
Javier Arauz

Ericsson
Via de los Poblados 13
Madrid, Spain, 28033

34913392997

jesus.javier.arauz@ericsson.com

ABSTRACT
While the notion of a Distributed DBMS has been familiar to the
IT industry for several decades, within telecom networks the
subscriber data management based on DDBMS technology is a
novel addition to a service provider's infrastructure.

Service providers are used to telecom networks that are efficient,
reliable and easy to maintain and operate, in part thanks to the
node model used in designing such networks. A DDBMS
spanning a large geographical area however incurs into
distributed systems issues not previously seen in telecom
networks.

Identifying and delivering the right set of trade-offs that satisfies
the service providers’ needs while staying within the known
physical bounds of a distributed system is therefore crucial if
DDBMS are to conquer the subscriber management space within
telecom networks.

1. INTRODUCTION
Telecom networks have used databases to hold subscriber data
since the advent of the Global System for Mobile (GSM)
standard [1]. In GSM networks, the Network Function (NF)
known as Home Location Register (HLR) performs the task of
managing the data of the subscribers of the network. The HLR,
in addition to holding subscriber data, cooperates in many
network procedures with multiple NFs in order to provide the
services the users demand from the network. Two of the most
relevant procedures are authentication/authorization and location
management, but there are many others.

In modern IP Multimedia Subsystem (IMS) [2] and 4G System
Architecture Evolution/Long-Term Evolution (SAE/LTE) [3]
networks, the subscriber management NF is realized by the
Home Subscriber Server (HSS), an extension of the HLR
supporting the additional or improved services these networks
provide to their users. As opposed to HLR, HSS is capable of
supporting fixed networks in addition to mobile cellular
networks.

Both HLR and HSS manage massive amounts of data about all
the subscribers in a telecom network. Following the traditional
node-based design of a telecom network, every NF is realized by

multiple independent nodes, such that failure of a single node
does not affect the rest of the network. Each node holds one
partition of the whole subscriber data space, thus when one node
fails the subscribers whose data are held in the failing node lose
access to the network. This node-based design has allowed
telecom networks to keep pace with technological advances and
new services while retaining the reliability properties users of
those networks have learned to expect.

But not everything in a node-based network is good news for the
service provider that operates it. According to the description
above subscriber data are spread across vertical silos, each silo
owning just one partition of the subscriber space. These silos
pose two major challenges to the service provider:

1. Managing all these silos implies increased operating
costs and complexity. Data duplication, where pieces of
data with the same meaning are stored across different
silos (e.g. HLR and HSS), is of special concern since it
requires coordinated data management across silos.

2. Performing business intelligence and operative
research over subscriber data becomes a formidable
task, since there’s no standardized way of fetching
subscriber data from the silos

To overcome the above challenges, 3GPP (the standardization
body behind the highly-successful 3G and 4G standards) [4]
came up with a User Data Consolidation (UDC) architecture [5].
In this architecture, all subscriber data are consolidated in a
single subscriber database – the User Data Repository (UDR),
while participation in network procedures is left for application
front-ends (FE)1. This database is mandated to support an LDAP-
based interface [6] to read/write subscriber data. The structure
and semantics of subscriber data are not detailed by the UDC
specifications.

Since the UDR has to be accessed by every application FE in a
service provider network, in most cases it cannot be a centralized
database located at a single place. Instead, it becomes a
distributed database, with data spread across multiple storage
sites and Points of Access (PoA) wherever FEs are located. In
between the storage sites and the PoA a distributed middleware
creates the illusion that one single data space exists. The
distributed nature of the UDR combined with the particularities
of a telecom network is what poses the issues that are described
in this paper.

1 Examples of application front-ends are the HLR-FE and the
HSS-FE, named after their non-DLA counterparts. These front-
ends cooperate in the same network procedures as their non-
DLA versions, but when a FE needs subscriber data to execute
its part of a network procedure it reads those data from the
UDR.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain
permission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume were
invited to present their results at the 40th International Conference on Very
Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 13
Copyright 2014 VLDB Endowment 2150-8097/14/08

1474

Nailing down those issues applying the proper choice of database
technologies and associated trade-offs is crucial for UDC to
become the next-generation target architecture in present and
future telecom networks.

2. DESCRIPTION OF THE PROBLEM
2.1 The 3GPP telecom network
As has been mentioned in the introduction, traditionally telecom
networks have been built following a node-based design, where a
NF, e.g. HSS, is realized by multiple, independent instances.
These instances are spread across the geographic area of
coverage of a service provider, such that there is always a NF
instance close to a user of the network service. Telecom networks
are designed this way for resiliency reasons: when one instance
of a NF fails, only the users making use of that instance are
affected. While it can be argued this is a property also of well-
designed distributed systems, as long as some interaction
between the parts of a system exist it cannot be guaranteed that a
severe problem in one of the parts will not bring the whole
system down. Spreading NF instances geographically is done for
efficiency reasons: traditionally, long-distance backhaul of IP
traffic has been both limited in bandwidth and expensive, hence
deploying NF instances close to the users decreases the need of
backhauling control plane IP traffic to a central control plane
processing data center2.

The following figure illustrates the traditional building practice
for a telecom network operated by a multi-national service
provider.

2.2 Telecom networks and UDC
In 3GPP UDC networks, subscriber management NFs become
stateless application front-ends, while actual subscriber data
management takes place at the UDR NF. This is a major
departure from the pre-UDC building practice, since due to
distribution of subscriber data across the network in a UDC
network there’s a high chance (up to 100% depending on UDR
NF architecture) that for every network procedure, control plane

2 This aspect is less relevant every day with the advent of
massive bandwidth optical networks. Currently service
providers consider that centralizing NF instances at a single
data center is superior in terms of operating costs to the
traditional geographically-spread deployments.

IP traffic has to be back-hauled to a remote location. This turns
the IP back-bone network into an integral part of the telecom
network, and leads the service provider to put more effort in IP
network resiliency and latency than in NF reliability and
deployment in order to keep the service levels unchanged with
respect to a pre-UDC network.

This increased investment in IP network resiliency and latency is
compensated by operating expense savings thanks to higher
flexibility across the telecom network –i.e. application FEs
become state-less processing nodes hence any FE instance can
serve any user, enabling statistical multiplexing and resource
sharing- and subscriber data consolidation into one single NF –
the UDR, removing the need for data redundancy control and
coordinated data management-.

Additionally, the prospects of improved operational efficiency
and business management enabled by data mining over the
subscriber data stored in the UDR is propelling service providers
to move to a DLA telecom network. This aspect however remains
to be realized mainly due to business and regulatory issues.

2.3 Architectural framework of a UDR NF
realization
The UDR NF is the UDC network’s Single Point of Access
(SPoA) for subscriber data. Since a telecom network may grow
up to hundreds of millions of subscribers and span whole
continents while keeping a high Quality of Service (QoS) level
any realization of the UDR NF must fulfill a number of
requirements:

1. It must provide enough storage for the service
provider’s full subscriber base

2. It must be able to accommodate a growing subscriber
base with little operating expense associated

3. It must be resilient, on average any given subscriber’s
data must be available 99.999% of the time

4. It must be fast, with a target average response time of
10ms (excluding network delays) for index-based
single subscriber queries

5. It must be cheap and easy to operate, which implies it
must provide ACID guarantees

The above can be summarized in that the UDR NF must be fast,
resilient, ACID, scalable and huge, abbreviated FRASH. Those
requirements led us to an architectural framework having the
following characteristics:

• To be fast, data are stored in volatile media (RAM
memory)

• To be resilient, all the elements in the architecture are
redundant and geographically spread

• To be ACID, storage provides support to grouping
operations into transactions that execute atomically

• To be scalable, storage is split into elements of a
limited size so growth can be tackled in small steps

• To be huge, the architecture is able to accommodate a
high number of storage elements

Figure 1. Traditional building practice of a multi-national
telecom network.

1475

The diagram in figure 2 shows a representation of a multi-
national UDR NF following the just described architectural
framework.

In the UDR NF shown, every SE holds a primary copy of one
partition and one or two secondary copies of other partitions. For
instance, if subscriber data space were spread across three
partitions, the top-most SE in figure 2 might hold the primary
copy of partition 1 and secondary copies of partitions 2 and 3;
the middle SE might hold the primary copy of partition 2 and
secondary copies of partitions 1 and 3; and the bottom SE should
then hold the primary copy of partition 3 and secondary copies of
partitions 1 and 2. Given that data distribution policy, the UDR
from figure 2 can continue providing service for 100% of the
subscriber base as long as one PoA and one SE are reachable.

Partitions are further split into sub-partitions in order to address
the scalability properties of the UDR. A single subscriber data
partition typically amounts to circa 200 GB. The 200 GB size
comes imposed by the available RAM memory in one SE's HW
platform, so it can be expected to double with every new HW
generation.

2.4 Operation of the Telecom Network
A UDC Telecom Network is operated exactly the same way as
any other telecom network, i.e. following the Telecom
Management Forum (TMF) specifications [7] with the help of an
Operations Support System, OSS. All Operation and
Maintenance (OaM) on the network is performed through the
OSS, which offers the operator a consolidated view of all the
nodes in the network.

With respect to subscriber management, a UDC network is very
different from its predecessors. In pre-UDC networks subscriber
management is performed directly on the nodes involved. For
instance, in order to create a subscription in the network, also
known as “provisioning” a subscription, many write operations
need to be issued on multiple nodes:

• Subscription data are created on one instance of the
subscriber data management NF, e.g. the HSS

• Data location information is created in all instances of
signaling routing NF, e.g. the Subscription Location
Function (SLF). This information consists of binary
tuples containing the identities associated to the
subscription, e.g. Mobile Subscriber Integrated
Services Digital Network (MSISDN) number and
IMPU (IMS Public Identity), and the address of the NF
instance containing the data for that subscription

Provisioning operations are executed with the support of a
Provisioning System, PS. All the operations associated with a
single provisioning procedure need to be handled as a
transaction. Since NF instances do not provide support for
transactional operations this turns into very complex PS logic
that needs to take care of executing provisioning operations
transactionally across multiple nodes.

In a UDC network however, the PS has one single place that
needs to be written (the UDR), which provides support for
handling a provisioning procedure as a transaction. This allows
simplification of the PS logic to a large extent, and solves corner
cases that could not be solved in pre-UDC networks and that
normally end up requiring manual intervention on the nodes to
restore the network to a consistent state.

Figures 3 and 4 illustrate the difference between pre-UDC
networks and UDC networks respectively with regards to
provisioning. Notice that in figure 4, every UDR element is a
part of the whole distributed UDR NF, being all parts inter-
connected through the multi-national IP back-bone network.

2.5 Conflicting Demands on Data
Management in UDC Networks
Unfortunately the FRASH requirements on the UDR NF are
conflicting, as the reader savvy in DDBMS technology will have
noticed. Conflicts arise when trying to maximize two or more of
the FRASH characteristics. For instance, fast data access enabled
by storage in volatile media very often conflicts with resilient
data access since on unplanned events contents of volatile media
may vanish, thus rendering data of a number of subscribers
unavailable. As another example, huge and scalable data storage
by means of a high number of limited-size storage elements may
go against fast data access since data location management
becomes more complicated.

The best known theoretical framework to understand and
analyze the relationships between conflicting characteristics in a
distributed system is the CAP (Consistency-Availability-
Partition tolerance) theorem [8]. In our discussion of the UDR
NF, Consistency is represented by ACID properties; while
Availability and Partition-tolerance is represented by the
resilience property. The other properties –fast, scalable, huge-
are not linked by the CAP theorem, although they are in turn
constrained by the acid and resilient properties. For instance, the
larger the data set stored by the UDR, the harder is to maintain a
fast and scalable data location stage, ACID properties of
transactions spanning many storage elements and 99.999%
available data in the presence of multiple storage element
failures.

Figure 2. Architecture of a UDR NF realization

.

1476

Figure 5 shows the relationships between the FRASH
characteristics of the UDR NF. The grayed oval in the figure
represents the scope of the CAP theorem. An arrow between any
two characteristics represents a restriction, such that increasing
one of them forces to decrease the other. In the coming sections
we will illustrate where along those arrows the UDR NF
realization described in this paper sits.

With the advent of grid databases like HBase [9] and a myriad of
NoSQL3 databases like Cassandra [10] and MongoDB [11], new
trade-offs not covered by the CAP theorem have arisen. A new
term that covers this kind of databases is PACELC [12].
PACELC stands for “On a Partition be either Available or
Consistent, Else favor either Latency or Consistency”, thereby
introducing latency in the equation. Scalability and size have not
been included in any theoretical framework to the best of our
knowledge.

The UDR NF is also covered by the PACELC term. The service
demands when there is a partition in the IP network deserve
special attention. On a partition, the system may decide to be
either Available or Consistent (R or A in FRASH). In many
applications of DDBMS technology it is acceptable to stop
business for a few seconds or even minutes on unexpected
events. That’s not the case of the UDR; as we’ve already
mentioned, on average data of any given subscriber must be
available 99,999% of the time4. Hence if the observation period
is one year, on a network partition lasting more than a few
seconds the UDR NF must make adjustments so subscriber data
can be accessed despite the network problems. In the following
section we’ll see how this C vs. A&P conflict materializes under
a possible set of design choices for a UDR NF realization.

3. DESIGN CHOICES
Given the architectural framework introduced in section 2.3, in
this section we present a possible set of additional design choices
for a first realization of a UDR NF. We believe this approach is
illustrative of the iterative process typical of the introduction of a
technology in a new realm where it hasn’t been used before.

3.1 Resilience
Resilience is not negotiable: data availability must remain at or
above 99.999% at all times. This has been the trademark of
telecom networks for ages and the world is still not ready to trade
reliability in communication for other benefits5.

RAM-based data storage is established in the architectural
framework as the premise to provide the speed of access required
to keep the network service responsive. However RAM memory
is inherently unreliable, so some adjustments to improve
resiliency of data are necessary. Since by virtue of the F-R arrow
from figure 5 speed of access would be decreased, the
adjustments imply a trade-off between these two factors.

Two design decisions make sense in this scope:

1. To protect data against individual storage element
failures, every storage element saves data in RAM to
local persistent storage (i.e. SATA or SAS hard disk)
on a periodic basis

3 HBase can also be classified as a NoSQL database, although it
uses the more traditional concept of tuples stored in tables
where the others use the concept of documents stored in a
storage pool

4 This is an average, i.e. if one subscriber’s data is not available
at all during the observation period but data of 99,999 other
subscribers has been available 100% of the time then the
average availability for the 100,000 subscribers is 99,999%

5 In most available disaster movies, during the catastrophe’s
algid moments when all computer systems are down the
telephone system keeps working

Figure 5. Relationships between the UDR NF FRASH
characteristics

Figure 3. Provisioning in pre-UDC networks

Figure 4. Provisioning in UDC networks

1477

2. To protect data against unforeseen events, every
piece of data is duplicated in two or more
geographically-disperse locations

The storage elements (SE) should guarantee data accessibility on
failures of internal parts of the element by means of intra-
element redundancy; hence what remains is availability in the
presence of complete SE failures or catastrophes affecting
multiple elements.

These decisions are a compromise between F and R since they
enable decent data accessibility with very little decrease in speed
of access; the storage engine is slightly slowed down since it is
deprived of some computing resources needed for storage to disk
and replication6.

But the most relevant trade-off in a UDR system materializes due
to the second decision above. Introducing data duplication in the
system implies some kind of replication between copies, which
takes us into the realm of the CAP theorem and the C vs. A&P
trade-offs. The number of possible scenarios and the decisions
the system has to take in each scenario would take a full paper by
themselves. We provide some details once we explain how the
multiple copies of every piece of data can be kept in sync, in
sections 3.2 and 3.3.

3.2 ACID
Consistency in subscriber data is very important for a service
provider; after purchasing a cell phone subscription from a
service provider, we all expect that after sliding the SIM card
into the phone and powering it on service is up immediately.
Also if you set up a pay-call barring for the line, you wouldn’t be
very happy if you find your kids speaking on it to a hi-toll
number.

The above issues may arise if the UDR NF does not fulfill ACID
properties for provisioning operations. A partially executed
provisioning transaction may render a subscription unusable. An
alteration in the order of concurrent transactions from an
application front-end may revert changes to the subscription
status without the user noticing it.

Compliance to the ACID rules may have a huge impact in speed
of access to the data. Thus a compromise along the F-A link from
figure 5 is necessary. This is one of the hardest choices since
usually a service provider wouldn't compromise on any of F or A.
Our telecom network expertise however advocates for not
jeopardizing F as the lesser evil: one angry customer switching
carriers is less evil than a constant churn due to poor network
performance. Hence the following decisions lend the compromise
more towards the F end of the link:

1. ACID properties are guaranteed for transactions
running on the same storage element only, i.e. SE are
transactional. This prevents from having to run
consensus protocols like e.g. 2-Phase Commit (2PC)
across geographically disperse locations, which may be
expensive.

2. The level of isolation between concurrent transactions
on a storage element is set to READ_COMMITED
[13], to prevent locking from delaying reads on

6 It is possible to configure storage elements to dump
transactions to disk before committing for 100% guaranteed
durability, but that would slow down storage elements too
much (the F-R trade-off point would slide too much towards
the R end).

subscription data (reads are mostly issued by
application front-ends).

Obviously, for transactions running over multiple storage
elements no ACID guarantees are provided, and the level of
isolation afforded to those is READ_UNCOMMITTED [13].

To minimize potential consistency problems, clients of the UDR
should limit transactions spanning multiple SEs to a minimum.
Application FEs always work against one single storage element
(the one containing the subscription involved in the
corresponding network procedure), and the PS should attempt to
group operations into transactions addressed to as few SE as
possible. Nevertheless, the PS still needs to contain logic dealing
with unexpected outcomes due to the lack of transactionality
between SEs.

The second decision from section 3.1 introduces an additional
facet to ACID properties. It would be useless to invest computing
resources and execution time in guaranteeing atomic transactions
if the multiple copies of a data piece are not kept in sync. In
database replication setups, concurrent write operations on
different copies of data may lead to different outcomes at each
copy. Individual copy failures are another source of inconsistency
in these scenarios.

To maximize consistency hence ACID properties across copies,
copies are not all equal. At every point in time for each piece of
data there is one copy handling all writes to that data. That copy
is referred to as the master copy. The master copy replicates
writes to the other copies of the data, which we will refer to as
the slave copies. The replication mechanism is such that it
guarantees the serialization order of writes replicated to any
slave copy is exactly the same as that imposed by the master
copy. Since no writes can be applied to a slave copy, the
serialization order guarantee above is enough to maintain all
copies in sync with respect to the actual data they hold.

What happens when contact between replicas is lost due to
network partitions? Since writes can only be applied at a master
replica, as long as a transaction can access the master replica it
will be executed. This means if the client issuing a transaction is
on the side of the partition that contains the master replica for the
piece of data the transaction affects the outcome of the
transaction will be successful, otherwise it will be failure. The
failure cases decrease the overall availability of data, hence
sliding the trade-off point along the R-A link towards the A end
(or, in CAP terms, we favor Consistency over Availability on a
partition).

3.3 Fast
A fundamental property of any telecom network is its
responsiveness. We all have felt frustrated when it takes more
than a few seconds for our cell phone to register in the mobile
network. This not to mention the disappointment caused by an
outgoing call attempt taking more than one second to start.

Mostly every action a user performs with her cell phone involves
some network procedure, and every network procedure involves
one or more accesses by the application front-end involved (e.g.
HLR-FE) to the UDR NF. Hence it is crucial that processing
transactions from application front-ends is as fast as possible, in
order to not jeopardize responsiveness of the whole network.

Transactions from the PS are not so fatally affected by excessive
delays. However, excessive delay in processing provisioning
transactions may have other types of impacts. The average
service provider keeps a continuous flow of provisioning

1478

operations going at any one time. There are periods, dubbed low
traffic hours, during which this flow falls down to a minimum.
However, out of those periods long delays in processing
provisioning transactions might cause a back-log of operations to
grow at the PS. If this back-log overflows for some reason,
dropping operations in the way, outcome would be fatal. Some
service providers perform batch provisioning, which consists of
issuing a huge batch of provisioning operations during a
relatively short period of time. Batch provisioning is more likely
to cause back-logs in the presence of excessive delays in
processing provisioning transactions.

Speed of access is guaranteed from the architectural framework
by RAM-based data storage. However, as in any distributed
system, network delays play a key role in the response time of
the system so additional architectural measures need to be taken
in order to keep average speed of access as high as possible.

3.3.1 General for all transactions
In general for any transaction the architecture provides the
following mechanisms to enhance speed of access to data:

1. Every point of access to the UDR is capable of
resolving data location locally to the PoA, without
incurring in long packet exchanges with remote
locations over the IP network.

2. Replication of writes from the master to the slave
copies is performed asynchronously, so execution of a
transaction does not have to wait until the
corresponding write(s) have been propagated to the
slave replica(s). Since the slave replicas are distant –in
geographical terms- from the master replica in order to
cater for natural disasters, waiting for a write to be
propagated to a slave replica most probably implies a
slow exchange of IP packets over the IP back-bone
network.

The first decision above favors speed of access (F) despite
scalability (S) and size (H); for scalability, on scale-out new data
location stages have to be deployed and sync’d with those already
in place, which makes the procedure longer and more failure-
prone. For size, storage of the identity-location maps deprives
storage elements from memory they could use to store more data.
Data location uses identity-location maps since the UDR must
support multiple indexes (one index per subscriber identity,
i.e. MSISDN, IMSI, IMPU etc.) and must support also the
selective placement of subscriber data (due to e.g. regulatory or
security reasons, where data for subscribers belonging to a
country or organization must be located at a predetermined
place). Using identity-location maps however has proven to be
problematic due to the state-full characteristics of the data
location stage; a discussion of possible alternatives comes later in
this paper (see section 3.5).

The second decision above moves the trade-off point away from
A and closer to F along the F-A link. Asynchronous replication
does not guarantee that, in case of failures, all transactions
committed at the master are successfully replicated to the
slave(s). Hence, a transaction committed on the master with
ACID guarantees might not be durable if a severe failure
prevents the transaction from being replicated to at least one
slave.

3.3.2 Transactions from application front-ends
The following measures guarantee fast access to data from
application front-ends:

1. There is always a point of access to the UDR close –in
network terms- to any one application front-end, as
long as the cost of doing so justifies it. This enables
fast IP packet exchanges between application front-
ends and the UDR, improving fault detection and
enabling efficient processing of erroneous transactions.

2. Read operations on slave copies are allowed. This may
be useful if a slave copy of the data being read is co-
located with the PoA receiving the read request from
the application front-end. If that’s the case all IP packet
exchanges take place over a fast local network, as
opposed to the slower IP back-bone.

The second decision above moves the F-A trade-off even further
towards the F end: since asynchronous replication does not
guarantee real-time sync between replicas, there’s a certain
chance that a read operation on a slave replica gets stale data,
decreasing the consistency of read operations.

3.3.3 Transactions from PS
For data access from PS we’ve taken the following measures:

1. An instance of the PS is always co-located with a UDR
PoA. This is just not feasible for application front-ends,
since there are too many of them, but in a typical
telecom network there are just one or two PS instances.

2. Read operations on slave copies are disallowed.

The second measure above may seem out of place here, since it
moves the speed compromise away from the F end of the F-A
link. But that’s not actually the case. It is still an architectural
decision related with speed of access, hence here’s where it must
lie.

The reason for compromising on F in favor of A for transactions
from the PS lies in the fact that provisioning operations must be
executed in atomic transactions, or at least as atomic as the
architecture allows it. Since the architecture does not guarantee
ACID properties on transactions spanning multiple storage
elements, it is not possible to read from a slave replica and write
on the master replica within one atomic transaction. Combining
that with the eventual consistency afforded by asynchronous
replication, the chance of the PS reading stale data is too high.

This all makes sense, since it is a consequence the previous
decisions favoring F over A in general for all transactions (see
section 3.3.1); if we now want to move the trade-off point closer
to A for the PS type of transactions, we need to sacrifice some of
F to achieve it.

3.4 Scalable
Scalability is a characteristic most service providers demand. By
“scalability” we don’t mean just the ability to scale, which is
nowadays taken for granted in DDBMS technology, but the
ability to do it easy and cheap. Most service providers have
embarked in a journey to decrease operating expenses of their
networks, therefore they appreciate the ability of the UDR NF to
seamlessly scale with transaction load, subscriber base, or both.

When talking about scalability we can refer to more or less
“local” scalability (the ability to increase the capacity of every
constituent element of a system), also known as “scale-up”, and
“global” scalability (the ability to add new constituent elements
to a system), also known as “scale-out”. Scale-up is normally
bound by the physical limits of the execution platform where the
UDR runs, whereas scale-out is usually bound by practical limits
in the UDR NF architecture.

1479

3.4.1 Scale-up
By default, the execution platform of the UDR NF shall be a
blade cluster. This allows adding more blades to the cluster when
additional capacity is needed. To maintain high availability
figures, the cluster should be compliant to the Service
Availability Forum (SAF) specifications [14] so it provides Fault
Tolerance and High Availability to the UDR processes.

A number of storage elements run on every blade cluster. Every
SE is composed of two to four blades to provide for internal
redundancy within the SE and shares nothing with any other
local or remote SE .

Additionally, the UDR NF runs a distributed, state-less LDAP
server providing the northbound interface to clients of the UDR.
The LDAP server processes may be deployed to blades devoted
to LDAP processing only, or they can share blades with SE.
Since LDAP server processes are processor-hungry whereas SE
processes are RAM-hungry, combining both kinds of processes
on the same blade offers the best resource utilization chances.

The PoA to the UDR might be provided by a L4-capable IP
balancer running in a few blades of the cluster. The balancer
spreads LDAP traffic over all the LDAP servers available in the
local blade cluster.

To scale up LDAP processing capacity, more LDAP servers can
be deployed to the blade cluster. LDAP processing capacity of a
cluster is thus bound by the number of blades that can be
installed in a cluster and the capacity left in those blades by the
SE and any platform processes running in the cluster. The IP
balancer realizing the PoA to the UDR automatically detects new
LDAP server instances deployed to the blade cluster so growth in
LDAP processing capacity is automatic.

To scale up data storage capacity, more SE can be deployed to
the blade cluster. Since data are stored in RAM memory, data
storage capacity is bound by the number of blades that can be
installed in a cluster and the amount of RAM left by the LDAP
servers and any platform processes running in the cluster.

3.4.2 Scale-out
Scale-out is achieved by deploying additional blade cluster
instances, containing LDAP servers and SE as needed. The SE
deployed with the additional blade cluster have the same
restrictions as those deployed for scale-up.

In every new blade cluster deployed, a data location stage
instance is created automatically to increase F. This distribution
stage instance syncs its identity-location maps with peer
instances in other blade clusters without requiring any additional
procedure, thus realizing the first decision from section 3.3.1;
however, this synchronization takes some time, during which
operations issued on the PoA realized by the new blade cluster
cannot be handled. Therefore data availability (R) is affected by
the data location sync mechanism introduced to facilitate S.
Possible alternatives to identity-location maps are discussed later
in this paper (see section 3.5).

3.5 Huge
In order to accommodate data for a huge number of subscriptions,
a high number of storage elements needs to be supported by the
UDR. The architecture must not set any unreasonable bound on
the number of storage elements it can handle, and must provide
an efficient mechanism to resolve the key-to-location mapping in
the data location stage.

When running on a state-of-the-art execution platform, tests
show that a 2-blade SE can hold up to 2·10E+06 subscribers with
the average profile so that means that assuming a limit of 16 SE
per blade cluster a single blade cluster instance should provide a
capacity of 32·10E+06 subscribers (enough for a small country),
while assuming a limit of 256 SE per UDR system the total UDR
NF capacity sits around 512 million of subscribers. That’s more
than the population of the USA and roughly half the population
in mainland China, and certainly more than any single service
provider needs for the time being7.

Huge data means huge transaction load. Again based on tests, a
single LDAP server running on a state-of-the-art blade in a UDR
system supports a load of 10E+06 indexed read/write queries of
single subscriber per second. Assuming a limit of 32 LDAP
servers per blade cluster, this throws a total transaction
processing capability of 36·10E+06 LDAP read/write operations
per blade cluster per second. If again we choose a limit of 256
blade clusters for a UDR NF, a single UDR NF supports a
maximum of 9,216·10E+06 LDAP read/write operations per
second.

One interesting conclusion from the figures above is that on
state-of-the-art HW the UDR architecture can support around 18
LDAP read/write operations per subscriber per second. Typical
mobile network procedures cause between 1 and 3 LDAP
operations8.

Being a distributed DBMS, the UDR contains sharding
mechanisms to distribute data across locations. The more
distributed data are the lower the chances that one LDAP
read/write operation issued by an application front-end finds the
subscriber data in a close location. The higher the chance that
data have to be brought from a remote location over the IP back-
bone, the higher the chance the operation fails (the IP back-bone
is inherently less reliable than a local IP network). Hence, if we
assume the number of different locations grows with the number
of subscribers (which seems reasonable given the physical limits
of population per square mile), the more subscriber data are held
in the UDR the lower the availability of those data is. This is
represented by the H-R link in figure 5.

To counter the decreased availability caused by data distribution,
the UDR might allow the PS to specify in what SE it wants data
of a subscription to be placed, i.e. selective location. This is
useful in telecom networks since it is known that users stay
within the home region of the subscription most of the time, so if
the data of a subscriber can be pinned to a location close –in
network terms- to the application front-ends in the home region
of the subscription, chances of having to surf the IP back-bone to
obtain that subscriber’s data decrease enormously. Only when
the user leaves her home region (she roams), the application
front-end serving that user might have to go to a remote location
to fetch the subscription data. This ability of the UDR system
allows balancing the trade-off point along the H-R link. Notice

7 The 16 SEs per blade cluster and the 256 SEs per NF are
artificial limits used for the calculations. If trans-continental
mergers end up taking place, like e.g. a large American service
provider merging with a large European provider, the 512M
figure might be challenged but the architecture should be able
to accommodate more SEs.

8 Network procedures in the 3GPP IP Multimedia Subsystem
(IMS) are somewhat heavier. A single typical IMS network
procedure may cause 5 or 6 LDAP read/write operations.

1480

that, as already mentioned above, other criteria like regulatory or
security reasons can invalidate this mechanism.

Also with the high number of data pieces distributed across many
locations comes increased processing time in the data location
stage. The data location stage has not been realized by means of
hashing, which grows as O(1) in processing cost, since the UDR
must support multiple indexes (one index per subscriber identity,
i.e. MSISDN, IMSI, IMPU etc.) and must support also the
selective placement of subscriber data described above. A state-
full data location stage’s processing cost typically grows as
O(logN), being N the number of subscribers in the UDR NF.
Thus a high amount of data has a certain impact in processing
time, represented by the H-F link in figure 5. Nevertheless, this
impact is very small and can be neglected it in most calculations,
hence the link has been represented with a dotted line to mean
it’s a rather weak link.

The state-full data location stage introduces a subtle trade-off in
the F-R-S triangle. If the identity-location maps are provisioned,
e.g. by PS, on scale-out the new data location stage needs to copy
all the provisioned data from a peer stage in another cluster thus
affecting R as was mentioned in section 3.4.2. However if the
maps are built on the fly and cached instead, R is not affected but
every cache miss implies locating the subscriber data by querying
multiple or even all the SE in the system. Those data location
queries may become a hurdle to scalability. In this paper we're
assuming the maps are provisioned (given F, we favor S over R),
which in the end might not be a consistent choice according to
the descriptions of R and S provided above. Hence a change to a
cached data location stage seems likely in the near future.

There are alternatives to identity-location maps for data location.
One such alternative would be to use consistent hashing to index
locations. To apply consistent hashing to the UDR, we need
multiple replicas being each replica indexed by a different
identity. The high number of current and future identities the
UDR has to support might render this approach impractical.

3.6 Summary
The following figure depicts the effect of the design decisions
described in this section on the FRASH relationships graph in
figure 5. Red points are for provisioning transactions while blue
points represent application front-end transactions. In spite of the
figure, we argue that the UDR NF described in this paper is
PA/EL for transactions coming from application front-ends but
PC/EC for transactions coming from PS instances.

4. A CRITIQUE OF DESIGN
DECISIONS
Comparing the different considerations and approaches outlined
above, the following conclusions may be drawn.

4.1 Resilience vs. ACID
This trade-off falls within the scope of the CAP theorem. By
default on a network partition the UDR NF realization described
favors Consistency over Availability, for both provisioning and
application FE transactions. This decision could raise concerns
amongst service providers. On a network partition, while most
transactions coming from application front-ends proceed
successfully since those transactions are composed of mostly
reads, transactions coming from a PS almost always fail since
most provisioning transactions involve writes to subscriber data.

Provisioning transactions turn out to be more valuable (or costly,
depending on how one looks at the problem) that one might
initially estimate. More often each day, activation of a mobile
network subscription takes place in an unattended fashion,
triggered by the back-office system when a brand new user walks
out of the phone shop and activates a device containing a SIM
card associated to the subscription. If the activation fails because
there’s a network partition at that moment, two very bad things
happen:

1. The new user gets disappointed with the service (and
most probably walks back into the shop and complain
to the desk staff)

2. The service provider needs to send someone to check
what’s happened, wait until network service is
restored, and complete the activation manually.

The first event above will cause churn in the long run, hence the
provider’s income will decrease. But with immediate effect, the
provider needs to cover the costs of the manual intervention
required to complete the activation.

When using batched provisioning, a network glitch as short as 30
seconds may cause a batch that’s been running for hours to fail.
At the very best, if the batch is able to finish the provider needs
to send someone to check what parts of the batch failed and
apply those parts manually. This again incurs a cost for the
service provider.

In general, service providers demand that on network partitions
the UDR NF keeps taking writes stemming from provisioning
transactions, or in other words, do not decrease Availability on a
partition. Of course this means jeopardizing Consistency, as
we’ll see in the next section.

4.2 Fast vs. ACID
This trade-off is outside the CAP limits, but is considered by the
PACELC taxonomy. By default, in the absence of a network
partition the UDR NF realization described tends to be fast. For
provisioning transactions it tries to compensate a bit towards the
ACID end, but in the best case a compromise between both is
reached. This makes a lot of sense, since from the architectural
framework the system has been designed to be this way.

Again, this decision could generate service provider challenges.
The reason is that on a failure of a storage element, durability of
the latest transactions is not guaranteed. Given the relevance that
provisioning transactions have for the service provider (see the
previous section), this is an undesirable effect that most service

Figure 6. Trade-offs created by the design decisions on
UDR NF FRASH characteristics

.

1481

providers would like to see fixed to some extent, even if it
implies losing in some other characteristic.

Becoming more ACID would imply being slower (F) and less
available (R), ant to some extent less scalable (S). The reasons
for this have already been exposed. What is not so clear is how
much of F, R and S are service providers willing to sacrifice for
guaranteed durability of provisioning transactions.

5. EVOLUTION
In the light of the critique from the previous section, a UDR NF
realization as the one described above might need to make some
changes to better cater for a service provider’s needs.

First and foremost, some sort of multi-master operation would be
very convenient so writes can be addressed to more than one
single replica. This would allow the provisioning transactions to
proceed on network partition events.

The CAP theorem [8] states that if we increase Availability on a
partition incident we’ll lose some Consistency. This is indeed the
case when conflicting write transactions come from clients on
different sides of the partition: since communication between the
masters is impossible, they have no way of checking that the
conflicting transactions are consistent with a single, common
view of the data. Hence they’ll apply the transactions on their
respective views of that data, with such views diverging with
every write they receive. Once the partition incident is over, a
consistency restoration process must run across the whole UDR
NF, trying to merge the different views into one single,
consistent view.

Second, the service provider has to be allowed to tune the degree
of durability it wants for provisioning transactions. The biggest
hurdle here is not technical but human: the service provider’s
technical staff has to be made to understand that with increased
durability (hence consistency) comes decreased speed of access.
Actually, the latency penalty for achieving close to 100%
guaranteed durability is so high that some unwary service
providers might think it twice before going down that way.

One very elegant and powerful durability tuning solution has
been implemented in Apache Cassandra [10]. In Cassandra, a
client is able to specify the durability guarantees it wants on a
per-transaction basis. Under the hood Cassandra uses a
consensus protocol across an ensemble of replicas; the more
replicas are involved in the transaction, the higher the durability
guarantees.

In a UDR NF a similar approach is hardly affordable, since the
latency increase would be too high. Instead, most probably the
UDR NF should apply provisioning transactions in sequence to
two replicas, committing the transaction only when both replicas
report success. To avoid incurring the penalties of a consensus
protocol, the UDR shall have to work in cooperation with the PS
so when a transaction fails to commit, leaving just one of the
replicas updated is acceptable. Most probably this limitation
forces to restrict the dual-in-sequence replication of transactions
to simple transactions that are idempotent or easy to roll-back.

6. CONCLUSIONS AND FUTURE
WORK
In this paper we’ve characterized one possible realization of the
3GPP UDC architecture network function known as UDR. The

UDR is a huge distributed DBMS with stringent requirements on
latency, resilience, scalability and low cost of operation.

We’ve described an architectural framework guiding the design
of the system, and the set of additional decisions made in order
to reach optimum trade-offs within the physical limits of a huge
distributed system. We’ve extended the CAP conjecture and the
PACELC taxonomy with size and scalability characteristics to
fully understand the limitations and following decisions.

Finally we’ve exposed weak points in the initial architectural
framework and associated decisions, and possible corrections
that might have to be made for compensating some not well
tuned trade-offs.

Future challenges that any UDR NF realization will probably
face include how to compensate for the lack of consistency the
increased resiliency service providers demand will bring about.
In that regard, one promising alternative to the master-slave
replication approach described above lies on efficient distributed
agreement protocols like e.g. Paxos [15] or similar solutions [16].

 Also a very challenging aspect will be how to increase
consistency for transactions coming from application front-ends
without heavily impacting the latency those front-ends perceive.

7. REFERENCES
[1] Multiple authors, GSM/GPRS Specification Series. 3GPP

web site (http://www.3gpp.org/DynaReport/03-series.htm).

[2] Thowle, T. IP Multimedia Subsystem, Stage 2. Technical
Specification 3GPP TS 23.228, 3GPP web site
(http://www.3gpp.org/DynaReport/23228.htm).

[3] 3GPP, UTRA-UTRAN Long Term Evolution (LTE) and
3GPP System Architecture Evolution (SAE). 3GPP web site
(ftp://ftp.3gpp.org/Inbox/2008_web_files/LTA_Paper.pdf).

[4] http://www.3gpp.org

[5] Bartolome, M.C. User Data Convergence, Stage 2.
Technical Specification 3GPP TS 23.335, 3GPP web site
(http://www.3gpp.org/DynaReport/23335.htm).

[6] Wahl, M. Howes, T. Kille, S. Lightweight Directory Access
Protocol (v3). RFC 2251, Proposed Standard, IETF RFC
Database (http://www.rfc-editor.org/info/rfc2251).

[7] http://www.tmforum.org

[8] Gilbert, S. Lynch, N. Brewer’s Conjecture and the
Feasibility of Consistent, Available, Partition-Tolerant Web
Services. ACM SIGACT News Vol. 33 Issue 2, June 2002,
Pages 51-59 (http://dl.acm.org/citation.cfm?id=564601).

[9] Apache HBase (http://hbase.apache.org)

[10] Apache Cassandra (http://cassandra.apache.org)

[11] MongoDB (http://www.mongodb.org)

[12] Abadi, D.J. Consistency Tradeoffs in Modern Distributed
Database System Design. IEEE Computer Magazine, 2012
(http://cs-www.cs.yale.edu/homes/dna/papers/abadi-
pacelc.pdf).

[13] ISO/IEC Joint Technical Committee 1, Information
Technology – Database Languages – SQL, International
Standard ISO/IEC 9075:1992 (withdrawn,
http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogu
e_detail_ics.htm?csnumber=16663)

1482

http://www.3gpp.org/DynaReport/03-series.htm
http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=16663
http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=16663
http://cs-www.cs.yale.edu/homes/dna/papers/abadi-pacelc.pdf
http://cs-www.cs.yale.edu/homes/dna/papers/abadi-pacelc.pdf
http://www.mongodb.org/
http://cassandra.apache.org/
http://hbase.apache.org/
http://dl.acm.org/citation.cfm?id=564601
http://www.tmforum.org/
http://www.rfc-editor.org/info/rfc2251
http://www.3gpp.org/DynaReport/23335.htm
http://www.3gpp.org/
ftp://ftp.3gpp.org/Inbox/2008_web_files/LTA_Paper.pdf
http://www.3gpp.org/DynaReport/23228.htm

[14] Service Availability Forum, Open Specifications for Service
Availability. SA Forum web site
(http://www.myassociationvoice.com/page/16627~214723/S
ervice-Availability-Forum-Open-Specifications-for-Service-
Availability)

[15] Lamport, L. Paxos Made Simple. ACM SIGACT News
(Distributed Computing Column) 32, 4 (Whole Number
101, December 2001) 51-58
(http://research.microsoft.com/en-
us/um/people/lamport/pubs/pubs.html#paxos-simple)

[16] Apache Zookeeper (http://zookeeper.apache.org)

1483

http://zookeeper.apache.org/
http://research.microsoft.com/en-us/um/people/lamport/pubs/pubs.html#paxos-simple
http://research.microsoft.com/en-us/um/people/lamport/pubs/pubs.html#paxos-simple
http://www.myassociationvoice.com/page/16627~214723/Service-Availability-Forum-Open-Specifications-for-Service-Availability
http://www.myassociationvoice.com/page/16627~214723/Service-Availability-Forum-Open-Specifications-for-Service-Availability
http://www.myassociationvoice.com/page/16627~214723/Service-Availability-Forum-Open-Specifications-for-Service-Availability

	1. INTRODUCTION
	2. DESCRIPTION OF THE PROBLEM
	2.1 The 3GPP telecom network
	2.2 Telecom networks and UDC
	2.3 Architectural framework of a UDR NF realization
	2.4 Operation of the Telecom Network
	2.5 Conflicting Demands on Data Management in UDC Networks

	3. DESIGN CHOICES
	3.1 Resilience
	3.2 ACID
	3.3 Fast
	3.3.1 General for all transactions
	3.3.2 Transactions from application front-ends
	3.3.3 Transactions from PS

	3.4 Scalable
	3.4.1 Scale-up
	3.4.2 Scale-out

	3.5 Huge
	3.6 Summary

	4. A CRITIQUE OF DESIGN DECISIONS
	4.1 Resilience vs. ACID
	4.2 Fast vs. ACID

	5. EVOLUTION
	6. CONCLUSIONS AND FUTURE WORK
	7. REFERENCES

