
Big Data Small Footprint: The Design of A Low-Power
Classifier for Detecting Transportation Modes

Meng-Chieh Yu ∗

HTC, Taiwan
Mengchieh Yu@htc.com

Tong Yu ∗

National Taiwan University
r01922141@csie.ntu.edu.tw

Shao-Chen Wang
HTC, Taiwan

Daniel.SC Wang@htc.com

Chih-Jen Lin
National Taiwan University
cjlin@csie.ntu.edu.tw

Edward Y. Chang
HTC, Taiwan

Edward Chang@htc.com

ABSTRACT
Sensors on mobile phones and wearables, and in general sen-
sors on IoT (Internet of Things), bring forth a couple of new
challenges to big data research. First, the power consump-
tion for analyzing sensor data must be low, since most wear-
ables and portable devices are power-strapped. Second, the
velocity of analyzing big data on these devices must be high,
otherwise the limited local storage may overflow.

This paper presents our hardware-software co-design of
a classifier for wearables to detect a person’s transporta-
tion mode (i.e., still, walking, running, biking, and on a
vehicle). We particularly focus on addressing the big-data
small-footprint requirement by designing a classifier that is
low in both computational complexity and memory require-
ment. Together with a sensor-hub configuration, we are
able to drastically reduce power consumption by 99%, while
maintaining competitive mode-detection accuracy. The data
used in the paper is made publicly available for conducting
research.

Categories and Subject Descriptors
I.5.2 [Pattern Recognition]: Design Methodology-classifier
design and evaluation

General Terms
Algorithms, Design, Experimentation, Measurement

Keywords
Sensor hub, Big data small footprint, Context-aware com-
puting, Transportation mode, Classification, Support vector
machines

∗These two authors contributed equally.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at the 40th International Conference on Very Large Data Bases,
September 1st - 5th, 2014, Hangzhou, China. Proceedings of the VLDB
Endowment, Vol. 7, No. 13
Copyright 2014 VLDB Endowment 2150-8097/14/05...$15.00.

1. INTRODUCTION
Though cloud computing promises virtually unlimited re-

sources for processing and analyzing big data [6], voluminous
data must be transmitted to a data center before taking all
the advantages of cloud computing. Unfortunately, sensors
on mobile phones and wearables come up against both mem-
ory and power constraints to effectively transmit or analyze
big data. In this work, via the design of a transportation-
mode detector, which extracts and analyzes motion-sensor
data on mobile and wearable devices, we illustrate the crit-
ical issue of big data small footprint, and propose strategies
in both hardware and software to overcome such resource-
consumption issue.

Detecting transportation modes (such as still, walking,
running, biking, and on a vehicle) of a user is a critical sub-
routine of many mobile applications. The detected mode
can be used to infer the user’s state to perform context-
aware computing. For instance, a fitness application uses
the predicted state to estimate the amount of calories burnt.
A shopping application uses the predicted state to infer if
a user is shopping or dinning when she/he wanders in front
of a shop or sits still at a restaurant. Determining a user’s
transportation mode requires first collecting movement data
via sensors, and then classifying the user’s state after pro-
cessing and fusing various sensor signals. Though many
studies (see Section 2) have proposed methods for detecting
transportation modes, these methods often make unrealis-
tic assumptions of unlimited power and resources. Several
applications have been launched to do the same. However,
all these applications are power hogs, and cannot be turned
on all the time to perform their duties. For instance, the
sensors used by Google Now [13] on Android phones con-
sume around 100mA, and thus forces most users to turn the
feature off. Similarly, processing sensor data on wearables1

must minimize power consumption in order to lengthen the
operation time of the hosting devices.

To minimize power consumption and memory require-
ment, we employ both hardware and software strategies.
Though this paper’s focus is on reducing the footprint of
a big-data classifier, we present the entire solution stack for
completeness. Our presentation first reveals bottlenecks and
then accurately accounts for each strategy’s contribution.
Specifically on the challenges that are relevant to the big-

1The capacity of a battery on a typical wearable, e.g.,
Sony/Samsung watch, is under 315mAh [27].

1429

data community, we employ the following four strategies to
tackle them:
• Big data. The more data that can be collected, the more

accurate a classifier can be trained.
• Small footprint. The computational complexity of a clas-

sifier should be low, and preferably independent of the
size of training data. At the same time, model complex-
ity must remain robust to maintain high classification ac-
curacy. Tradeoffs between model complexity and compu-
tational complexity are carefully studied, experimented,
and analyzed.
• Data substitution. When the data of a low power-consuming

sensor can substitute that of a higher one, the higher
power-consuming sensor can be turned off, thus conserv-
ing power. Specifically, we implement a virtual gyroscope
solution using the signals of an accelerometer and a mag-
netometer, which together consumes 8% power compared
with using the signals of a physical gyroscope (see Table 1
for power specifications).
• Multi-tier design. We design a multi-tier framework, which

uses minimal resources to detect some modes, and in-
creases resource consumption only when between-mode
ambiguity is present.
By carefully considering trade-offs between model com-

plexity and computational complexity, and by minimizing
resource requirement and power consumption (via hardware-
software co-design and reduction of the classifier’s footprint),
we reduce power consumption by 99% (from 88.5mA to
0.73mA), while maintaining 92.5% accuracy in detecting five
transportation modes.

The rest of the paper is organized as follows: Section 2
presents representative related work. Section 3 depicts fea-
ture selection, classifier selection, and our error-correction
scheme. In Section 4, we present the design of a small
footprint classifier for a low-power sensor hub. In addition,
we propose both a virtual gyroscope solution and multi-tier
framework to further reduce power consumption. Section 5
outlines our data collection process and reports various ex-
perimental results. The transportation-mode data is made
available at [15] for download. We summarize our contribu-
tions and offer concluding remarks in Section 6.

2. RELATED WORK
Prior studies on transportation-mode detection can be

categorized into three approaches: location-based, motion-
sensor-based, and hybrid. The key difference of our work is
that we address the practical issue of resource consumption.

2.1 Location-Based Approach
The location-based approach is the most popular one for

detecting transportation modes. This is because sensors
such as GPS, GSM, and WiFi are widely available on mobile
phones. In addition, the location and changing speed can
conveniently reveal a user’s means of transportation.

The method of using the patterns of signal-strength fluc-
tuations and serving-cell changes to identify transportation
modes is proposed by [2]. The work achieves 82% accuracy
in detecting among modes of still, walk, and on a vehicle.
For the usage of GSM data, the study of [26] extracts mobil-
ity properties from a coarse-grained GSM signal to achieve
85% accuracy for detecting among the same three modes.
The work of [35] extracts heading change rate, velocity, and
acceleration from GPS signals to predict the modes of walk,

Table 1: Power consumption of processors and sen-
sors. The active status indicates that only our
transportation-mode algorithm is running.

Power Condition
CPU (running at 1.4GHz) 88.0mA Active status

5.2mA Idle status
MCU (running at 16MHz) 0.5mA Active status

0.1mA Idle status
GPS 30.0mA Tracking satellite
WiFi 10.5mA Scanning every 10 sec
Gyroscope 6.0mA Sampling at 30Hz
Magnetometer 0.4mA Sampling at 30Hz
Accelerometer 0.1mA Sampling at 30Hz

bike, driving, and bus. Recent work of [30] uses GPS and
knowledge of the underlying transportation network includ-
ing real time bus locations, spatial rail and spatial bus stop
information to achieve detection accuracy of 93%.

Unfortunately, the location-based approach suffers from
high power consumption and can fail in environments where
some signals are not available (e.g., GPS signals are not
available indoors). Table 1 lists power consumption of pro-
cessors and sensors. It is evident that both GPS and WiFi
consume significant power, and when they are employed,
the power consumption is not suitable for devices such as
watches and wrist bands, whose 315mA batteries last less
than half a day when only the GPS is on.

2.2 Sensor-Based Approach
The motion-sensor-based approach is mostly used to de-

tect between walking and running in commercial products
such as Fuelband [22], miCoach [1], and Fitbit [9]. The study
of [31] uses an accelerometer to detect six typical transporta-
tion modes, and concludes that the acceleration synthesiza-
tion based method outperforms the acceleration decomposi-
tion based method. The research of [34] extracts orientation-
independent features from vertical and horizonal compo-
nents and magnitudes from the signals of an accelerom-
eter. Combined with error correction methods using k-
means clustering and HMM-based Viterbi algorithm, this
work achieves 90% accuracy for classifying six modes.

2.3 Hybrid Location/Sensor-Based Approach
For the location-based and motion-sensor-based hybrid

approach, the studies of [32], [25], and [17] employ both
GPS and accelerometer signals to detect the transporta-
tion mode. In addition, [18] proposes an adaptive sensing
pipeline, which switches the depth and complexity of signal
processing according to the quality of the input signals from
GPS, an accelerometer, and a microphone. However, these
schemes all suffer from high power consumption.

2.4 Resource Consideration
The tasks of sensor-signal sampling, feature extraction,

and mode classification are continuously run to consume re-
sources. Some prior works address the problem of power
consumption via signal subsampling and process admission
control. The studies of [24] focus on adapting the sampling
rate to extract sensor signals. The data admission control
and duty cycling strategies are proposed by [18]. The work
of [28] presents a framework that reduces the need of running

1430

Table 2: Representative work of transportation-
mode detection (accuracy in percentage). Note that
Acc means accelerometer and mic means micro-
phone in this table.
Ref # Modes Sensors Used Accuracy Power
[2] 3 GSM 82.00% not considered
[26] 3 GSM 84.73% not considered
[35] 4 GPS 76.20% not considered
[30] 6 GPS, GIS 93.50% not considered
[20] 3 GSM, WiFi 88.95% not considered
[31] 6 Acc. 70.73% not considered
[34] 6 Acc. 90.60% not considered
[32] 4 Acc., GPS 91.00% not considered
[18] 5 Acc., GPS, mic. 95.10% 20.5mA
[25] 5 Acc., GPS, GSM 93.60% 15.1mA

the main recognition system and can still maintain compet-
itive accuracy. The work of [21] reduces power consumption
by inferring unknown context features from the relationship
between various contexts.

Our work provides resource management in both hard-
ware and software, and achieves much more significant re-
source conservation compared with all prior approaches. Our
design uses MCU to replace CPU, and low-power sensors
such as accelerometer and magnetometer to replace GPS,
WiFi, and gyroscope. Furthermore, the small footprint of
our classifier reduces both memory requirement and power
consumption.

Table 2 summarizes representative schemes mentioned in
this section, including signal sources, number of detection
modes, accuracy, and power consideration. (Note that ac-
curacy values in these studies are obtained upon different
datasets and experimental environments.) Most schemes
do not address the power consumption issue. The ones
that consider the power issue consume at least 20 times
(15.1mA achieved by [25] vs. 0.73mA by ours) our proposed
hardware-software co-design.

3. ARCHITECTURE
This section presents our transportation-mode detection

architecture, of which the design goal is to achieve high de-
tection accuracy at low power consumption. The architec-
ture consists of computation modules located at sensor hub,
mobile client, and cloud server. The sensor hub employs
low-power components and makes a preliminary prediction
on a user’s transportation mode. The mobile client and
cloud server then use additional information (e.g., location
information, map, and transit route), if applicable, to fur-
ther improve prediction accuracy. The three tiers work in
tandem to adapt to available resources and power. In this
paper, we particularly focus on depicting our design and
implementation of a low-power, low-cost sensor hub.

The overall structure of the transportation-mode detec-
tion system on the sensor hub is depicted in Figure 1, which
shows source sensors on the left-hand side and five target
modes on the right-hand side. The hub employs an MCU
(operating at speeds up to 72MHz), which has power con-
sumption of 0.1mA while running at 16MHz, compared to
88.5mA of a 1.4GHz Quad-core CPU. The hub is configured
with three motion sensors: an accelerometer, a gyroscope,
and a magnetometer, all running at 30Hz sampling rate.

Figure 1: Structure of overall system.

Predicting transportation mode consists of three key steps:
feature extraction, mode classification, and error correction.
The mode classifier is trained offline via a training pipeline,
details of which are presented in Section 3.2. Once signals
have been collected from the sensors, the hub first extracts
essential features. It then inputs the features to the classi-
fier to determine the transportation mode. In the end, the
hub performs an error correction scheme to remove noise. In
this work, our target transportation modes are: still, walk-
ing, running, biking, and (on) vehicle. We use symbols Still,
Walk, Run, Bike, and Vehicle to denote these modes, respec-
tively. Note that the Vehicle mode includes motorcycle, car,
bus, metro, train, and high speed rail (HSR).

The remainder of this section describes these three online
steps.

3.1 Feature Extraction
Our sensor hub uses 3-axis motion sensors. An accelerom-

eter is an electromechanical device measuring acceleration
forces in three axes. By sensing the amount of dynamic ac-
celeration, a subroutine can analyze the way the device is
moving in three dimensions. A gyroscope measures angu-
lar velocity in three axes. The output of a gyroscope tells
device rotational velocity in three orthogonal axes. Since a
sensor hub may be mounted on a mobile device in a tilted
angle, and that device can be carried by the user in any ori-
entation, it is not productive to consider acceleration values
in three separate axes. Instead, for the purpose of discern-
ing transportation modes, the magnitude of acceleration, or
the energy of motion, is essential. Therefore we combine
signals from the three axes as the basis of the magnitude
feature. For example, the magnitude of the accelerometer
is Amag =

√
(Ax)2 + (Ay)2 + (Az)2. The same calculation

is used for signals from the gyroscope and magnetometer.
This formulation enables our system to assume a random
orientation and position of a device for mode prediction.

In addition, the magnitude measured at a time instant is
not a robust feature. We thus aggregate signals in a moving
window, and extract features from each window. We eval-
uated the performance by using different window sizes, and
finally determined 512 as the choice because it yielded the
most suitable result. (Section 5.2.1 presents the detailed
evaluation.) Extracted features can be classified into two
categories, including a category in the time domain and the
other in the frequency domain. According to experience of
prior works, we tried 22 features in the time-domain, and 8

1431

features in the frequency domain to be the baseline for eval-
uation. The features that we evaluated in the time-domain
include mean, magnitude, standard deviation, mean cross-
ing rate, and covariance. The features that we evaluated in
the frequency-domain include entropy, kurtosis, skewness,
the highest magnitude frequency, the magnitude of the high-
est magnitude frequency, and the ratio between the largest
and the second largest FFT (Fast Fourier Transform) values.
These features in the frequency domain were calculated over
frequency domain coefficients on each window of 512 sam-
ples. Finally, five time-domain and two frequency-domain
features were selected after rigorous experiments. Five fea-
tures in the time domain include the mean and standard
deviation calculated from the signals of an accelerometer
and gyroscope, and the standard deviation from a magne-
tometer. Two frequency-domain features include the highest
magnitude frequency and the ratio of the highest and second
magnitude frequency from FFT spectrum. These features
are summarized as follows:
1. acc std: standard deviation of the magnitude of accelerom-

eter.
2. acc mean: mean of the magnitude of accelerometer.
3. acc FFT (peak): the index of the highest FFT value,

which indicates the dominated frequency of the corre-
sponding mode.

4. acc FFT (ratio): the ratio between the largest and the
second largest FFT values, which roughly depicts if the
FFT value distribution is flat.

5. mag std: standard deviation of the magnitude of magne-
tometer.

6. gyro std: standard deviation of the magnitude of gyro-
scope.

7. gyro mean: mean of the magnitude of gyroscope.
Figure 2 shows the average value of each feature on nine

transportation modes. We can see that the average values
of different modes vary significantly. Therefore, our selected
features are effective for telling apart different transporta-
tion modes.

3.2 Classifier Selection
We consider three classifiers according to model complex-

ity. A model of low complexity such as a linear model may
underfit the data, whereas a high complexity model may
suffer from overfitting. In general, we can choose an array
of models, and use cross-validation to select the one that
achieves the best classification accuracy on unseen data.
However, we must also consider power consumption and
memory use, and therefore, computational complexity and
model-file size in our selection process.

We first selected three widely-used baseline models that
cover the spectrum of model complexity; they are decision
tree, AdaBoost, and SVMs. Decision tree is a piece-wise
linear model, AdaBoost smooths the decision boundary of
decision trees, and SVMs can work with a kernel to adjust
its model complexity. For decision tree, we used the J48
implementation in the package Weka [14], which is based on
the C4.5 algorithm [23]. However, a full tree can severely
overfit the training data, so by default a post-pruning proce-
dure is conducted to remove some nodes. J48 prunes nodes
until the estimated accuracy is not increased.

AdaBoost (Adaptive Boosting) [10] sequentially applies a
classifier (called weak learner) on a weighted data set ob-
tained from the previous iteration. Higher weights are im-

(a) Standard deviation of accelerometer values (acc std)

(b) Mean of accelerometer values (acc mean)

(c) Index of the highest FFT value (acc FFT (peak))

(d) Ratio of FFT values (acc FFT (ratio))

(e) Standard deviation of magnetometer values (mag std)

(f) Standard deviation of gyroscope values (gyro std)

(g) Mean of gyroscope values (gyro mean)

Figure 2: Average feature values in different modes.

1432

posed on wrongly predicted data in previous iterations. This
adaptive setting is known to mitigate overfitting. We con-
sidered J48 as the weak learner and applied the AdaBoost
implementation in Weka. The number of iterations was cho-
sen to be 10, so 10 decision trees are included in the model.

Support vector machines (SVMs) [3, 8] can efficiently per-
form a non-linear classification using the kernel trick, im-
plicitly mapping data in the input space onto some high-
dimensional feature spaces. It is known that SVMs are sen-
sitive to the numeric range of feature values. Furthermore,
some features in our data have values in a very small range.
Therefore, we applied a log-scaling technique to make values
more evenly distributed. In addition, SVMs are also known
to be sensitive to parameter settings, so we conducted cross
validation (CV) to select parameters. The SVM package
LIBSVM [5] was employed for our experiments.

SVMs were chosen to be our classifier because SVMs enjoy
the highest mode-prediction accuracy. Section 5.2.3 presents
the details of our classifier evaluation. When training data
is abundant (in a big-data scenario), the large number of
support vectors can make the footprint of its model file quite
large. In Section 4, we will address the issues of resource
conservation for SVMs to drastically reduce its footprint.

3.3 Error Correction via Voting
In transportation-mode detection, an incorrect detection

by a classifier may be caused by short-term changes of the
transportation mode. When an activity is changed from one
mode (e.g., Walk) to another (e.g., Still), the moving window
that straddles the two modes during transition can include
features from both modes. Therefore, the classification may
be erroneous. We propose a voting scheme to address this
problem.

At time t− 1, the system maintains scores of all modes.

scoret−1(Still), scoret−1(Walk), . . . , scoret−1(Vehicle). (1)

Then at time t, the classifier predicts a label. This label and
the past scores in (1) are used together to update scores and
make mode predictions.

Figure 3 presents the pseudo code of the voting scheme.
In the beginning, all of the scores are set as zero. At each
time point, the score of the mode predicted by the classifier
is increased by one unit. In contrast, the scores of the other
modes are decreased by one unit. The upper-bound of the
score is set as four units, whereas the lower bound zero.
Then, the mode with the highest score is determined as the
modified prediction. Section 5.2.4 presents the improvement
in prediction accuracy achieved by this voting scheme.

4. RESOURCE CONSERVATION
As presented in Section 1, we employ three strategies:

i) small footprint, ii) data substitution, and iii) multi-tier
design, to conserve resources even though we use a large-
pool of training instances. We present details in this section.

4.1 Small Footprint
Moving CPU computation to a low-power MCU saves sig-

nificant power. However, that saving is not good enough
for wearables, and we must save even more. At the same
time, the low-cost sensor hub demands us to design a small-
footprint classifier that does not take up much memory space.

Algorithm 3.1: VotingScheme(cresult)

Input
cresult : the result detected by classifier
Output
vresult : the result after voting scheme

max = cresult
if prob[cresult] ≤ 4

then prob[cresult]← prob[cresult] + 1
for i← 0 to classNum

do

if i 6= cresult and prob[i] ≤ 0

then prob[i]← prob[i]− 1
if prob[max] ≤ prob[i]

then max← i
vresult← max

Figure 3: Pseudo code of voting scheme.

A small footprint design of our classifier not only saves mem-
ory space, but also reduces computation and thereby saves
even more power.

This section aims to reduce the model-file size of SVMs.
Typically, employing the kernel trick provides higher model
complexity to the SVM classifier to yield higher classifica-
tion accuracy. However, the kernel trick requires the formu-
lation of a kernel matrix, the size of which depends on the
size of the training data. In the end of the training stage,
the yielded support vectors are collected in a model file to
perform class prediction on unseen instances. The size or
footprint of the model file typically depends on the size of
the training data. In a big-data setting when a huge amount
of training data is used to improve classification accuracy,
the model file is inevitably large. Such consequence is not
an issue when classification is performed in the cloud, where
both memory and CPU are virtually unlimited. On our sen-
sor hub, which is mounted on a low-power device, a large
footprint is detrimental.

Let us visit the formulation of SVMs in a binary classifica-
tion setting. Support vector machines [3, 8] minimize the fol-
lowing weighted sum of the regularization term and training
losses for the given two-class training data (y1,x1), . . . (yl,xl).

min
w,b

1

2
wTw+C

∑l

i=1
max(1− yi(wTφ(xi) + b), 0), (2)

where yi = ±1, ∀i are class labels, xi ∈ Rn, ∀i are training
feature vectors, and C is the penalty parameter. An impor-
tant characteristic of SVMs is that a feature vector xi can
be mapped to a higher dimensional space via a projection
function φ(·) to improve class separability. To handle the
high dimensionality of the vector variable w, we can apply
the kernel method and solve the following dual optimization
problem:

min
α

1

2
αTQα− eTα

subject to yTα = 0

0 ≤ αi ≤ C, i = 1, . . . , l,

(3)

where

Qij = yiyjφ(xi)
Tφ(xj) = yiyjK(xi,xj), (4)

1433

and K(xi,xj) is the kernel function. The optimal solutions
of the primal problem (2) and the dual problem (3) satisfy
the following relationship (l denotes the number of training
instances):

w =
∑l

i=1
αiyiφ(xi). (5)

The set of support vectors is defined to include xi with αi >
0, since αi = 0 implies that xi is inactive in (5). With
a special φ(·) function, the kernel value K(xi,xj) can be
easily calculated even though it is the inner product of two
high dimensional vectors. Let us consider the following RBF
(Gaussian) kernel as an example.

K(xi,xj) = e−γ‖xi−xj‖2 ,

where γ is the kernel parameter. RBF kernel in fact maps
original data to infinite dimensions, so the SVM model (5)
also has infinite dimensions and cannot be saved directly. In
order to save the model, all the support vectors xi and their
corresponding non-zero αi must be stored and then loaded
into memory when making predictions. If the number of
support vectors is O(l), then the O(ln) size of the model,
where n is the number of features, can be exceedingly large.

In order to achieve extremely small model size, we propose
an advanced setting by low-degree polynomial mappings of
data [7] when storing the model. From (4), every valid kernel
value is the inner product between two vectors. We consider
the polynomial kernel

K(xi,xj) = (γxTi xj + 1)d = φ(xi)
Tφ(xj),

where d is the degree. If n is the number of features, then

dimensionality of φ(x) =

(
n+ d

n

)
.

For example, if d = 2, then

φ(x) = [1,
√

2γx1, . . . ,
√

2γxn, γx
2
1, . . . ,

γx2n,
√

2γx1x2, . . . ,
√

2γxn−1xn]T .

Therefore, if the dimensionality of φ(x) is not too high, then
instead of storing the dual optimal solution and the support
vectors (i.e., all αi,xi with αi > 0), we only store (w, b) in
the model. To be more precise, if φ(x) is very high dimen-
sional (possibly infinite dimensional), then w in (5) cannot
be explicitly expressed and we must rely on kernel tech-
niques. In contrast, if φ(x) is low dimensional, then the
vector w can be explicitly formed and stored. Because the
length of w is the same as that of φ(·), a nice property is
that the model size becomes independent of the number of
training data. If we use the one-against-one strategy for k-
class data (discussed later in this section) and assume single-
precision storage, the model size is(

k

2

)
× (length of w + 1)× 4bytes

=

(
k

2

)
×

((
n+ d

d

)
+ 1

)
× 4bytes.

(6)

We hope that when using a small d (i.e., low-degree polyno-
mial mappings),

(
n+d
d

)
is smaller than O(ln) of using kernels

and the model size in (6) is smaller. Then we can simulta-
neously reduce the model size and achieve nonlinear separa-
bility. Take d = 3 as an example.(

n+ d

d

)
≤ n3 � ln if n2 � l. (7)

Because the number of features (7 in our case) is small and
in a big-data scenario, l can be in the order of millions, easily
n2 � l and saving in model size is significant.

Of course, to reduce the model size as small as possible, we
can simply set φ(x) = x so that the data is not mapped to a
different space. The model size is very small because storing
on (w, b) needs only n+ 1 float-point values, where n is the
number of features in linear space. However, linear SVMs’
result usually cannot match that of SVMs with kernel.

Usually, when the degree of polynomial mapping increases,
the performance of the SVM classifier would become better.
At the same time, the SVM model size would increase. What
we need to do is to find an appropriate d, which achieves
a good balance between classification accuracy and model
size. In Section 5.2.3, we report that degree-3 polynomial
mappings achieves the best such balance.

We briefly discuss multi-class strategies because the num-
ber of transportation modes is more than two. Both deci-
sion tree and AdaBoost can directly handle multi-class data,
but SVMs do not. Recall that in problem (2), yi = ±1 so
only data in two classes are handled. Here we follow LIB-
SVM to use the one-against-one multi-class strategy [16].
For k classes of data, this method builds a model for every
two classes of training data. In the end k(k − 1)/2 mod-
els are generated. Another frequently used technique for
multi-class SVMs is the one-against-rest strategy [4], which
constructs only k models. Each of the k models is trained
by treating one class as positive and all the rest as negative.
Although the one-against-rest method has the advantage of
having fewer models,2 its performance may not be always as
good as or better than one-against-one [12]. From our ex-
periments on mode detection, one-against-rest gives slightly
lower accuracy, so we choose the one-against-one method for
all subsequent SVM experiments.

For example, considering a five-class one-against-one SVM
classification problem, if the number of feature is 7 and the
degree of polynomial mapping 3, the dimensionality of φ(·)
is
(
n+d
d

)
=
(
7+3
3

)
= 120. After considering the bias term,

the number of dimensions is 121. With 5 × (5 − 1)/2 = 10
binary SVM models, the model size would be 10×121×4 =
4, 840bytes = 4.84KB, which is smaller than the sensor hub’s
limit of 16KB, satisfying the memory constraint.

Another merit of our polynomial SVM model is that it
requires low computational complexity when making pre-
dictions, compared with what RBF kernel SVMs do. It is
especially important when the device’s computing capacity
is not that high. Instead of computing the decision value by

f(x) =
∑l

i=1,i6=0
αiyiK(xi,x) + b, (8)

our method calculates the decision value simply by f(x) =
wTφ(x) + b. Therefore, for data with number of instances

2If using the one-against-rest multi-class strategies, only k
rather than

(
k
2

)
vectors of (w, b) must be stored.

1434

Figure 4: Comparison of the mean and standard de-
viation in each window from gyro and virtual gyro.

l and dimensions n, compared to the computational com-
plexity O(ln) depicted in (8),3 the computational time as
well power is significantly reduced following a similar reason
explained in (7).

4.2 Virtual Gyroscope Solution
A gyroscope is a device for measuring orientation, based

on the principles of angular momentum. In our feature se-
lection experiment shown in Table 5, we can see that the
features of gyro std and gyro mean perform well especially
for the mode of Bike.

However, the gyroscope takes up about 85% of the total
power consumption (i.e., about 7.0mA per hour under the
sensor hub environment, reported in Section 5.3.1). To fur-
ther reduce power consumption, we apply a method called
virtual gyroscope to simulate the data of the gyroscope from
that of the accelerometer and magnetometer combined.

In the procedure of a virtual gyroscope, we first pass ac-
celerometer data into a low-pass filter to extract the gravity
force. Then, a mean filter is applied to both gravity-force
and magnetometer data to reduce noise. After that, the ro-
tation matrix, which transforms gravity-force and magnetic
data from the device’s coordinate system to the world’s co-
ordinate system, is computed. Finally, with the idea in [29],
the angular velocity ω can be obtained by the following equa-
tion:

ω =
dR(t)

dt
RT (t) =

1

∆t
(I −R(t− 1)RT (t)),

where R(t) is the rotation matrix at time t and ∆t is the time
difference. The virtual gyroscope data can be calculated
using two consecutive rotation matrices and their recorded-
time difference.

In this study, the features generated by the gyroscope in-
clude gyro std and gyro mean. Figure 4 shows the compari-
son of the mean and standard deviation features extracted
from the physical and virtual gyroscope. The data in the
figure show that though the physical and virtual gyroscope
do not produce identical values, their spiking patterns are
in tandem. The virtual gyroscope can achieve the same
mode-prediction accuracy as the physical gyroscope at re-
duced power consumption. The overall evaluation of power
consumption and test accuracy is shown in Section 5.3.2.

4.3 A Two-Tier Framework
The goal of our detector is to identify the modes of Still,

Walk, Run, Bike, and Vehicle. However, a device is often

3Assume the number of support vectors is O(n).

Figure 5: The comparisons of acc std in still and five
vehicle modes. Two conditions are considered for
Still: the phone is on the body or not. Two condi-
tions are considered for five Vehicle modes: the Vehicle
is stationary or moving.

placed on a stationary surface. For instance, a phone is
placed on a desk at home or at work in order to charge its
battery. Such fully still mode indicates that a device is at a
stationary place affected by nothing but the gravity. (Note
that the fully still mode is a special case of the mode of Still.)
If a simple rule can be derived to determine the fully still
mode, the system will only need to extract a small number
of relevant features to efficiently confirm its being in fully
still. In other words, it is not necessary to activate the full
mode-classification procedure at all times.

We would like to find a value of acc std, beneath which we
can safely classify the mode to be fully still without extract-
ing features and running the classifier. Since from Figure 2
we can observe that acc std is significantly smaller in mode
Still than in modes Walk, Run, and Bike, we only had to
examine acc std between modes Still and Vehicle.

Figure 6: A hierarchical setting of transportation-
mode detection.

Next, we observe the acc std value in the different vehi-
cle modes including motorcycle, car, bus, metro, and high
speed rail (HSR). In addition, we monitor two conditions
of these vehicles, including stationary Vehicle and moving
Vehicle. Figure 5 compares the acc std values in Still and
five Vehicle modes. The results show that value of acc std is
lower than 0.06 except for in the motorcycle mode when the
Vehicle is stationary (e.g., stopping at a traffic light). Thus,
we can set 0.06 as the threshold of the two-tier framework.
An ultra-low-power microchip inside the accelerometer con-
stantly collects data and directly predicts the Still mode
when the movement of the phone is insignificant. When

1435

the accelerometer detects movement, it activates the proces-
sor on the sensor hub to run the full feature-extraction and
class-prediction pipeline. Figure 6 depicts the framework,
where the upper-left component activates feature extraction
and mode classification according to the following rule:

If acc std ≤ 0.06
predict mode Still

Else
predict a mode by the transportation-mode classifier

5. EMPIRICAL STUDY
During the design of our transportation-mode classifier,

we evaluated several feature-set and model alternatives. This
section documents all evaluation details, divided into three
subsections: experiment setup, parameter and classifier se-
lection, and resource conservation.

5.1 Experiment Setup
This subsection describes the details of experiment envi-

ronment, and training data collection.

5.1.1 Hardware & Software
As a testing platform, we used the HTC One mobile phone,

which runs Android system. HTC One is equipped with
a sensor hub, which consists of an ARM Cortex-M4 32-
bit MCU (operating at speeds up to 72MHz), 32KB RAM,
128KB flash, and three motion sensors: an accelerometer,
a magnetometer, and a gyroscope. The processor of the
sensor hub also supports digital signal processing (DSP) to
enhance the processing performance for complex mathemat-
ical computations, such as FFT. It also supports fixed-point
processing to optimize the usage of memory and computing
time. To evaluate different parameter settings of candidate
classifiers, the Weka Machine Learning tool [14] and LIBSVM
library [5] were employed. To evaluate the power consump-
tion, we used Monsoon power monitor [19].

5.1.2 Data Collection
Table 3 shows the amount and distribution of the move-

ment data that we have collected since 2012. The 8, 311
hours of 100GB data were collected via two avenues: our
university program with 150 participating students, and a
group of 74 employees and interns. We made sure that
the pool of participants sufficiently covered different genders
(60% male), builds, and ages (20 to 63 years old). We im-
plemented a data collection Android application for partici-
pants to register their transportation status into ten modes:
Still, Walk, Run, Bike, (riding) Motorcycle, Car, Bus, Metro,
Train, and high speed rail (HSR). In our system design, we
combine modes of motorcycle, car, bus, metro, train, and
HSR into the Vehicle mode. Experiments were conducted
through splitting the data from the internal program into
training and testing sets.

Because the class of Vehicle includes several transporta-
tion modes and contains much more data instances than the
other modes, we randomly sampled 25% of the Vehicle data
to conduct training for avoiding the potential prediction bias
caused by imbalanced data [33]. Because of the randomness
nature in the sampling process, we prepared ten (training,
test) pairs for experiments and averaged the results of our
ten runs on all experiments.

Table 3: Data collection time (hours) and mode dis-
tribution.

Internal Program University Program
Still 107 1,750
Walk 121 1,263
Run 61 88
Bike 78 61
Motorcycle 134 1,683
Car 209 558
Bus 69 1,248
Metro 95 289
Train 67 267
HSR 91 72
Total 1,031 7,280

Table 4: Window size selection. The test accuracy,
memory usage, and response time are compared.

Performance
Window size

256 512 1,024 2,048

Accuracy 89.51 90.66 91.55 91.69
Memory usage (KB) 1 2 4 8
Response time (sec) 8.5 17.1 34.1 68.3
Latency (50% overlap) 4.3 8.6 17.1 34.2

5.2 Parameter and Classifier Selection
Experiments were conducted to set feature-extraction win-

dow size, select most effective features, and evaluate three
candidate classifiers under various parameter settings.

5.2.1 Window Size
Different window sizes affect classification accuracy, re-

sponse time (latency), and memory size. Too small a win-
dow may admit noise, and too large a window may overly
smooth out the data. We relied on cross-validation to select
a window size that achieves a reasonable tradeoff between
the three factors. Besides accuracy, response time affects
user experience, as the larger the window size, the longer
the latency for a user to perceive a mode change. Since
the sampling rate of sensors is at 30Hz, a window size of
2, 048 takes over a minute to collect and then generate FFT
features. Though we employ a 50% window overlapping
scheme, an over half-a-minute latency is not an acceptable
user experience. We consider an acceptable latency to be
under ten seconds.

Table 4 reports results of applying SVMs with a degree-
3 polynomial mapping on four different window sizes (256,
512, 1, 024, and 2, 048). The window sizes were selected as a
power of two because of the FFT processing. Both sizes of
512 and 1, 024 provide a reasonable response time and mode-
prediction accuracy. Further increasing window size does
not yield significant accuracy improvement (as expected),
at the expense of long latency. We set the window size to be
512 because of its lower latency of 8.6 seconds and relatively
high mode-prediction accuracy.

5.2.2 Feature Selection
Five features in the time domain (Ftime) and two fea-

tures in the frequency domain (Ffreq) were presented and
discussed in Section 3.1. Here, we report our justification of
selecting those features.

We use two criteria for selecting features: effectiveness
and cost. For effectiveness, we want to ensure that a feature

1436

Table 5: Feature selection by using different fea-
ture combinations. Ftime includes acc std, acc mean,
mag std, gyro std, and gyro mean. F ′time includes acc std,
acc mean, mag std. Ffreq includes acc FFT (peak) and
acc FFT (ratio).

Still Walk Run Bike Vehicle Accuracy
Ftime 93.73 82.21 97.47 67.75 87.51 84.79
Ftime+Ffreq 93.93 90.29 97.34 85.39 88.59 90.66
F ′time+Ffreq 91.15 86.73 97.27 82.51 77.42 86.33

will be productive in improving mode-prediction accuracy.
For cost, we want to make sure that a useful feature does not
consume too much power to extract or generate. There are
two sources of cost: power consumed by a signal source and
power consumed by generating frequency-domain features
via FFT. A gyroscope consumes 6mA versus the 0.1mA con-
sumed by an accelerometer and 0.4mA by a magnetometer.
We would select frequency-domain features and gyroscope
signals only when they are proven to be productive.

We evaluated three sets of features:
• Ftime: five time-domain features acc std, acc mean, mag std,

gyro std and gyro mean collected from accelerometer, mag-
netometer, and gyroscope.
• F ′time: three time-domain features acc std, acc mean, and

mag std collected from accelerometer and magnetometer.
• Ffreq: two frequency-domain features acc FFT (peak) and

acc FFT (ratio), generated from accelerometer’s time-domain
features.
Table 5 reports three sets of feature combinations. First,

it indicates that including frequency-domain features yields
improved accuracy. The second row of the table (Ftime
+ Ffreq) yields 6.5 percentile improvement over the first
row (five time-domain features), especially in predicting the
modes of walk and bike. This result demonstrates that the
frequency-domain features are productive.

Since using a gyroscope consumes more than ten times the
power consumed when using an accelerometer and a mag-
netometer, we evaluated the prediction degradation of re-
moving the gyroscope. The third row of the table reports a
lower accuracy than the first two rows. This result presents
a dilemma: using the gyroscope is helpful but in order to
conserve power, we should turn it off. Our solution to this
dilemma is devising a virtual gyroscope scheme, which sim-
ulates physical gyroscope signals by an accelerometer and a
magnetometer. We will report the good performance of the
virtual gyroscope shortly in Section 5.3.2.

5.2.3 Performance of Classifiers
Table 6 reports and compares classification accuracy and

confusion matrix for decision tree J48 (Weka default set-
ting/with further pruning), AdaBoost (ten/three trees), and
SVMs (RBF, degree-3 polynomial, and linear). The table
shows that the SVM (degree-3 polynomial) enjoys a much
higher accuracy 90.66% over the 84.81% of decision tree
(Weka default setting) and 87.16% of AdaBoost (ten trees).
(Notice that we have yet to factor in error correction.) Ex-
amining the three confusion matrices, SVMs perform more
effectively in discerning between Walk and Bike, as well as
Still and Vehicle.

We next examined the model size of our three candidate
classifiers. Table 7 presents the test accuracy and model size
of seven variations. We make three observations:

Table 6: Confusion table, number of instances, and
test accuracy per class by using three selected classi-
fiers. Each row represents the true mode, while each
column represents the outputted mode. We average
results of 10 runs, so the row sum in different tables
may not be exactly the same because of numerical
rounding.

Still Walk Run Bike Vehicle Accuracy
Still 5,136 141 1 7 1,847 72.01
Walk 309 9,595 45 698 270 87.89
Run 7 90 3,849 3 1 97.44
Bike 127 492 10 5,108 347 83.96
Vehicle 349 249 17 258 5,716 86.75

(a) Test accuracy and the confusion table using decision tree
(Weka default setting). The average accuracy is 84.81.

Still Walk Run Bike Vehicle Accuracy
Still 5,507 60 0 4 1,560 77.23
Walk 317 9,795 39 580 187 89.71
Run 11 93 3,844 3 0 97.29
Bike 98 424 4 5,246 311 86.24
Vehicle 302 201 10 249 5,827 88.44

(b) Test accuracy and the confusion table using AdaBoost
(10 trees). The average accuracy is 87.16.

Still Walk Run Bike Vehicle Accuracy
Still 6,699 22 0 2 409 93.93
Walk 466 9,859 25 450 119 90.29
Run 0 99 3,846 5 1 97.34
Bike 150 537 0 5,196 202 85.39
Vehicle 375 89 1 287 5,837 88.59

(c) Test accuracy and the confusion table using SVM
(degree-3 polynomial). The average accuracy is 90.66.

• A simplified model reduces the model size and maintains
competitive prediction accuracy. The further pruned decision-
tree scheme saves 30% space and achieves virtually the
same accuracy compared to the default decision-tree scheme.4

Meanwhile, AdaBoost with three trees saves 70% space
with a slightly lower accuracy.
• SVMs with kernels achieve a superior accuracy to both

decision tree and AdaBoost. This result clearly indicates
SVMs to be our choice.
• An SVM-classifier with a degree-3 polynomial is our choice

not only because of its competitive accuracy, but also its
remarkably small footprint.
We looked further into details of SVM kernel selection.

Table 8 shows the result of using kernels of RBF and differ-
ent polynomial degrees. As expected that SVMs with highly
nonlinear data mappings (i.e., SVMs with the RBF kernel)
performs the best. However, SVMs using polynomial ex-
pansions yield very competitive accuracy, only slightly lower
than that of using RBF, but the model size can be signif-
icantly smaller. With the degree of polynomial mapping
increasing gradually, the accuracy of the SVM classifier im-
proves as well. After the degree is larger than three, the ac-
curacy maintains at a level very close to RBF-kernel SVMs.

4Note that the study of [11] proposed a branch-and-bound
algorithm to reduce decision tree’s model nodes, which
makes porting decision tree promising. However, decision
tree with aggressive pruning cannot guarantee higher accu-
racy compared with the default setting.

1437

Table 7: Test accuracy and model size using differ-
ent classifiers.

Classifiers
Test accuracy

Model size
No voting Voting

Decision Tree (default setting) 84.81 89.71 64.60KB
Decision Tree (further pruned) 85.55 90.04 45.71KB
AdaBoost (10 trees) 87.16 91.56 1,003.18KB
AdaBoost (3 trees) 85.89 91.09 246.92KB
SVM (RBF kernel) 91.53 94.10 1,047.97KB
SVM (degree-3 polynomial) 90.66 93.49 4.84KB
SVM (linear) 86.36 89.23 0.32KB

Table 8: Test accuracy without applying the voting
scheme and model size of different SVM kernels.

Kernel of SVMs Accuracy Model size
SVM (linear) 86.36 0.32KB
SVM (degree-2 polynomial) 88.46 1.48KB
SVM (degree-3 polynomial) 90.66 4.84KB
SVM (degree-4 polynomial) 90.72 13.24KB
SVM (degree-5 polynomial) 90.73 31.72KB
SVM (degree-6 polynomial) 90.67 68.68KB
SVM (RBF) 91.53 1,047.97KB

Note that it is possible that polynomial-SVMs with low de-
grees perform slightly better than polynomial-SVMs with
higher degrees, because a higher complexity model may suf-
fer from a higher prediction variance causing overfitting.

In summary, we chose degree-3 polynomial as our SVM
kernel for its competitive accuracy and extremely small mem-
ory and power consumption.

5.2.4 Evaluation of the Voting Scheme
In Section 3.3, we address the issue of short-term mode

changes, and propose a voting scheme for correcting errors.
Table 7 also compares the testing accuracy without and with
the voting scheme. We can see that there is about a 4.5%
enhancement for decision tree and AdaBoost. For SVMs,
there is about a 3% enhancement after employing the voting
scheme. The result shows that voting is effective for filtering
out the short-term noise caused by e.g., mode-change, body
movement, or poor road conditions.

5.3 Resource Conservation
We improve power consumption via one hardware and

three software strategies. The hardware strategy—offloading
computation from CPU to MCU or to our sensor hub—can
clearly cut down power consumption. However, the hard-
ware strategy alone is not sufficient as the 7.0mA power
consumption can still be problematic for a wearable with
a typical 315mAh battery. (A wearable runs several ap-
plications and cannot let the mode detector alone to drain
its battery in 46 hours.) This subsection reports how we
were able to reduce power consumption to 0.73mA, and the
amount of power that each strategy can save.

5.3.1 Sensor Hub Saving
We implemented the transportation-mode classifier, SVMs

with degree-3 polynomial, at two places of an HTC phone
that is equipped with a sensor hub: one on the Android
system platform and the other on the sensor hub platform
(off the Android system). We then measured and compared
their power consumption. The result shows a more than
ten-folds power reduction by moving computation off the

Table 9: Performance of different SVM kernels on
sensor hub. The total instruction cycles, processing
time (ms) and power consumption (mA) are com-
pared while running a 5-class classification (i.e., 10
decision functions for the one-against-one approach)
using 7 features.
Kernel of SVMs #Cycles Time Power
SVM (linear) 140 0.1 0.03
SVM (degree-2 polynomial) 720 0.6 0.15
SVM (degree-3 polynomial) 2,400 2.0 0.50
SVM (degree-4 polynomial) 6,600 5.5 1.38
SVM (degree-5 polynomial) 15,800 13.2 3.30
SVM (degree-6 polynomial) 34,320 28.6 7.15
SVM (RBF) 5458,000 4,548.33 1,137.08

Android system to a sensor hub, from 88.5mA to 7.0mA. No-
tice that only 0.5mA is consumed by MCU, the rest 6.5mA
is consumed by motion sensors.

To evaluate the performance of porting different SVM ker-
nels on sensor hub, we estimated the power consumption and
processing time according to the computational complexity
of different SVM kernels. For polynomial kernel SVMs, the
number of operation depends on the dimensionality of φ(x)
after polynomial expansion. For example, if the degree for
polynomial SVMs is 3 and the original feature number is
7, the dimension of φ(x) after polynomial expansion is 120.
Therefore, wTφ(x) + b takes 240 operations. Because 10
decision functions are evaluated for 5-class classification, to-
tally 2,400 cycles are used for predicting an instance x. For
RBF-kernel SVMs, the decision value is determined by (8).

To calculate αiyiK(xi,x) = αiyie
−γ‖xi−x‖2 , the number of

cycles is about 3n + 4 (note that we can pre-calculate αiyi
as one value and an exponential operation needs 2 cycles).
In our 10-run experiments, the average number of support
vectors for RBF kernel is 21, 832.

In detail, table 9 lists the number of instructions5 which
are used in each SVM kernel. In addition, the power con-
sumption and total processing time are estimated according
to the result of SVMs with degree-3 polynomial which we
have measured. From this table, we can see that it is ac-
ceptable for only three SVM kernels to port to sensor hub,
including the SVM (linear), the SVM (degree-2 polynomial),
and the SVM (degree-3 polynomial). It is evident that the
saving by moving computation to a sensor hub cannot be
achieved by hardware alone, as we must shrink the foot-
print of the classifier to reduce the processing time, power
consumption, and memory use.

5.3.2 Virtual Gyroscope Saving
Section 4.2 introduces our virtual gyroscope implementa-

tion. In this experiment, SVM (degree-3 polynomial) with
512 window size was used to evaluate power saved through
our virtual gyroscope solution. The difference between us-
ing the physical gyroscope and using the virtual gyroscope
is that the features of gyro std and gyro mean were replaced
by data generated by an accelerometer to simulate gyro std
and gyro mean.

The test accuracy and power consumption were compared
between using a physical gyroscope and using our virtual

5ARM Cortex-M4 DSP assembler operates an
add/subtract/multiply operation every one cycle, and
an exponential operation every two cycles.

1438

Table 10: Test accuracy and power consumption for
resource conservation. The experiment runs SVM
(degree-3 polynomial) in the sensor hub.

Test accuracy
Power

No voting Voting
Original setting 90.66 93.49 7.00mA
Virtual gyroscope solution 90.16 93.44 1.00mA
Virtual gyroscope (two-tier) 89.03 92.50 0.73mA

gyroscope. Table 10 shows that the virtual gyroscope can
reduce 88% power, while maintaining relatively similar accu-
racy. Our recommendation is that on mobile phones where
7.0mA power consumption may not be an issue (7.0mA is
relative low to a 2, 500mAh battery), a physical gyroscope
can be used. However, on wearables, virtual gyroscope is
essential to reduce the power consumption to 1.0mA so that
a 300mA battery can last for at least a couple of days.

5.3.3 Two-Tier Decision Saving
Our two-tier scheme wakes up the mode detector only

when the accelerometer detects acc std ≥ 0.06. From Ta-
ble 1 we can see that the accelerometer consumes 0.1mA and
MCU also 0.1mA when in the idle mode. Thus, the sensor
hub consumes only 0.2mA when it is in the idle mode.

If we assume that acc std is lower than the threshold in a
third of a day, the average power consumption per hour is

{0.2 (mA)×8 (hr)+1.0 (mA)×16 (hr)}/24 (hr) ∼= 0.73mA.

Regarding mode-prediction accuracy, the result shows that
the test accuracy becomes slightly lower but the power con-
sumption is reduced by 27%.

6. CONCLUSION AND FUTURE WORK
This study presents our hardware-software co-design of a

classifier for mobile and wearable devices to detect a person’s
transportation mode (i.e., in mode of still, walking, running,
biking, or on a vehicle). Particularly, we focus on address-
ing the big-data small-footprint requirement by designing a
classifier that is low in both computational complexity and
memory requirement. Together with a sensor-hub configu-
ration, we are able to drastically reduce power consumption
by 99%, while maintaining 92.5% accuracy in detecting five
transportation modes.

The power saving we achieved and hence our contributions
can be summarized as follows:
1. Classifier footprint reduction. Using the polynomial degree-

3 kernel significantly reduces both computational com-
plexity and memory requirement for our classifier from
O(ln) to O(

(
n+d
d

)
), where in general the latter is much

smaller than the former according to (7). This reduction
permits the classifier to fit into the memory of the sen-
sor hub as well as reduces power consumption. Together
with an MCU that can run at a reduced rate of 16MHz,
we reduced power consumption from 88.5mA to 7.0mA.
(If the footprint is large, the MCU must run at 72Hz
to maintain short latency, and the power consumption
shoots up several times.)

2. Virtual gyroscope design. Since this 7.0mA power us-
age is still not acceptable by wearables, we designed and
implemented a virtual gyroscope to cut down power con-
sumption further to 1.0mA.

3. Two-tier decision. Though further saving is minor (from
1.0 to 0.73mA), we showed that a simple admission con-
trol scheme can reduce power by 27%.

Our implementation was launched with the HTC One (M8)
model world-wide on March 25th, 2014.

Our future work includes three extensions to improve the
classifier’s adaptability and scalability.
• Multi-tier extension. With merely information from three

sensors, we are able to achieve 92.5% mode-prediction
accuracy. As mentioned in the beginning of Section 3,
when side information is available on e.g., the cloud server,
where resources are virtually unlimited, accuracy can be
further enhanced. For instance, when transit route infor-
mation is available, telling between the modes of driving
a car and taking a bus is much simplier. We plan to
provide multi-tier extensions when a target application
requires higher acuracy and when both side information
and resources are available.
• Data cleasing. One factor hindering higher detection accu-

racy is signal noise. While the environment may introduce
noise, human factor contributes significant interferences.
For instance, a jogger who holds her phone steadily to se-
lect a song may be detedted to be in the still mode. A
person playing a game on his phone when sitting may be
regarded as running. Although a voting procedure has
been implemented in our system to remove outliers, more
advanced techniques are expected to help further reduce
the effects of various noise characteristics.
• Generalization validation and enhancement. In this study,

we collected transportation-mode data in one country,
Taiwan. We now begin to evaluate the accuracy of the
classifier when being used in other countries where people
are of different builds and roads/vehicles of different con-
ditions. We regard such as an important big-data learn-
ing problem (or in general, a machine learning problem)
where the unseen data (testing data) and the training
data may exhibit different statistical characteristics. Tra-
ditional machine learning tasks assume that the testing
data and the training data observe the same statistical
distribution. We will investigate the gereralization capa-
bility of our mode-detection classifier when it is applied
to classify unseen data of a slightly different distribution,
and devise remedies if adaptation is required.

7. ACKNOWLEDGMENTS
We would like to thank Zih-Ci Lin, Stanley Wu, and

Cooper Lin for their support, and also thank Alex Wu, Brian
Mei, Relic Chu, and Dave Wu for their helpful suggestions.

8. REFERENCES
[1] adidas. miCoach SPEED CELL.

http://www.adidas.com.

[2] I. Anderson and H. Muller. Practical activity
recognition using GSM data. Technical Report
CSTR-06-016, Department of Computer Science,
University of Bristol, July 2006.

[3] B. E. Boser, I. Guyon, and V. Vapnik. A training
algorithm for optimal margin classifiers. In Proceedings
of the Fifth Annual Workshop on Computational
Learning Theory, pages 144–152. ACM Press, 1992.

[4] L. Bottou, C. Cortes, J. S. Denker, H. Drucker,
I. Guyon, L. Jackel, Y. LeCun, U. A. Müller,

1439

E. Säckinger, P. Simard, and V. Vapnik. Comparison
of classifier methods: a case study in handwriting
digit recognition. In International Conference on
Pattern Recognition, pages 77–87, 1994.

[5] C.-C. Chang and C.-J. Lin. LIBSVM: A library for
support vector machines. ACM Transactions on
Intelligent Systems and Technology, 2:27:1–27:27,
2011. Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[6] E. Y. Chang. Foundations of Large-Scale Multimedia
Information Management and Retrieval.
Springer-Verlag New York Inc, New York, 2011.

[7] Y.-W. Chang, C.-J. Hsieh, K.-W. Chang,
M. Ringgaard, and C.-J. Lin. Training and testing
low-degree polynomial data mappings via linear SVM.
Journal of Machine Learning Research, 11:1471–1490,
2010.

[8] C. Cortes and V. Vapnik. Support-vector network.
Machine Learning, 20:273–297, 1995.

[9] Fitbit. Flex wristband. http://www.fitbit.com.

[10] Y. Freund and R. E. Schapire. A decision-theoretic
generalization of on-line learning and an application to
boosting. Journal of Computer and System Sciences,
55(1):119–139, 1997.

[11] M. Garofalakis, D. Hyun, R. Rastogi, and K. Shim.
Building decision trees with constraints. Data Mining
and Knowledge Discovery, 7(2):187–214, 2003.

[12] K.-S. Goh, E. Chang, and K.-T. Cheng. Svm binary
classifier ensembles for image classification. In
Proceedings of the Tenth International Conference on
Information and Knowledge Management (CIKM),
pages 395–402, 2001.

[13] Google. Google now.
http://www.google.com/landing/now/.

[14] M. Hall, E. Frank, G. Holmes, B. Pfahringer,
P. Reutemann, and I. H. Witten. The WEKA data
mining software: An update. SIGKDD Explorations,
11, 2009.

[15] HTC. HTC Research. http:
//research.htc.com/2014/06/publication14001/.

[16] S. Knerr, L. Personnaz, and G. Dreyfus. Single-layer
learning revisited: a stepwise procedure for building
and training a neural network. In Neurocomputing:
Algorithms, Architectures and Applications, 1990.

[17] J. Lester, T. Choudhury, and G. Borriello. A practical
approach to recognizing physical activities. In Lecture
Notes in Computer Science, volume 3096. Springer,
2006.

[18] H. Lu, J. Yang, Z. Liu, N. D. Lane, T. Choudhury,
and A. T. Campbell. The jigsaw continuous sensing
engine for mobile phone applications. In Proceedings
of the 8th ACM Conference on Embedded Networked
Sensor Systems (SenSys), pages 71–84, 2010.

[19] Monsoon Solution Inc. Power monitor.
http://www.msoon.com/.

[20] M. Y. Mun, D. Estrin, J. Burke, and M. Hansen.
Parsimonious mobility classification using GSM and
WiFi traces. In Proceedings of the Fifth Workshop on
Embedded Networked Sensors (HotEmNets), 2008.

[21] S. Nath. ACE: exploiting correlation for
energy-efficient and continuous context sensing. In
Proceedings of the 10th International Conference on

Mobile Systems, Applications, and Services (MobiSys),
pages 29–42, 2012.

[22] Nike. Fuelband. http:
//www.nike.com/us/en_us/c/nikeplus-fuelband.

[23] J. R. Quinlan. C4.5: Programs for Machine Learning.
Morgan Kaufmann, 1993.

[24] K. K. Rachuri, C. Mascolo, M. Musolesi, and P. J.
Rentfrow. SociableSense: exploring the trade-offs of
adaptive sampling and computation offloading for
social sensing. In Proceedings of the 17th Annual
International Conference on Mobile Computing and
Networking, pages 73–84, 2011.

[25] S. Reddy, M. Mun, J. Burke, D. Estrin, M. Hansen,
and M. Srivastava. Using mobile phones to determine
transportation modes. ACM Transactions on Sensor
Networks, 6(2):13:1–13:27, 2010.

[26] T. Sohn, A. Varshavsky, A. LaMarca, M. Y. Chen,
T. Choudhury, I. Smith, S. Consolvo, and
W. Griswold. Mobility detection using everyday GSM
traces. In Proceedings of the 8th International
Conference on Ubiquitous Computing, 2006.

[27] D. Specifications. Sony smartwatch 2-battery.
http://www.devicespecifications.com/en/

model-battery/518829ce.

[28] V. Srinivasan and T. Phan. An accurate two-tier
classifier for efficient duty-cycling of smartphone
activity recognition systems. In Proceedings of the
Third International Workshop on Sensing Applications
on Mobile Phones (PhoneSense), pages 11:1–11:5,
2012.

[29] M. E. Stanley. Building a virtual gyro.
https://community.freescale.com/community/

the-embedded-beat/blog/2013/03/12/

building-a-virtual-gyro, 2013.

[30] L. Stenneth, O. Wolfson, P. S. Yu, and B. Xu.
Transportation mode detection using mobile phones
and GIS information. In Proceedings of the 19th ACM
SIGSPATIAL International Conference on Advances
in Geographic Information Systems, GIS ’11, 2011.

[31] S. Wang, C. Chen, and J. Ma. Accelerometer based
transportation mode recognition on mobile phones. In
Proceedings of the 2010 Asia-Pacific Conference on
Wearable Computing Systems, pages 44–46, 2010.

[32] P. Widhalm, P. Nitsche, and N. Brandie. Transport
mode detection with realistic smartphone sensor data.
In Proceedings of the 21st International Conference on
Pattern Recognition (ICPR), pages 573–576, 2012.

[33] G. Wu and E. Y. Chang. KBA: kernel boundary
alignment considering imbalanced data distribution.
IEEE Transactions on Knowledge and Data
Engineering, 17(6):786–795, 2005.

[34] J. Yang. Toward physical activity diary: motion
recognition using simple acceleration features with
mobile phones. In Proceedings of the 1st international
workshop on Interactive multimedia for consumer
electronics, pages 1–10, 2009.

[35] Y. Zheng, Q. Li, Y. Chen, X. Xie, and W.-Y. Ma.
Understanding mobility based on gps data. In
Proceedings of the 10th International Conference on
Ubiquitous Computing (UbiComp), pages 312–321,
New York, NY, USA, 2008. ACM.

1440

