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ABSTRACT 
Many workloads for analytical processing in commercial 

RDBMSs are dominated by snowstorm queries, which are 

characterized by references to multiple large fact tables and their 

associated smaller dimension tables. This paper describes a 

technique for bushy join tree optimization for snowstorm queries 

in Oracle database system. This technique generates bushy join 

trees containing subtrees that produce substantially reduced sets of 

rows and, therefore, their joins with other subtrees are generally 

much more efficient than joins in the left-deep trees.  

The generation of bushy join trees within an existing commercial 

physical optimizer requires extensive changes to the optimizer. 

Further, the optimizer will have to consider a large join 

permutation search space to generate efficient bushy join trees. 

The novelty of the approach is that bushy join trees can be 

generated outside the physical optimizer using logical query 

transformation that explores a considerably pruned search space. 

The paper describes an algorithm for generating optimal bushy 

join trees for snowstorm queries using an existing query 

transformation framework. It also presents performance results for 

this optimization, which show significant execution time 

improvements. 

1. INTRODUCTION 
Current relational database systems process complex SQL queries 

involving multiple fact tables joined with one another and with 

corresponding dimension tables. Such queries are becoming 

increasingly important in Decision-Support Systems (DSS). 

Generating optimal execution plans for such queries has become 

critical for a commercial database system. Bushy join trees 

provide an efficient way to execute these types of queries.  

Database researchers, however, have paid scant attention to the 

problem of bushy join trees. It is well-known that the join order 

optimization problem is NP-hard [8]. Practical solutions to the 

problem therefore tend to involve trade-offs that perform a 

heuristic search of the state space, and therefore, most commercial 

optimizers restrict their default join enumeration to the space of 

left-deep trees [12][14]. 

The following issues with bushy join trees are noted by [4] and 

[14]: the space of bushy join trees is vastly larger and much more 

expensive to search than that of left-deep trees; the best among 

numerous left-deep join tree plans should suffice for all queries; 

and left-deep join trees interact well with nested-loop and index-

based one-pass join algorithms, and therefore execution plans that 

are based on left-deep trees and are driven by these algorithms 

tend to be more efficient than the same algorithms used with non-

left-deep trees. We address these issues in this paper. 

Execution plans based on bushy join trees seem to be the most 

efficient way to evaluate queries that are formulated for 

snowstorm schemas, but generating a bushy join tree within a 

physical optimizer does not come without a price. First, it requires 

extensive changes to the existing optimizer. Second, query 

optimization time increases as the search space grows.  

In this paper, we introduce an innovative algorithm for generating 

bushy join trees for queries that are formulated for snowstorm 

schema. This algorithm generates bushy join trees containing 

subtrees that are constructed to yield considerably reduced sets of 

rows and, therefore, their joins with other subtrees are generally 

much more efficient than joins in the corresponding left-deep 

trees, where large fact tables must be joined with one another 

before their sizes could be reduced. The generation of bushy join 

trees is performed within an existing cost-based transformation 

framework.  

The rest of the paper is organized as follows. We first introduce 

snowstorm schema and describe the existing cost-based query 

transformation framework in the Oracle query optimizer. We 

discuss how bushy join trees interact with star transformation in 

snowstorm queries. We then present an algorithm for generating 

optimal bushy join trees using the existing query transformation 

framework. This is followed by the performance study of the new 

technique for TPC-DS and commercial workloads. We finally 

conclude with a discussion on related work. 
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1.1 Snowstorm Schema 
A star schema [6][11] includes a large fact table and several small 

dimension (lookup) tables. The fact table stores frequently added 

transaction data such as sales, returns and inventory changes, and 

it generally represents the relationships among the dimension 

tables. Each dimension table stores less frequently changed or 

added data supplying additional information for fact table 

transactions, such as customers who made purchases. Multiple 

extensions to the traditional star schema are commonly used in 

today’s data warehouse implementations. The tables belonging to 

a star schema usually contain data from a subject area such as 

sales or returns. 

An extension to the pure star schema, called a snowflake schema, 

separates static data in the outlying dimension tables from the 

more dynamic data in the inner dimension tables and the fact 

tables. That is, in addition to their relationships to the fact table, 

dimension tables can have relationships to other dimension tables. 

A dimension table that is joined with only dimension tables but 

not with any fact table is called a branch in our terminology.  

A snowstorm schema extends the snowflake schema by 

combining multiple snowflake schemas. In essence, a snowstorm 

schema combines multiple related subject areas into one 

comprehensive schema. Since the subject areas are related, some 

dimension tables are shared among them; e.g., a customer 

dimension can be shared between sales and returns. It also allows 

for joins across subject areas, which causes fact tables to be joined 

with one another directly or through shared dimensions. The join 

graphs in these cases can be quite complex as illustrated in 

Section 3. 

This snowstorm approach challenges query execution of both star 

schema and 3NF execution models. Typical executions of queries 

in a star schema involve bitmap accesses, bitmap merges, bitmap 

joins and conventional index-driven join operations. The 

execution plans in a 3NF DSS system are dominated by large hash 

joins and conventional index-driven joins. In both the systems, 

large aggregation and group-by operations are quite common. 

This heterogeneity in execution plans imposes challenges both on 

hardware and software systems. High sequential I/O-throughput is 

critical in large hash join operations. At the same time, index-

driven queries stress the I/O subsystems’ ability to perform small 

random I/Os. Further, this heterogeneity also challenges a query 

optimizer in its decision to either use a star-schema approach, 

such as star transformation (Section 3.1), or a more traditional 

approach, such as nested-loop and hash joins.  

The algorithms devised for processing join graphs such as chain, 

star, circuit, and clique [10] do not lend themselves well to 

snowstorm join graphs. This seems to be an area that traditional 

query optimizers are ill-equipped to deal with.  

1.2 Cost-Based Transformation Framework 
Query transformations in the Oracle optimizer can be heuristic-

based or cost-based. In cost-based transformation, logical 

transformation (also known as query re-write) and physical 

optimization are combined to generate optimal execution plans. 

A cost-based physical optimizer was first introduced in Oracle 

7.1. The physical optimizer works within the scope of a single 

query block, which ranges over a set of tables with restriction, 

projection, and join. In the physical optimization phase, access 

methods, join methods, and left-deep tree join permutations are 

chosen in order to generate an efficient execution plan; the 

physical optimizer also generates a limited form of right-deep join 

trees, which originates from swap of build and probe sides in hash 
join. 

In Oracle 10.1, a general framework [1] for cost-based query 

transformation and several state space search strategies were 

introduced. During cost-based transformation, a query is copied, 

logically transformed and its cost is calculated using the existing 

cost-based physical optimizer. This process is repeated multiple 

times applying a new set of transformations; and at the end, one or 

more transformations are selected and applied to the original 

query, if it results in an optimal cost. The cost-based 

transformation framework provides a mechanism for the 

exploration of the state space generated by applying one or more 

transformations thus enabling the Oracle optimizer to select the 

optimal transformation in an efficient manner. The cost-based 

transformation framework can handle the complexity produced by 

the presence of multiple query blocks in a user query and by the 
interdependence of transformations.  

The availability of the general framework for cost-based 

transformation has made it possible for other innovative 

transformations to be added to the vast repertoire of Oracle's 

query transformation techniques [1][2], such as subquery 

unnesting, group-by and distinct view merging,  join predicate 

pushdown, join factorization, OR expansion, star transformation, 

group-by and distinct placement, vector aggregation, etc. 

1.2.1 State Space Search Techniques 
A fundamental question related to cost-based transformation is 

whether these transformations will lead to a combinatorial 

explosion of alternatives that need to be evaluated and whether 

they will provide a trade-off between optimization cost and 
execution cost.  

The sources of multiple alternatives are the various 

transformations themselves as well as the set of objects (e.g., 

subquery blocks, view blocks, tables, table groups, join edges, 
predicates, etc.) on which each transformation may apply.  

If there are N independent objects on which a transformation T 

can apply, then 2N possible alternative combinations can 

potentially be generated by the application of T. For simplicity, 

we here denote a state as an array of bits, where the nth bit 

represents whether the nth object (e.g., subquery, view or table 

group, etc.) is transformed (a value of 1) or not transformed (a 

value of 0). When there are M transformations that apply on N 

objects, the state is represented by an MxN bit matrix. 

To cope with the combinatorial explosion problem, randomised 

search algorithms are used. The common idea behind these 

strategies is to perform a quasi-random walk in the state space, 

starting from an initial state and trying to reach a low-cost local 

minimum. Of course, these strategies do not guarantee that the 

global minimum – the best transformation – can be attained, since 
only a small fraction of the state space is visited during the walk.  

The complexity of cost-based transformation is determined by the 

number of alternative combinations, the state space, which 

exponentially grows with the number of transformation objects. In 

order to limit the potential increase in optimization time, we use 

several different techniques for searching the state space of 
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various transformations. Some examples of search techniques are 
exhaustive, iterative, linear, two-pass, and perturbation walk. 

The cost-based transformation framework automatically decides 

which search technique to use based on the number of elements to 

be transformed, the characteristics of the transformation, and the 
overall complexity of the query. 

1.2.2 Re-use of Subtree Cost Annotations 
Re-optimizing each transformed query tree in its entirety is costly 

and in many cases unnecessary. Each transformation impacts a 

few known query blocks (subtrees), and only these query blocks 

and the query block containing them in the query tree need to be 

re-optimized. Therefore, we reuse the cost annotations (i.e., scaled 

selectivities, estimated costs and cardinalities, etc.) of an already-

optimized subtree when optimizing its equivalent subtree during 

state space exploration. For complex query trees containing many 

subtrees, this can provide substantial savings of optimization time.  

1.2.3 Interleaving of Transformations 
The Oracle optimizer generally performs various transformations 

in a sequential manner. However, there are exceptions to this rule. 

When two (or more) cost-based transformations apply on the 

same object such that one transformation becomes applicable only 

after the other has been applied, then these transformations 

generally need to be interleaved in order for the optimizer to 

determine an optimal execution plan.  

Consider a query block, Q, and a transformation T1 that applies to 

Q. If Cost(Q) is 30 and Cost(T1(Q)) is 40, then T1 should be 

rejected for Q. However, if another transformation T2 is 

applicable to T1(Q) and Cost(T2(T1(Q))) is 25, then T1 should be 

applied to Q. That is, T2 must be interleaved with T1 in cases 

where application of T1 increases the estimated cost of Q, since 

T2, when applied to the result produced by T1, may yield a lower 

cost indicating that T1 should be performed on Q.  

By the same token, star transformation (discussed in the next 

section) must be interleaved with the generation of bushy join 

trees in cases where it increases the cost.  

1.3 Processing Star and Snowflake 
In the classical method of processing a star query, a Cartesian 

product of all dimension tables is performed before joining the 

result with the fact table. The rows from fact table are accessed 

using an index on the columns that are joined to the dimension 

tables. This technique avoids a full scan of the fact table. 

However, a Cartesian product of multiple dimension tables can 

lead to a large result with numerous failed index probes on the 

composite index of the fact table, which can be prohibitively 

expensive.  

In addition to the classical method, the Oracle optimizer uses 

another technique called star transformation to evaluate star or 

snowflake queries efficiently. Star transformation avoids a full 

table scan of the fact table by retrieving only the relevant set of 

rows from the fact table and thereby overcoming the drawbacks of 

the classical method. The presence of filter predicates on 

dimension tables and the intersection of the fact table rows joining 

each of the dimension tables may vastly reduce the data set that 

needs to be accessed from the fact table. Hence, this optimization 

would prove to be much more efficient than a brute-force full 

table scan of the fact table. Once the relevant rows are fetched 

from the fact table, it is joined back to the dimension tables, if 

needed, and thus avoiding Cartesian products required in the 

classical star join processing.  

This technique [9] is based on bitmap indexes. In a bitmap index 

on column A, there is a bitmap for each distinct key value of A, 

where each bit corresponds to a row in the table; the bit is set to 1, 

if the key value of A appears in that row; otherwise, it is set to 0. 

In Oracle, B-tree index keys can be dynamically converted into 

bitmaps during query execution and hence B-tree index can also 

be used for star transformation. 

Consider the following query. 

Q1. 

SELECT D1.x, SUM (F.m) 

FROM F, D1, D2 

WHERE F.fk1 = D1.pk and F.fk2 = D2.pk and 

      D1.a > 5 and D2.b < 77  

GROUP BY D1.x; 

Here F, a large fact table, is joined with small dimension tables, 

D1 and D2, which have filter predicates. Q1 undergoes star 

transformation and yields Q2 as shown below. 

Q2. 

SELECT D1.x, SUM (F.m) 

FROM F, D1 

WHERE F.fk1 = D1.pk and D1.a > 5 and 

      F.fk1 IN (SELECT D1.pk 

         FROM D1 

         WHERE D1.a > 5) and 

      F.fk2 IN (SELECT D2.pk 

         FROM D2 

                WHERE D2.b < 77) 

GROUP BY D1.x; 

If F has bitmap indexes on its join keys –F.fk1 and F.fk2– 

referenced in the query, the transformation adds subquery 

predicates corresponding to each dimension table. For a 

snowflake query, the subquery might refer to more than one table 

that is joined together. Note that the subquery here may be looked 

upon as a set membership operation; e.g., F.fk1 IN (8,13, 29 …). 

When driven by bitmap AND and OR operations on the key 

values supplied by the dimension subqueries, only the relevant 

rows need to be retrieved from F. The following operations are 

performed in Q2 to access and join the fact table, F. 

 By iterating over the key values returned by a dimension 

subquery, the bitmaps are retrieved for a given key value 

from a bitmap index on table F.   

 For a subquery, the bitmaps retrieved for various key values 

are merged (OR-ed).  

 The merged bitmaps supplied by dimension subqueries are 

AND-ed; that is, a conjunction of the joins is performed.  

 From the final bitmap, the corresponding rowid’s for F are 

generated.  

 Rows are directly retrieved from F using the rowid’s.  

The dimension subquery filters the fact table based on the filter 

predicates on the dimension tables. Therefore it may still be 

necessary to join the dimension tables back to the relevant rows of 

the fact table using the original join predicates. The join-back of a 

dimension table can be avoided, if the dimension table is semi-
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joined or if all the predicates on the dimension table are part of the 

dimension subquery, the column(s) selected from the subquery are 

unique, and the columns of the dimension table are not referenced 

anywhere else in the query. In Q1, D2 is not joined back to F, 

since D2 is not referenced in the SELECT and GROUP-BY 

clauses and D2.pk is unique. 

The existence of a fact table bitmap join index, which essentially 

materializes the join between the fact table and a dimension table, 

can obviate the necessity of generating a subquery for that 

dimension. The Oracle optimizer also considers materializing the 

subquery into a temporary table during query execution. This 

improves the efficiency of the dimension tables in the subquery, 

which are accessed multiple times, for example, once for 

retrieving bitmaps and then for join back. 

The Oracle optimizer automatically decides whether to apply the 

star transformation, which is performed under the transformation 

framework described in Section 1.2. Bushy join trees can benefit 

from interleaving star transformation within its subtrees, as this 

may result in a smaller estimated cost and thereby making it 

possible for bushy tree plans to be selected. 

1.4 Join Predicate Pushdown 
The Oracle optimizer performs join predicate pushdown 

transformation, where join predicates are pushed down inside a 

view [1]. This allows a view to be joined with outer tables by 

index-based one-pass join method, which is not possible for 

regular views that can be joined only by hash or sort-merge join 

methods. 

The pushed-down join predicates act like correlation once inside 

the view, thereby opening up new index access paths. This 

transformation imposes a partial join order on the joined tables; 

that is, the tables that the view is joined with (via the pushed-

down predicates) must precede the view in the join permutation; 

and the view must be joined by index-based one-pass join method.  

This transformation is also performed within the cost-based 

transformation framework (Section 1.2). 

One of the issues [4] mentioned in Section 1 was a limited 

interaction between bushy join trees and index-based one-pass 

join algorithms. We circumvent this limitation by performing join 

predicate pushdown on subtrees of bushy join trees.   

2. BUSHY JOIN TREES 
In a join tree, leaf nodes represent user tables and internal nodes 

represent join operations. If the right child of every internal node 

of a join tree is a leaf node, then the tree is called left-deep join 

tree. If the left child of every internal node of a join tree is a leaf 

node, then the tree is called right-deep join tree. If the left or the 

right child of an internal node of a join tree can be an internal 

node, then the tree is called a bushy join tree. 

The number of left-deep trees does not grow nearly as fast as the 

number of bushy trees for multi-way joins of a given number of 

tables. For N tables, there is only one left-deep tree shape to which 

tables can be assigned in N! ways. The total number of bushy tree 

(which subsumes left-deep and right-deep tree) shapes S(N) for N 

tables is given by the following recurrence function [4]. 

 

S(1) = 1 

S(N) =                
    

The second equation states that, for i between 1 and N-1 as the 

number of leaves in the left subtree, those leaves may be re-

arranged in S(i) ways. Similarly the remaining N-i leaves in the 

right subtree can be re-arranged in S(N-i) ways. S(N)*N! gives the 

total number of bushy join trees (i.e., join permutations). 

A traditional physical optimizer generates a sequential or a left-

deep join tree execution plan. There are many scenarios, however, 

where bushy join trees can substantially improve query 

performance. 

2.1 Physical vs. Logical 
We consider the pros and cons for generating bushy join trees (A) 

under the transformation framework and (B) in the physical 

optimizer. 

By performing bushy join trees only for snowstorm queries and by 

devising efficient search strategies, Scheme A can substantively 

reduce the state space of bushy joins, and thus can render the 

problem of combinatorial explosion of join permutations more 

manageable. Scheme B would generate bushy join permutations 

every time the physical optimizer is invoked. Scheme A does not 

have this problem. 

As the subtrees (views) contained by bushy join trees may be 

candidates for star transformation (Section 1.3), scheme A can 

leverage star transformation by performing bushy join before star 

transformation. This would not be possible in scheme B, which 

would generate bushy join trees in the physical optimizer after star 

transformation takes place. 

By allowing the existing technique of join predicate pushdown 

(Section 1.4) on bushy join subtrees (views), scheme A can 

provide an efficient interaction between index-based nested-loop 

join method and bushy join subtrees. This may be feasible in 

Scheme B albeit with considerable effort. 

The re-use of cost annotation (Section 1.2.2) allows us to bypass 

the optimization of a subtree (view) when it reappears in a 

different state during state space exploration. This is difficult to 

do in the physical optimizer. 

Scheme A provides a cleaner and simpler implementation of 

bushy join trees, whereas scheme B requires extensive changes to 

the physical optimizer. 

On the con side, scheme A may have some overhead associated 

with the copying of query structures. 

All things considered, scheme A seemed preferable over B. 

2.2 Snowstorm Schema and Join Trees 
In this paper, the generation of bushy join depends upon the 

existence of multiple fact and dimension tables in a snowstorm 

query block. The join graph of a query block and the relative sizes 

and other statistical properties of the tables and the join columns 

are used to identify fact and dimension tables.  

Consider query Q3, which is posed against a snowstorm schema. 

In Q3, F1 and F2 are large fact tables and D1, D2, and D4 are 

small dimension tables. 
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Q3. 

SELECT F1.k, F2.n 

FROM F1, D1, F2, D2, D4 

WHERE F1.a = D1.a AND F2.c = D2.c AND 

      F2.d = D4.d AND F1.e = F2.m AND 

      D1.g > 1 AND D2.h < 6 AND D4.x = 4; 

One of the many possible left-deep join permutations for Q3 can 

be given by (D1, F1, F2, D2, D4), where joins take place in a left-

to-right sequential order as shown in Figure 1. Here the 

intermediate result of join between D1 and F1 must be joined with 

the large fact table F2, which has not yet been reduced to a 

smaller size by first joining it with its dimension tables D2 and 

D4, which have single-table filter predicates. Therefore, left-deep 

tree execution plans for such a query may turn out to be extremely 

inefficient. When queries have more than two fact tables, the 

inefficiency may multiply as shown in Section in 3.1. 

        
Figure 1. A left-deep join tree for Q3 

2.3 Subtrees and Views 
In the Oracle optimizer, unmerged views have their independent 

join subtrees. A bushy join tree execution plan can be generated 

by introducing subtrees or unmergeable views within a query 

block. Conversion of Q3 into Q4 illustrates this point. 

Q4. 

SELECT V1.k, V2.n 

FROM (SELECT F1.k, F1.e 

      FROM F1, D1 

      WHERE F1.a = D1.a AND D1.g > 1) V1, 

     (SELECT F2.m, F2.n 

      FROM F2, D2, D4 

      WHERE F2.c = D2.c AND F2.d = D4.d  

            AND D2.h < 6 AND D4.x = 4) V2 

WHERE V1.e = V2.m; 

 

Figure 2. A bushy join tree for Q4 

One of the many possible bushy join permutations for Q4 can be 

given by ((D1, F1), (D4, F2, D2)), as shown in Figure 2. Here the 

subtrees (or views) impose the desired order of join evaluation. In 

each subtree, the fact table is joined with its dimension tables first, 

and then the intermediate results of the subtrees are joined 

together. This, in effect, produces a bushy join tree execution plan 

for query Q4.  

Note that once the views have been generated, the physical 

optimizer will choose the best left-deep tree join permutation 

within each of the views and within the outer query block. For 

example, it may generate the following join permutations in 

addition to the one shown above. These bushy tree permutations 

cannot be generated in a left-deep tree scheme. 

((D2, F2, D4), (F1, D1)) 
((D4, F2, D2), ((D1, F1)) 
((D1, F1), (D2, F2, D4)) 

The main idea is to identify table groups for the given set of tables 

such that each group may form a subtree (view) containing a 

star/snowflake, which is anchored around one fact table and 

multiple dimension tables. Each subtree may return a sizably 

reduced set of rows and, therefore, its join with other subtrees 

may prove to be much more efficient than joins in the left-deep 

tree. The data reduction yielded by a subtree can be measured as 

the ratio of its row count and the cardinality of its fact table. 

In the Oracle optimizer, bushy join tree generation is performed 

under the transformation framework described in Section 1.2. 

2.4 Search Strategies for Bushy Join Trees 
In order to limit the potential increase in optimization time, we 

use several different techniques for searching the state space for 

bushy join trees. In all these search techniques the state with the 

cheapest cost is chosen as the best state, according to which the 

final transformation is performed. 

In bushy join tree generation, the table groups are the objects on 

which this transformation applies. If there are two table groups, 

then there are at most four alternatives to consider: no bushy join 

tree (i.e., left-deep tree), subtree for only the first table group, 

subtree for only the second table group, or subtrees for both the 

table groups. The second and third alternatives generate partial 

bushy join trees, whereas in the fourth alternative a full bushy join 
tree is produced.  

We denote a state as an array of bits, where the nth bit represents 

whether the nth object (i.e., table group) is transformed (a value of 

1) or not transformed (a value of 0). For instance, the state (0,1,0) 

for three table groups refers to the generation of subtree for only 

the second table group.   

 Exhaustive. In exhaustive search, all possible 2
N
 states of the 

state space for N table groups are considered. This search is 

guaranteed to provide the best solution. 

 Iterative. In an iterative improvement technique, which is 

used to prune the search space, we start from an initial state 

and move to the next neighbouring state looking for a local 

minimum by always choosing a downward move; we repeat 

this search for a local minimum starting with a different 

initial state in the next iteration. The algorithm stops, if there 

are no more new states to be found or some terminating 

condition has been reached. The number of states 

enumerated in this technique falls between N+1 and 2
N
. 

D2 

F1 D1 

V1 V2 

F2 D4 

D4 

D2 

F2 

F1 D1 
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 Linear. The underlying idea of this search technique is based 

on a dynamic programming approach, which assumes that 

for a state space of several objects, it suffices to consider 

only a subset of those objects for transformation and then 

extend that with additional transformation of another object. 

For two transformation objects, starting with the state (0, 0), 

if we find that Cost(1,0) is lower than Cost(0,0),  we use the 

state (1,0) to generate the next state. And if Cost(1,1) is 

lower than Cost(1,0), then it is reasonable to assume that 

Cost(1,1) is the lowest of the costs of all possible 

transformations, and thus there is no need to evaluate 

Cost(0,1). For bushy trees, we generate the two states (0,0,...) 

and (1,1,...) as the initial states. After that, at every step, the 

next state is generated from the best state so far. The strategy  

significantly cuts down the search space, as it considers at 

most N+2 states.  

 Two-pass. Two-pass search is the least expensive search 

strategy, where only 2 states are considered. The cost of not 

transforming any object (i.e., the state (0,0,…)) is compared 

with the cost of transforming all the objects (i.e., the state 

(1,1,…)), and the cheaper of the two states is selected. 

2.4.1 Analysis of Search Space Complexity 

Consider N tables and K table groups, N1, N2,… NK such that 

 N =   
   Nj 

In our scheme, the total number of join permutations for a state, 

where every table group forms a subtree, is given by 

K! +   
   Nj! 

The first term above gives the number of left-deep tree 

permutations in the outer query block and the second term gives 

the summation over left-deep join tree permutations for all 

subtrees. 

Consider a join graph where N = 5. Using the recurrence function 

given in Section 2, we get the total number of bushy tree shapes 

S(5) as 14 and the total number of bushy join tree permutations as 

14*5! (= 1680). 

Suppose these N tables are grouped such that K = 2, N1 = 3, and 

N2 = 2. The following shows the number of permutations that are 

considered with an exhaustive search of the bushy tree state space. 

State 1 (0, 0): 5! = 120 

State 2 (0, 1): 4! + 2! = 26 

State 3 (1, 0): 3! + 3! = 12 

State 4 (1, 1): 2! + [2!] + [3!] = 2 

Note that in State 4 the permutations within brackets [] are not 

counted, since the cost annotations (Section 1.2.2) for these 

subtrees are re-used from States 2 and 3. Our scheme will try a 

total of 160 join permutations with the exhaustive search, which is 

an order of magnitude smaller than the full bushy join tree 

permutations (i.e., 1680). With other search strategies, our scheme 

would explore far fewer join permutations. 

2.5 Bushy Join Tree (BJT) Algorithm  
The BJT algorithm searches for a snowstorm pattern in a join 

graph for a query block. If such a pattern is found, it identifies 

multiple snowflake subgraphs in the given join graph, where 

tables in each subgraph may potentially form a subtree in a bushy 

join tree execution plan.  

The join graph must contain (a) at least two fact tables, where (b) 

each fact table has a join edge with at least one other fact table, (c) 

a fact table has a join edge with at least one dimension table, and 

(d) a dimension table has zero or more of their own 

dimension/branch tables.  

By analyzing the join graph, the algorithm first forms table groups 

such that each group contains one fact table, one or more 

dimension tables, and zero or more branch tables. A table that 

does not belong to any table group always remains in the outer 

query block, but it is has join edges to other tables/views. Note 

that a table belongs to at most one table group; i.e., the table 

groups do not necessarily partition the set of tables in the join 

graph. 

We define effective cardinality of a table T as its cardinality after 

all its single-table filter predicates have been applied to T. The 

identification of tables as fact, dimension, or branch depends upon 

many factors such as join graph properties, a minimum threshold 

value for effective cardinality of a candidate fact table, a 

minimum value for the ratio of dimension’s effective cardinality 

to that of its fact table, and a minimum value for the ratio of 

scaled number of distinct values (NDVs) of columns in a join 

predicate of fact and dimension tables.  

Besides the system default values, the user can set a threshold 

value for the effective cardinality of a fact table and a minimum 

value for the ratio of dimension’s effective cardinality to that of 

its fact table. 

As mentioned before, both star transformation and join predicate 

pushdown are relevant for the views generated for bushy join 

trees. These two optimizations are interleaved with bushy join tree 

generation. 

Here, we outline an algorithm for generating bushy join trees in a 

query block. 

 Algorithm BJT  

{ 
Input: a connected join graph for tables T1, T2..., TN. 

Output: an optimal bushy join tree. 

1. For the given join graph, generate a left-deep tree join 

order and estimate its cost. (This constitutes the first 

state.) 

2. Use the join graph adjacency properties, effective table 

cardinalities, etc., to identify fact, dimension and branch 

tables and generate table groups. 

3. If there are less than two table groups, then exit. 

4. Using the relevant search strategy, generate a state and 

build BJT views for the table groups designated by the 

current state.  

4.1 Re-use cost annotations in subtrees, if applicable. 

4.2 Get the cost of the current state. 

4.3 Perform interleaved star transformation within the outer 

query block and within each BJT view of the current 

state, if required, and estimate the new current cost. 

1457



 

 

4.4 Perform interleaved join predicate pushdown on each 

BJT view of the current state, if required, and evaluate 

the new current cost. 

4.5 Update the best state so far by comparing the current cost 

with the cost of the best state so far. 

5. If there are more states to be enumerated go to Step 4, 

else transform the original query based on the best-state 

directives. 

} 

3. PERFORMANCE STUDY 
We conducted performance studies on two workloads and 

compared the performance of queries with left-deep and bushy 

tree execution plans. Since the intent of these experiments is to 

study comparative performance improvements and degradations, 

we present the results using an unspecified time unit, U. 

3.1 TPC-DS Workload 
We conducted performance experiments on a TPC-DS schema at 

the scale factor of 300. It contains 99 queries and 25 tables 

belonging to a snowstorm schema. A 300GB database on an 

Exadata machine with 4 compute nodes each with 4 CPU cores 

was used. 

While TPC-DS can be applied to any industry application that 

must transform operational and external data into business 

intelligence, the workload [6] has been granted a realistic context.  

It models the decision support tasks of a typical retail product 

supplier. TPC-DS defines 12 data maintenance operations 

covering typical DSS query types such as ad-hoc, reporting, 

iterative (drill down/up) and extraction queries and periodic 

refresh of the database. TPC-DS query set is designed to cover the 

entire dataset. This is guaranteed by a sophisticated query 

template model.  

In the TPC-DS benchmark, some queries reference one or more 

fact tables and multiple dimension tables. In our performance 

study, we concentrated upon the TPC-DS queries that contain two 

or more fact tables and multiple dimension tables. The queries 

used in this experiment were: Q14, Q17, Q18, Q25, Q29, Q50, 

Q51, Q61, Q64, Q72, Q78, Q91, Q93, and Q97. A somewhat 

simplified version of the TPC-DS query Q14 is shown below. 

Q14. 

SELECT S.ss_item_s  

FROM store_sales S, catalog_sales C,  

     web_sales W, item IS, item IC, item IW, 

     date_dim DS, date_dim DC, date_dim DW    

WHERE S.ss_item_sk = IS.i_item_sk and  

  AND C.cs_item_sk = IC.i_item_sk  

  AND W.ws_item_sk = IW.i_item_sk  

  AND S.ss_sold_date_sk = DS.d_date_sk  

  AND C.cs_sold_date_sk = DC.d_date_sk  

  AND W.ws_sold_date_sk = DW.d_date_sk  

  AND S.ss_cust_sk = C.cs_bill_cust_sk  

  AND C.cs_bill_cust_sk = W.ws_bill_cust_sk 

  AND IS.i_brand_id = IC.i_brand_id and 

  AND IC.i_brand_id = IW.i_brand_id and  

  AND IS.i_class_id = IC.i_class_id and   

  AND IC.i_class_id = IW.i_class_id and 

  AND IS.i_category_id = IC.i_category_id 

  AND IC.i_category_id = IW.i_category_id 

  AND DS.d_year between 1999 AND 1999 + 2 

  AND DC.d_year between 1999 AND 1999 + 2 

  AND DW.d_year between 1999 AND 1999 + 2; 

This query has three fact tables, catalog_sales (431M), store_sales 

(864M), and web_sales (216M) and each fact table has two 

dimension tables, date_dim (73K) and item (264K). The instances 

of the dimension table, item, are joined with each other. The base 

cardinality of each table is shown within parentheses. The join 

graph of Q14 in terms of table aliases is shown in Figure 3, where 

fact tables are indicated by bold circles. 

For Q14, the BJT algorithm initially identified three table groups: 

{W, DW, IW}, {C, DC, IC}, and {S, DS, IS}. After invoking the 

exhaustive search, the state where each of the three table groups 

formed subtrees was found to be the most optimal. The bushy join 

tree generated in our experiment for Q14 is shown in Figure 4. 

There were considerable data reductions (see Section 2.3) in the 

three subtrees shown in Figure 4, and they ranged from 40% to 

60%. These reductions led to the performance gain shown in 

Figure 5, which gives elapsed times of Q14 for left-deep and 

bushy join tree execution plans. 

 

Figure 3. Join Graph for TPC-DS Q14 

 

Figure 4. Bushy Join Tree for TPC-DS Q14 
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Figure 5. Elapsed Times for TPC-DS Q14 

The graph in Figure 6 shows the elapsed times for left-deep and 

bushy join tree execution plans in our experiments for queries that 

have two fact tables. Q72, which seems to benefit most from 

bushy join tree, has two large fact tables, catalog_sales (431M) 

and inventory (585M); each fact table is joined with several 

dimension tables. Q29 shows a case where performance degraded 

due to optimizer cost mis-estimation. 

 

Figure 6. Elapsed time for TPC-DS Snowstorm Queries 

3.2 Results for a Commercial Workload 
We also conducted performance experiments on a real customer 

workload. The workload consists of a snowstorm schema with 

multiple fact tables and numerous dimension tables. The schema 

consists of 40 tables and 150 queries. The database size was 

200GB and the system used was a high-performance parallel 

machine. 

In this workload, there were many long-running snowstorm 

queries, which bore some structural similarity with one another. 

Most of these queries contained two large fact tables and several 

smaller dimension tables. Some queries contained two large fact 

tables joined with smaller dimension tables, but these fact tables 

were joined through another fact table that did not have any 

dimension tables, and therefore it did not belong to any table 

group (see Section 2.5). The base cardinalites of these fact tables 

were about 100M. 

There were many queries in this workload that benefitted from the 

bushy join tree plans generated by the BJT algorithm. For the 

purpose of illustration, we chose query Q101 as a representative.  

Due to confidentiality reasons, we only present the join graph 

(Figure 7) for the query and not its SQL text.  

The query Q101 had a total of twelve tables T1 to T12. The base 

cardinalities of these tables are as follows: T1 (100M), T2 (11M), 

T3 (1M), T4 (110), T5 (41K), T6 (20M), T7 (13K), T8 (60), T9 

(29M), T10 (100M), T11 (1M) and T12 (1M).  There were single-

table filter predicates on tables T3, T9, T11 and T12. In the join 

graph, the fact tables, T1 and T10, are shown in bold circles. The 

rest are dimension tables except T3, which is a branch table. 

 

Figure 7.  Join Graph for Query Q101 

For query Q101, the BJT algorithm (Section 2.5) began by 

identifying two table groups: {T10, T11, T12} and {T1, T2, T3, 

T4, T5, T7, T8, T9}. After evaluating the costs of all the possible 

four states, it chose only the first table group to form a subtree 

(view). The bushy join tree generated by the Oracle optimizer for 

Q101 is shown in Figure 8. 

In the subtree V1 (Figure 8), the joins of the fact table T10 

(100M) with the dimension tables T11 (1M) and T12 (1M), which 

had single-table filter predicates, resulted in about1M rows; that 

is, it produced a data reduction of two orders of magnitude. 

It should be clear that if two subtrees were formed for the two 

table groups of Q101, the join order will not be the same as the 

one shown in Figure 8. By forcing two subtrees in a bushy join 

tree for Q101 and evaluating its execution plan, we 

experimentally verified that the execution plan based on the bushy 

join tree of Figure 8 was the most optimal. 

The elapsed times for query Q101 with a left-deep tree and the 

bushy join tree (Figure 8) execution plans were 622U and 53U 

respectively. The bushy join tree provided more than an order of 

magnitude performance improvement for Q101.  

Performance improvements were also observed for many 

snowstorm queries in this workload. The results of an experiment 

with 50 queries are shown as a scatter plot in Figure 9. Most of 

the queries, which appear under the diagonal in Figure 9, showed 

substantial performance gains. There were several queries whose 
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performances either minimally improved or slightly degraded; 

these queries appear along or above the diagonal in Figure 9. 

 

Figure 8.  Bushy Join Tree for Query Q101 

By analyzing the run-time statistics of queries that showed 

minimal improvement or degradation with bushy join trees, we 

discovered that in almost all the cases the subtrees yielded very 

little data reduction. The optimizer, however, still chose those 

execution plans due to cost mis-estimation. 

 

Figure 9. Performance Results for a Commercial Workload 

We also did an experiment comparing the optimization times for 

left-deep and bushy tree plans for 20 queries with varying patterns 

from the commercial workload. The results are presented in 

Figure 10. There is an expected increase in the optimization time 

with bushy join tree plans. But the trade-off we got with the 

improvements in the elapsed times with bushy join tree plans 

made this increase in the optimization times almost negligible. 

 

Figure 10. Optimization Times for Bushy and Left-deep Trees 

4. RELATED WORK 
Ono and Lohman [10] analyze the complexity of dynamic 

programming algorithms for finding an optimal join permutation. 

They consider chain, star, and clique queries and point out that an 

optimal plan for a multi-way join may contain Cartesian products 

and bushy join trees.  When Cartesian products are considered, the 

number of joins enumerated is O(3
N

), but the worst case 

complexity of the enumerator is O(4
N

). Schneider and DeWitt 

[13] compare the performance of left-deep and right-deep trees in 

shared-nothing multiprocessor database machines. Vance and 

Maier [14] proposed an algorithm which generates bushy join tree 

order containing Cartesian products in a fast manner. Their main 

idea is to generate partial plans by separating join order 

enumeration from join predicate analysis. Moerkotte and 

Neumann [7] propose an algorithm for optimal bushy join trees 

that adapts to the search space of either chain or clique queries. 

Ioannidis and Kang [5] present analytical and experimental results 

for the space of both deep and bushy trees and discuss how 

iterative improvement, simulated annealing and two-phase search 

techniques perform on these two spaces; they note that the space 

of both the deep and bushy trees is easier to optimize than that of 

the left-deep tree alone. Du, Shan, and Dayal [3] present an 

algorithm for transforming a left-deep tree into a balanced bushy 

tree and show how this conversion can reduce response time in a 

multi-database environment.  

5. CONCLUSION 
This paper makes important contributions1 by describing a 

technique for bushy join tree optimization. Our performance study 

shows that this optimization provides considerable execution time 

                                                                 
1 U.S. patents have been granted for the techniques presented in 

this paper. 
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improvements for complex snowstorm queries. In this technique, 

the bushy join tree contains subtrees constructed to yield 

substantial data reduction; and thus, their joins with other subtrees 

prove to be much more efficient than joins in the corresponding 

left-deep trees. 

The performance study described in Section 3 and our experience 

with other commercial database workloads demonstrate that the 

search space of left-deep trees does not suffice for snowstorm 

queries and that bushy join tree execution plans can result in 

striking performance gain for this class of queries. By applying 

join predicate pushdown on bushy subtrees, the Oracle optimizer 

can render efficient interaction between index-based one-pass join 

and bushy join trees.   

In our scheme, as an added optimization, the star transformation is 

performed for star/snowflake represented by each subtree formed 

within bushy join trees. 

By generating bushy join trees only for snowstorm queries and by 

introducing efficient search strategies driven by the number of 

fact tables, the state space of bushy join trees have been 

significantly reduced. The Oracle optimizer, therefore, explores 

the space of bushy trees as the default strategy. 

A possible future extension could relax some of the restrictions 

imposed by snowstorm schema and apply bushy join trees to a 

wider class of queries. 
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