
Fast Foreign-Key Detection in Microsoft SQL Server
PowerPivot for Excel

Zhimin Chen
Microsoft Research

zmchen@microsoft.com

Vivek Narasayya
Microsoft Research

viveknar@microsoft.com

Surajit Chaudhuri
Microsoft Research

surajitc@microsoft.com

ABSTRACT

Microsoft SQL Server PowerPivot for Excel, or PowerPivot for

short, is an in-memory business intelligence (BI) engine that

enables Excel users to interactively create pivot tables over large

data sets imported from sources such as relational databases, text

files and web data feeds. Unlike traditional pivot tables in Excel

that are defined on a single table, PowerPivot allows analysis over

multiple tables connected via foreign-key joins. In many cases

however, these foreign-key relationships are not known a priori,

and information workers are often not be sophisticated enough to

define these relationships. Therefore, the ability to automatically

discover foreign-key relationships in PowerPivot is valuable, if not

essential. The key challenge is to perform this detection

interactively and with high precision even when data sets scale to

hundreds of millions of rows and the schema contains tens of tables

and hundreds of columns. In this paper, we describe techniques for

fast foreign-key detection in PowerPivot and experimentally

evaluate its accuracy, performance and scale on both synthetic

benchmarks and real-world data sets. These techniques have been

incorporated into PowerPivot for Excel.

1. INTRODUCTION
Pivot tables in Excel are a powerful tool for multi-dimensional data

summarization and analysis, and have been extremely popular with

information workers for many years. Among other functions, a

pivot table can automatically sort, filter, group-by and compute

common aggregate functions such as count, sum, etc. over columns

in a single table or tabular range of data values in Excel. For

example, Figure 1 shows a screenshot of a pivot table in Excel.

Using a pivot table makes it simple for the user to analyze Sales –

one of the columns in the raw data table on left – by different

attributes Product and Quarter. The pivot table shows the total

Sales grouped by Product along the rows and by Quarter along the

column, and thereby provides a multi-dimensional view of the data

to the user. A pivot table in Excel can be viewed as an instance of

OLAP over a single table [1]. One of the common sources of data

used by information workers for analysis via pivot tables is data

stored in a relational database, which they can import into Excel.

Other sources of data are text files, web data feeds or in general any

tabular data range imported into Excel.

Microsoft SQL Server PowerPivot for Excel [2] (or PowerPivot

for short) is an in-memory, self-service business intelligence (BI)

product first released in Microsoft SQL Server 2008 R2 and is an

Excel Add-In. It enhances the traditional pivot table functionality

in Excel in two very significant ways. First, unlike traditional pivot

tables in Excel, which only operate on a single table of data in

Excel, PowerPivot extends pivot table functionality by allowing it

to be specified over foreign-key joins of multiple tables. Logically,

the semantics of a pivot table in PowerPivot is equivalent to a

traditional pivot table, but over a de-normalized relation obtained

by joining the tables using foreign-key joins. Second, PowerPivot

is designed to scale to very large data sets (e.g. hundreds of millions

of rows) while retaining interactivity. Figure 2 shows a screenshot

of a pivot table in PowerPivot over the TPC-H benchmark [17]

database. Observe that in this case the user has selected (in the right

hand pane) the lineitem.l_quantity field to aggregate, the

customer.c_name and nation.n_name fields to group-by (that

appear in rows and columns respectively of the pivot table), and the

orders.o_orderdate field to filter on. This pivot table is generated

over the foreign-key join of lineitem, orders, customer, supplier

and nation tables. Observe that even though the supplier table is

not explicitly selected by the user as one of the pivot table fields,

this table is necessary in the joins to connect the nation table with

the lineitem table.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this

license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain

permission prior to any use beyond those covered by the license. Contact

copyright holder by emailing info@vldb.org. Articles from this volume were

invited to present their results at the 40th International Conference on Very

Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 13

Copyright 2014 VLDB Endowment 2150-8097/14/08

Figure 1. Example of pivot table in Excel. It enables multi-

dimensional analysis over a single table.

1417

Data that is analyzed in PowerPivot is organized as a collection of

tables with foreign-key relationships between the tables. Common

examples of schemas used are star schemas and snowflake schemas

[1]. In a star schema there is a Fact table that contains details (e.g.

sales transactions) and is connected to other Dimension tables (e.g.

Customer, Country, Year, Store) via foreign-key relationships. A

snowflake schema is similar to a star schema except that the

Dimension tables are organized in hierarchies. For example, the

Time dimension could have multiple levels in the hierarchy such as

Date, Month and Year. Figure 3 shows an example of a snowflake

schema.

Order No
Order Date

Order

SalesPersonId
Name
City
Quota

SalesPerson

CustomerId
Name
Address
City

Customer

OrderNo
SalesPersonID
CustomerId
DateKey
CityName
ProductId
Quantity
TotalPrice

OrderDetails

DateKey
Date
Month

Date

Month
Year

Month

Year

Year

CityName
State

City

State

State

ProductId
Name
Description
Category
UnitPrice
QOH

Product

CategoryName
Description

Category

Similar to the case of traditional pivot tables, users often load data

from relational databases into PowerPivot for analysis. In some

cases when the user loads data into Excel, the foreign-key

relationships among the loaded tables is already known e.g. the

tables were loaded from a database in which the foreign-key

relationships were declared. However, in other situations, these

relationships are not known at data load time. A common reason is

that foreign-keys may not declared in the database, typically driven

by performance considerations, and referential integrity is enforced

in the application layer instead. If a user attempts to create a pivot

table involving multiple tables with missing foreign-key

relationships, PowerPivot alerts the user about the need to create

relationships and provides the option of detecting relationships

automatically. If the user chooses this option, PowerPivot attempts

to automatically discover the relationships with a high degree of

precision and creates them automatically on behalf of the user. This

functionality is highly desirable (if not crucial) since pivot table

users in Excel are typically not well-versed in defining

relationships across tables. Observe that if the user proceeds to

create the pivot table without having defined the relationships, the

aggregates would be computed on the cross-product of the tables,

which would most likely produce unintended results. More

sophisticated users who understand foreign-key relationships have

the option of reviewing the automatically created relationships and

changing them if needed.

In this paper, we describe techniques for automatically discovering

foreign-key relationships in PowerPivot. The PowerPivot setting

brings new requirements and associated challenges when compared

to the foreign-key detection problem in relational databases, which

we illustrate with the following example. Consider a typical use

case where the user attempts to create a pivot table by selecting a

few measures from one or more “fact” tables to aggregate e.g.

Quantity and TotalPrice columns from the OrderDetails tables in

Figure 3, and a few columns from the “dimension” tables, e.g.

Name column in the Customer table and the CategoryName column

in the Category table. Suppose there are no declared relationships

in the database. Then PowerPivot will attempt to detect and

automatically create relationships between the tables selected for

analysis (OrderDetails, Customer, Category in this example).

There are two major challenges: accuracy and performance that we

discuss next.

First, since analysis in PowerPivot is designed to be interactive,

relationship detection needs to be performed at interactive speeds

as well. This can be challenging since both data volumes and

schema (i.e. number of tables and columns) can be large. Observe

also that the foreign key relationships necessary to perform the join

may involve tables not selected by the user (e.g. the Product table

in Figure 3); so the search space potentially includes candidates

over all tables/columns even when the user selects only a few

columns in the pivot table. Furthermore, the need for high precision

requires that we do not output a foreign-key (e.g. R.a S.b) unless

it passes the necessary conditions: S.b must be unique (uniqueness

check), and R.a must be contained in S.b (containment check). The

most expensive necessary condition that needs to be verified is the

containment check since it requires a full semi-join between R.a

and S.b. Thus, any approach for automatic foreign-key detection in

PowerPivot must attempt to minimize the number of such full semi-

joins invocations. We note that the performance overhead of

detecting a relationship is incurred once, and is amortized over all

successive analysis involving that relationship.

Second, the high precision bar in the PowerPivot setting is crucial

since (a) an incorrect foreign-key could result in a wrong join (and

hence answer) in the pivot table, and (b) a typical pivot table user

in Excel is likely not capable of identifying or correcting errors in

the discovered foreign-keys. Note that testing for the necessary

conditions described above is often insufficient to eliminate all the

spurious alternatives. An example of this is the “id problem”, where

a number of different id columns in different dimension tables

appear as plausible targets for a given id column in a fact table. For

example, the values of the column OrderDetails.ProductId might

be contained in each of the following key columns:

SalesPerson.SalesPersonId, Customer.CustomerId,

Figure 3. Example of snowflake schema. The arrows

represent foreign-key relationships.

Figure 2. Example of pivot table in PowerPivot for Excel. It

enables OLAP like analysis over multiple tables joined via

foreign-keys.

1418

Product.ProductId. Hence each combination of

OrderDetails.ProductId with one of the key columns, may appear

as a potential foreign-key but only one of those relationships is a

true foreign-key. Hence other signals (beyond uniqueness and

containment properties) such as table and column names are crucial

in differentiating among the candidates.

We use two key ideas to address these challenges. First, we

combine different signals including column data characteristics,

string similarity between table and column names and relative

strength of peer candidate foreign-keys to achieve high precision.

Our combination scoring function is effective in distinguishing true

foreign-key candidates from spurious candidates. To achieve the

interactive speed requirement we explore the join paths between the

tables selected by the user for creating the pivot table by exploiting

the ranked ordering of candidates, and develop lightweight tests

based on random sample based probing (i.e. using a random sample

of R.a to probe S.b) and min-hashing [5] to efficiently prune

candidates that are unlikely to pass the containment check. Using

the above ideas, in most cases we are able to terminate the search

for foreign-keys without exploring many irrelevant candidates and

we typically execute very few unnecessary full semi-joins.

The techniques we describe in this paper have been incorporated in

PowerPivot for Excel Add-In and is available in all releases starting

in 2008. We include a set of experiments run on PowerPivot for

Excel 2013. We report results on both synthetic data sets (such as

the TPC-H benchmark [17], TPC-E benchmark [19], and the

AdventureWorksDW database [4]) as well as several real-world

data sets that we used to evaluate the quality (i.e. accuracy),

performance and scale of the techniques. The results show that our

techniques are able to achieve both requirements: good

performance and high precision on data sets with large schemas

(tens of tables and hundreds of columns, e.g. in the

AdventureWorksDW database), and large data volumes (hundreds

of millions of rows, e.g. as in the TPC-H 10GB database).

We present a formal problem statement and overview of solution

in Section 2, describe the techniques in Section 3 and report the

results of experiments in Section 4. We discuss related work in

Section 5 and conclude in Section 6.

2. PROBLEM STATEMENT AND

SOLUTION OVERVIEW
We first provide a brief overview of Microsoft SQL Server

PowerPivot for Excel (Section 2.1). We then give a formal

statement of the foreign-key detection problem (Section 2.2) and

present an overview of the solution (Section 2.3).

2.1 Microsoft SQL Server PowerPivot for

Excel
Microsoft SQL Server PowerPivot for Excel [2] is a self-service

business intelligence (BI) product from Microsoft SQL Server. It

includes an Add-In to Microsoft Excel that allows users to create

sophisticated and high performance BI solutions. Users can

perform ad-hoc modeling and analysis over large amounts of data

using familiar Excel operations such as filtering, sorting,

aggregation and in particular using pivot tables etc. Unlike

traditional pivot tables in Excel, which only operate on a single

table of data in Excel, PowerPivot extends traditional pivot table

functionality by allowing it to be specified over foreign-key joins

of multiple tables. Data processing in PowerPivot is supported

through the Microsoft SQL Server Analysis Services xVelocity in-

memory analytics engine (earlier named VertiPaq) that runs in-

process inside Excel. This engine is designed to scale to large data

sets by taking advantage of large main memories and multiple cores

available on modern 64-bit architectures. It performs several

optimizations such as column-oriented representation in memory,

aggressive compression, and efficient operations on compressed

data to enable interactive analysis on very large data sets. Finally,

since PowerPivot is designed to be self-service, it is intended to

allow users (information workers) with no specialized BI or

analytics training to develop data models and perform analysis.

2.2 Formal Problem Statement
The problem formulation mimics the user interaction model in

PowerPivot (shown in Figure 2). To create a pivot table, the user

needs to select one or more measures: numeric columns over which

aggregation is to be performed. The selected measures define a set

F of “fact” tables for the particular pivot table. Likewise, the user

can also select a set of columns to group-by or filter in the pivot

table – these columns define a set D of dimension tables. In this

paper we use the notation R.a S.b to denote a candidate foreign-

key, where S.b is the parent (or key-side) and R.a is the child (or

foreign-key side). We formally define the problem as follows:

Input: (i) A set of tables V and optionally a set of edges E that are

declared foreign-keys. (ii) A set of fact tables F ⊆ V, a set of tables

D ⊆ V as dimension tables. F and D are identified by the user by

attempting to create the pivot table. (iii) For each column, the

metadata about the columns: table name, column name, number of

distinct values.

Output: A set of foreign-keys E' (if any) such that for each pair

tables of (f,d) where f ∈ F and d ∈ D, there is a path connecting f to

d using edges from E ∪ E'.

d1

d2

d3

t1

t2

t3

t4

t5

f1

Table (input)

Declared FK
(input)

Detected FK
(output)

We note that PowerPivot imposes some restrictions on the foreign-

key relationships allowed [18]. For example, in Microsoft SQL

Server 2008 and 2008 R2 version, only single-column foreign-keys

are allowed, only one FK relationship can exist between a given

Figure 4. F = {f1} is a set of fact tables, and D = {d1, d2, d3} is

a set of dimension tables selected by the user attempting to

create a pivot table. The solid edges represent E, the

declared foreign-key relationships. The dashed lines

represent the foreign key relationships detected (output).

Observe that the join paths between F and D may include

other tables not in F or D, t3 and t5 in this example; and that

some of the declared foreign-keys might be irrelevant for

this pivot table (e.g. edge from d1 to t1).

1419

pair of tables etc. Although the above problem formulation is

general, in our solution we exploit such restrictions to reduce the

search space. Finally, we note that PowerPivot does allow the join

even if a small number of values (this number is configurable) in

R.a do not occur in S.b. Therefore, any solution must allow for

some slack in the containment requirement (based on configured

value) since otherwise some true foreign-keys may go undetected.

2.3 Solution Overview
As explained above, the goal of foreign-key detection in

PowerPivot is to find a set of foreign-key relationships that

connects the given set of fact (F) and dimension tables (D) in the

pivot table that the user is creating. The two necessary conditions

for a candidate R.a S.b to be a foreign-key are: (i) S.b is unique

and (ii) R.a ⊆ S.b, i.e. R.a is contained in S.b. A naïve approach

that relies exclusively on checking these necessary conditions for

each possible candidate falls short on two accounts. First, it does

not scale for large data sets or schemas since: (a) The containment

check requires a semi-join of R.a and S.b and can potentially be

very expensive. (b) The number of candidates grows quadratically

with the number of columns in the database. Second, there are often

many candidates that satisfy the necessary conditions but are

spurious, i.e. false positives. Thus high precision demands

additional techniques for distinguishing among the candidates.

Database

Local Pruning

Containment Verification

Join path Enumeration

Candidate Scoring

Output: Foreign-
keys connecting

F, D

F, D

In order to meet the high precision and interactive speeds

requirements for foreign-key detection in PowerPivot, we adopt the

following approach (Figure 5 shows the components). First, we

develop a set of pruning techniques that allows us to eliminate a

large fraction of the candidates using very lightweight methods –

in particular these techniques only rely on table or column metadata

available in PowerPivot’s catalogs (accessible at negligible

performance cost). We refer to this as Local Pruning (Section 3.1).

For each candidate that survives this step, we compute a score that

attempts to identify how likely this candidate is to be a true foreign-

key. In subsequent steps, we examine candidates in ranked order of

scores. Intuitively, an ideal scoring function would allow the search

to end by evaluating the full-semi join check for containment only

on the true foreign keys. We refer to this step as Candidate Scoring

(Section 3.2). The goal of the Join Path Enumeration step (Section

3.3) is to identify a minimal graph consisting of high ranking

candidate foreign-keys that connects the tables in F and D.

Intuitively, if the candidates in this minimal graph pass the

subsequent containment verification, then we would output these

edges as our recommended foreign-keys. The final step, which we

refer to as Containment Verification (Section 3.4) is responsible for

determining if the edges in the graph identified during join path

enumeration meet the containment check or not. This is typically

the most expensive check and we therefore develop additional

optimizations based on random sampling and min-hashing that can

eliminate some candidates and thereby avoid the full semi-join. If

one edge in the graph fails this step, then we return to join path

enumeration and continue with additional candidates in ranked

order of scores; and repeat the process until either all candidates in

the graph pass the verification step or no more candidates exist.

3. SOLUTION

3.1 Local Pruning
Initially, the set of candidates includes all pairs of columns (R.a,

S.b) where R and S are any two distinct tables in the database and a

and b are two columns from R and S respectively. Observe that a

foreign-key is directional so each pair of columns defines two

candidates (i.e. R.a S.b and S.b R.a). Local pruning techniques

need to be very lightweight since the initial set of candidates can be

very large – e.g., it is not unusual to have tens of thousands of

candidates in the initial set. Therefore, we restrict local pruning

logic to only rely on metadata properties of the pair of columns (R.a

and S.b) such as data type and cardinality that are already available

in the system catalogs. Below we list the local pruning rules and

provide a brief justification for each. Each rule specifies a condition

under which a candidate R.a S.b is pruned.

LP1:
|𝑆.𝑏|

|𝑆|
 < 1

Prune candidate if the ratio of S.b’s cardinality to table S’s

cardinality is less than 1. This rule directly follows from the

uniqueness requirement on S.b.

LP2:
|𝑅.𝑎|

|𝑆.𝑏|
> 1+

Prune candidate if the ratio of cardinality of R.a to cardinality of

S.b is greater than a pre-defined threshold (1 +). If we require that

containment strictly holds, then we can set =0. This rule follows

from the fact that if R.a S.b is a true foreign-key, then each

distinct value in R.a must also occur in S.b and hence the cardinality

of R.a cannot exceed S.b. However, PowerPivot does allow the join

even if a small number of values (this number is configurable) in

R.a do not occur in S.b; hence we allow for > 0.

LP3: Prune if either R.a or S.b belong to one of the

following data types: floating point, Boolean.

The rationale for this heuristic is that in practice it is very unlikely

that keys or foreign-keys are defined on these data types. While this

rule could, in principle, miss true foreign-keys, we did not

encounter such a case in the data sets that we evaluated on (Section

4).

3.2 Candidate Scoring
We develop a scoring function to quantify how likely it is for R.a

S.b to be a foreign-key. All candidates surviving the local pruning

Figure 5. Foreign-key detection components in PowerPivot.

1420

are scored and then sorted by score. Similar to local pruning, the

scoring function is designed to be very lightweight and only relies

on metadata (table, column names) and cardinality information of

the columns that define the candidate. As discussed earlier, the

scoring determines the order in which candidates are explored

during join path enumeration. With a well-designed scoring

function, the most expensive computation namely the full semi-join

to check for containment of R.a in S.b can be avoided for most of

spurious candidates altogether. Hence the precision and speed of

foreign-key detection heavily depends on a good scoring function.

When there are multiple candidates between a pair of tables (as is

typically the case), the candidate scores allow staging the detection

by focusing on the candidates that have high scores first. For a

given pair of tables it is often the case that there are many

candidates R.a S.b that pass the local pruning test, but R.a S.b

is not a true foreign-key. A common scenario is when R.a and S.b

are “id” columns in the table. For example, in Figure 3, several

columns may appear as potential foreign-keys to

Product.ProductId: OrderDetails.SalesPersonId,

OrderDetails.CustomerId, OrderDetails.ProductId since each

candidate passes the local pruning step described in Section 3.1.

One observation is that in such cases the table and column names

can be a useful signal to distinguish among the candidates. Hence

the name similarity is an important component in the scoring

function (similar ideas are leveraged in schema matching

techniques, e.g. see [12] for a survey). We first describe a similarity

function we use to compute name similarity and then describe the

overall scoring function next.

String similarity function: We exploit a string similarity function

based on ideas similar to those used in fuzzy record matching (e.g.

[13]). Given two strings x and y (where x and y could be column

names or table names), we tokenize x and y into two sets of tokens

{x1, x2, …, xm} and {y1, y2, …, yn} respectively. The tokenization

procedure uses typical delimiters: whitespaces or symbols mark the

boundary of tokens (‘_’,’-‘, etc.). We also consider the change from

lower case to upper case as a boundary of tokens. For instance, in

string “ProductId”, the case change from ‘t’ to ‘I’ is a boundary that

results in tokens: “Product” and “Id”. Then, for each token yj, we

find the unmapped token xi that has the largest similarity according

to a given string distance function, and map xi to yj. We denote this

maximum similarity as simj. In our implementation we use the Jaro-

Winkler distance function; in principle other functions such as

Levenshtein or Smith–Waterman could be used instead (see [14]

for a comparison of strengths of string distance matching

functions). We also compute fj as follows: if y is a column name, fj

is the fraction of columns whose name contains token yj. If y is a

table name fj is the fraction of tables whose name contains token yj.

We define:

similarity (x, y) =
∑ (simj ×ln(1

𝑓𝑗
))𝑛

𝑗=1

∑ ln(1
𝑓𝑗

)𝑛
𝑗=1

Intuitively, the similarity function returns a higher value when

tokens have lower string distances and gives higher weight to rarer

tokens [14] via the fj measure.

Overall scoring function: The scoring function for a candidate

R.a S.b is a weighted sum of the following scores:

 s1 = similarity(ColumnName(R.a), ColumnName(S.b)), i.e.

similarity between column names of R.a and S.b.

 s2 = similarity(ColumnName(R.a), TableName(S.b)), i.e.

similarity between column name of R.a and table name of S.b

 s3 =
|𝑅.𝑎|

|𝑆.𝑏|
 , i.e. the ratio of the cardinality of R.a to cardinality

of S.b.

 s4 = 1 if R.a is a key and 0 if not.

SF (R.a S.b) = ∑ 𝑤𝑖 × 𝑠𝑖
4
𝑖=1

While the importance of s1 is easy to see, the importance of s2 arises

from the fact that in many cases the name of the foreign-key column

in R is very similar to the table name of S. For example, consider

Sales.ProductId Product.Id. In this case, s1 has a low similarity,

but s2 will return a high similarity. We observe such patterns to be

quite common in practice. As described in Section 3.1 (in pruning

rule LP2), the ratio of the cardinality is an important indicator of

foreign-key. In a true foreign-key we typically see this ratio ≈ 1.

Thus consider a case where we have two possible candidates:

Sales.ProductId P.Id and Sales.ProductId C. Id. Suppose

the table P is a dimension table of products and C is a dimension

table of customers, and suppose there are 100 distinct products and

100,000 distinct customers. Then s3 for Sales.ProductId P.Id

will likely be much closer to 1 than s3 for Sales.ProductId C. Id.

The motivation for s4 is to de-prioritize key-key joins, since such

joins are typically used to model specialization (e.g. is-a

relationships) and is unlikely to be a true foreign-key. We do this

by providing a negative weight w4. Note that if R.a is not a key,

then no penalty is incurred since s4 = 0. In our current

implementation, these weights are manually tuned and appear to

perform well when evaluated on several real and synthetic

databases. It is potentially interesting future work to consider if a

machine learning based approach could be used to identify

appropriate weights; however we do not have a rich enough and

suitably labeled training set to attempt this approach.

One important class of candidates that require special consideration

is when both R.a and S.b are “complex” types: which we define as

(a) long strings or large integer numbers and (b) large number of

distinct values (e.g. a column contain Social Security Number).

Interesting cases are when the entity name itself serves as the key

and foreign-key or when some large numeric identifiers are used as

the key for a dimension table. Although many such candidates are

false positives, these false positives are amenable to efficient

detection via the random sample probing technique or min-hashing

technique (described in Section 3.4). Thus, to ensure that we don’t

miss out on good candidates, we artificially boost the scores of such

candidates so that they are ranked highest. These candidates

therefore have a high chance of being considered in join-path

enumeration.

3.3 Join-Path Enumeration
The join path enumeration finds the join paths to connect the

selected fact tables F to the selected dimension tables D using the

currently highest scoring candidate foreign-keys. If such join paths

are found, they go through the containment check process

(described in Section 3.4); any candidate R.a S.b that passes the

containment check is then output by the algorithm as a foreign-key.

The key ideas underlying join-path enumeration are: (a) Only

explore those join paths that can potentially help connect the user-

selected fact tables F and dimension tables D. (b) Exploit the

candidate scoring function (described in Section 3.2) to guide the

process of exploring join paths – in particular, we aim to create a

1421

minimal graph connecting F and D using the highest ranking edges,

i.e. candidates that have not yet been pruned. (c) Since join path

enumeration and containment verification steps are run in a loop, at

any point in time, we leverage the partial solution obtained thus far

(i.e. candidates that have passed containment verification and are

therefore known to be in the output) to perform conflict pruning

(described below) and thereby eliminate other candidates. We next

describe conflict pruning, and then present the overall algorithm.

R.a

T.c S.b

R.a R.c

S.b S.d

Case 1

Case 2

S.b

R.a

...

R.a

P

S.b

...

P.c

Q.d

Case 3

Case 4

3.3.1 Conflict Pruning
Conflict pruning occurs when a candidate R.a S.b is in conflict

with other declared, output, or higher ranked candidate foreign-

key(s). Note that since join-path enumeration and containment

verification happen in a loop, when a candidate passes containment

verification, it may result in additional conflict pruning during the

next iteration through the loop.

Conflicts arise due to constraints on foreign-keys, some of which

are specific to the PowerPivot data model, whereas others are more

general and would also occur in other systems such as relational

databases. Figure 6 illustrates some examples of constraints. The

solid green edges denote either declared foreign-keys or candidate

foreign-keys with higher score than the red edge. The dashed red

edge (shown as R.a S.b in the figure) denotes the candidate that

is in conflict with the green edges. We refer to the set of green edges

as the conflict set of R.a S.b. Case 1: A particular column (say

R.a) can be the child of only one foreign-key. Case 2: There can

exist at most one foreign-key between any pair of tables. Case 3:

There cannot be any cycles in the foreign-key graph. Case 4: there

can exist at most one foreign-key path between any pair of tables.

FindConnectingSubgraph (f, d, L)

1. Initialize an empty graph G

2. For each candidate c in descending order of scores in L

3. If c’s state is Declared, VerifiedTrue or None,

 add c as an edge to G

4. If G contains both f and d as nodes, break loop

5. For each edge e in G, if there is a path from some R to S,

and e is in that path, then mark e

6. Return the set of edges marked in step c.

FindForeignKeys (f, d, L)

1. Loop

1. Let SG = FindConnectingSubgraph (f, d, L)

2. AllTrue = VerifyAllTrue (SG)

3. Until AllTrue or SG is empty

4. Return SG

Figure 6. Conflict pruning. In each case a candidate R.a

S.b denoted by a red dashed arrow is in conflict with other

candidates denoted by green solid arrow. If each green solid

edge has a higher score than R.a S.b, then R.a S.b is

removed from consideration as foreign-key.

.

Figure 9. Finding the best connecting subgraph between f

and d, given a sorted list of candidates L.

Figure 8. Detect foreign-keys between a pair of tables f

and d, given a sorted list of candidates L.

Input: Set of fact tables F, set of dimension tables D, and a list
of candidates L sorted by score
Output: a set of foreign-keys connecting F and D

1. result = ∅

2. For each pair of tables (f, d), where f F and d D do

3. result = result FindForeignKeys(f, d, L);

4. Return result;

Figure 7. Overall algorithm for detection foreign-keys

between F and D, given a sorted list of candidates L.

VerifyAllTrue (SG) // SG is a connecting subgraph

1. For each candidate c in SG

2. Let CS = conflict set of c

3. If CS is empty then

4. If VerifyContainment (c) is true

5. Then Mark c’s state as VerifiedTrue

6. Else Mark c’s state as VerifiedFalse; Return false

7. Else // non-empty conflict set

8. If VerifyAllTrue (CS) is true then

9. Mark c’s state as Pruned; Return false

10. Else Return false;

11. Return true

Figure 10. Verifying edges in a connecting subgraph. Note

that conflict pruning may prevent an edge from being

verified.

1422

We observe that constraint-based pruning leverages the fact that

while a candidate may individually have a high score as a foreign-

key, the existence of other foreign-keys (perhaps even on other

tables) with higher score may result in this candidate being pruned.

Although our implementation of constraint-based pruning comes

from the restrictions of a particular version of PowerPivot, this type

of pruning can still be used in relational databases, e.g. Case 1 and

Case 3 above likely also hold in most relational database engines.

3.3.2 Algorithm
The pseudo-code for the foreign-key detection algorithm is

presented in Figures 7 to 10. The outer loop of the algorithm (shown

in Figure 7) invokes the function FindForeignKeys on each pair of

tables (f, d) F D. In turn, FindForeignKeys relies on the

function FindConnectingSubgraph to identify a set of edges that

connect f and d, and VerifyAllTrue to verify whether all edges thus

identified pass containment verification or not. If not,

FindForeignKey repeats the loop until either all edges pass

containment verification or no connecting subgraph can be found.

We maintain a state for each candidate in L, which can take on one

of the following values: (i) Declared, if it is a declared foreign-key.

(ii) VerifiedTrue, if it has been verified to be true in the containment

verification step. (iii) VerifiedFalse, if it has been verified to be

false in the containment verification step, (iv) Pruned, if it has been

pruned due to conflict pruning, (v) None. Each candidate’s state is

initialized as Declared if it is a declared foreign-key, otherwise

None.

Figure 9 shows how the algorithm detects a connecting subgraph

taking into account the ordering of candidates by score, and Figure

10 describes the algorithm for verifying edges in a given connected

subgraph. We note that conflict pruning and containment

verification (denoted by the function VerifyContainment) are

invoked as part of VerifyAllTrue. Prior to deciding if containment

checking should be invoked for a candidate c, we check if the

candidate has a conflict set (defined in Section 3.3.1). If the conflict

set is empty, then we invoke containment verification on the

candidate. If not, we recursively invoke VerifyAllTrue on the

conflict set, which if it passes results in pruning of the candidate c.

If the loop 1-10 executes without returning, it implies all edges in

the connecting subgraph have passed containment verification, so

we return true.

3.4 Containment Verification
As described earlier, verifying that R.a is contained in S.b is

necessary for R.a S.b to be a true foreign-key. It requires a full

semi-join and is the most expensive operation in foreign-key

detection and therefore should be deferred until other (cheaper)

tests have been first attempted. We introduce two lower cost tests

for containment verification, which allow us to reject a candidate

much more inexpensively. These two techniques are based on the

same intuition – quickly detect if one or more values in R.a do not

occur in S.b. However, they have different performance trade-offs,

and hence a decision needs to be made as to whether to apply only

one or the other. These tradeoffs are similar the decision of whether

to use an index nested loop join or a hash join in relational database

query processing.

Random sample based probing: The basic idea is to obtain a

random sample of k values in R.a and probe S.b for each distinct

value in the sample. If more than a pre-specified fraction (p) of

values probed do not exist, then we rule out candidate R.a S.b. If

more than the pre-specified fraction of values do exist, we proceed

to the next test (either min-hashing or full semi-join). If we require

full containment, then we can set the pre-specified fraction to 1, i.e.,

even a single probe failure would terminate the test. The key

reasons that makes this test very efficient is that PowerPivot

provides low overhead support for the following two operations:

(a) Obtain a random sample of the distinct values in a column. This

efficiency is enabled by the fact in PowerPivot all data is memory

resident, and the API allows accessing any index of the dictionary

of distinct values of a column. (b) Probing a column for a small set

of given values. Note also that spurious candidates are likely to fail

in this test even for a small k such as 50. In Section 4, we show the

effectiveness of this technique in reducing spurious full semi-joins.

 We observe that the technique of random sample based probing is

particularly effective for in-memory BI engines such as PowerPivot

where the appropriate access methods for random sampling and

probing exist. However, this technique may not always be efficient

in other contexts, e.g. relational database engines, where: (a) not all

data is memory resident (b) no index may exist on the column being

probed. In such cases, other techniques such as min-hashing

(described next) are likely to be more scalable.

Min-hash based comparison: This test is based the idea of min-

hashing [5], which is a technique for quickly estimating how

similar two sets are, in particular it estimates the Jaccard similarity

between the two sets. In our context, we use this technique to

develop a test to identify if R.a is unlikely to be contained in S.b. If

the test reveals that it is unlikely that R.a is contained in S.b, we

reject the candidate R.a S.b.

 We apply n different hash functions H1,…Hn to each value in both

R.a and S.b. Then, if Mi (X) is the smallest hash value when

applying function Hi to set X, we check if Mi(R.a) < Mi(S.b).

Observe that any occurrence where the min-hash of R.a is less than

min-hash of S.b is an indication that there exists a value in R.a that

is not contained in S.b. The strict version of this check eliminates

the candidate if the above inequality holds for even a single hash

function. However, since PowerPivot does allow joins even when

a few values are not contained, a more general check is described

below.

We define an indicator function as follows:

 𝑃𝑖 = {
1 𝑖𝑓 𝑀𝑖(𝑅. 𝑎) < 𝑀𝑖(𝑆. 𝑏)
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Then, if
(𝑃1+ …+ 𝑃𝑛)

𝑛
> 𝜃ℎ, we reject the candidate. Note that this

test requires a full scan of a column to compute the min-hashes. In

practice, we use n=100 hash functions. Although the cost of

computing min-hashes is not negligible, it is a one-time cost (per

column) and can therefore be amortized across tests for different

candidates that the column is a part of.

Finally, in our experiments, we find that if a candidate passes the

random sample based probing test, it is very likely that it also passes

the min-hashing test. Given that the random sample based probing

is much less expensive in PowerPivot compared to min-hashing,

the trade-offs strongly favor using only random sample based

probing. However, it is important to note that in a relational

database setting, obtaining a random sample as well as probing may

incur a high cost (comparable to a full scan), particularly when

appropriate physical structures such as indexes do not already exist

in the database. In such cases, min-hashing may in fact be the

preferred technique for containment verification.

1423

Full semi-join: The last, and most expensive, option for checking

containment is to perform the full semi-join between R.a and S.b.

Although this join is performed very efficiently in PowerPivot

(exploiting columnar storage and ability to process on compressed

data), the processing time is a function of the data sizes of R.a and

S.b. Thus, the time for a full semi-join grows with data size.

Therefore, for very large data sets, we invoke this only for the

highest ranking candidates that have passed all other tests.

4. EXPERIMENTS
The techniques described in this paper have been incorporated into

PowerPivot for Excel [2]. We report the results of our experiments

on PowerPivot for Excel 2013.

Goals: The goals of the experiments are to evaluate: (a) Quality:

i.e. the accuracy of the foreign-keys output by the algorithm. As

discussed in the introduction the property of very few false

positives is very important since these discovered foreign-keys are

auto-created by PowerPivot. (b) Performance and Scalability: (i)

We want to verify whether foreign-key detection remains within

the realm of interactive response time even for large data sizes and

schemas. (ii) Drill-down into the effectiveness of various pruning

techniques described in Section 3.

Database #Tables #Columns Raw Size
(MB)

Comp.
Size (MB)

TPC-H 10GB 8 61 10,000 5,730

TPC-H 1GB 8 61 1,000 470

TPC-E 33 191 1,200 600

AW-DW 24 313 210 11

REAL-1 3 21 1.5 0.3

REAL-2 7 58 30 10

REAL-3 12 132 75 25

REAL-4 3 26 0.9 0.3

REAL-5 2 21 50 14

REAL-6 19 421 93,000 4,300

Databases: The databases that we used in our evaluation are shown

in Table 1. We use 4 synthetic databases: TPC-H [3] (with 1GB and

10GB scaling factors respectively), TPC-E [19] (scale factor 500)

and AdventureWorks-DW [4] database (abbreviated as AW-DW in

the table/charts below). TPC-H 1GB and 10GB versions allow us

to observe how the performance changes when data size is

increased. In TPC-H 10GB database, the lineitem table has around

60 million rows and the orders table has around 15 million rows.

TPC-E and AW-DW both have both large schemas as well as

relatively large databases, thereby presenting good test of

scalability of the techniques. For example, AW-DW has over 300

columns and hence over 90K candidate foreign-keys, and TPC-E

has around 200 columns from 33 tables, and 1GB raw data size. We

also evaluated our techniques on 6 real-world customer databases

of Microsoft SQL Server labeled REAL-1 through REAL-6. Of

these, REAL-6 which is the database of a large book retailer, offers

the strongest test of scalability with its large database size (93GB

raw data size) and schema (19 tables, 400+ columns). We note that

PowerPivot obtains very significant data compression – Table 1

shows the compressed data sizes; we observed compression ratios

ranging between ~2x to ~20x in the data sets we evaluated.

Methodology: For each data set, we already know true foreign-keys

since these were Microsoft SQL Server databases where the

foreign-keys were explicitly declared. These declared foreign-keys

are the “ground truth” we use for the quality evaluation. Of course,

it is possible that not all semantic foreign-keys are explicitly

defined in the database. As we observe in practice on occasion (and

reported in our results below), there are plausible foreign-keys that

are not actually defined, i.e. a manual inspection of the foreign-key

shows it is meaningful: a foreign-key join would not cause incorrect

results. For example TPC-E has two such plausible foreign keys

that we discuss below (Section 4.1). Thus, we report two metrics of

false positives. The strict version flags any detected foreign-key

that is not declared in the database as a false positive. The second

version is identical to the strict version except that it does not flag

plausible foreign-keys as false positives. A false negative is

reported if one of the declared foreign-keys is not discovered. As

we noted earlier, PowerPivot does not allow some foreign-keys that

are typically allowed in relational databases. For example,

PowerPivot only allows single-column foreign-keys, only one

foreign-key between any pair of tables, and it does not allow a

foreign-key from a table to itself. Since some of the databases we

experimented with did contain such foreign-keys, some of the false

negatives we report are due to limitation in PowerPivot. In the

results reported here, we relax one of these limitations in

PowerPivot: in particular, we are capable of recommending more

than one foreign-key between a given pair of tables.

When we load the database into PowerPivot, we drop all declared

foreign-key relationships. PowerPivot compresses the data during

loading and prepares it for analysis. Then, for each pair of tables in

PowerPivot we invoke the foreign-key detection code and measure

the running time and evaluate the quality of the results. This all-

pairs invocation represents the worst case running time for foreign-

key detection in PowerPivot. In practice, most user created pivot

tables do not reference all tables, and thus the running time for

foreign-key detection are typically much smaller than those

reported below. All numbers were obtained on a machine with an

Intel Xeon CPU with 2 processors (6 cores each) and 96GB RAM.

4.1 Accuracy of Foreign-Key Detection
Table 2 shows the number of declared foreign-keys in each

database and the number of foreign-keys discovered using our

techniques in PowerPivot.

First, we observe that in 7 out of 10 databases, there were no false

positives (strict or otherwise). Of the 9 cases of strict false positives

found across all databases, 6 of those were plausible. Therefore, out

of the 143 foreign-keys detected by our technique only 3 could

definitely be said to false positive (i.e. 98% precision). Similarly,

in 8 out of 10 databases, there were no false negatives either. Thus,

the overall accuracy of our techniques is high. We included REAL-

5 since this is an example where we know there are no declared

foreign-keys between the two tables, so the goal was to check for

false positives only. We next discuss each database where we

reported either a false positive or false negative.

Table 1. Databases used in experimental evaluation.

1424

TPC-E: Out of the three foreign-keys that we flag as FPs (strict) in

TPC-E, two of those are plausible: (1) [Holding].[H_CA_ID]

[Customer].[CA_ID] (2) [Holding].[H_S_SYMB]

[Security].[S_SYMB] but are not declared in the benchmark

schema. One of the false negatives is the multi-column foreign key

between the tables Holding Holding_Summary. We are unable

to detect four other foreign-keys because the destination tables are

empty. In our current implementation we choose not to recommend

such foreign-keys since we get no signals from the data. Similarly,

we do not discover five other foreign-keys because the source

columns are either empty or contain only one value. Once again, in

the interest of erring on the side of precision, our implementation

does not recommend such foreign-keys. It is worth noting that in

other contexts where a different trade-off between precision and

recall needs to be made, our techniques could be adapted to support

such trade-offs.

Database #FKs
actual

#FKs
disc.

#FPs
(strict)

#FPs #FNs

TPC-H 10GB 8 8 0 0 0

TPC-H 1GB 8 8 0 0 0

TPC-E 50 43 3 1 10

AW-DW 42 39 2 0 5

REAL-1 2 2 0 0 0

REAL-2 9 9 0 0 0

REAL-3 17 17 0 0 0

REAL-4 2 2 0 0 0

REAL-5 0 0 0 0 0

REAL-6 19 23 4 2 0

AW-DW: Both false positives (strict) in AW-DW look plausible,

i.e. in addition to meeting all syntactic requirements, they also

appear to be semantically viable. An example is a foreign-key from

column [FactSurvey].[ProductCategory]

[DimProductCategory].[ProductCategoryKey]. The false

negatives in AW-DW arise due to the fact that PowerPivot is more

restrictive that a relational database in the kinds of foreign-keys it

allows. We miss 4 foreign-keys which were “self-links” in the

relational database (e.g. T.ParentEmployeeId T.EmployeeId),

which are valid in a relational database but disallowed in

PowerPivot. We also miss one multi-column foreign-key.

REAL-6: Two out of the four false positives (strict) are plausible.

The two remaining false positives arise due to an issue with how

our algorithm deals with string columns. In this case, the

application uses a string column to encode integer values (this is

because the application also uses the column to store a single string

value called “Unknown” in addition to the integer values). Recall

from Section 3.2 that we boost the scores of candidate foreign-keys

involving string columns. This causes our algorithm to give an

unnecessarily high score to this candidate and since it meets all

other syntactic criteria including containment, the foreign-key is

recommended. We note that this false positive would not have

occurred if the application had used an integer column and, for

example, encoded the “Unknown” value as NULL.

4.2 Performance and Scalability
Figure 11 shows the running time for identifying foreign-keys

between all pairs of tables in the database. As mentioned above,

this is the worst case time for foreign-key detection. Note that we

use a logarithmic scale on the y-axis since there is a relatively large

variability across databases in running time depending on data and

schema size. First, we see from the figure that in REAL-6 with a

raw data size of 93 GB (compressed size of 4.3GB) and a large

schema size, all foreign-keys can be detected in around 200

seconds. Similarly, for TPC-H 10GB, where the compressed data

size is more than 5.7GB, we are able to detect all foreign-keys in

the schema in about 1.5 minutes. In this case, almost all the time

was spent in containment verification – in fact in the full semi-join

evaluation for the 8 FKs that we output. Thus, it is not possible to

reduce the foreign-key detection time much further since we are

required to do a full semi-join to verify containment for the output

FKs. Note also that foreign-key determination only needs to be

done once – so the cost is amortized over all subsequent pivot table

analysis.

We also report that in practice, if a user were to select a smaller

subset of tables in the pivot table, analysis is even faster. For

example, if we only select the lineitem, nation, and region tables,

we can detect the 3 relationships (between lineitem and supplier,

supplier and nation, nation and region) in ~25 seconds. For the

TPC-H 1GB database we are able to detect the same 8 foreign-keys

in 14 seconds when invoked on all table pairs. This ~6x speedup

compared to TPC-H 10GB is entirely due to the reduction in the

cost of full semi-joins.

Finally, we observe that in practice for most pivot tables on real-

world databases, foreign-key detection speeds are truly interactive

(a few seconds in most cases).

Drill-down: Next we drill-down into specific datasets to examine

the effectiveness of various pruning techniques and report the

91

14

150

13.5

0.2
0.4

2

0.4

0.1

201

0.0625
0.125

0.25
0.5

1
2
4
8

16
32
64

128
256

Ti
m

e
(s

ec
)

Database

Time taken for detecting Foreign-Keys
(ALL TABLE PAIRS)

Figure 11. Time taken for FK detection for each database.

Table 2. Summary of quality evaluation showing number

of actual foreign keys, foreign keys discovered, number of

false positives and false negatives.

1425

results in Figure 12, 13 and 14. Note that all the conflict pruning

rules in Figure 6 are applied in this experiment and hence the final

numbers of pairs in the figures are slightly lower than those

reported in Table 2. An interesting case is AW-DW in which the

time taken for foreign-key detection is mostly due to the complexity

of the schema. To understand this case better, we show a drill-down

of various pruning techniques for AW-DW in Figure 12. The x-axis

shows different pruning techniques, the y-axis on the left shows the

number of candidate foreign-keys on a log scale, and the y-axis on

the right shows the percentage of candidates pruned by the pruning

technique. The total number of candidates that the algorithm needs

to consider exceeds 91K. We observe that the local pruning

techniques (Section 3.1) are able to eliminate about 97% of those

candidates. However, this still leaves over 3K candidates that still

need to considered. The name similarity and conflict pruning

together are able to further cut this number to around 1K. Notice

that the random sample based probing (Section 3.4) is very

effective in cutting down all remaining spurious candidates which

can be seen from the fact all remaining candidates for which we

need to invoke the full semi-join in fact pass the test.

Figures 13 and 14 show similar drill-downs for REAL-3 and

REAL-6 databases. The overall trends are similar to AW-DW. We

observe that local pruning and random sampling based probing are

very effective in eliminating most of their inputs across all three

data sets. The importance of conflict pruning however varies

significantly across different data sets, from 23% in AW-DW to

less than 1% in REAL-6. We also observe that in REAL-6 the full

semi-join is necessary to prune 15 out of 38 candidates whereas in

other cases all false positives were eliminated by other techniques.

5. RELATED WORK

There is a large body of work on foreign-key detection and

detection of inclusion dependencies in relational databases.

Examples of such work include [6]-[11]. In most of this work, the

goal is to identify all suitable foreign-key candidates (i.e., focus is

typically on recall) in an offline batch processing setting for

advanced database users such as database administrators or data

stewards. In contrast, our work is substantially different in two

91602

3115
1361 1049

35

97%

56%

23%

97%

0% 0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1

10

100

1000

10000

100000

Local
pruning

Name
similarity

Conflict
Pruning

Probing Full semi-
join

Effectiveness of Pruning Techniques: AW-
DW

Candidates input Candidates pruned % Inputs pruned

16546

419
213 188

12

97%

49%

12%

94%

0% 0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1

10

100

1000

10000

100000

Local
pruning

Name
similarity

Conflict
Pruning

Probing Full semi-
join

Effectiveness of Pruning Techniques: REAL-3

Candidates input Candidates pruned % Inputs pruned

148171

2021
1196 1188

38

99%

41%

1%

97%

39%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1

10

100

1000

10000

100000

1000000

Local
pruning

Name
similarity

Conflict
Pruning

Probing Full semi-
join

Effectiveness of Pruning Techniques: REAL-6

Candidates input Candidates pruned % Inputs pruned

Figure 12. Drill-down for AdventureWorksDW database.

Figure 14. Drill-down for REAL-6 database.

Figure 13. Drill-down for REAL-3 database.

1426

major aspects. First, we are required to find high precision foreign-

keys only – since PowerPivot automatically creates relationships

thus discovered and the users (typically information workers) may

not be sophisticated enough to understand and undo erroneous

relationships. Second, there is a requirement that the detection be

performed at interactive speeds. These requirements leads to

several pruning techniques described in this paper. We are aided by

the fact that data is memory resident in PowerPivot and has

statistics and data structures optimized for the operations we rely

on. For instance, PowerPivot has in-memory dictionaries of each

column that allows us to very efficiently lookup the cardinality of

each column and execute random sample based probing. Such

techniques may not always be possible in relational databases when

suitable index structures do not exist.

We discuss here two representative examples of related work on

foreign-key detection ([7] and [10]) to highlight the differences in

goals and consequently the accuracy and performance/scale. In [7],

the authors conjecture that in most cases the values in a foreign-key

column form a nearly uniform random sample of values in the key

column. They devise a test for this randomness property and

demonstrate its effectiveness as a heuristic to identify foreign keys.

For TPC-E they report 0.57 precision and 0.82 recall, and about 0.8

precision and 0.8 recall when evaluating against their augmented

set of foreign-keys. While such a trade-off between precision and

recall may be acceptable in other scenarios, it would not be

appropriate for ours. From our experience with the datasets we have

worked with it appears unlikely that any single heuristic or rule will

achieve high precision by itself. However, combining multiple

signals together during detection does appear to greatly reduce false

positives. Another important difference is that the approach of [7]

is not designed to be interactive, but rather operate in an offline

batch mode. For example, they report a running time of

approximately 2.5 hours for TPC-H 10GB database – contrast this

with about 1.5 minutes for the same database using our techniques,

and in seconds when the user choose to detect foreign-keys for a

small number of tables. The work of [6] is closely related to [7] in

which the authors use a measure of distance between column value

distributions, and cluster columns based on that distance metric.

However the application is to find similar columns rather than

detecting foreign-keys.

In [10], a learning based approach is used for detecting foreign-

keys from a given set of previously identified inclusion

dependencies (using the algorithm of [19]). They define ten

features for a candidate foreign-key including cardinality, column

names, difference in value length between the two columns etc.

They train several classifiers (NaiveBayes, SVM, decision tree

based, etc.) and then compare these different classifiers on several

real-world databases. They report F-measures that vary between

0.71 and 1.0, the average F-measure of classifiers range from 0.78

to 0.93 (no precision numbers are reported). They also report

performance numbers of around 4 hours to identify the inclusion

dependencies on a database of size 32GB, although the

classification itself is very fast. Besides the differences in emphasis

on precision and interactivity, our techniques leverage similarity

between table and column name similarity more deeply (including

fuzzy string matching) as well as in the use of the global topology

of the derived join graph to improve precision of detection. It is an

interesting direction of future work for us to consider if a learning

based approach could be leveraged in our setting (e.g. to learn

weights for different similarity measures in candidate scoring). A

key challenge is the generalizability of the model from a few

specific training datasets to the diversity of datasets used by

information workers in enterprises.

We adapt the ideas and techniques for string similarity used

previously in fuzzy record matching, de-duplication and schema

matching scenarios (e.g. [12][13]). Not surprisingly, these

techniques are crucial for those cases where it is insufficient to rely

purely on data characteristics (such as indicators of containment).

The most common example of this case is the “id problem” where

a large number of different id columns in different dimension tables

appear plausible targets for a given id column in a fact table.

In [15], the authors briefly allude to techniques for identifying join

paths in Tableau. They require exact match of column names and

data types, and if they are date/time fields, they require that both

columns represent the same granularity in the time dimension

hierarchy. In contrast, our techniques allow a much larger class of

foreign-keys to be identified. To the best of our knowledge in most

other in-memory business intelligence engines, a data steward is

expected to build the data model (i.e. identify foreign-keys etc.) and

the information workers then consume this model. Our foreign-key

detection technology in PowerPivot enables information workers

“self-service” analysis of their data since they are not required to

explicitly create the data model.

We note that several commercial data profiling and analysis tools

exist that detect inclusion dependencies (e.g. [21][22]). Such tools

can aid advanced users such as data stewards to explore foreign

keys by presenting them a list of column pairs that are highly

overlapped and allowing them to drill down to the orphan values

on both sides. These tools do not try to predict foreign keys and do

not target the information worker audience that we target in our

work. Finally, there are tools that are related to but do not support

automatic foreign key detection. For example, [9] supports linking

entities as structured rows in database and as free text in documents.

The linking considered is at the instance level, not at the schema

level like foreign key. Similarly [23] [24] support interactive data

cleansing and exploration. However these systems do not support

automatic foreign-key detection.

6. CONCLUSION AND FUTURE WORK
High precision automatic foreign-key detection is an enabling

technology for self-service business intelligence (BI). In this paper,

we describe techniques for automatically identifying appropriate

foreign-keys in a commercial, in-memory BI engine: PowerPivot

for Excel. While some of our techniques leverage specific

constraints of PowerPivot, many of the techniques we develop are

applicable in other contexts such as a relational database engine.

One interesting area of future work is generalizing in an orthogonal

dimension: allowing fuzziness in the foreign-keys. This is

particularly interesting for mashups where the user may have

imported external data sources (e.g. web tables [16]) and wishes to

join this data with existing fact/dimension table from other sources

within the enterprise.

7. ACKNOWLEDGMENTS
We acknowledge Amir Netz, Ashvini Sharma, Julie Strauss and

Yuzheng Ying from the Microsoft SQL Server PowerPivot team,

who interacted closely with us on this effort. They helped define

requirements, provided valuable feedback during this work,

provided access to real-world data sets, and assisted in integrating

our techniques into PowerPivot for Excel. We also thank Christian

König for his insightful comments on this paper.

1427

8. REFERENCES
[1] Chaudhuri, S. Dayal, U., and Narasayya V. An Overview of

Business Intelligence Technology. Communications of the

ACM, Vol 54 No. 8, Pages 88-98.

[2] PowerPivot for Excel. http://msdn.microsoft.com/en-

us/library/ee210644.aspx

[3] Chaudhuri, S., Narasayya, V. Program for TPC-D Data
Generation with skew.
ftp://ftp.research.microsoft.com/users/viveknar/TPCDSkew/

[4] AdventureWorks database.

http://msftdbprodsamples.codeplex.com/releases/view/55926

[5] Broder, A., Charikar, M., Frieze, A., Mitzenmacher, M. Min-

wise independent permutations. In Proc. of ACM

Symposium of Theory of Computation (STOC ‘98).

[6] Meihui Zhang, Marios Hadjieleftheriou, Beng Chin Ooi,

Cecilia M. Procopiuc, Divesh Srivastava: Automatic

discovery of attributes in relational databases. ACM

SIGMOD Conference 2011: 109-120

[7] Meihui Zhang, Marios Hadjieleftheriou, Beng Chin Ooi,

Cecilia M. Procopiuc, Divesh Srivastava: On Multi-Column

Foreign Key Discovery. PVLDB 3(1): 805-814 (2010)

[8] Divesh Srivastava: Schema extraction. CIKM 2010: 3-4

[9] Rakesh Agrawal, Ariel Fuxman, Anith Kannan, Qi Lu, John

Shafer. Composing Structured and Text Databases.

Microsoft Research Technical Report 2012.

[10] A. Rostin, O. Albrecht, J. Bauckmann, F. Naumann, and U.

Leser. A machine learning approach to foreign key

discovery. In WebDB, 2009.

[11] S. Lopes, J.-M. Petit, and F. Toumani. Discovering

interesting inclusion dependencies: application to logical

database tuning. Information System- s, 27(1):1–19, 2002.

[12] Rahm, E. and Bernstein, P. A survey of approaches to

automatic schema matching. VLDB Journal, Vol. 10, Issue

4, pp 334-350.

[13] Chaudhuri, S., Ganjam, K., Ganti, V., Motwani, R. Robust

and Efficient Fuzzy Match for Online Data Cleaning. ACM

SIGMOD 2003.

[14] Cohen, W.W. Ravikumar, P., Fienberg, S.E. A Comparison

of String Distance Metrics for Name-Matching tasks. In:

Workshop on Information Integration on the Web. IIWeb,

2003.

[15] Morton K., Bunker, R., Mackinlay, J., Morton, R., Stolte, C.

Dynamic workload driven data integration in Tableau. ACM

SIGMOD 2012.

[16] Microsoft Power Query for Excel.

http://office.microsoft.com/en-us/excel/download-microsoft-

power-query-for-excel-FX104018616.aspx

[17] TPC-H benchmark. http://www.tpch.org/tpch

[18] Relationships in PowerPivot.

http://technet.microsoft.com/en-us/library/gg399148.aspx

[19] TPC-E benchmark. http://www.tpch.org/tpce

[20] Bauckmann, J., et al. Efficiently Detecting Inclusion De-

pendencies. In International Conference on Data Engineer-

ing, 2007, Istanbul, Turkey.

[21] IBM Infosphere. Data profiling and analysis.

http://www.ibm.com/software/data/infosphere/

[22] Data Profiling Task in Microsoft SQL Server Integration

Services. http://technet.microsoft.com/en-

us/library/bb895263.aspx

[23] Trifacta. http://www.trifacta.com/

[24] OpenRefine (formerly Google Refine). http://openrefine.org/

1428

http://msdn.microsoft.com/en-us/library/ee210644.aspx
http://msdn.microsoft.com/en-us/library/ee210644.aspx
ftp://ftp.research.microsoft.com/users/viveknar/TPCDSkew/
http://msftdbprodsamples.codeplex.com/releases/view/55926
http://office.microsoft.com/en-us/excel/download-microsoft-power-query-for-excel-FX104018616.aspx
http://office.microsoft.com/en-us/excel/download-microsoft-power-query-for-excel-FX104018616.aspx
http://www.tpch.org/tpch
http://technet.microsoft.com/en-us/library/gg399148.aspx
http://www.tpch.org/tpce
http://www.ibm.com/software/data/infosphere/
http://technet.microsoft.com/en-us/library/bb895263.aspx
http://technet.microsoft.com/en-us/library/bb895263.aspx
http://www.trifacta.com/
http://openrefine.org/

