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ABSTRACT 

Microsoft SQL Server PowerPivot for Excel, or PowerPivot for 

short, is an in-memory business intelligence (BI) engine that 

enables Excel users to interactively create pivot tables over large 

data sets imported from sources such as relational databases, text 

files and web data feeds. Unlike traditional pivot tables in Excel 

that are defined on a single table, PowerPivot allows analysis over 

multiple tables connected via foreign-key joins. In many cases 

however, these foreign-key relationships are not known a priori, 

and information workers are often not be sophisticated enough to 

define these relationships. Therefore, the ability to automatically 

discover foreign-key relationships in PowerPivot is valuable, if not 

essential. The key challenge is to perform this detection 

interactively and with high precision even when data sets scale to 

hundreds of millions of rows and the schema contains tens of tables 

and hundreds of columns. In this paper, we describe techniques for 

fast foreign-key detection in PowerPivot and experimentally 

evaluate its accuracy, performance and scale on both synthetic 

benchmarks and real-world data sets. These techniques have been 

incorporated into PowerPivot for Excel.  

 

1. INTRODUCTION 
Pivot tables in Excel are a powerful tool for multi-dimensional data 

summarization and analysis, and have been extremely popular with 

information workers for many years. Among other functions, a 

pivot table can automatically sort, filter, group-by and compute 

common aggregate functions such as count, sum, etc. over columns 

in a single table or tabular range of data values in Excel. For 

example, Figure 1 shows a screenshot of a pivot table in Excel. 

Using a pivot table makes it simple for the user to analyze Sales – 

one of the columns in the raw data table on left – by different 

attributes Product and Quarter. The pivot table shows the total 

Sales grouped by Product along the rows and by Quarter along the 

column, and thereby provides a multi-dimensional view of the data 

to the user. A pivot table in Excel can be viewed as an instance of 

OLAP over a single table [1]. One of the common sources of data 

used by information workers for analysis via pivot tables is data 

stored in a relational database, which they can import into Excel. 

Other sources of data are text files, web data feeds or in general any 

tabular data range imported into Excel. 

 

Microsoft SQL Server PowerPivot for Excel [2]  (or PowerPivot 

for short) is an in-memory, self-service business intelligence (BI) 

product first released in Microsoft SQL Server 2008 R2 and is an 

Excel Add-In. It enhances the traditional pivot table functionality 

in Excel in two very significant ways. First,  unlike traditional pivot 

tables in Excel, which only operate on a single table of data in 

Excel, PowerPivot extends pivot table functionality by allowing it 

to be specified over foreign-key joins of multiple tables. Logically, 

the semantics of a pivot table in PowerPivot is equivalent to a 

traditional pivot table, but over a de-normalized relation obtained 

by joining the tables using foreign-key joins. Second, PowerPivot 

is designed to scale to very large data sets (e.g. hundreds of millions 

of rows) while retaining interactivity. Figure 2 shows a screenshot 

of a pivot table in PowerPivot over the TPC-H benchmark [17] 

database. Observe that in this case the user has selected (in the right 

hand pane) the lineitem.l_quantity field to aggregate, the 

customer.c_name and nation.n_name fields to group-by (that 

appear in rows and columns respectively of the pivot table), and the 

orders.o_orderdate field to filter on. This pivot table is generated 

over the foreign-key join of lineitem, orders, customer, supplier 

and nation tables.  Observe that even though the supplier table is 

not explicitly selected by the user as one of the pivot table fields, 

this table is necessary in the joins to connect the nation table with 

the lineitem table.  
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Figure 1. Example of pivot table in Excel. It enables multi-

dimensional analysis over a single table. 
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Data that is analyzed in PowerPivot is organized as a collection of 

tables with foreign-key relationships between the tables. Common 

examples of schemas used are star schemas and snowflake schemas 

[1]. In a star schema there is a Fact table that contains details (e.g. 

sales transactions) and is connected to other Dimension tables (e.g. 

Customer, Country, Year, Store) via foreign-key relationships. A 

snowflake schema is similar to a star schema except that the 

Dimension tables are organized in hierarchies. For example, the 

Time dimension could have multiple levels in the hierarchy such as 

Date, Month and Year. Figure 3 shows an example of a snowflake 

schema. 
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Similar to the case of traditional pivot tables, users often load data 

from relational databases into PowerPivot for analysis. In some 

cases when the user loads data into Excel, the foreign-key 

relationships among the loaded tables is already known e.g. the 

tables were loaded from a database in which the foreign-key 

relationships were declared. However, in other situations, these 

relationships are not known at data load time. A common reason is 

that foreign-keys may not declared in the database, typically driven 

by performance considerations, and referential integrity is enforced 

in the application layer instead. If a user attempts to create a pivot 

table involving multiple tables with missing foreign-key 

relationships, PowerPivot alerts the user about the need to create 

relationships and provides the option of detecting relationships 

automatically. If the user chooses this option, PowerPivot attempts 

to automatically discover the relationships with a high degree of 

precision and creates them automatically on behalf of the user. This 

functionality is highly desirable (if not crucial) since pivot table 

users in Excel are typically not well-versed in defining 

relationships across tables. Observe that if the user proceeds to 

create the pivot table without having defined the relationships, the 

aggregates would be computed on the cross-product of the tables, 

which would most likely produce unintended results. More 

sophisticated users who understand foreign-key relationships have 

the option of reviewing the automatically created relationships and 

changing them if needed.   

In this paper, we describe techniques for automatically discovering 

foreign-key relationships in PowerPivot. The PowerPivot setting 

brings new requirements and associated challenges when compared 

to the foreign-key detection problem in relational databases, which 

we illustrate with the following example. Consider a typical use 

case where the user attempts to create a pivot table by selecting a 

few measures from one or more “fact” tables to aggregate e.g. 

Quantity and TotalPrice columns from the OrderDetails tables in 

Figure 3, and a few columns from the “dimension” tables, e.g. 

Name column in the Customer table and the CategoryName column 

in the Category table. Suppose there are no declared relationships 

in the database. Then PowerPivot will attempt to detect and 

automatically create relationships between the tables selected for 

analysis (OrderDetails, Customer, Category in this example). 

There are two major challenges: accuracy and performance that we 

discuss next.  

First, since analysis in PowerPivot is designed to be interactive, 

relationship detection needs to be performed at interactive speeds 

as well. This can be challenging since both data volumes and 

schema (i.e. number of tables and columns) can be large. Observe 

also that the foreign key relationships necessary to perform the join 

may involve tables not selected by the user (e.g. the Product table 

in Figure 3); so the search space potentially includes candidates 

over all tables/columns even when the user selects only a few 

columns in the pivot table. Furthermore, the need for high precision 

requires that we do not output a foreign-key (e.g. R.a  S.b) unless 

it passes the necessary conditions: S.b must be unique (uniqueness 

check), and R.a must be contained in S.b (containment check). The 

most expensive necessary condition that needs to be verified is the 

containment check since it requires a full semi-join between R.a 

and S.b. Thus, any approach for automatic foreign-key detection in 

PowerPivot must attempt to minimize the number of such full semi-

joins invocations. We note that the performance overhead of 

detecting a relationship is incurred once, and is amortized over all 

successive analysis involving that relationship.  

Second, the high precision bar in the PowerPivot setting is crucial 

since (a) an incorrect foreign-key could result in a wrong join (and 

hence answer) in the pivot table, and (b) a typical pivot table user 

in Excel is likely not capable of identifying or correcting errors in 

the discovered foreign-keys. Note that testing for the necessary 

conditions described above is often insufficient to eliminate all the 

spurious alternatives. An example of this is the “id problem”, where 

a number of different id columns in different dimension tables 

appear as plausible targets for a given id column in a fact table. For 

example, the values of the column OrderDetails.ProductId might 

be contained in each of the following key columns: 

SalesPerson.SalesPersonId, Customer.CustomerId, 

Figure 3. Example of snowflake schema. The arrows 

represent foreign-key relationships. 

 

Figure 2. Example of pivot table in PowerPivot for Excel. It 

enables OLAP like analysis over multiple tables joined via 

foreign-keys. 
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Product.ProductId. Hence each combination of 

OrderDetails.ProductId with one of the key columns, may appear 

as a potential foreign-key but only one of those relationships is a 

true foreign-key. Hence other signals (beyond uniqueness and 

containment properties) such as table and column names are crucial 

in differentiating among the candidates.  

We use two key ideas to address these challenges. First, we 

combine different signals including column data characteristics, 

string similarity between table and column names and relative 

strength of peer candidate foreign-keys to achieve high precision. 

Our combination scoring function is effective in distinguishing true 

foreign-key candidates from spurious candidates. To achieve the 

interactive speed requirement we explore the join paths between the 

tables selected by the user for creating the pivot table by exploiting 

the ranked ordering of candidates, and develop lightweight tests 

based on random sample based probing (i.e. using a random sample 

of R.a  to probe S.b) and min-hashing [5] to efficiently prune 

candidates that are unlikely to pass the containment check. Using 

the above ideas, in most cases we are able to terminate the search 

for foreign-keys without exploring many irrelevant candidates and 

we typically execute very few unnecessary full semi-joins.  

The techniques we describe in this paper have been incorporated in 

PowerPivot for Excel Add-In and is available in all releases starting 

in 2008. We include a set of experiments run on PowerPivot for 

Excel 2013. We report results on both synthetic data sets (such as 

the TPC-H benchmark [17], TPC-E benchmark [19], and the 

AdventureWorksDW database [4]) as well as several real-world 

data sets that we used to evaluate the quality (i.e. accuracy), 

performance and scale of the techniques. The results show that our 

techniques are able to achieve both requirements: good 

performance and high precision on data sets with large schemas 

(tens of tables and hundreds of columns, e.g. in the 

AdventureWorksDW database), and large data volumes (hundreds 

of millions of rows, e.g. as in the TPC-H 10GB database). 

We present a formal problem statement and overview of solution 

in Section 2, describe the techniques in Section 3 and report the 

results of experiments in Section 4. We discuss related work in 

Section 5 and conclude in Section 6.  

2. PROBLEM STATEMENT AND 

SOLUTION OVERVIEW 
We first provide a brief overview of Microsoft SQL Server 

PowerPivot for Excel (Section 2.1). We then give a formal 

statement of the foreign-key detection problem (Section 2.2) and 

present an overview of the solution (Section 2.3).   

2.1 Microsoft SQL Server PowerPivot for 

Excel 
Microsoft SQL Server PowerPivot for Excel [2]  is a self-service 

business intelligence (BI) product from Microsoft SQL Server. It 

includes an Add-In to Microsoft Excel that allows users to create 

sophisticated and high performance BI solutions. Users can 

perform ad-hoc modeling and analysis over large amounts of data 

using familiar Excel operations such as filtering, sorting, 

aggregation and in particular using pivot tables etc. Unlike 

traditional pivot tables in Excel, which only operate on a single 

table of data in Excel, PowerPivot extends traditional pivot table 

functionality by allowing it to be specified over foreign-key joins 

of multiple tables. Data processing in PowerPivot is supported 

through the Microsoft SQL Server Analysis Services xVelocity in-

memory analytics engine (earlier named VertiPaq) that runs in-

process inside Excel. This engine is designed to scale to large data 

sets by taking advantage of large main memories and multiple cores 

available on modern 64-bit architectures. It performs several 

optimizations such as column-oriented representation in memory, 

aggressive compression, and efficient operations on compressed 

data to enable interactive analysis on very large data sets. Finally, 

since PowerPivot is designed to be self-service, it is intended to 

allow users (information workers) with no specialized BI or 

analytics training to develop data models and perform analysis.  

2.2 Formal Problem Statement 
The problem formulation mimics the user interaction model in 

PowerPivot (shown in Figure 2). To create a pivot table, the user 

needs to select one or more measures: numeric columns over which 

aggregation is to be performed. The selected measures define a set 

F of “fact” tables for the particular pivot table. Likewise, the user 

can also select a set of columns to group-by or filter in the pivot 

table – these columns define a set D of dimension tables. In this 

paper we use the notation R.a  S.b to denote a candidate foreign-

key, where S.b is the parent (or key-side) and R.a is the child (or 

foreign-key side). We formally define the problem as follows: 

Input: (i) A set of tables V and optionally a set of edges E that are 

declared foreign-keys. (ii) A set of fact tables F ⊆ V, a set of tables 

D ⊆ V as dimension tables. F and D are identified by the user by 

attempting to create the pivot table. (iii) For each column, the 

metadata about the columns: table name, column name, number of 

distinct values.  

Output: A set of foreign-keys E' (if any) such that for each pair 

tables of (f,d) where f ∈ F and d ∈ D, there is a path connecting f to 

d using edges from E ∪ E'.  

d1

d2

d3

t1

t2

t3

t4

t5

f1

Table (input)

Declared FK 
(input)

Detected FK 
(output)

 

We note that PowerPivot imposes some restrictions on the foreign-

key relationships allowed [18]. For example, in Microsoft SQL 

Server 2008 and 2008 R2 version, only single-column foreign-keys 

are allowed, only one FK relationship can exist between a given 

Figure 4. F = {f1} is a set of fact tables, and D = {d1, d2, d3} is 

a set of dimension tables selected by the user attempting to 

create a pivot table. The solid edges represent E, the 

declared foreign-key relationships. The dashed lines 

represent the foreign key relationships detected (output). 

Observe that the join paths between F and D may include 

other tables not in F or D, t3 and t5 in this example; and that 

some of the declared foreign-keys might be irrelevant for 

this pivot table (e.g. edge from d1 to t1).  
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pair of tables etc. Although the above problem formulation is 

general, in our solution we exploit such restrictions to reduce the 

search space. Finally, we note that PowerPivot does allow the join 

even if a small number of values (this number is configurable) in 

R.a do not occur in S.b. Therefore, any solution must allow for 

some slack in the containment requirement (based on configured 

value) since otherwise some true foreign-keys may go undetected. 

2.3 Solution Overview 
As explained above, the goal of foreign-key detection in 

PowerPivot is to find a set of foreign-key relationships that 

connects the given set of fact (F) and dimension tables (D) in the 

pivot table that the user is creating. The two necessary conditions 

for a candidate R.a  S.b to be a foreign-key are: (i) S.b is unique 

and (ii) R.a ⊆  S.b, i.e. R.a is contained in S.b. A naïve approach 

that relies exclusively on checking these necessary conditions for 

each possible candidate falls short on two accounts. First, it does 

not scale for large data sets or schemas since: (a) The containment 

check requires a semi-join of R.a and S.b and can potentially be 

very expensive. (b) The number of candidates grows quadratically 

with the number of columns in the database. Second, there are often 

many candidates that satisfy the necessary conditions but are 

spurious, i.e. false positives. Thus high precision demands 

additional techniques for distinguishing among the candidates.  

Database

Local Pruning

Containment Verification

Join path Enumeration

Candidate Scoring

Output: Foreign-
keys connecting 

F, D

F, D

 

In order to meet the high precision and interactive speeds 

requirements for foreign-key detection in PowerPivot, we adopt the 

following approach (Figure 5 shows the components). First, we 

develop a set of pruning techniques that allows us to eliminate a 

large fraction of the candidates using very lightweight methods – 

in particular these techniques only rely on table or column metadata 

available in PowerPivot’s catalogs (accessible at negligible 

performance cost). We refer to this as Local Pruning (Section 3.1). 

For each candidate that survives this step, we compute a score that 

attempts to identify how likely this candidate is to be a true foreign-

key. In subsequent steps, we examine candidates in ranked order of 

scores. Intuitively, an ideal scoring function would allow the search 

to end by evaluating the full-semi join check for containment only 

on the true foreign keys. We refer to this step as Candidate Scoring 

(Section 3.2). The goal of the Join Path Enumeration step (Section 

3.3) is to identify a minimal graph consisting of high ranking 

candidate foreign-keys that connects the tables in F and D. 

Intuitively, if the candidates in this minimal graph pass the 

subsequent containment verification, then we would output these 

edges as our recommended foreign-keys. The final step, which we 

refer to as Containment Verification (Section 3.4) is responsible for 

determining if the edges in the graph identified during join path 

enumeration meet the containment check or not. This is typically 

the most expensive check and we therefore develop additional 

optimizations based on random sampling and min-hashing that can 

eliminate some candidates and thereby avoid the full semi-join. If 

one edge in the graph fails this step, then we return to join path 

enumeration and continue with additional candidates in ranked 

order of scores; and repeat the process until either all candidates in 

the graph pass the verification step or no more candidates exist.  

3. SOLUTION 

3.1 Local Pruning  
Initially, the set of candidates includes all pairs of columns (R.a, 

S.b) where R and S are any two distinct tables in the database and a 

and b are two columns from R and S respectively. Observe that a 

foreign-key is directional so each pair of columns defines two 

candidates (i.e. R.a S.b and S.b  R.a). Local pruning techniques 

need to be very lightweight since the initial set of candidates can be 

very large – e.g., it is not unusual to have tens of thousands of 

candidates in the initial set. Therefore, we restrict local pruning 

logic to only rely on metadata properties of the pair of columns (R.a 

and S.b) such as data type and cardinality that are already available 

in the system catalogs. Below we list the local pruning rules and 

provide a brief justification for each. Each rule specifies a condition 

under which a candidate R.a S.b is pruned. 

LP1:   
|𝑆.𝑏|

|𝑆|
 <  1 

Prune candidate if the ratio of S.b’s cardinality to table S’s 

cardinality is less than 1.  This rule directly follows from the 

uniqueness requirement on S.b. 

LP2:   
|𝑅.𝑎|

|𝑆.𝑏|
>  1+ 

Prune candidate if the ratio of cardinality of R.a to cardinality of 

S.b is greater than a pre-defined threshold (1 + ). If we require that 

containment strictly holds, then we can set =0. This rule follows 

from the fact that if R.a S.b is a true foreign-key, then each 

distinct value in R.a must also occur in S.b and hence the cardinality 

of R.a cannot exceed S.b. However, PowerPivot does allow the join 

even if a small number of values (this number is configurable) in 

R.a do not occur in S.b; hence we allow for  > 0.  

LP3:  Prune if either R.a or S.b belong to one of the 

following data types: floating point, Boolean. 

The rationale for this heuristic is that in practice it is very unlikely 

that keys or foreign-keys are defined on these data types. While this 

rule could, in principle, miss true foreign-keys, we did not 

encounter such a case in the data sets that we evaluated on (Section 

4).  

3.2 Candidate Scoring 
We develop a scoring function to quantify how likely it is for R.a 

S.b to be a foreign-key. All candidates surviving the local pruning 

Figure 5. Foreign-key detection components in PowerPivot. 
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are scored and then sorted by score. Similar to local pruning, the 

scoring function is designed to be very lightweight and only relies 

on metadata (table, column names) and cardinality information of 

the columns that define the candidate. As discussed earlier, the 

scoring determines the order in which candidates are explored 

during join path enumeration. With a well-designed scoring 

function, the most expensive computation namely the full semi-join 

to check for containment of R.a in S.b can be avoided for most of 

spurious candidates altogether. Hence the precision and speed of 

foreign-key detection heavily depends on a good scoring function.  

When there are multiple candidates between a pair of tables (as is 

typically the case), the candidate scores allow staging the detection 

by focusing on the candidates that have high scores first. For a 

given pair of tables it is often the case that there are many 

candidates R.a S.b that pass the local pruning test, but R.a S.b 

is not a true foreign-key. A common scenario is when R.a and S.b 

are “id” columns in the table. For example, in Figure 3, several 

columns may appear as potential foreign-keys to 

Product.ProductId: OrderDetails.SalesPersonId, 

OrderDetails.CustomerId, OrderDetails.ProductId since each 

candidate passes the local pruning step described in Section 3.1. 

One observation is that in such cases the table and column names 

can be a useful signal to distinguish among the candidates. Hence 

the name similarity is an important component in the scoring 

function (similar ideas are leveraged in schema matching 

techniques, e.g. see [12] for a survey). We first describe a similarity 

function we use to compute name similarity and then describe the 

overall scoring function next. 

String similarity function: We exploit a string similarity function 

based on ideas similar to those used in fuzzy record matching (e.g. 

[13]). Given two strings x and y (where x and y could be column 

names or table names), we tokenize x and y into two sets of tokens 

{x1, x2, …, xm} and {y1, y2, …, yn} respectively. The tokenization 

procedure uses typical delimiters: whitespaces or symbols mark the 

boundary of tokens (‘_’,’-‘, etc.). We also consider the change from 

lower case to upper case as a boundary of tokens. For instance, in 

string “ProductId”, the case change from ‘t’ to ‘I’ is a boundary that 

results in tokens: “Product” and “Id”. Then, for each token yj, we 

find the unmapped token xi that has the largest similarity according 

to a given string distance function, and map xi to yj.  We denote this 

maximum similarity as simj. In our implementation we use the Jaro-

Winkler distance function; in principle other functions such as 

Levenshtein or Smith–Waterman could be used instead (see [14] 

for a comparison of strengths of string distance matching 

functions). We also compute fj as follows: if y is a column name, fj 

is the fraction of columns whose name contains token yj. If y is a 

table name fj is the fraction of tables whose name contains token yj. 

We define:  

similarity (x, y) = 
∑ (simj ×ln( 1

𝑓𝑗
))𝑛

𝑗=1

∑ ln( 1
𝑓𝑗

)𝑛
𝑗=1

 

Intuitively, the similarity function returns a higher value when 

tokens have lower string distances and gives higher weight to rarer 

tokens [14] via the fj measure.  

Overall scoring function: The scoring function for a candidate 

R.a S.b is a weighted sum of the following scores:  

 s1 = similarity(ColumnName(R.a), ColumnName(S.b)), i.e. 

similarity between column names of R.a and S.b. 

 s2 = similarity(ColumnName(R.a), TableName(S.b)),  i.e. 

similarity between column name of R.a and table name of S.b  

 s3 = 
|𝑅.𝑎|

|𝑆.𝑏|
 , i.e. the ratio of the cardinality of R.a to cardinality 

of S.b.  

 s4 = 1 if R.a is a key and 0 if not.  

SF (R.a S.b) = ∑ 𝑤𝑖 × 𝑠𝑖
4
𝑖=1  

While the importance of s1 is easy to see, the importance of s2 arises 

from the fact that in many cases the name of the foreign-key column 

in R is very similar to the table name of S. For example, consider 

Sales.ProductId  Product.Id. In this case, s1 has a low similarity, 

but s2 will return a high similarity. We observe such patterns to be 

quite common in practice. As described in Section 3.1 (in pruning 

rule LP2), the ratio of the cardinality is an important indicator of 

foreign-key. In a true foreign-key we typically see this ratio ≈ 1. 

Thus consider a case where we have two possible candidates: 

Sales.ProductId  P.Id  and Sales.ProductId  C. Id.  Suppose 

the table P is a dimension table of products and C is a dimension 

table of customers, and suppose there are 100 distinct products and 

100,000 distinct customers. Then s3 for Sales.ProductId  P.Id 

will likely be much closer to 1 than s3 for Sales.ProductId  C. Id.  

The motivation for s4 is to de-prioritize key-key joins, since such 

joins are typically used to model specialization (e.g. is-a 

relationships) and is unlikely to be a true foreign-key. We do this 

by providing a negative weight w4. Note that if R.a is not a key, 

then no penalty is incurred since s4 = 0. In our current 

implementation, these weights are manually tuned and appear to 

perform well when evaluated on several real and synthetic 

databases. It is potentially interesting future work to consider if a 

machine learning based approach could be used to identify 

appropriate weights; however we do not have a rich enough and 

suitably labeled training set to attempt this approach.  

One important class of candidates that require special consideration 

is when both R.a and S.b are “complex” types: which we define as 

(a) long strings or large integer numbers and (b) large number of 

distinct values (e.g. a column contain Social Security Number). 

Interesting cases are when the entity name itself serves as the key 

and foreign-key or when some large numeric identifiers are used as 

the key for a dimension table. Although many such candidates are 

false positives, these false positives are amenable to efficient 

detection via the random sample probing technique or min-hashing 

technique (described in Section 3.4). Thus, to ensure that we don’t 

miss out on good candidates, we artificially boost the scores of such 

candidates so that they are ranked highest. These candidates 

therefore have a high chance of being considered in join-path 

enumeration.  

3.3 Join-Path Enumeration 
The join path enumeration finds the join paths to connect the 

selected fact tables F to the selected dimension tables D using the 

currently highest scoring candidate foreign-keys. If such join paths 

are found, they go through the containment check process 

(described in Section 3.4); any candidate R.a S.b that passes the 

containment check is then output by the algorithm as a foreign-key.  

The key ideas underlying join-path enumeration are: (a) Only 

explore those join paths that can potentially help connect the user-

selected fact tables F and dimension tables D. (b) Exploit the 

candidate scoring function (described in Section 3.2) to guide the 

process of exploring join paths – in particular, we aim to create a 
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minimal graph connecting F and D using the highest ranking edges, 

i.e. candidates that have not yet been pruned. (c) Since join path 

enumeration and containment verification steps are run in a loop, at 

any point in time, we leverage the partial solution obtained thus far 

(i.e. candidates that have passed containment verification and are 

therefore known to be in the output) to perform conflict pruning 

(described below) and thereby eliminate other candidates. We next 

describe conflict pruning, and then present the overall algorithm. 

 

R.a

T.c S.b
                       

R.a     R.c

S.b     S.d
 

       
Case 1

                        
Case 2

 

 

S.b

R.a

...

               

R.a

P

S.b

...

P.c

Q.d
 

       
Case 3

                       
Case 4

 

3.3.1 Conflict Pruning 
Conflict pruning occurs when a candidate R.a S.b is in conflict 

with other declared, output, or higher ranked candidate foreign-

key(s). Note that since join-path enumeration and containment 

verification happen in a loop, when a candidate passes containment 

verification, it may result in additional conflict pruning during the 

next iteration through the loop. 

Conflicts arise due to constraints on foreign-keys, some of which 

are specific to the PowerPivot data model, whereas others are more 

general and would also occur in other systems such as relational 

databases. Figure 6 illustrates some examples of constraints. The 

solid green edges denote either declared foreign-keys or candidate 

foreign-keys with higher score than the red edge. The dashed red 

edge (shown as R.a  S.b in the figure) denotes the candidate that 

is in conflict with the green edges. We refer to the set of green edges 

as the conflict set of R.a  S.b. Case 1: A particular column (say 

R.a) can be the child of only one foreign-key. Case 2: There can 

exist at most one foreign-key between any pair of tables. Case 3: 

There cannot be any cycles in the foreign-key graph. Case 4: there 

can exist at most one foreign-key path between any pair of tables.  

FindConnectingSubgraph (f, d, L) 

1. Initialize an empty graph G 

2. For each candidate c in descending order of scores in L 

3.      If c’s state is Declared, VerifiedTrue or None,  

        add c as an edge to G 

4.      If G contains both f and d as nodes, break loop 

5. For each edge e in G, if there is a path from some R to S, 

and e is in that path, then mark e 

6. Return the set of edges marked in step c. 

FindForeignKeys (f, d, L) 

1. Loop 

1.     Let SG = FindConnectingSubgraph (f, d, L) 

2.     AllTrue = VerifyAllTrue (SG) 

3. Until AllTrue or SG is empty 

4. Return SG 

 

Figure 6. Conflict pruning. In each case a candidate R.a  

S.b denoted by a red dashed arrow is in conflict with other 

candidates denoted by green solid arrow. If each green solid 

edge has a higher score than R.a  S.b, then R.a  S.b is 

removed from consideration as foreign-key. 

 

. 

 

 

Figure 9.  Finding the best connecting subgraph between f 

and d, given a sorted list of candidates L. 

 

 

Figure 8.  Detect foreign-keys between a pair of tables f 

and d, given a sorted list of candidates L. 

 

 

 

Input: Set of fact tables F, set of dimension tables D, and a list 
of candidates L sorted by score 
Output: a set of foreign-keys connecting F and D 

1. result = ∅ 

2. For each pair of tables (f, d), where f F and d  D do 

3.     result = result  FindForeignKeys(f, d, L); 

4. Return result; 

Figure 7.  Overall algorithm for detection foreign-keys 

between F and D, given a sorted list of candidates L. 

 

 

 

VerifyAllTrue (SG) // SG is a connecting subgraph 

1. For each candidate c in SG 

2.    Let CS = conflict set of c  

3.    If CS is empty then 

4.       If VerifyContainment (c) is true  

5.            Then Mark c’s state as VerifiedTrue 

6.       Else Mark c’s state as VerifiedFalse; Return false 

7.    Else // non-empty conflict set 

8.          If VerifyAllTrue (CS) is true then  

9.             Mark c’s state as Pruned; Return false 

10.          Else Return false; 

11. Return true 

Figure 10.  Verifying edges in a connecting subgraph. Note 

that conflict pruning may prevent an edge from being 

verified. 
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We observe that constraint-based pruning leverages the fact that 

while a candidate may individually have a high score as a foreign-

key, the existence of other foreign-keys (perhaps even on other 

tables) with higher score may result in this candidate being pruned. 

Although our implementation of constraint-based pruning comes 

from the restrictions of a particular version of PowerPivot, this type 

of pruning can still be used in relational databases, e.g. Case 1 and 

Case 3 above likely also hold in most relational database engines. 

3.3.2 Algorithm 
The pseudo-code for the foreign-key detection algorithm is 

presented in Figures 7 to 10. The outer loop of the algorithm (shown 

in Figure 7) invokes the function FindForeignKeys on each pair of 

tables (f, d)  F  D. In turn, FindForeignKeys relies on the 

function FindConnectingSubgraph to identify a set of edges that 

connect f and d, and VerifyAllTrue to verify whether all edges thus 

identified pass containment verification or not. If not, 

FindForeignKey repeats the loop until either all edges pass 

containment verification or no connecting subgraph can be found. 

We maintain a state for each candidate in L, which can take on one 

of the following values: (i) Declared, if it is a declared foreign-key. 

(ii) VerifiedTrue, if it has been verified to be true in the containment 

verification step. (iii) VerifiedFalse, if it has been verified to be 

false in the containment verification step, (iv) Pruned, if it has been 

pruned due to conflict pruning, (v) None. Each candidate’s state is 

initialized as Declared if it is a declared foreign-key, otherwise 

None.  

Figure 9 shows how the algorithm detects a connecting subgraph 

taking into account the ordering of candidates by score, and Figure 

10 describes the algorithm for verifying edges in a given connected 

subgraph. We note that conflict pruning and containment 

verification (denoted by the function VerifyContainment) are 

invoked as part of VerifyAllTrue. Prior to deciding if containment 

checking should be invoked for a candidate c, we check if the 

candidate has a conflict set (defined in Section 3.3.1). If the conflict 

set is empty, then we invoke containment verification on the 

candidate. If not, we recursively invoke VerifyAllTrue on the 

conflict set, which if it passes results in pruning of the candidate c. 

If the loop 1-10 executes without returning, it implies all edges in 

the connecting subgraph have passed containment verification, so 

we return true. 

3.4 Containment Verification 
As described earlier, verifying that R.a is contained in S.b is 

necessary for R.a S.b to be a true foreign-key. It requires a full 

semi-join and is the most expensive operation in foreign-key 

detection and therefore should be deferred until other (cheaper) 

tests have been first attempted. We introduce two lower cost tests 

for containment verification, which allow us to reject a candidate 

much more inexpensively. These two techniques are based on the 

same intuition – quickly detect if one or more values in R.a do not 

occur in S.b. However, they have different performance trade-offs, 

and hence a decision needs to be made as to whether to apply only 

one or the other. These tradeoffs are similar the decision of whether 

to use an index nested loop join or a hash join in relational database 

query processing.  

Random sample based probing: The basic idea is to obtain a 

random sample of k values in R.a and probe S.b for each distinct 

value in the sample. If more than a pre-specified fraction (p) of 

values probed do not exist, then we rule out candidate R.a S.b. If 

more than the pre-specified fraction of values do exist, we proceed 

to the next test (either min-hashing or full semi-join). If we require 

full containment, then we can set the pre-specified fraction to 1, i.e., 

even a single probe failure would terminate the test. The key 

reasons that makes this test very efficient is that PowerPivot 

provides low overhead support for the following two operations: 

(a) Obtain a random sample of the distinct values in a column. This 

efficiency is enabled by the fact in PowerPivot all data is memory 

resident, and the API allows accessing any index of the dictionary 

of distinct values of a column. (b) Probing a column for a small set 

of given values. Note also that spurious candidates are likely to fail 

in this test even for a small k such as 50. In Section 4, we show the 

effectiveness of this technique in reducing spurious full semi-joins.  

 We observe that the technique of random sample based probing is 

particularly effective for in-memory BI engines such as PowerPivot 

where the appropriate access methods for random sampling and 

probing exist. However, this technique may not always be efficient 

in other contexts, e.g. relational database engines, where: (a) not all 

data is memory resident (b) no index may exist on the column being 

probed. In such cases, other techniques such as min-hashing 

(described next) are likely to be more scalable. 

Min-hash based comparison: This test is based the idea of min-

hashing [5], which is a technique for quickly estimating how 

similar two sets are, in particular it estimates the Jaccard similarity 

between the two sets. In our context, we use this technique to 

develop a test to identify if R.a is unlikely to be contained in S.b. If 

the test reveals that it is unlikely that R.a is contained in S.b, we 

reject the candidate R.a S.b.  

 We apply n different hash functions H1,…Hn to each value in both 

R.a and S.b. Then, if Mi (X) is the smallest hash value when 

applying function Hi to set X, we check if Mi(R.a) < Mi(S.b). 

Observe that any occurrence where the min-hash of R.a is less than 

min-hash of S.b is an indication that there exists a value in R.a that 

is not contained in S.b. The strict version of this check eliminates 

the candidate if the above inequality holds for even a single hash 

function. However, since PowerPivot does allow joins even when 

a few values are not contained, a more general check is described 

below.  

We define an indicator function as follows:  

 𝑃𝑖 =  {
1                       𝑖𝑓 𝑀𝑖(𝑅. 𝑎) <  𝑀𝑖(𝑆. 𝑏)
0                                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Then, if  
(𝑃1+ …+ 𝑃𝑛)

𝑛
>  𝜃ℎ, we reject the candidate. Note that this 

test requires a full scan of a column to compute the min-hashes. In 

practice, we use n=100 hash functions. Although the cost of 

computing min-hashes is not negligible, it is a one-time cost (per 

column) and can therefore be amortized across tests for different 

candidates that the column is a part of.  

Finally, in our experiments, we find that if a candidate passes the 

random sample based probing test, it is very likely that it also passes 

the min-hashing test. Given that the random sample based probing 

is much less expensive in PowerPivot compared to min-hashing, 

the trade-offs strongly favor using only random sample based 

probing. However, it is important to note that in a relational 

database setting, obtaining a random sample as well as probing may 

incur a high cost (comparable to a full scan), particularly when 

appropriate physical structures such as indexes do not already exist 

in the database. In such cases, min-hashing may in fact be the 

preferred technique for containment verification.  
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Full semi-join: The last, and most expensive, option for checking 

containment is to perform the full semi-join between R.a and S.b. 

Although this join is performed very efficiently in PowerPivot 

(exploiting columnar storage and ability to process on compressed 

data), the processing time is a function of the data sizes of R.a and 

S.b. Thus, the time for a full semi-join grows with data size. 

Therefore, for very large data sets, we invoke this only for the 

highest ranking candidates that have passed all other tests. 

4. EXPERIMENTS 
The techniques described in this paper have been incorporated into 

PowerPivot for Excel [2]. We report the results of our experiments 

on PowerPivot for Excel 2013.  

Goals: The goals of the experiments are to evaluate: (a) Quality: 

i.e. the accuracy of the foreign-keys output by the algorithm. As 

discussed in the introduction the property of very few false 

positives is very important since these discovered foreign-keys are 

auto-created by PowerPivot. (b) Performance and Scalability: (i) 

We want to verify whether foreign-key detection remains within 

the realm of interactive response time even for large data sizes and 

schemas. (ii) Drill-down into the effectiveness of various pruning 

techniques described in Section 3. 

Database #Tables #Columns Raw Size 
(MB) 

Comp. 
Size (MB) 

TPC-H 10GB 8 61 10,000 5,730 

TPC-H 1GB 8 61 1,000 470 

TPC-E 33 191 1,200 600 

AW-DW 24 313 210 11 

REAL-1 3 21 1.5 0.3 

REAL-2 7 58 30 10 

REAL-3 12 132 75 25 

REAL-4 3 26 0.9 0.3 

REAL-5 2 21 50 14 

REAL-6 19 421 93,000 4,300 

 

Databases: The databases that we used in our evaluation are shown 

in Table 1. We use 4 synthetic databases: TPC-H [3] (with 1GB and 

10GB scaling factors respectively), TPC-E [19] (scale factor 500) 

and AdventureWorks-DW [4] database (abbreviated as AW-DW in 

the table/charts below). TPC-H 1GB and 10GB versions allow us 

to observe how the performance changes when data size is 

increased. In TPC-H 10GB database, the lineitem table has around 

60 million rows and the orders table has around 15 million rows. 

TPC-E and AW-DW both have both large schemas as well as 

relatively large databases, thereby presenting good test of 

scalability of the techniques. For example, AW-DW has over 300 

columns and hence over 90K candidate foreign-keys, and TPC-E 

has around 200 columns from 33 tables, and 1GB raw data size. We 

also evaluated our techniques on 6 real-world customer databases 

of Microsoft SQL Server labeled REAL-1 through REAL-6. Of 

these, REAL-6 which is the database of a large book retailer, offers 

the strongest test of scalability with its large database size (93GB 

raw data size) and schema (19 tables, 400+ columns). We note that 

PowerPivot obtains very significant data compression – Table 1 

shows the compressed data sizes; we observed compression ratios 

ranging between ~2x to ~20x in the data sets we evaluated.  

Methodology: For each data set, we already know true foreign-keys 

since these were Microsoft SQL Server databases where the 

foreign-keys were explicitly declared. These declared foreign-keys 

are the “ground truth” we use for the quality evaluation. Of course, 

it is possible that not all semantic foreign-keys are explicitly 

defined in the database. As we observe in practice on occasion (and 

reported in our results below), there are plausible foreign-keys that 

are not actually defined, i.e. a manual inspection of the foreign-key 

shows it is meaningful: a foreign-key join would not cause incorrect 

results. For example TPC-E has two such plausible foreign keys 

that we discuss below (Section 4.1). Thus, we report two metrics of 

false positives. The strict version flags any detected foreign-key 

that is not declared in the database as a false positive. The second 

version is identical to the strict version except that it does not flag 

plausible foreign-keys as false positives. A false negative is 

reported if one of the declared foreign-keys is not discovered. As 

we noted earlier, PowerPivot does not allow some foreign-keys that 

are typically allowed in relational databases. For example, 

PowerPivot only allows single-column foreign-keys, only one 

foreign-key between any pair of tables, and it does not allow a 

foreign-key from a table to itself. Since some of the databases we 

experimented with did contain such foreign-keys, some of the false 

negatives we report are due to limitation in PowerPivot. In the 

results reported here, we relax one of these limitations in 

PowerPivot: in particular, we are capable of recommending more 

than one foreign-key between a given pair of tables. 

When we load the database into PowerPivot, we drop all declared 

foreign-key relationships. PowerPivot compresses the data during 

loading and prepares it for analysis. Then, for each pair of tables in 

PowerPivot we invoke the foreign-key detection code and measure 

the running time and evaluate the quality of the results. This all-

pairs invocation represents the worst case running time for foreign-

key detection in PowerPivot. In practice, most user created pivot 

tables do not reference all tables, and thus the running time for 

foreign-key detection are typically much smaller than those 

reported below. All numbers were obtained on a machine with an 

Intel Xeon CPU with 2 processors (6 cores each) and 96GB RAM.  

4.1 Accuracy of Foreign-Key Detection 
Table 2 shows the number of declared foreign-keys in each 

database and the number of foreign-keys discovered using our 

techniques in PowerPivot. 

First, we observe that in 7 out of 10 databases, there were no false 

positives (strict or otherwise). Of the 9 cases of strict false positives 

found across all databases, 6 of those were plausible. Therefore, out 

of the 143 foreign-keys detected by our technique only 3 could 

definitely be said to false positive (i.e. 98% precision). Similarly, 

in 8 out of 10 databases, there were no false negatives either. Thus, 

the overall accuracy of our techniques is high. We included REAL-

5 since this is an example where we know there are no declared 

foreign-keys between the two tables, so the goal was to check for 

false positives only. We next discuss each database where we 

reported either a false positive or false negative. 

Table 1. Databases used in experimental evaluation.  
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TPC-E: Out of the three foreign-keys that we flag as FPs (strict) in 

TPC-E, two of those are plausible: (1) [Holding].[H_CA_ID]  

[Customer].[CA_ID] (2) [Holding].[H_S_SYMB]  

[Security].[S_SYMB] but are not declared in the benchmark 

schema. One of the false negatives is the multi-column foreign key 

between the tables Holding  Holding_Summary. We are unable 

to detect four other foreign-keys because the destination tables are 

empty. In our current implementation we choose not to recommend 

such foreign-keys since we get no signals from the data. Similarly, 

we do not discover five other foreign-keys because the source 

columns are either empty or contain only one value. Once again, in 

the interest of erring on the side of precision, our implementation 

does not recommend such foreign-keys. It is worth noting that in 

other contexts where a different trade-off between precision and 

recall needs to be made, our techniques could be adapted to support 

such trade-offs. 

Database #FKs 
actual 

#FKs 
disc. 

#FPs 
(strict) 

#FPs #FNs 

TPC-H 10GB 8 8 0 0 0 

TPC-H 1GB 8 8 0 0 0 

TPC-E 50 43 3 1 10 

AW-DW 42 39 2 0 5 

REAL-1 2 2 0 0 0 

REAL-2 9 9 0 0 0 

REAL-3 17 17 0 0 0 

REAL-4 2 2 0 0 0 

REAL-5 0 0 0 0 0 

REAL-6 19 23 4 2 0 

 

AW-DW:  Both false positives (strict) in AW-DW look plausible, 

i.e. in addition to meeting all syntactic requirements, they also 

appear to be semantically viable. An example is a foreign-key from 

column [FactSurvey].[ProductCategory]  

[DimProductCategory].[ProductCategoryKey]. The false 

negatives in AW-DW arise due to the fact that PowerPivot is more 

restrictive that a relational database in the kinds of foreign-keys it 

allows. We miss 4 foreign-keys which were “self-links” in the 

relational database (e.g. T.ParentEmployeeId   T.EmployeeId), 

which are valid in a relational database but disallowed in 

PowerPivot. We also miss one multi-column foreign-key.  

REAL-6: Two out of the four false positives (strict) are plausible. 

The two remaining false positives arise due to an issue with how 

our algorithm deals with string columns. In this case, the 

application uses a string column to encode integer values (this is 

because the application also uses the column to store a single string 

value called “Unknown” in addition to the integer values). Recall 

from Section 3.2 that we boost the scores of candidate foreign-keys 

involving string columns. This causes our algorithm to give an 

unnecessarily high score to this candidate and since it meets all 

other syntactic criteria including containment, the foreign-key is 

recommended. We note that this false positive would not have 

occurred if the application had used an integer column and, for 

example, encoded the “Unknown” value as NULL.   

4.2 Performance and Scalability 
Figure 11 shows the running time for identifying foreign-keys 

between all pairs of tables in the database. As mentioned above, 

this is the worst case time for foreign-key detection. Note that we 

use a logarithmic scale on the y-axis since there is a relatively large 

variability across databases in running time depending on data and 

schema size. First, we see from the figure that in REAL-6 with a 

raw data size of 93 GB (compressed size of 4.3GB) and a large 

schema size, all foreign-keys can be detected in around 200 

seconds. Similarly, for TPC-H 10GB, where the compressed data 

size is more than 5.7GB, we are able to detect all foreign-keys in 

the schema in about 1.5 minutes. In this case, almost all the time 

was spent in containment verification – in fact in the full semi-join 

evaluation for the 8 FKs that we output. Thus, it is not possible to 

reduce the foreign-key detection time much further since we are 

required to do a full semi-join to verify containment for the output 

FKs. Note also that foreign-key determination only needs to be 

done once – so the cost is amortized over all subsequent pivot table 

analysis.  

We also report that in practice, if a user were to select a smaller 

subset of tables in the pivot table, analysis is even faster. For 

example, if we only select the lineitem, nation, and region tables, 

we can detect the 3 relationships (between lineitem and supplier, 

supplier and nation, nation and region) in ~25 seconds. For the 

TPC-H 1GB database we are able to detect the same 8 foreign-keys 

in 14 seconds when invoked on all table pairs. This ~6x speedup 

compared to TPC-H 10GB is entirely due to the reduction in the 

cost of full semi-joins.  

Finally, we observe that in practice for most pivot tables on real-

world databases, foreign-key detection speeds are truly interactive 

(a few seconds in most cases).  

 

Drill-down: Next we drill-down into specific datasets to examine 

the effectiveness of various pruning techniques and report the 
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Table 2. Summary of quality evaluation showing number 

of actual foreign keys, foreign keys discovered, number of 

false positives and false negatives. 
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results in Figure 12, 13 and 14. Note that all the conflict pruning 

rules in Figure 6 are applied in this experiment and hence the final 

numbers of pairs in the figures are slightly lower than those 

reported in Table 2. An interesting case is AW-DW in which the 

time taken for foreign-key detection is mostly due to the complexity 

of the schema. To understand this case better, we show a drill-down 

of various pruning techniques for AW-DW in Figure 12. The x-axis 

shows different pruning techniques, the y-axis on the left shows the 

number of candidate foreign-keys on a log scale, and the y-axis on 

the right shows the percentage of candidates pruned by the pruning 

technique. The total number of candidates that the algorithm needs 

to consider exceeds 91K. We observe that the local pruning 

techniques (Section 3.1) are able to eliminate about 97% of those 

candidates. However, this still leaves over 3K candidates that still 

need to considered. The name similarity and conflict pruning 

together are able to further cut this number to around 1K. Notice 

that the random sample based probing (Section 3.4) is very 

effective in cutting down all remaining spurious candidates which 

can be seen from the fact all remaining candidates for which we 

need to invoke the full semi-join in fact pass the test.  

 

 

 

Figures 13 and 14 show similar drill-downs for REAL-3 and 

REAL-6 databases. The overall trends are similar to AW-DW. We 

observe that local pruning and random sampling based probing are 

very effective in eliminating most of their inputs across all three 

data sets. The importance of conflict pruning however varies 

significantly across different data sets, from 23% in AW-DW to 

less than 1% in REAL-6. We also observe that in REAL-6 the full 

semi-join is necessary to prune 15 out of 38 candidates whereas in 

other cases all false positives were eliminated by other techniques. 

 

 

 

 

 

 

 

5. RELATED WORK 

There is a large body of work on foreign-key detection and 

detection of inclusion dependencies in relational databases. 

Examples of such work include [6]-[11]. In most of this work, the 

goal is to identify all suitable foreign-key candidates (i.e., focus is 

typically on recall) in an offline batch processing setting for 

advanced database users such as database administrators or data 

stewards. In contrast, our work is substantially different in two 
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major aspects. First, we are required to find high precision foreign-

keys only – since PowerPivot automatically creates relationships 

thus discovered and the users (typically information workers) may 

not be sophisticated enough to understand and undo erroneous 

relationships. Second, there is a requirement that the detection be 

performed at interactive speeds. These requirements leads to 

several pruning techniques described in this paper. We are aided by 

the fact that data is memory resident in PowerPivot and has 

statistics and data structures optimized for the operations we rely 

on. For instance, PowerPivot has in-memory dictionaries of each 

column that allows us to very efficiently lookup the cardinality of 

each column and execute random sample based probing. Such 

techniques may not always be possible in relational databases when 

suitable index structures do not exist.  

We discuss here two representative examples of related work on 

foreign-key detection ([7] and [10]) to highlight the differences in 

goals and consequently the accuracy and performance/scale. In [7], 

the authors conjecture that in most cases the values in a foreign-key 

column form a nearly uniform random sample of values in the key 

column. They devise a test for this randomness property and 

demonstrate its effectiveness as a heuristic to identify foreign keys. 

For TPC-E they report 0.57 precision and 0.82 recall, and about 0.8 

precision and 0.8 recall when evaluating against their augmented 

set of foreign-keys. While such a trade-off between precision and 

recall may be acceptable in other scenarios, it would not be 

appropriate for ours. From our experience with the datasets we have 

worked with it appears unlikely that any single heuristic or rule will 

achieve high precision by itself. However, combining multiple 

signals together during detection does appear to greatly reduce false 

positives. Another important difference is that the approach of [7] 

is not designed to be interactive, but rather operate in an offline 

batch mode. For example, they report a running time of 

approximately 2.5 hours for TPC-H 10GB database – contrast this 

with about 1.5 minutes for the same database using our techniques, 

and in seconds when the user choose to detect foreign-keys for a 

small number of tables. The work of [6] is closely related to [7] in 

which the authors use a measure of distance between column value 

distributions, and cluster columns based on that distance metric. 

However the application is to find similar columns rather than 

detecting foreign-keys. 

In [10], a learning based approach is used for detecting foreign-

keys from a given set of previously identified inclusion 

dependencies (using the algorithm of [19]). They define ten 

features for a candidate foreign-key including cardinality, column 

names, difference in value length between the two columns etc. 

They train several classifiers (NaiveBayes, SVM, decision tree 

based, etc.) and then compare these different classifiers on several 

real-world databases. They report F-measures that vary between 

0.71 and 1.0, the average F-measure of classifiers range from 0.78 

to 0.93 (no precision numbers are reported). They also report 

performance numbers of around 4 hours to identify the inclusion 

dependencies on a database of size 32GB, although the 

classification itself is very fast. Besides the differences in emphasis 

on precision and interactivity, our techniques leverage similarity 

between table and column name similarity more deeply (including 

fuzzy string matching) as well as in the use of the global topology 

of the derived join graph to improve precision of detection. It is an 

interesting direction of future work for us to consider if a learning 

based approach could be leveraged in our setting (e.g. to learn 

weights for different similarity measures in candidate scoring). A 

key challenge is the generalizability of the model from a few 

specific training datasets to the diversity of datasets used by 

information workers in enterprises.  

We adapt the ideas and techniques for string similarity used 

previously in fuzzy record matching, de-duplication and schema 

matching scenarios (e.g. [12][13]). Not surprisingly, these 

techniques are crucial for those cases where it is insufficient to rely 

purely on data characteristics (such as indicators of containment). 

The most common example of this case is the “id problem” where 

a large number of different id columns in different dimension tables 

appear plausible targets for a given id column in a fact table.  

In [15], the authors briefly allude to techniques for identifying join 

paths in Tableau. They require exact match of column names and 

data types, and if they are date/time fields, they require that both 

columns represent the same granularity in the time dimension 

hierarchy. In contrast, our techniques allow a much larger class of 

foreign-keys to be identified. To the best of our knowledge in most 

other in-memory business intelligence engines, a data steward is 

expected to build the data model (i.e. identify foreign-keys etc.) and 

the information workers then consume this model. Our foreign-key 

detection technology in PowerPivot enables information workers 

“self-service” analysis of their data since they are not required to 

explicitly create the data model. 

We note that several commercial data profiling and analysis tools 

exist that detect inclusion dependencies (e.g. [21][22]). Such tools 

can aid advanced users such as data stewards to explore foreign 

keys by presenting them a list of column pairs that are highly 

overlapped and allowing them to drill down to the orphan values 

on both sides. These tools do not try to predict foreign keys and do 

not target the information worker audience that we target in our 

work. Finally, there are tools that are related to but do not support 

automatic foreign key detection. For example, [9] supports linking 

entities as structured rows in database and as free text in documents. 

The linking considered is at the instance level, not at the schema 

level like foreign key. Similarly [23] [24] support interactive data 

cleansing and exploration. However these systems do not support 

automatic foreign-key detection. 

6. CONCLUSION AND FUTURE WORK 
High precision automatic foreign-key detection is an enabling 

technology for self-service business intelligence (BI). In this paper, 

we describe techniques for automatically identifying appropriate 

foreign-keys in a commercial, in-memory BI engine: PowerPivot 

for Excel. While some of our techniques leverage specific 

constraints of PowerPivot, many of the techniques we develop are 

applicable in other contexts such as a relational database engine. 

One interesting area of future work is generalizing in an orthogonal 

dimension: allowing fuzziness in the foreign-keys. This is 

particularly interesting for mashups where the user may have 

imported external data sources (e.g. web tables [16]) and wishes to 

join this data with existing fact/dimension table from other sources 

within the enterprise.  
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