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ABSTRACT 

Business planning as well as analytics on top of large-scale 

database systems is valuable to decision makers, but planning 

operations known and implemented so far are very basic. In this 

paper we propose a new planning operation called interval 

disaggregate, which goes as follows. Suppose that the planner, 

typically the management of a company, plans sales revenues of 

its products in the current year. An interval of the expected 

revenue for each product in the current year is computed from 

historical data in the database as the prediction interval of linear 

regression on the data. A total target revenue for the current year 

is given by the planner. The goal of the interval disaggregate 

operation is to find an appropriate disaggregation of the target 

revenue, considering the intervals. 

We formulate the problem of interval disaggregation more 

precisely and give solutions for the problem. Multidimensional 

geometry plays a crucial role in the problem formulation and the 

solutions. We implemented interval disaggregation into the 

planning engine of SAP HANA and did experiments on real-

world data. Our experiments show that interval disaggregation 

gives more appropriate solutions with respect to historical data 

than the known basic disaggregation called referential 

disaggregation. We also show that interval disaggregation can be 

combined with the deseasonalization technique when the dataset 

shows seasonal fluctuations. 
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1. INTRODUCTION 
On-Line Analytic Processing (OLAP) [27] and Data Cubes [9] are 

common in large-scale data warehouses in many companies. 

However, business planning as well as analytics on top of large-

scale database systems is a valuable tool to decision makers [31, 

2], and only recently research on planning operations has started 

[12,13]. 

Business planning is an important task of companies in which 

business targets are defined for future periods in order to get 

specific guidelines for current operations which can also serve as 

a means to check whether the targets have been reached or not 

[12]. Jaecksch and Lehner [12] extended existing OLAP 

operations with planning operations such as copy, delete, revalue, 

disaggregate and forecast by using the Extended 

Multidimensional Data Model [21]. A main planning operation in 

[12] as well as in Oracle Hyperion [20] and IBM Cognos Express 

[11] is disaggregation, also called referential disaggregation. An 

example of referential disaggregation is shown in Table 1. A 

company had the sales revenues 40, 30, and 30 in 2013 for 

products A, B, and C, respectively, and it wants the total revenue 

of 110 for 2014 (i.e., 10% increase). Referential disaggregation is 

to disaggregate the total amount to each product by some 

reference values, which in this case are the revenues of 2013. The 

result of disaggregation is shown in Table 1, which is 10% 

increase in each product. As we can see in this example, however, 

referential disaggregation is too simple and obvious to decision 

makers, and it doesn’t consider, for instance, sales trends of the 

products. 

 

Table 1. Referential disaggregation 

Product 2013 2014 

A 40 44 

B 30 33 

C 30 33 

Total 100 110 
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Business forecasting typically uses time series (e.g., monthly, 

quarterly, or yearly) data, and it adopts various methods to 

calculate forecasts [15, 4, 5, 7, 25]. The most popular method to 

identify a trend in historical data is linear regression with least 

squares fitting [15, 7]. (We describe a more realistic model for the 

trend of historical data in Section 5.) An advantage of linear 

regression is that it also provides prediction intervals for future 

points [18]. For example, Figure 1 shows a linear regression with 

sales data from 2005 to 2011 and the 90% prediction interval for 

2012 (i.e., a future point of 2012 will fall in this interval 90% of 

time). This prediction interval reflects the characteristics of data, 

i.e., not only the slope of linear regression, but also variations of 

data points. The smaller the variations are, the narrower is the 

interval (Figure 2). When monthly or quarterly forecasting is 

being done, the data may show seasonal fluctuations, in which 

case a technique called deseasonalization [15] can be applied to 

the data before forecasting and then the result is adjusted with 

seasonal effects after forecasting (a detailed example of 

deseasonalization will be given in Section 3.3). 

 

 
 

Figure 1. Linear regression and 90% prediction interval 

 

 

 
 

Figure 2. Narrower prediction interval 

 

We propose a new planning operation called interval disaggregate. 

A typical example of this operation goes as follows (see Table 2). 

Suppose that the planner, typically the management of a company, 

plans sales revenues of its products in the current year. The 

revenues of products in the previous year are drawn from the 

database. An interval of the expected revenue for each product in 

the current year is computed from historical data in the database 

(e.g., as the 90% prediction interval). A total target revenue for 

the current year is given by the planner. The goal of the interval 

disaggregate operation is to find an appropriate disaggregation of 

the target revenue, considering the intervals. (The interval for a 

product, say product A, may be represented by actual values like 

40-48 rather than percentages. But as we will see in real-world 

data where actual values are large, percentages are easier to see 

their meanings than actual values.) 

In Section 2, we formulate the problem of interval disaggregation 

more precisely, and give solutions for interval disaggregation. 

Multidimensional geometry plays a crucial role in the problem 

formulation and the solutions. In Section 3, we describe our 

implementation of interval disaggregation on SAP HANA, and 

show experimental results of interval disaggregation on real-world 

data. Our experiments show that interval disaggregation gives 

more appropriate and advanced solutions than referential 

disaggregation, when historical data are taken into consideration. 

In Section 4 we describe related work, and we conclude with 

future research directions on business planning in Section 5. 

 

Table 2. Interval disaggregation 

Product 2013 Interval 2014 

A 40 100-120%  

B 30 90-110%  

C 30 100-110%  

Total 100  110 

 

 

2. INTERVAL DISAGGREGATION 
In this section we formulate the problem of interval 

disaggregation, and present solutions for the problem.  

 

2.1 Example Scenario 
Consider the following business planning scenario. The planner 

wants to plan the revenue of the company for year 2014 based on 

historical data. The sales revenues of products and product groups 

in 2013 are shown in Table 3. The planner typically works out 

disaggregation of the target revenue top-to-bottom. Initially, he 

works on the level of product groups. For product groups, the 

intervals of expected sales for 2014 are computed from historical 

data as prediction intervals. The planner gives a total target 

revenue of 2014 and wants to find an appropriate disaggregation 

of the target revenue for product groups. Suppose that the target 

revenues of product groups in Table 4 are computed by the 

interval disaggregate operation, which we will describe below. 

The planner may adjust the disaggregated target revenues by some 

other managerial considerations as in Table 5.  
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Table 3. Example scenario 

Product 2013 Interval 2014 

A 40 100-120%  

A1 20   

A2 10   

A3 10   

B 30 90-110%  

B1 30   

C 30 100-110%  

C1 20   

C2 10   

Total 100  110 

 

Table 4. Interval disaggregation on product groups 

Product 2013 Interval 2014 

A 40 100-120% 46.1 

A1 20   

A2 10   

A3 10   

B 30 90-110% 31.6 

B1 30   

C 30 100-110% 32.3 

C1 20   

C2 10   

Total 100  110 

 

Table 5. User adjustment 

Product 2013 Interval 2014 

A 40 100-120% 47 

A1 20   

A2 10   

A3 10   

B 30 90-110% 31 

B1 30   

C 30 100-110% 32 

C1 20   

C2 10   

Total 100  110 

 

Now the planner goes one level down and works on the level of 

products for product group A. The system again shows the 

planner the intervals of expected sales for the products in group A, 

and it also computes the disaggregation of group A’s target 

revenue which is also an interval disaggregate operation (Table 6). 

Finally, the planner may adjust the disaggregated values. 

 

Table 6. Interval disaggregation on products 

Product 2013 Interval 2014 

A 40 100-120% 47 

A1 20 100-120% 23.5 

A2 10 110-140% 13.6 

A3 10 90-100% 9.9 

B 30 90-110% 31 

B1 30   

C 30 100-110% 32 

C1 20   

C2 10   

Total 100  110 

In this example scenario, we have seen two occurrences of the 

interval disaggregate operation, which we will formulate in the 

next section. Hierarchical disaggregation in this scenario can be 

applied not only to the product dimension but also to the time 

dimension (monthly or quarterly from yearly) and the location 

dimension, plus any combinations of these dimensions. 

2.2 Problem Formulation 
We define the interval disaggregate operation as follows. The 

input of the operation is: 

 Interval of expected sales for each product in the current year 

     Total target revenue for the current year 

The output of the operation is an appropriate disaggregation of the 

target revenue.  

A main question in this definition is: what is an appropriate 

disaggregation? We answer this question by the example in Table 

2 because three-dimensional geometry is easier to comprehend 

than other dimensions. The intervals of products A, B, and C 

define a rectilinear polyhedron, which will be called a rectilinear 

box. When a, b, and c are disaggregations of 110 for products A, 

B, and C, respectively,           is a hyperplane as shown 

in Figure 3. The intersection of the rectilinear box and the 

hyperplane is the set of feasible solutions for the disaggregation. 

Therefore, an appropriate disaggregation would be some midpoint 

in the intersection. In general, the set of feasible solutions is a (d-

1)-dimensional polytope (where d is the number of products), 

which will be called the feasible polytope. 

 
Figure 3. Feasible polytope and intersecting point 
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There can be many candidates for the midpoint, but we mainly 

consider the following four points. 

1. Point where the min-max line and the feasible polytope 

intersect 

2. Center of mass of the feasible polytope 

3. Centroid of the feasible polytope vertices 

4. Point whose probability is maximized in the linear 

  regression model 

The min (max) point is the point of the rectilinear box defined by 

the intervals which has the minimum (maximum) value in each 

axis. The min-max line is the line between the min point and the 

max point. The point where the min-max line and the feasible 

polytope intersect will be called the intersecting point. For the 

example in Table 2, the intersecting point is shown in Figure 3. 

The center of mass is the center point of the distribution of mass 

in the feasible polytope [29]. The centroid of the feasible polytope 

vertices is simply the average of the vertices [22]. The point 

whose probability is maximized is called the mode [23]. 

Let     (       )  and     (       )  be the min point 

and the max point of the rectilinear box, respectively. Note that all 

intervals (     )   (     ) are specified by Min and Max. Let 

T be the target value of interval disaggregation. In Figure 3, 

    (        ) ,     (        ) , and      . In the 

following sections, we describe how to find the four points. 

2.3 Finding Intersecting Point 
Given the rectilinear box and the hyperplane, we describe how to 

find the intersecting point. The min-max line, which passes 

through     and    , is denoted by a vector        (    

   )  for a real number t, i.e.,   (    (     )      

 (     )). See Figure 4 in the case of two dimensions. The 

equation of the hyperplane is           for a d-

dimensional point (       ). To find the intersecting point, we 

plug the coordinates of X into the equation of the hyperplane, 

which results in (       )   ((       )  

(       ))   . Hence,  

  
  (       )

(       ) (       )
. 

If we put the value of t into X, we get the intersecting point. For 

the example in Table 2,   (                 ),   
  

  
, 

and the intersecting point is (              ).  

 
Figure 4. Line passing through Min and Max 

Another way to view the above computation is as follows. Given a 

vector (       ) in d dimensions, its Manhattan distance (also 

known as L1 distance) [22] is        , while its Euclidean 

distance is √  
      

 . The line segment between Min and 

Max (i.e., vector        ) has Manhattan distance (     

  )  (       ), and the line segment between Min and the 

intersecting point has Manhattan distance   (       ) 

because the Manhattan distance of the intersecting point is T and 

that of Min is        . Hence, the intersecting point is the 

point in the line segment between Min and Max whose relative 

distance from Min is   
  (       )

(       ) (       )
, i.e., it is     

 (       ). 

2.4 Finding Feasible Polytope (Center of Mass 

and Centroid) 
To find the center of mass and the centroid, we need to find the 

feasible polytope, i.e., the vertices of the feasible polytope. The 

vertices of the feasible polytope are the intersections of the 

hyperplane and the edges (1-faces by the terminology of [17]) of 

the rectilinear box. In Figure 3, the intersection of the hyperplane 

and the edge between (48,27,33) and (48,33,33) is    (48,29,33), 

and the other intersections are   (48,32,30),   (47,33,30), and 

   (44,33,33). 

 

 
Figure 5. Rectilinear box when Min = (0,0,0) 

 

To find the intersections of the hyperplane and the edges of the 

rectilinear box, we assume that the min point of the rectilinear box 

is (0,0,0). See Figure 5. After finding intersections with this 

assumption, we can get the correct intersections by adding the min 

point to the intersections. Consider the edges parallel to the A-axis 

in Figure 5. There are four edges parallel to the A-axis, and the 

value of a in these edges satisfies        Since the hyperplane 

is         , the intersections with these edges satisfy 

          Since the value of b is either 0 or 6 and the value 

of c either 0 or 3 in these edges, we need to find the combinations 

of these values that satisfy           They are    , 

   , which results in intersection    (     ) , which is 

  (        )  after adding the min point, and    ,    , 

which results in    (     ), which is   (        ). 
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In general, let (          ) be the max point of the rectilinear 

box, when the min point is (     ), i.e.,          for     

 . To find the intersections on the edges parallel to the A-axis, we 

need to find all subsets of           whose sum is between 

      and   , where      (       ). This is a variant 

of the subset sum problem [3,16,28,32]. Similarly, we can find the 

intersections on the edges parallel to the B-axis, etc. In the 

following, however, we present two algorithms to find the 

intersections for all axes at the same time, i.e., all vertices of the 

feasible polytope.  

 

Table 7. First algorithm when                      

i 0 1 2 3 4 5 6 7 

Sum 0 8 6 14 3 11 9 17 

 

The first algorithm computes all possible subsets of           

and checks if each subset can produce intersections. Let 

             be an array such that        is the sum of the 

subset represented by the binary notation of  , i.e.,    is in the 

subset if the k-th rightmost bit of   is 1. For example, if        

in Figure 5,          because      represents         where 

     and     . Array Sum can be computed as follows. 

          

   (        )  

         (             )  

                       [      ]             

From each entry       , we find intersections by the following 

cases. Let                  . 

1.          : the subset represented by   is an 

intersection. 

2.                  : for each dimension 

        we do the following: if the k-th rightmost 

bit of   is 0 and             , output intersection 

(       ) , where       if     and the j-th 

rightmost bit of i is 1;      if     and the j-th 

rightmost bit of i is 0;              if    . (If  

            , there is an intersection, but this 

intersection will be found in Case 1 of some other 

entry.) 

3.               : output no intersections. (If 

              , again this intersection will be 

found in Case 1 of some other entry.) 

For the example in Figure 5,                         . 

Array Sum for this example is shown in Table 7. Since        

       is in Case 2, and it produces intersection    (     ). 

Let S be the number of intersections, and P the number of entries 

such that                  . Computing Sum takes  (  ) 

time. For each entry such that                  , the 

three cases above take at least  ( ) time, and if there are many 

intersections from the entry then Case 2 takes  ( ) time for each 

intersection. Therefore, the time complexity of the first algorithm 

is  (          ). 

 

Table 8. Second algorithm when                      

A 0 1 2 3 4 5 6 7 8 9 10 11 12 13 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 8 8 8 8 8 8 

2 0 0 0 0 0 0 6 6 8 8 8 8 8 8 

3 0 0 0 3 3 3 6 6 8 9 9 11 11 11 

 

The second algorithm uses dynamic programming. Let  (   ) be 

the maximum value    that can be obtained with        . Then 

a dynamic programming recurrence for  (   ) is: 

 (   )  

{
 

 
                                                                       
 (     )                                      

   {
 (     )                   

 (        )    
 }       

           

               

 

We first compute all entries of table  (          )  by the 

recurrence above, and then find all paths from the entries 

 (               )  to A(0,0) by backtracking [30]. Each 

path corresponds to a subset of           whose sum is     

    . Hence, the number of distinct paths is exactly P. For each 

path, we perform Cases 1 and 2 of the first algorithm, where 

Sum[i] is now the sum of the subset corresponding to the path. 

The time complexity of the second algorithm is  (         

   ) , since computing table A takes  (    )  time and 

backtracking  (   ). 

For Figure 5, dynamic programming table A is shown in Table 8, 

where there are four backtracking paths, each of which produces 

an intersection (e.g., the backtracking path from A(3,6) produces 

intersection    (     )). If we backtrack from A(3,7), we arrive 

at (0,1). Thus, if there are identical values in  (          

     ), we backtrack only from the leftmost one, which leads to 

A(0,0). 

Comparing the two algorithms, the first one is preferable when the 

dimension d is small whereas the second is a good choice when 

the target value    is moderate. Note that the second is also an 

exponential time algorithm because the value of    is exponential 

with respect to the input size representing   . When we run the 

two algorithms on a PC with a 4GB memory, the maximum value 

of    for the first algorithm and that of     for the second 

algorithm is     due to the memory limit. The running times of 

the two algorithms are shown in Table 9. When either d or    is 

moderate, the algorithms are very fast. Even in the extreme case, 

they finish within 5 seconds or so. 
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Figure 7. Two-dimensional interval disaggregation with               (t-distribution with 5 degrees of freedom) 

 

Table 9. Running times (sec) of two algorithms on various 

values of d and    

(    ) (      ) (      ) (      ) (      ) 

First 

algorithm 
0.001 0.001 5.009 5.007 

Second 

algorithm 
0.001 4.140 0.002 3.720 

 

Once all vertices of the feasible polytope are found by one of the 

two algorithms above, the centroid, which is the average of the 

vertices, can be easily computed. For instance, the centroid is 
       

 
 (                ) in Figure 3. 

To find the center of mass, we first divide the feasible polytope 

into simplexes (e.g., a simplex in two dimensions is a triangle, and 

it is a tetrahedron in three dimensions) by using Delaunay 

triangulation [8]. The center of mass of a simplex is the centroid 

of its vertices, and the center of mass of the feasible polytope is 

the weighted sum of the centers of mass of the simplexes where 

the weights are the volumes of the simplexes [8]. We 

implemented this computation by incorporating the code for 

Delaunay triangulation from CGAL, Computational Geometry 

Algorithms Library [1]. For the example in Figure 3, the center of 

mass is (              ). 

 

 

Figure 6. Linear regression and probability density function 

 

2.5 Finding Mode 
When there are d dimensions in interval disaggregation, we apply 

linear regression to each dimension. Let        be the linear 

equation obtained by linear regression on a sample of n points in a 

dimension. We are interested in the value of the response variable 

   at a future value   . Let          . The value of    at     

follows a t-distribution whose mean is    . See Figure 6, where 

n=7. If    ( )  is the probability density function of the t-

distribution with n-2 degrees of freedom, the probability density 

function for    is 

   (
      

√     (  
 

 
 

(    ̅) 

   
)

), 

where        ̅     are values computed from the n sample 

points [18]. 

Let         , be the response variable (   in the previous 

paragraph) in the i-th dimension at the future value   . Let 

    (  ) be the probability density function for   . If we assume 

for simplicity that the d dimensions of interval disaggregation are 

independent, the mode is a point (       ) such that     (  )  

      (  ) is maximized. Consider a two-dimensional interval 

disaggregation in Figure 7, where Min=(5,6), Max=(15,10), and 

T=23. The mode is the point (     ) such that          and 

    (  )      (  ) is maximized. For the example in Figure 3, 

the four points are shown in Figure 8. 

 

Figure 8. Intersecting (46.1, 31.6, 32.3), center of mass (46.6, 

31.6, 31.8), centroid (46.75, 31.75, 31.5), mode (47.01, 31.22, 

31.7) 
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To find the mode in the search space of the feasible polytope, we 

use three methods: hill climbing of our own implementation, 

pattern search in MATLAB [19], and Interalg of Openopt [14]. In 

every experiment in Section 3, the three methods found the same 

point, which is the mode. 

Table 10. Comparison of intersecting point, center of mass, 

and mode. Inside parentheses are values of probability density 

functions. 

Product Intersecting Center of mass Mode 

A 13.57 (0.134) 14.00 (0.108) 14.55 (0.081) 

B 9.43 (0.134) 9.00 (0.218) 8.45 (0.336) 

Prob. 0.0180 0.0236 0.0273 

Table 10 shows the intersecting point, the center of mass, and the 

mode for the example in Figure 7. The intersecting point is the 

point (          )  where     (     )      (    )       . 

The center of mass (also centroid) is (    ), which is the center 

point of the feasible polytope (which is a line segment in this 

case). The mode is (          )  where     (     )  

    (    )         is the maximum. 

2.6 Cell Locking 
As described in the scenario of Section 2.1, the planner may 

adjust disaggregated values after interval disaggregation. During 

the process of adjusting, he may fix some values and want to see 

the remaining values determined by interval disaggregation. For 

the disaggregated values in Table 4, suppose that the planner fixes 

the value of product group A to 47 and wants the values of 

product groups B and C to be computed by interval disaggregation 

(Table 5). This is a case of cell locking, and the locking of k cells 

reduces a d-dimensional problem to a (d-k)-dimensional one. 

In Table 5 where the disaggregated value of product group A is 

fixed to 47, it becomes a two-dimensional interval disaggregation 

in which Min = (27,30), Max = (33,33), and the target value is 

110 – 47 = 63. For each of the four points as the midpoint, the 

two-dimensional interval disaggregation can be solved. For 

instance, we can compute the intersecting point as follows. Max – 

Min = (6,3), which has Manhattan distance 9. Since the 

Manhattan distance of the intersecting point is 63 and that of Min 

is 57, the intersecting point has relative distance 6/9 from Min, 

and it is     (   )  
 

 
 (     ), as shown in Table 5. 

2.7 Discussions 
We now make a comparison between the four points. Consider the 

two-dimensional interval disaggregation in Figure 7. Now we 

change the value of T from 13 to 23 as shown in Figure 9. Note 

that the feasible polytope is a line segment, e.g., the line segment 

between (5,8) and (7,6) when T=13.  

The intersecting point is the intersection of the min-max line and 

the feasible polytope. Hence, it moves from (6.43, 6.57) to (13.57, 

9.43) as T goes from 13 to 23 in Figure 9. In d dimensions, the 

intersecting point is      (       ), and thus it has relative 

distance t from Min in each dimension. Hence, it is a point 

(       ) such that     (  )         (  ), i.e., it balances 

the probabilities in all dimensions. 

 

Figure 9. Intersecting point, center of mass, and mode when T 

changes from 13 to 23 

 

Since the center of mass is the center point of the feasible 

polytope, it moves from (6,7) to (7,8), then to (13,8), and finally 

to (14,9) as T goes from 13 to 23 in Figure 9. The centroid is the 

same as the center of mass in two dimensions, but it may be 

different in higher dimensions. In Figure 3, if we change T from 

112 to 110, the feasible polytope is a triangle from T=112 to 111, 

but just after 111 it becomes a quadrilateral. Thus the centroid 

does not make a continuous line when T changes from 112 to 110, 

while the center of mass always makes a continuous line. Hence, 

the centroid may be less appropriate as the midpoint than the 

center of mass in three or higher dimensions. 

An advantage of finding the feasible polytope (on the way of 

computing the center of mass or the centroid) is that we can 

tighten the intervals so that they don’t have ranges where there 

exist no feasible solutions. In Table 2, input intervals are 40-48 

for A, 27-33 for B, and 30-33 for C, but the tightened intervals are 

44-48 for A, 29-33 for B, and 30-33 for C as computed in Section 

2.4. 

The mode is a point (       )  such that     (  )    

    (  ) is maximized, and it moves from (5.45, 7.55) to (14.55, 

8.45) in Figure 9. Let us compare the mode and the intersecting 

point in Table 10. The intersecting point (13.57, 9.43) satisfies 

    (     )      (    ). In the dimension where the prediction 

interval is larger, i.e., 1st dimension, the mode point moves to the 

direction of decreasing     , and in the other dimension it moves 

to the direction of increasing     , because the increased amount 

of      is larger than the decreased amount of      as shown in 

Table 10 and Figure 7. 

Our algorithms find the intersecting point, the center of mass, and 

the centroid (in addition to finding the feasible polytope) exactly 

as they are defined. For the mode, however, we presented 

heuristics (hill climbing, pattern search of MATLAB, and Interalg 

of Openopt) to find a point which is close enough to the mode. 
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All the programs that compute the four points finish 

instantaneously in every experiment of Section 3, except pattern 

search of MATLAB and Interalg of Openopt which take 1-3 

seconds depending on function tolerances. 

 

3. EXPERIMENTS 

3.1 Planning in SAP HANA 

 
Figure 10. Planning engine of SAP HANA 

Figure 10 shows a diagram of SAP HANA, a commercial in-

memory column-store database system. Planning users build an 

initial plan and refine it interactively by changing queries, target 

values and the distribution of target values. The planning engine 

supports this use case via planning commands to build a 

calculation model for the initial plan and to interactively change 

the calculation model. A calculation model is essentially a data 

flow graph, where each node represents a relational operator, a 

composition of relational operators in the form of a SQL query 

against its input nodes, or a custom operator written in the L 

language. Calculation models are optimized and evaluated by the 

calculation engine. 

SAP HANA supports disaggregation as relational operators. 

Disaggregate operators can be placed in any proper location of 

relational algebra trees. The result of any relational operator such 

as aggregation can be fed into a disaggregate operator. And the 

result of a disaggregate operator can be fed into other relational 

operators such as a join operator. Disaggregation is provided as 

two variants, a unary disaggregate operator and a binary 

disaggregate operator. Each of them supports two different 

disaggregation algorithms, referential disaggregation and interval 

disaggregation. 

 

 

Figure 11. Unary interval disaggregate operator 

Figure 11 illustrates a unary interval disaggregate operator. It 

receives relation R as an input, distributes the given target value, 

110, to the three tuples of R. Its output is the relation R 

augmented with a new column 2014 storing the disaggregated 

values, where the intersecting point is used as the midpoint.  

 

Figure 12. Binary interval disaggregate operator 

Figure 12 illustrates a binary interval disaggregate operator. It 

receives two input relations, a disaggregation element relation and 

a target relation storing the target values to distribute. It works as 

follows. First, the element relation is partitioned by the grouping 

columns. In the example, the target relation has three partitions by 

the Product Group column. Second, for each partition, the 

corresponding target value is retrieved from the target relation. 

This lookup is similar to equi-join processing. Third, the target 

value is distributed to the tuples of the corresponding partition in 

the element relation. The element relation plus a new column 

storing disaggregated values is emitted as the operator output. 
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Figure 14. Experiment with group X1 and target value SR×1.1 

 

 

 

Figure 13. Filter pushdown across disaggregate operator 

For performance optimization, a filter or selection operator on the 

partition columns or a subset of the partition columns are pushed 

down across binary disaggregation operators, as shown in Figure 

13. The binary disaggregation works partition by partition. Thus, 

it is safe to skip disaggregation for a partition if the partition is 

filtered out later. In this regard, the disaggregate operator can be 

compared to the SQL window functions, across which filters on 

partition-by columns are pushed down. 

In real-world planning scenarios, disaggregate operations usually 

take place in a hierarchy as described in Section 2.1, and fixing 

values (cell locking) may be interleaved with disaggregate 

operations as in Section 2.6. Such a situation requires 

disaggregation as relational operators, because SQL 

implementations may not be able to handle it. 

3.2 Experimental Data and Results 
In this section we show experimental results of interval 

disaggregation on real-world data. The dataset used in our 

experiments is a nine-dimensional data cube represented as a star 

schema with a fact table of 67.2 million rows and nine dimension 

tables such as product, region, time, etc. Each dimension has one 

or more hierarchies defined in it. For instance, the time dimension 

hierarchy consists of three levels: year, quarter, and month. The 

cube contains seven years (2005~2011) of general ledger data for 

financial accounting in one of the leading industrial companies, 

which manufactures industrial tools and equipment. Note that the 

original line-item table has tens of billions of rows and the 67.2 

million fact table rows are aggregated ones at the lowest hierarchy 

levels. When loaded into HANA’s in-memory column-store tables, 

the total table size is about 2.9GB, including indexes.  

In our experiments we used the revenues of the company in 

various countries. We selected 9 countries from region X, 6 

countries from region Y, and 3 countries from region Z which 

have all the data in 2005-2011, and divided them into groups of 3 

countries each, i.e., the groups are X1-X3, Y1-Y2, and Z1. We 

applied referential disaggregation and interval disaggregation to 

the data of six years 2005-2010 and compared the results of 

disaggregation against the actual revenues of 2011. In interval 

disaggregation we used the 90% prediction intervals which are 

computed from the t-distribution with 4 degrees of freedom. The 

target values of disaggregation were based on the sum, SR, of the 

revenues in 2010 (last data points for business planning) or the 

center, CP, of the prediction interval in 2011 to reflect the trend of 

historical data. The target values used in experiments were SR, 

SR×1.1, SR×1.2, CP, CP×1.15, and CP×0.85. Since there were 6 

groups and 6 target values in each group, we had 36 experiments. 

Table 11. Experimental result of group X1 and target value 

SR×1.1 

 
Mean 

percentage error 
Rank 

Referential 10.5% 4 

Intersecting 5.0% 1 

Center of Mass 9.5% 3 

Centroid 10.5% 5 

Mode 8.4% 2 

Figure 14 illustrates one of the 36 experiments, where the group is 

X1 and the target value is SR×1.1. In Figure 14, the 90% 

prediction intervals and the results of disaggregation (4 bars) are 

shown. The leftmost bar is the result of referential disaggregation, 

the next bar (on the prediction interval) the intersecting point, the 

next the center of mass, and the last the mode. The results of 

referential disaggregation are simply 110% of the data points of 

2010. But the intersecting point, the center of mass, and the mode 

reflect the trend in the linear regression model. Thus, in country 

X11 where the trend is upward, they are higher than the referential 

point, and in country X13 where the trend is almost flat, they are 

lower than the referential point. The intersecting points are in the 

same positions in the prediction intervals relative to the lengths of  

R S 

disaggregate   

a 

filter a  Product Group = A 

filter  a filter a  

disaggregate   

R S 

... 
partition by  
Product Group a 
... 
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Figure 15. Deseasonalized data points 

 

 

the intervals, and in country X13 where the prediction interval is 

small, the mode is closer to the center of the interval than the 

intersecting point. The results of disaggregation are compared 

against the actual revenues of 2011. For each point, say the mode, 

we take the absolute value of the percentage error between the 

mode and the actual revenue of 2011 in a country, and calculate 

the mean of the absolute values for the three countries. The mean 

values are shown in Table 11, where the rightmost column shows 

the ranks of the points based on the mean values.  

Table 12. Summary of experimental results 

Group X1 X2 X3 Y1 Y2 Z1 Average 

Referential 3.33 2.67 3.67 3.83 3.50 3.83 3.47 

Intersecting 2.83 2.00 2.50 2.17 1.67 3.17 2.39 

Center of Mass 3.00 3.50 3.67 2.67 3.17 2.50 3.09 

Centroid 3.83 3.50 2.83 3.50 3.83 2.67 3.36 

Mode 2.00 3.33 2.33 2.83 2.83 2.83 2.69 

The result of the 36 experiments are shown in Table 12, where the 

value of an entry, say the mode in group X1, is the average of the 

ranks of the mode in the 6 experiments with 6 target values. A 

value in the rightmost column is the average in the 36 experiments. 

In general, the referential point which depends only on the last 

data point does not perform well, and the four points in the linear 

regression model are better, which shows that it is helpful to use 

historical data in disaggregation. Among the points in the linear 

regression model, the intersecting point and the mode are better 

than other points. 

We remark on how to select one among the five points. If the 

trends of all dimensions are more or less the same, referential 

disaggregation works fine. But, if the trends differ from each other, 

interval disaggregation should be used. Among the four points of 

interval disaggregation, the intersecting point performs the best in 

general, and the mode may be used if the planner wishes to put 

more bias on the dimension of a larger interval (i.e., when the 

target value is larger than the center point of the rectilinear box, 

the dimension of a larger interval gets a bigger portion than that of 

the intersecting point in disaggregation; it gets a smaller portion, 

otherwise, as shown in Figure 9). 

Table 13. Disaggregation for Q1 2011. 

Country 
Deseasonalized 

intersecting point 

2nd column × Q1 

seasonal index 

Actual 

revenue 

Y21 26080.6 20465.1 (5.46%) 19405.0 

Y22 9416.2 8530.7 (3.10%) 8803.8 

Y23 6302.7 5583.2 (8.11%) 6076.0 

 

3.3 Deseasonalization 
So far, interval disaggregation was applied to yearly planning. 

Suppose that the planner wants quarterly planning, but the 

quarterly dataset shows seasonal fluctuations. An easy solution is 

that if the next quarter to plan is Q1, then we pick only Q1 data 

points and apply interval disaggregation as in yearly planning. But, 

if sales started to increase significantly from Q2 of last year, this 

recent trend cannot be reflected in this easy solution. That is, we 

want to use all data points of the quarterly dataset, in which case a 

technique called deseasonalization [15] should be incorporated. In 

this section we describe how our interval disaggregation can be 

combined with deseasonalization in quarterly or monthly planning. 

When we are going to use all data points for quarterly planning, 

we need to remove the effect of seasonal variations. In 

deseasonalization, we first compute a seasonal index for each 

quarter [15], and then the sales revenue of each quarter is divided 

by its seasonal index. Figure 15 shows (1) quarterly revenues of 

country Y21 in 2007-2010 where Q4 revenues are higher than 

those of other quarters, (2) seasonal indexes in the four quarters, 

and (3) the deseasonalized quarterly data points which show the 

overall trend that is increasing. 

We apply interval disaggregation (with intersecting points and 

target values CP) to the deseasonalized quarterly data of group Y2 

in 2007-2010 as in yearly planning, which is shown in Figure 16 

and Table 13. Finally, we multiply the seasonal index of Q1 to the 

intersecting points computed by interval disaggregation (2nd 

column of Table 13) to get the final disaggregation (3rd column of 

Table 13) for Q1 2011. A value inside parentheses in Table 13 is 

the absolute value of the percentage error between final 

disaggregation (3rd column) and the actual revenue of Q1 2011 (4th 

column). 
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Figure 16. Interval disaggregation on deseasonalized quarterly revenues. Bars on prediction intervals are the intersecting points, 

bars on the right are intersecting points multiplied by the seasonal index of Q1, and circles are actual revenues of Q1 2011. 

 

 

4. RELATED WORK 
The needs of tools for business planning were identified as early 

as 2000 [31], but research on planning operations has been done 

only recently [12,13]. A main planning operation in the literature 

and in practice [11,20] is referential disaggregation, and the 

problem formulation of interval disaggregation proposed in this 

paper is new. So is the solution approach for interval 

disaggregation, including the feasible polytope, etc. 

Referential disaggregation frequently appears not only in planning 

applications but also in business accounting applications. 

Disaggregation has been implemented as application logic or as a 

function that application servers provide. For instance, SAP 

accounting applications heavily use disaggregation functions to 

distribute shared costs, such as office maintenance costs, to 

relevant departments by a certain criteria such as the number of 

employees per department. It is a kind of referential 

disaggregation and is implemented as business functions that SAP 

application servers provide [24]. However, we are unaware of any 

effort to provide disaggregation as a relational operator in database 

engines. 

The subset sum problem has been studied extensively [3,16,28,32], 

but to our knowledge the problem of finding the feasible polytope 

in Section 2.4, i.e., solving d subset sum problems simultaneously 

is new in the field of algorithms. So are the two algorithms in 

Section 2.4 that solve the problem. 

Deseasonalization has been studied in the context of business 

forecasts [15], and Section 3.3 is a straightforward adaptation of it 

to interval disaggregation. 

 

5. CONCLUDING REMARKS 
We have proposed a new planning operation called interval 

disaggregate and presented solutions for interval disaggregation. 

Our experiments on real-world data show that interval 

disaggregation gives more appropriate and advanced solutions 

than the known basic disaggregation called referential 

disaggregation.  

However, this is just a beginning of new research directions on 

business planning. More advanced disaggregate operations can be 

developed by incorporating various factors. For example, the 

relationship between revenues and costs as in the cost-volume-

profit analysis [6, 10] can be considered in disaggregation, and 

more sophisticated constraints such as factory capacities may be 

taken into account. Also product life-cycles [26] rather than linear 

regression can be used as a trend model of historical data. 

Developing new kinds of business planning operations other than 

disaggregation will be interesting as well. 
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