

Of Snowstorms and Bushy Trees

 Rafi Ahmed Rajkumar Sen Meikel Poess

 Oracle Corporation Xplain.Io Oracle Corporation

 500 Oracle Parkway 226 Airport Parkway 500 Oracle Parkway

Redwood Shores, CA 94065, U.S.A. San Jose, CA 95112, U.S.A. Redwood Shores, CA 94065, U.S.A.

 rafi.ahmed@oracle.com raj@xplain.io meikel.poess@oracle.com

Sunil Chakkappen

Oracle Corporation

500 Oracle Parkway

 Redwood Shores, CA 94065, U.S.A.

 sunil.chakkappen@oracle.com

ABSTRACT
Many workloads for analytical processing in commercial

RDBMSs are dominated by snowstorm queries, which are

characterized by references to multiple large fact tables and their

associated smaller dimension tables. This paper describes a

technique for bushy join tree optimization for snowstorm queries

in Oracle database system. This technique generates bushy join

trees containing subtrees that produce substantially reduced sets of

rows and, therefore, their joins with other subtrees are generally

much more efficient than joins in the left-deep trees.

The generation of bushy join trees within an existing commercial

physical optimizer requires extensive changes to the optimizer.

Further, the optimizer will have to consider a large join

permutation search space to generate efficient bushy join trees.

The novelty of the approach is that bushy join trees can be

generated outside the physical optimizer using logical query

transformation that explores a considerably pruned search space.

The paper describes an algorithm for generating optimal bushy

join trees for snowstorm queries using an existing query

transformation framework. It also presents performance results for

this optimization, which show significant execution time

improvements.

1. INTRODUCTION
Current relational database systems process complex SQL queries

involving multiple fact tables joined with one another and with

corresponding dimension tables. Such queries are becoming

increasingly important in Decision-Support Systems (DSS).

Generating optimal execution plans for such queries has become

critical for a commercial database system. Bushy join trees

provide an efficient way to execute these types of queries.

Database researchers, however, have paid scant attention to the

problem of bushy join trees. It is well-known that the join order

optimization problem is NP-hard [8]. Practical solutions to the

problem therefore tend to involve trade-offs that perform a

heuristic search of the state space, and therefore, most commercial

optimizers restrict their default join enumeration to the space of

left-deep trees [12][14].

The following issues with bushy join trees are noted by [4] and

[14]: the space of bushy join trees is vastly larger and much more

expensive to search than that of left-deep trees; the best among

numerous left-deep join tree plans should suffice for all queries;

and left-deep join trees interact well with nested-loop and index-

based one-pass join algorithms, and therefore execution plans that

are based on left-deep trees and are driven by these algorithms

tend to be more efficient than the same algorithms used with non-

left-deep trees. We address these issues in this paper.

Execution plans based on bushy join trees seem to be the most

efficient way to evaluate queries that are formulated for

snowstorm schemas, but generating a bushy join tree within a

physical optimizer does not come without a price. First, it requires

extensive changes to the existing optimizer. Second, query

optimization time increases as the search space grows.

In this paper, we introduce an innovative algorithm for generating

bushy join trees for queries that are formulated for snowstorm

schema. This algorithm generates bushy join trees containing

subtrees that are constructed to yield considerably reduced sets of

rows and, therefore, their joins with other subtrees are generally

much more efficient than joins in the corresponding left-deep

trees, where large fact tables must be joined with one another

before their sizes could be reduced. The generation of bushy join

trees is performed within an existing cost-based transformation

framework.

The rest of the paper is organized as follows. We first introduce

snowstorm schema and describe the existing cost-based query

transformation framework in the Oracle query optimizer. We

discuss how bushy join trees interact with star transformation in

snowstorm queries. We then present an algorithm for generating

optimal bushy join trees using the existing query transformation

framework. This is followed by the performance study of the new

technique for TPC-DS and commercial workloads. We finally

conclude with a discussion on related work.

This work is licensed under the Creative Commons Attribution-

NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain

permission prior to any use beyond those covered by the license. Contact

copyright holder by emailing info@vldb.org. Articles from this volume were

invited to present their results at the 40th International Conference on Very

Large Data Bases, September 1st - 5th 2014, Hangzhou, China.

Proceedings of the VLDB Endowment, Vol. 7, No. 13
Copyright 2014 VLDB Endowment 2150-8097/14/08

1452

mailto:meikel.poess@oracle.com
mailto:sunil.chakkappen@oracle.com

1.1 Snowstorm Schema
A star schema [6][11] includes a large fact table and several small

dimension (lookup) tables. The fact table stores frequently added

transaction data such as sales, returns and inventory changes, and

it generally represents the relationships among the dimension

tables. Each dimension table stores less frequently changed or

added data supplying additional information for fact table

transactions, such as customers who made purchases. Multiple

extensions to the traditional star schema are commonly used in

today’s data warehouse implementations. The tables belonging to

a star schema usually contain data from a subject area such as

sales or returns.

An extension to the pure star schema, called a snowflake schema,

separates static data in the outlying dimension tables from the

more dynamic data in the inner dimension tables and the fact

tables. That is, in addition to their relationships to the fact table,

dimension tables can have relationships to other dimension tables.

A dimension table that is joined with only dimension tables but

not with any fact table is called a branch in our terminology.

A snowstorm schema extends the snowflake schema by

combining multiple snowflake schemas. In essence, a snowstorm

schema combines multiple related subject areas into one

comprehensive schema. Since the subject areas are related, some

dimension tables are shared among them; e.g., a customer

dimension can be shared between sales and returns. It also allows

for joins across subject areas, which causes fact tables to be joined

with one another directly or through shared dimensions. The join

graphs in these cases can be quite complex as illustrated in

Section 3.

This snowstorm approach challenges query execution of both star

schema and 3NF execution models. Typical executions of queries

in a star schema involve bitmap accesses, bitmap merges, bitmap

joins and conventional index-driven join operations. The

execution plans in a 3NF DSS system are dominated by large hash

joins and conventional index-driven joins. In both the systems,

large aggregation and group-by operations are quite common.

This heterogeneity in execution plans imposes challenges both on

hardware and software systems. High sequential I/O-throughput is

critical in large hash join operations. At the same time, index-

driven queries stress the I/O subsystems’ ability to perform small

random I/Os. Further, this heterogeneity also challenges a query

optimizer in its decision to either use a star-schema approach,

such as star transformation (Section 3.1), or a more traditional

approach, such as nested-loop and hash joins.

The algorithms devised for processing join graphs such as chain,

star, circuit, and clique [10] do not lend themselves well to

snowstorm join graphs. This seems to be an area that traditional

query optimizers are ill-equipped to deal with.

1.2 Cost-Based Transformation Framework
Query transformations in the Oracle optimizer can be heuristic-

based or cost-based. In cost-based transformation, logical

transformation (also known as query re-write) and physical

optimization are combined to generate optimal execution plans.

A cost-based physical optimizer was first introduced in Oracle

7.1. The physical optimizer works within the scope of a single

query block, which ranges over a set of tables with restriction,

projection, and join. In the physical optimization phase, access

methods, join methods, and left-deep tree join permutations are

chosen in order to generate an efficient execution plan; the

physical optimizer also generates a limited form of right-deep join

trees, which originates from swap of build and probe sides in hash
join.

In Oracle 10.1, a general framework [1] for cost-based query

transformation and several state space search strategies were

introduced. During cost-based transformation, a query is copied,

logically transformed and its cost is calculated using the existing

cost-based physical optimizer. This process is repeated multiple

times applying a new set of transformations; and at the end, one or

more transformations are selected and applied to the original

query, if it results in an optimal cost. The cost-based

transformation framework provides a mechanism for the

exploration of the state space generated by applying one or more

transformations thus enabling the Oracle optimizer to select the

optimal transformation in an efficient manner. The cost-based

transformation framework can handle the complexity produced by

the presence of multiple query blocks in a user query and by the
interdependence of transformations.

The availability of the general framework for cost-based

transformation has made it possible for other innovative

transformations to be added to the vast repertoire of Oracle's

query transformation techniques [1][2], such as subquery

unnesting, group-by and distinct view merging, join predicate

pushdown, join factorization, OR expansion, star transformation,

group-by and distinct placement, vector aggregation, etc.

1.2.1 State Space Search Techniques
A fundamental question related to cost-based transformation is

whether these transformations will lead to a combinatorial

explosion of alternatives that need to be evaluated and whether

they will provide a trade-off between optimization cost and
execution cost.

The sources of multiple alternatives are the various

transformations themselves as well as the set of objects (e.g.,

subquery blocks, view blocks, tables, table groups, join edges,
predicates, etc.) on which each transformation may apply.

If there are N independent objects on which a transformation T

can apply, then 2N possible alternative combinations can

potentially be generated by the application of T. For simplicity,

we here denote a state as an array of bits, where the nth bit

represents whether the nth object (e.g., subquery, view or table

group, etc.) is transformed (a value of 1) or not transformed (a

value of 0). When there are M transformations that apply on N

objects, the state is represented by an MxN bit matrix.

To cope with the combinatorial explosion problem, randomised

search algorithms are used. The common idea behind these

strategies is to perform a quasi-random walk in the state space,

starting from an initial state and trying to reach a low-cost local

minimum. Of course, these strategies do not guarantee that the

global minimum – the best transformation – can be attained, since
only a small fraction of the state space is visited during the walk.

The complexity of cost-based transformation is determined by the

number of alternative combinations, the state space, which

exponentially grows with the number of transformation objects. In

order to limit the potential increase in optimization time, we use

several different techniques for searching the state space of

1453

various transformations. Some examples of search techniques are
exhaustive, iterative, linear, two-pass, and perturbation walk.

The cost-based transformation framework automatically decides

which search technique to use based on the number of elements to

be transformed, the characteristics of the transformation, and the
overall complexity of the query.

1.2.2 Re-use of Subtree Cost Annotations
Re-optimizing each transformed query tree in its entirety is costly

and in many cases unnecessary. Each transformation impacts a

few known query blocks (subtrees), and only these query blocks

and the query block containing them in the query tree need to be

re-optimized. Therefore, we reuse the cost annotations (i.e., scaled

selectivities, estimated costs and cardinalities, etc.) of an already-

optimized subtree when optimizing its equivalent subtree during

state space exploration. For complex query trees containing many

subtrees, this can provide substantial savings of optimization time.

1.2.3 Interleaving of Transformations
The Oracle optimizer generally performs various transformations

in a sequential manner. However, there are exceptions to this rule.

When two (or more) cost-based transformations apply on the

same object such that one transformation becomes applicable only

after the other has been applied, then these transformations

generally need to be interleaved in order for the optimizer to

determine an optimal execution plan.

Consider a query block, Q, and a transformation T1 that applies to

Q. If Cost(Q) is 30 and Cost(T1(Q)) is 40, then T1 should be

rejected for Q. However, if another transformation T2 is

applicable to T1(Q) and Cost(T2(T1(Q))) is 25, then T1 should be

applied to Q. That is, T2 must be interleaved with T1 in cases

where application of T1 increases the estimated cost of Q, since

T2, when applied to the result produced by T1, may yield a lower

cost indicating that T1 should be performed on Q.

By the same token, star transformation (discussed in the next

section) must be interleaved with the generation of bushy join

trees in cases where it increases the cost.

1.3 Processing Star and Snowflake
In the classical method of processing a star query, a Cartesian

product of all dimension tables is performed before joining the

result with the fact table. The rows from fact table are accessed

using an index on the columns that are joined to the dimension

tables. This technique avoids a full scan of the fact table.

However, a Cartesian product of multiple dimension tables can

lead to a large result with numerous failed index probes on the

composite index of the fact table, which can be prohibitively

expensive.

In addition to the classical method, the Oracle optimizer uses

another technique called star transformation to evaluate star or

snowflake queries efficiently. Star transformation avoids a full

table scan of the fact table by retrieving only the relevant set of

rows from the fact table and thereby overcoming the drawbacks of

the classical method. The presence of filter predicates on

dimension tables and the intersection of the fact table rows joining

each of the dimension tables may vastly reduce the data set that

needs to be accessed from the fact table. Hence, this optimization

would prove to be much more efficient than a brute-force full

table scan of the fact table. Once the relevant rows are fetched

from the fact table, it is joined back to the dimension tables, if

needed, and thus avoiding Cartesian products required in the

classical star join processing.

This technique [9] is based on bitmap indexes. In a bitmap index

on column A, there is a bitmap for each distinct key value of A,

where each bit corresponds to a row in the table; the bit is set to 1,

if the key value of A appears in that row; otherwise, it is set to 0.

In Oracle, B-tree index keys can be dynamically converted into

bitmaps during query execution and hence B-tree index can also

be used for star transformation.

Consider the following query.

Q1.

SELECT D1.x, SUM (F.m)

FROM F, D1, D2

WHERE F.fk1 = D1.pk and F.fk2 = D2.pk and

 D1.a > 5 and D2.b < 77

GROUP BY D1.x;

Here F, a large fact table, is joined with small dimension tables,

D1 and D2, which have filter predicates. Q1 undergoes star

transformation and yields Q2 as shown below.

Q2.

SELECT D1.x, SUM (F.m)

FROM F, D1

WHERE F.fk1 = D1.pk and D1.a > 5 and

 F.fk1 IN (SELECT D1.pk

 FROM D1

 WHERE D1.a > 5) and

 F.fk2 IN (SELECT D2.pk

 FROM D2

 WHERE D2.b < 77)

GROUP BY D1.x;

If F has bitmap indexes on its join keys –F.fk1 and F.fk2–

referenced in the query, the transformation adds subquery

predicates corresponding to each dimension table. For a

snowflake query, the subquery might refer to more than one table

that is joined together. Note that the subquery here may be looked

upon as a set membership operation; e.g., F.fk1 IN (8,13, 29 …).

When driven by bitmap AND and OR operations on the key

values supplied by the dimension subqueries, only the relevant

rows need to be retrieved from F. The following operations are

performed in Q2 to access and join the fact table, F.

 By iterating over the key values returned by a dimension

subquery, the bitmaps are retrieved for a given key value

from a bitmap index on table F.

 For a subquery, the bitmaps retrieved for various key values

are merged (OR-ed).

 The merged bitmaps supplied by dimension subqueries are

AND-ed; that is, a conjunction of the joins is performed.

 From the final bitmap, the corresponding rowid’s for F are

generated.

 Rows are directly retrieved from F using the rowid’s.

The dimension subquery filters the fact table based on the filter

predicates on the dimension tables. Therefore it may still be

necessary to join the dimension tables back to the relevant rows of

the fact table using the original join predicates. The join-back of a

dimension table can be avoided, if the dimension table is semi-

1454

joined or if all the predicates on the dimension table are part of the

dimension subquery, the column(s) selected from the subquery are

unique, and the columns of the dimension table are not referenced

anywhere else in the query. In Q1, D2 is not joined back to F,

since D2 is not referenced in the SELECT and GROUP-BY

clauses and D2.pk is unique.

The existence of a fact table bitmap join index, which essentially

materializes the join between the fact table and a dimension table,

can obviate the necessity of generating a subquery for that

dimension. The Oracle optimizer also considers materializing the

subquery into a temporary table during query execution. This

improves the efficiency of the dimension tables in the subquery,

which are accessed multiple times, for example, once for

retrieving bitmaps and then for join back.

The Oracle optimizer automatically decides whether to apply the

star transformation, which is performed under the transformation

framework described in Section 1.2. Bushy join trees can benefit

from interleaving star transformation within its subtrees, as this

may result in a smaller estimated cost and thereby making it

possible for bushy tree plans to be selected.

1.4 Join Predicate Pushdown
The Oracle optimizer performs join predicate pushdown

transformation, where join predicates are pushed down inside a

view [1]. This allows a view to be joined with outer tables by

index-based one-pass join method, which is not possible for

regular views that can be joined only by hash or sort-merge join

methods.

The pushed-down join predicates act like correlation once inside

the view, thereby opening up new index access paths. This

transformation imposes a partial join order on the joined tables;

that is, the tables that the view is joined with (via the pushed-

down predicates) must precede the view in the join permutation;

and the view must be joined by index-based one-pass join method.

This transformation is also performed within the cost-based

transformation framework (Section 1.2).

One of the issues [4] mentioned in Section 1 was a limited

interaction between bushy join trees and index-based one-pass

join algorithms. We circumvent this limitation by performing join

predicate pushdown on subtrees of bushy join trees.

2. BUSHY JOIN TREES
In a join tree, leaf nodes represent user tables and internal nodes

represent join operations. If the right child of every internal node

of a join tree is a leaf node, then the tree is called left-deep join

tree. If the left child of every internal node of a join tree is a leaf

node, then the tree is called right-deep join tree. If the left or the

right child of an internal node of a join tree can be an internal

node, then the tree is called a bushy join tree.

The number of left-deep trees does not grow nearly as fast as the

number of bushy trees for multi-way joins of a given number of

tables. For N tables, there is only one left-deep tree shape to which

tables can be assigned in N! ways. The total number of bushy tree

(which subsumes left-deep and right-deep tree) shapes S(N) for N

tables is given by the following recurrence function [4].

S(1) = 1

S(N) =

The second equation states that, for i between 1 and N-1 as the

number of leaves in the left subtree, those leaves may be re-

arranged in S(i) ways. Similarly the remaining N-i leaves in the

right subtree can be re-arranged in S(N-i) ways. S(N)*N! gives the

total number of bushy join trees (i.e., join permutations).

A traditional physical optimizer generates a sequential or a left-

deep join tree execution plan. There are many scenarios, however,

where bushy join trees can substantially improve query

performance.

2.1 Physical vs. Logical
We consider the pros and cons for generating bushy join trees (A)

under the transformation framework and (B) in the physical

optimizer.

By performing bushy join trees only for snowstorm queries and by

devising efficient search strategies, Scheme A can substantively

reduce the state space of bushy joins, and thus can render the

problem of combinatorial explosion of join permutations more

manageable. Scheme B would generate bushy join permutations

every time the physical optimizer is invoked. Scheme A does not

have this problem.

As the subtrees (views) contained by bushy join trees may be

candidates for star transformation (Section 1.3), scheme A can

leverage star transformation by performing bushy join before star

transformation. This would not be possible in scheme B, which

would generate bushy join trees in the physical optimizer after star

transformation takes place.

By allowing the existing technique of join predicate pushdown

(Section 1.4) on bushy join subtrees (views), scheme A can

provide an efficient interaction between index-based nested-loop

join method and bushy join subtrees. This may be feasible in

Scheme B albeit with considerable effort.

The re-use of cost annotation (Section 1.2.2) allows us to bypass

the optimization of a subtree (view) when it reappears in a

different state during state space exploration. This is difficult to

do in the physical optimizer.

Scheme A provides a cleaner and simpler implementation of

bushy join trees, whereas scheme B requires extensive changes to

the physical optimizer.

On the con side, scheme A may have some overhead associated

with the copying of query structures.

All things considered, scheme A seemed preferable over B.

2.2 Snowstorm Schema and Join Trees
In this paper, the generation of bushy join depends upon the

existence of multiple fact and dimension tables in a snowstorm

query block. The join graph of a query block and the relative sizes

and other statistical properties of the tables and the join columns

are used to identify fact and dimension tables.

Consider query Q3, which is posed against a snowstorm schema.

In Q3, F1 and F2 are large fact tables and D1, D2, and D4 are

small dimension tables.

1455

Q3.

SELECT F1.k, F2.n

FROM F1, D1, F2, D2, D4

WHERE F1.a = D1.a AND F2.c = D2.c AND

 F2.d = D4.d AND F1.e = F2.m AND

 D1.g > 1 AND D2.h < 6 AND D4.x = 4;

One of the many possible left-deep join permutations for Q3 can

be given by (D1, F1, F2, D2, D4), where joins take place in a left-

to-right sequential order as shown in Figure 1. Here the

intermediate result of join between D1 and F1 must be joined with

the large fact table F2, which has not yet been reduced to a

smaller size by first joining it with its dimension tables D2 and

D4, which have single-table filter predicates. Therefore, left-deep

tree execution plans for such a query may turn out to be extremely

inefficient. When queries have more than two fact tables, the

inefficiency may multiply as shown in Section in 3.1.

Figure 1. A left-deep join tree for Q3

2.3 Subtrees and Views
In the Oracle optimizer, unmerged views have their independent

join subtrees. A bushy join tree execution plan can be generated

by introducing subtrees or unmergeable views within a query

block. Conversion of Q3 into Q4 illustrates this point.

Q4.

SELECT V1.k, V2.n

FROM (SELECT F1.k, F1.e

 FROM F1, D1

 WHERE F1.a = D1.a AND D1.g > 1) V1,

 (SELECT F2.m, F2.n

 FROM F2, D2, D4

 WHERE F2.c = D2.c AND F2.d = D4.d

 AND D2.h < 6 AND D4.x = 4) V2

WHERE V1.e = V2.m;

Figure 2. A bushy join tree for Q4

One of the many possible bushy join permutations for Q4 can be

given by ((D1, F1), (D4, F2, D2)), as shown in Figure 2. Here the

subtrees (or views) impose the desired order of join evaluation. In

each subtree, the fact table is joined with its dimension tables first,

and then the intermediate results of the subtrees are joined

together. This, in effect, produces a bushy join tree execution plan

for query Q4.

Note that once the views have been generated, the physical

optimizer will choose the best left-deep tree join permutation

within each of the views and within the outer query block. For

example, it may generate the following join permutations in

addition to the one shown above. These bushy tree permutations

cannot be generated in a left-deep tree scheme.

((D2, F2, D4), (F1, D1))
((D4, F2, D2), ((D1, F1))
((D1, F1), (D2, F2, D4))

The main idea is to identify table groups for the given set of tables

such that each group may form a subtree (view) containing a

star/snowflake, which is anchored around one fact table and

multiple dimension tables. Each subtree may return a sizably

reduced set of rows and, therefore, its join with other subtrees

may prove to be much more efficient than joins in the left-deep

tree. The data reduction yielded by a subtree can be measured as

the ratio of its row count and the cardinality of its fact table.

In the Oracle optimizer, bushy join tree generation is performed

under the transformation framework described in Section 1.2.

2.4 Search Strategies for Bushy Join Trees
In order to limit the potential increase in optimization time, we

use several different techniques for searching the state space for

bushy join trees. In all these search techniques the state with the

cheapest cost is chosen as the best state, according to which the

final transformation is performed.

In bushy join tree generation, the table groups are the objects on

which this transformation applies. If there are two table groups,

then there are at most four alternatives to consider: no bushy join

tree (i.e., left-deep tree), subtree for only the first table group,

subtree for only the second table group, or subtrees for both the

table groups. The second and third alternatives generate partial

bushy join trees, whereas in the fourth alternative a full bushy join
tree is produced.

We denote a state as an array of bits, where the nth bit represents

whether the nth object (i.e., table group) is transformed (a value of

1) or not transformed (a value of 0). For instance, the state (0,1,0)

for three table groups refers to the generation of subtree for only

the second table group.

 Exhaustive. In exhaustive search, all possible 2
N
 states of the

state space for N table groups are considered. This search is

guaranteed to provide the best solution.

 Iterative. In an iterative improvement technique, which is

used to prune the search space, we start from an initial state

and move to the next neighbouring state looking for a local

minimum by always choosing a downward move; we repeat

this search for a local minimum starting with a different

initial state in the next iteration. The algorithm stops, if there

are no more new states to be found or some terminating

condition has been reached. The number of states

enumerated in this technique falls between N+1 and 2
N
.

D2

F1 D1

V1 V2

F2 D4

D4

D2

F2

F1 D1

1456

 Linear. The underlying idea of this search technique is based

on a dynamic programming approach, which assumes that

for a state space of several objects, it suffices to consider

only a subset of those objects for transformation and then

extend that with additional transformation of another object.

For two transformation objects, starting with the state (0, 0),

if we find that Cost(1,0) is lower than Cost(0,0), we use the

state (1,0) to generate the next state. And if Cost(1,1) is

lower than Cost(1,0), then it is reasonable to assume that

Cost(1,1) is the lowest of the costs of all possible

transformations, and thus there is no need to evaluate

Cost(0,1). For bushy trees, we generate the two states (0,0,...)

and (1,1,...) as the initial states. After that, at every step, the

next state is generated from the best state so far. The strategy

significantly cuts down the search space, as it considers at

most N+2 states.

 Two-pass. Two-pass search is the least expensive search

strategy, where only 2 states are considered. The cost of not

transforming any object (i.e., the state (0,0,…)) is compared

with the cost of transforming all the objects (i.e., the state

(1,1,…)), and the cheaper of the two states is selected.

2.4.1 Analysis of Search Space Complexity

Consider N tables and K table groups, N1, N2,… NK such that

 N =
 Nj

In our scheme, the total number of join permutations for a state,

where every table group forms a subtree, is given by

K! +
 Nj!

The first term above gives the number of left-deep tree

permutations in the outer query block and the second term gives

the summation over left-deep join tree permutations for all

subtrees.

Consider a join graph where N = 5. Using the recurrence function

given in Section 2, we get the total number of bushy tree shapes

S(5) as 14 and the total number of bushy join tree permutations as

14*5! (= 1680).

Suppose these N tables are grouped such that K = 2, N1 = 3, and

N2 = 2. The following shows the number of permutations that are

considered with an exhaustive search of the bushy tree state space.

State 1 (0, 0): 5! = 120

State 2 (0, 1): 4! + 2! = 26

State 3 (1, 0): 3! + 3! = 12

State 4 (1, 1): 2! + [2!] + [3!] = 2

Note that in State 4 the permutations within brackets [] are not

counted, since the cost annotations (Section 1.2.2) for these

subtrees are re-used from States 2 and 3. Our scheme will try a

total of 160 join permutations with the exhaustive search, which is

an order of magnitude smaller than the full bushy join tree

permutations (i.e., 1680). With other search strategies, our scheme

would explore far fewer join permutations.

2.5 Bushy Join Tree (BJT) Algorithm
The BJT algorithm searches for a snowstorm pattern in a join

graph for a query block. If such a pattern is found, it identifies

multiple snowflake subgraphs in the given join graph, where

tables in each subgraph may potentially form a subtree in a bushy

join tree execution plan.

The join graph must contain (a) at least two fact tables, where (b)

each fact table has a join edge with at least one other fact table, (c)

a fact table has a join edge with at least one dimension table, and

(d) a dimension table has zero or more of their own

dimension/branch tables.

By analyzing the join graph, the algorithm first forms table groups

such that each group contains one fact table, one or more

dimension tables, and zero or more branch tables. A table that

does not belong to any table group always remains in the outer

query block, but it is has join edges to other tables/views. Note

that a table belongs to at most one table group; i.e., the table

groups do not necessarily partition the set of tables in the join

graph.

We define effective cardinality of a table T as its cardinality after

all its single-table filter predicates have been applied to T. The

identification of tables as fact, dimension, or branch depends upon

many factors such as join graph properties, a minimum threshold

value for effective cardinality of a candidate fact table, a

minimum value for the ratio of dimension’s effective cardinality

to that of its fact table, and a minimum value for the ratio of

scaled number of distinct values (NDVs) of columns in a join

predicate of fact and dimension tables.

Besides the system default values, the user can set a threshold

value for the effective cardinality of a fact table and a minimum

value for the ratio of dimension’s effective cardinality to that of

its fact table.

As mentioned before, both star transformation and join predicate

pushdown are relevant for the views generated for bushy join

trees. These two optimizations are interleaved with bushy join tree

generation.

Here, we outline an algorithm for generating bushy join trees in a

query block.

 Algorithm BJT

{
Input: a connected join graph for tables T1, T2..., TN.

Output: an optimal bushy join tree.

1. For the given join graph, generate a left-deep tree join

order and estimate its cost. (This constitutes the first

state.)

2. Use the join graph adjacency properties, effective table

cardinalities, etc., to identify fact, dimension and branch

tables and generate table groups.

3. If there are less than two table groups, then exit.

4. Using the relevant search strategy, generate a state and

build BJT views for the table groups designated by the

current state.

4.1 Re-use cost annotations in subtrees, if applicable.

4.2 Get the cost of the current state.

4.3 Perform interleaved star transformation within the outer

query block and within each BJT view of the current

state, if required, and estimate the new current cost.

1457

4.4 Perform interleaved join predicate pushdown on each

BJT view of the current state, if required, and evaluate

the new current cost.

4.5 Update the best state so far by comparing the current cost

with the cost of the best state so far.

5. If there are more states to be enumerated go to Step 4,

else transform the original query based on the best-state

directives.

}

3. PERFORMANCE STUDY
We conducted performance studies on two workloads and

compared the performance of queries with left-deep and bushy

tree execution plans. Since the intent of these experiments is to

study comparative performance improvements and degradations,

we present the results using an unspecified time unit, U.

3.1 TPC-DS Workload
We conducted performance experiments on a TPC-DS schema at

the scale factor of 300. It contains 99 queries and 25 tables

belonging to a snowstorm schema. A 300GB database on an

Exadata machine with 4 compute nodes each with 4 CPU cores

was used.

While TPC-DS can be applied to any industry application that

must transform operational and external data into business

intelligence, the workload [6] has been granted a realistic context.

It models the decision support tasks of a typical retail product

supplier. TPC-DS defines 12 data maintenance operations

covering typical DSS query types such as ad-hoc, reporting,

iterative (drill down/up) and extraction queries and periodic

refresh of the database. TPC-DS query set is designed to cover the

entire dataset. This is guaranteed by a sophisticated query

template model.

In the TPC-DS benchmark, some queries reference one or more

fact tables and multiple dimension tables. In our performance

study, we concentrated upon the TPC-DS queries that contain two

or more fact tables and multiple dimension tables. The queries

used in this experiment were: Q14, Q17, Q18, Q25, Q29, Q50,

Q51, Q61, Q64, Q72, Q78, Q91, Q93, and Q97. A somewhat

simplified version of the TPC-DS query Q14 is shown below.

Q14.

SELECT S.ss_item_s

FROM store_sales S, catalog_sales C,

 web_sales W, item IS, item IC, item IW,

 date_dim DS, date_dim DC, date_dim DW

WHERE S.ss_item_sk = IS.i_item_sk and

 AND C.cs_item_sk = IC.i_item_sk

 AND W.ws_item_sk = IW.i_item_sk

 AND S.ss_sold_date_sk = DS.d_date_sk

 AND C.cs_sold_date_sk = DC.d_date_sk

 AND W.ws_sold_date_sk = DW.d_date_sk

 AND S.ss_cust_sk = C.cs_bill_cust_sk

 AND C.cs_bill_cust_sk = W.ws_bill_cust_sk

 AND IS.i_brand_id = IC.i_brand_id and

 AND IC.i_brand_id = IW.i_brand_id and

 AND IS.i_class_id = IC.i_class_id and

 AND IC.i_class_id = IW.i_class_id and

 AND IS.i_category_id = IC.i_category_id

 AND IC.i_category_id = IW.i_category_id

 AND DS.d_year between 1999 AND 1999 + 2

 AND DC.d_year between 1999 AND 1999 + 2

 AND DW.d_year between 1999 AND 1999 + 2;

This query has three fact tables, catalog_sales (431M), store_sales

(864M), and web_sales (216M) and each fact table has two

dimension tables, date_dim (73K) and item (264K). The instances

of the dimension table, item, are joined with each other. The base

cardinality of each table is shown within parentheses. The join

graph of Q14 in terms of table aliases is shown in Figure 3, where

fact tables are indicated by bold circles.

For Q14, the BJT algorithm initially identified three table groups:

{W, DW, IW}, {C, DC, IC}, and {S, DS, IS}. After invoking the

exhaustive search, the state where each of the three table groups

formed subtrees was found to be the most optimal. The bushy join

tree generated in our experiment for Q14 is shown in Figure 4.

There were considerable data reductions (see Section 2.3) in the

three subtrees shown in Figure 4, and they ranged from 40% to

60%. These reductions led to the performance gain shown in

Figure 5, which gives elapsed times of Q14 for left-deep and

bushy join tree execution plans.

Figure 3. Join Graph for TPC-DS Q14

Figure 4. Bushy Join Tree for TPC-DS Q14

IS

W

DC C DS S

IC

DW

IW

V1

V2

V3

 S W

 C

IW
 IS

 DC

DW

 IC

 DS

1458

Figure 5. Elapsed Times for TPC-DS Q14

The graph in Figure 6 shows the elapsed times for left-deep and

bushy join tree execution plans in our experiments for queries that

have two fact tables. Q72, which seems to benefit most from

bushy join tree, has two large fact tables, catalog_sales (431M)

and inventory (585M); each fact table is joined with several

dimension tables. Q29 shows a case where performance degraded

due to optimizer cost mis-estimation.

Figure 6. Elapsed time for TPC-DS Snowstorm Queries

3.2 Results for a Commercial Workload
We also conducted performance experiments on a real customer

workload. The workload consists of a snowstorm schema with

multiple fact tables and numerous dimension tables. The schema

consists of 40 tables and 150 queries. The database size was

200GB and the system used was a high-performance parallel

machine.

In this workload, there were many long-running snowstorm

queries, which bore some structural similarity with one another.

Most of these queries contained two large fact tables and several

smaller dimension tables. Some queries contained two large fact

tables joined with smaller dimension tables, but these fact tables

were joined through another fact table that did not have any

dimension tables, and therefore it did not belong to any table

group (see Section 2.5). The base cardinalites of these fact tables

were about 100M.

There were many queries in this workload that benefitted from the

bushy join tree plans generated by the BJT algorithm. For the

purpose of illustration, we chose query Q101 as a representative.

Due to confidentiality reasons, we only present the join graph

(Figure 7) for the query and not its SQL text.

The query Q101 had a total of twelve tables T1 to T12. The base

cardinalities of these tables are as follows: T1 (100M), T2 (11M),

T3 (1M), T4 (110), T5 (41K), T6 (20M), T7 (13K), T8 (60), T9

(29M), T10 (100M), T11 (1M) and T12 (1M). There were single-

table filter predicates on tables T3, T9, T11 and T12. In the join

graph, the fact tables, T1 and T10, are shown in bold circles. The

rest are dimension tables except T3, which is a branch table.

Figure 7. Join Graph for Query Q101

For query Q101, the BJT algorithm (Section 2.5) began by

identifying two table groups: {T10, T11, T12} and {T1, T2, T3,

T4, T5, T7, T8, T9}. After evaluating the costs of all the possible

four states, it chose only the first table group to form a subtree

(view). The bushy join tree generated by the Oracle optimizer for

Q101 is shown in Figure 8.

In the subtree V1 (Figure 8), the joins of the fact table T10

(100M) with the dimension tables T11 (1M) and T12 (1M), which

had single-table filter predicates, resulted in about1M rows; that

is, it produced a data reduction of two orders of magnitude.

It should be clear that if two subtrees were formed for the two

table groups of Q101, the join order will not be the same as the

one shown in Figure 8. By forcing two subtrees in a bushy join

tree for Q101 and evaluating its execution plan, we

experimentally verified that the execution plan based on the bushy

join tree of Figure 8 was the most optimal.

The elapsed times for query Q101 with a left-deep tree and the

bushy join tree (Figure 8) execution plans were 622U and 53U

respectively. The bushy join tree provided more than an order of

magnitude performance improvement for Q101.

Performance improvements were also observed for many

snowstorm queries in this workload. The results of an experiment

with 50 queries are shown as a scatter plot in Figure 9. Most of

the queries, which appear under the diagonal in Figure 9, showed

substantial performance gains. There were several queries whose

0

1000

2000

3000

4000

5000

6000

Left-deep Bushy

E
la

p
s

e
d

 T
im

e
 (

U
)

0

100

200

300

400

500

600

700

800

Q17 Q18 Q25 Q29 Q50 Q51 Q61 Q64 Q72 Q78 Q97

El
ap

se
d

 T
im

e
 (

U
)

Left-Deep

Bushy

 T6

 T5

 T3

 T9

 T7

 T8

 T1

 T2

 T10

 T12

 T11

 T4

1459

performances either minimally improved or slightly degraded;

these queries appear along or above the diagonal in Figure 9.

Figure 8. Bushy Join Tree for Query Q101

By analyzing the run-time statistics of queries that showed

minimal improvement or degradation with bushy join trees, we

discovered that in almost all the cases the subtrees yielded very

little data reduction. The optimizer, however, still chose those

execution plans due to cost mis-estimation.

Figure 9. Performance Results for a Commercial Workload

We also did an experiment comparing the optimization times for

left-deep and bushy tree plans for 20 queries with varying patterns

from the commercial workload. The results are presented in

Figure 10. There is an expected increase in the optimization time

with bushy join tree plans. But the trade-off we got with the

improvements in the elapsed times with bushy join tree plans

made this increase in the optimization times almost negligible.

Figure 10. Optimization Times for Bushy and Left-deep Trees

4. RELATED WORK
Ono and Lohman [10] analyze the complexity of dynamic

programming algorithms for finding an optimal join permutation.

They consider chain, star, and clique queries and point out that an

optimal plan for a multi-way join may contain Cartesian products

and bushy join trees. When Cartesian products are considered, the

number of joins enumerated is O(3
N

), but the worst case

complexity of the enumerator is O(4
N

). Schneider and DeWitt

[13] compare the performance of left-deep and right-deep trees in

shared-nothing multiprocessor database machines. Vance and

Maier [14] proposed an algorithm which generates bushy join tree

order containing Cartesian products in a fast manner. Their main

idea is to generate partial plans by separating join order

enumeration from join predicate analysis. Moerkotte and

Neumann [7] propose an algorithm for optimal bushy join trees

that adapts to the search space of either chain or clique queries.

Ioannidis and Kang [5] present analytical and experimental results

for the space of both deep and bushy trees and discuss how

iterative improvement, simulated annealing and two-phase search

techniques perform on these two spaces; they note that the space

of both the deep and bushy trees is easier to optimize than that of

the left-deep tree alone. Du, Shan, and Dayal [3] present an

algorithm for transforming a left-deep tree into a balanced bushy

tree and show how this conversion can reduce response time in a

multi-database environment.

5. CONCLUSION
This paper makes important contributions1 by describing a

technique for bushy join tree optimization. Our performance study

shows that this optimization provides considerable execution time

1 U.S. patents have been granted for the techniques presented in

this paper.

0

100

200

300

400

500

600

700

800

0 200 400 600 800

B
u

sh
y

Tr
e

e
 E

la
p

se
d

 T
im

e
 (

U
)

Left-deep Tree Elapsed Time (U)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

O

p
ti

m
iz

at
io

n
 T

im
e

 (
U

)

Workload Queries

Bushy Tree Left-deep Tree

 T3

 T7

 T2

 T1

 T9

 T8

 T5

 T6

 T4

T10 T11

T12

V1

1460

improvements for complex snowstorm queries. In this technique,

the bushy join tree contains subtrees constructed to yield

substantial data reduction; and thus, their joins with other subtrees

prove to be much more efficient than joins in the corresponding

left-deep trees.

The performance study described in Section 3 and our experience

with other commercial database workloads demonstrate that the

search space of left-deep trees does not suffice for snowstorm

queries and that bushy join tree execution plans can result in

striking performance gain for this class of queries. By applying

join predicate pushdown on bushy subtrees, the Oracle optimizer

can render efficient interaction between index-based one-pass join

and bushy join trees.

In our scheme, as an added optimization, the star transformation is

performed for star/snowflake represented by each subtree formed

within bushy join trees.

By generating bushy join trees only for snowstorm queries and by

introducing efficient search strategies driven by the number of

fact tables, the state space of bushy join trees have been

significantly reduced. The Oracle optimizer, therefore, explores

the space of bushy trees as the default strategy.

A possible future extension could relax some of the restrictions

imposed by snowstorm schema and apply bushy join trees to a

wider class of queries.

6. REFERENCES
[1] Ahmed, R., Lee, A., Witkowski, A., Das, D., Su, H.,

Cruanes, T., and Zait, M. Cost-Based Query Transformation

in Oracle. Proceedings of the 32nd VLDB Conference, Seoul,

S. Korea, 2006.

[2] Bellamkonda, S., Ahmed, R., Witkowski, A., Amor, A., Zait,

M., and Lin, C. C. Enhanced Subquery Optimization in

Oracle. Proceedings of the 35th VLDB Conference, Lyon,

France, 2009.

[3] Du, W., Shan, M., and Dayal, U. Reducing Multi-database

Query Response Time by Tree Balancing. Proceedings of

ACM SIGMOD, San Jose, CA, U.S.A., 1995.

[4] Garcia-Molina, H., Ullman, J. D., and Widom, J. Database

System Implementation. Prentice Hall, 2000.

[5] Ioannidis, Y. E. and Kang, Y. C. Left-Deep Trees vs. Bushy

Trees: An Analysis of Strategy Spaces and Its Implication for

Query Optimization. Proceedings of ACM SIGMOD, 1991.

[6] Kimball, R. and Ross, M. The Data Warehouse Toolkit: The

Complete Guide to Dimensional Modeling. John Wiley and

Sons, Inc., 2nd Edition, 2002.

[7] Moerkotte, G., and Neumann, T. Analysis of Two Existing

and One New Dynamic Programming Algorithm for the

Generation of Optimal Bushy Join Trees with Cross

Products. Proceedings of the 32nd VLDB Conference, Seoul,

S. Korea, 2006.

[8] Moerkotte, G., and Scheufele, W. Constructing Optimal

Bushy Processing Trees for Join Queries is NP-hard.

Technical Report, , University of Mannheim, https://ub-

madoc.bib.uni-mannheim.de/795/1/TR-96-011.pdf, 1996.

[9] O’Neil, P. and Graefe, G. Multi-Table Joins Through

Bitmapped Join Indices. SIGMOD Record, Vol. 24, No.3,

September, 1995.

[10] Ono, K., and Lohman, G. M. Measuring the Complexity of

Join Enumeration in Query Optimization., Proceedings of the

16th VLDB, Conference, Brisbane, Australia, 1990.

[11] Othayoth, R., and Poess, M. The Making of TPC-DS.

Proceedings of the 32nd VLDB Conference, Seoul, S. Korea,

2006.

[12] Selinger, P., Astrahan, M., Chamberlin, D., Lorie, R., and

Price, T. Access Path Selection in a Database Management

System. Proceedings of ACM SIGMOD, Boston, MA,

U.S.A., 1979.

[13] Schneider, D.A., and DeWitt, D.J. Tradeoffs in Processing of

Complex Join Queries via Hashing in Multiprocessor

Database Machines. Proceedings of 16th VLDB, Conference,

Brisbane, Australia, 1990.

[14] Vance, B. and Maier, D. Rapid Bushy Join Order

Optimization with Cartesian Products. Proceedings of the

ACM SIGMOD, Montreal, Canada, 1996.

1461

