
Changing Engines in Midstream: A Java Stream
Computational Model for Big Data Processing

Xueyuan Su, Garret Swart, Brian Goetz, Brian Oliver, Paul Sandoz
Oracle Corporation

{First.Last}@oracle.com

ABSTRACT
With the addition of lambda expressions and the Stream
API in Java 8, Java has gained a powerful and expressive
query language that operates over in-memory collections of
Java objects, making the transformation and analysis of da-
ta more convenient, scalable and efficient. In this paper,
we build on Java 8 Stream and add a DistributableStream
abstraction that supports federated query execution over an
extensible set of distributed compute engines. Each query
eventually results in the creation of a materialized result
that is returned either as a local object or as an engine de-
fined distributed Java Collection that can be saved and/or
used as a source for future queries. Distinctively, Distributa-
bleStream supports the changing of compute engines both
between and within a query, allowing different parts of a
computation to be executed on different platforms. At exe-
cution time, the query is organized as a sequence of pipelined
stages, each stage potentially running on a different engine.
Each node that is part of a stage executes its portion of the
computation on the data available locally or produced by
the previous stage of the computation. This approach allows
for computations to be assigned to engines based on pric-
ing, data locality, and resource availability. Coupled with
the inherent laziness of stream operations, this brings great
flexibility to query planning and separates the semantics of
the query from the details of the engine used to execute it.
We currently support three engines, Local, Apache Hadoop
MapReduce and Oracle Coherence, and we illustrate how
new engines and data sources can be added.

1. INTRODUCTION
In this paper, we introduce DistributableStream, a Java

API that enables programmers to write distributed and fed-
erated queries on top of a set of pluggable compute engines.
Queries are expressed in a concise and easy to understand
way as illustrated in the WordCount example shown in Pro-
gram 1. The framework supports engines that are disk or
memory based, local or distributed, pessimistic or optimistic

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 13
Copyright 2014 VLDB Endowment 2150-8097/14/08.

fault handling. Distinctively it can also federate multi-stage
queries over multiple engines to allow for data access to be
localized, or resource utilization to be optimized. Since Dis-
tributableStream is a pure Java library with an efficient local
implementation, it can also scale down for processing small
amounts of data within a JVM.

Program 1 WordCount

public static Map<String, Integer> wordCount(

DistributableStream<String> stream) {

return stream

.flatMap(s -> Stream.of(s.split("\\s+")))

.collect(DistributableCollectors

.toMap(s -> s, s -> 1, Integer::sum)); }

The contributions of our work include:

• A DistributableStream interface for processing Big Da-
ta across various platforms. The abstraction frees de-
velopers from low-level platform-dependent details and
allows them to focus on the algorithmic part of their
design. At execution time, stream applications are
translated into query plans to be executed on the con-
figured compute engines.

• A pluggable Engine abstraction. This design separates
engine-specific configuration from the stream compu-
tational model and the modular design makes adding
new JVM-enabled engines straightforward, supporting
negotiable push or pull-based data movement across
engine boundaries. Applications developed with the
DistributableStream API can be reused on different
engines without rewriting any algorithmic logic.

• Three engine implementations – two distributed en-
gines, Apache Hadoop and Oracle Coherence, and a
local engine, layered on the Java 8 Stream thread pool
where local computations are executed in parallel on
multiple cores – serve to validate and commercialize
this design. Our implementation approach allows for
both high-level query planner and low-level compiler
optimizations. On the high level, we use explicit data
structures to describe the processing steps and allow
an execution planner to manipulate these data struc-
tures to optimize the movement of data and state be-
tween the engines. On the low level, each portion of
a DistributableStream is assembled as a local Java 8
Stream which arranges its code to make Java Just-in-
Time based compilation optimizations applicable.

1343

• Implementations of Java 8 Streams for various external
data sources, including InputFormatStream for access-
ing HDFS and other Hadoop data sources and Named-
CacheStream for accessing Oracle Coherence; and Java
8 Stream Collector implementations, such as Output-
FormatCollector and NamedCacheCollector, for stor-
ing the results of stream computations into Apache
Hadoop and Oracle Coherence.

• Federated query model: Data streams connect fusible
operators within a single engine pipeline and opera-
tors running in parallel on different engines, forming
a clean and easy to understand federated query mod-
el. The ability to exploit multiple engines within a
single query allows us to most efficiently exploit disk
arrays, distributed memory, and local memory for per-
forming bulk ETL, iterative jobs, and interactive ana-
lytics, by applying the appropriate compute engines
for each processing stage. For example, combining
Hadoop with a distributed memory engine (Coherence
or Spark) and an SMP, we can read input data from
HDFS, cache and efficiently process it in memory, and
perform the final reduction on a single machine.

• Applications are the proof of any programming sys-
tem and WordCount is not enough. For that reason
we show this interface at work for distributed reservoir
sampling, PageRank, and k-means clustering. These
examples demonstrate the expressiveness and concise-
ness of the DistributableStream programming model.
We also run these examples on different combinations
of engines and compare their performance.

A variety of features are incomplete as of this writing,
including a global job optimizer, job progress monitoring,
and automatic cleanup of temporary files and distributed
objects dropped by client applications. In addition we have
plans to support other engines and data sources, such as
Spark, Tez, and the Oracle Database, high on our list.

Our discussion starts with an overview of Java 8 Stream
(§2) and DistributableStream(§3). We then present detailed
discussions on the design and implementation of Distributa-
bleStream (§4), example stream applications (§5), and ex-
perimental evaluation (§6). Finally, we explore work that
are promising for future development (§7), survey related
work (§8), and conclude the paper (§9).

2. STREAM IN JAVA 8
Java SE 8 [12] is the latest version of the Java platform

and includes language-level support for lambda expressions
and the Stream API that provides efficient bulk operations
on Java Collections and other data sources.

2.1 Prerequisite Features for Supporting Stream

2.1.1 Lambda Expressions
A Java lambda expression is an anonymous method con-

sisting of an argument list with zero or more formal param-
eters with optionally inferred types, the arrow token, and a
body consisting of a single expression or a statement block.
(a,b) -> a+b is a simple example that computes the sum
of two arguments, given that the enclosing environment pro-
vides sufficient type information to infer the types of a, b.

Lambda expressions are lifted into object instances by a
Functional Interface. A functional interface is an interface
that contains only one abstract method. Java 8 predefines
some functional interfaces in the package java.util.function,
including Function, BinaryOperator, Predicate, Supplier, Con-
sumer, and others. Concise representation of a lambda ex-
pression depends on target typing. When the Java compiler
compiles a method invocation, it has a data type for each ar-
gument. The data type expected is the target type. Target
typing for a lambda expression is used to infer the argument
and return type of a lambda expression. This allows types to
be elided in the definition of the lambda expression, making
the expression less verbose and more generic.

The Java 8 Stream API is designed from the ground up
for use with lambda expressions, and encourages a stateless
programming style which provides maximum flexibility for
the implementation.

2.1.2 Dynamic Compilation
The Just-in-Time compiler is an important technique used

to optimize the performance of programs at runtime, inlining
methods, removing redundant loads, and eliminating dead
code. The design of the Java 8 Stream API plays naturally
into the strength of such dynamically-compiling runtime,
exploiting its ability to identify and dynamically optimize
critical loops. This design allows the performance of streams
to continue to improve as the Java runtime environment
improves, resulting in highly efficient stream execution.

An important design principle is to ensure the classes for
methods invoked in critical loops can be determined by the
JIT when the loop is compiled, as this allows the inner meth-
ods to be inlined and the loop to be intelligently unrolled.

2.2 The Stream Computational Model
Java Stream is an abstraction that represents a sequence

of elements that support sequential and parallel aggregate
operations. A stream is not a data structure that stores ele-
ments but instead it conveys elements from a source through
a pipeline of computational operations. An operation on a
stream produces a result without modifying its source.

A stream pipeline consists of a source, zero or more in-
termediate operations, and a terminal operation. The ele-
ments of a stream can only be visited once during the life of
a stream. If data is needed as input to several operations, a
new stream must be generated to revisit the elements of the
source, or the data must be buffered for later use.

2.2.1 Streams: Data in Motion
A stream is an abstract representation of possibly un-

bounded elements from an array, a Collection, a data struc-
ture, a generator function, an I/O channel, and so on. In
contrast with lazy data sets such as Pig Latin relations [4]
and Spark RDDs [5], streams conceptually represent data in
motion. As we will see in Section 3, our stream model not
only allows data to easily flow between different components
within a compute engine, but also to conveniently flow from
one engine into another. This makes the federated query
model conceptually clean and easy to understand.

2.2.2 Stream Transforms: Intermediate Operations
Stream transforms, also called intermediate operations in

the API, return a new stream from a stream and are pro-
cessed lazily. A lazy operation is deferred until the final

1344

result is requested. Lazy operations avoid unnecessary early
materialization and offer potential optimization opportuni-
ties. For example, filtering, mapping, and reducing in a
filter-map-reduce pipeline can be fused into a single pass
over the data with minimal intermediate state. Laziness al-
so avoids unnecessary stream traversal so that a query like
“find the first item that matches the predicate” may return
before examining all elements in the stream.

Commonly used intermediate operations include filter, map,
flatMap, distinct, and sorted. Note that sorted is a blocking
operation but not a terminal operation. The sorted oper-
ation requires incorporating state from previously seen ele-
ments when processing new elements.

2.2.3 Collectors and Terminal Operations
Terminal operations trigger the traversal of data items

and consume the stream. Two commonly used terminal op-
erations are reduce and collect. Reduce is a classical func-
tional fold operation, performing a reduction on the ele-
ments of a stream using an associative accumulation func-
tion. However, users are more likely to use the collect op-
eration, which extends the notion of reduction to support
mutable result containers such as lists, maps, and buffers,
as is common in Java programs.

Data item

Container

Accumulator

Supplier Container

Accumulator
Data item

Supplier

Combiner

Container

Container
Container

Container
Combiner

Container

Finisher

Result

Figure 1: Parallel data reduction using a Collector.

The most general use of collect performs the mutable re-
duction using a Collector. A Collector is a mutable reduc-
tion operator that accumulates input elements into a muta-
ble result container, optionally transforming the accumulat-
ed result into a final representation after all input elements
have been processed. A Collector is defined by four func-
tions: a Supplier that creates and returns a new mutable
result container, an Accumulator that folds a value into a
result container, a Combiner that merges two result con-
tainers representing partial results, and an optional Finisher
that transforms the intermediate result into the final repre-
sentation. By default the finisher is an identity function.
With the new syntax of double colons for method reference
capture, the following code creates a collector for collecting
widgets into a TreeSet,

Collector.of(

TreeSet::new,

TreeSet::add,

(left, right) ->

{ left.addAll(right); return left; });

Collecting data with a Collector is semantically equivalent
to the following,

R container = collector.supplier().get();

for (T t : data)

collector

.accumulator()

.accept(container, t);

return collector.finisher().apply(container);

However, as illustrated in Figure 1, the collector can parti-
tion the input, perform the reduction on the partitions in
parallel, and then use the combiner function to combine the
partial results. There is a rich library of Collector building
blocks in Java SE 8 for composing common queries.

2.2.4 Spliterator and Parallelism
Java 8 Streams are built on top of Spliterators, which

combine sequential iteration with recursive decomposition.
Spliterators can invoke consumer callbacks on the elements
of the stream. It is also possible to decompose a Spliterator,
partitioning elements into another Spliterator that can be
consumed in parallel. The results of processing each Split-
erator can be combined inside of a Collector. Collection
implementations in the JDK have already been furnished
with a reasonable Spliterator implementation and most ap-
plication developers do not need to work directly with Split-
erators, instead writing to the Stream abstraction built on
top. The following is a query that computes the sum weight
of all red widgets in parallel,

widgets

.parallelStream()

.filter(b -> b.getColor() == RED)

.mapToInt(b -> b.getWeight())

.sum();

Note that a query on a parallel stream over the same da-
ta collection is not guaranteed to perform better than on a
sequential stream. There are many factors that affect the
performance of parallel execution, including whether the un-
derlying data source can be efficiently split, how balanced
the splitting is, and what is the relative cost of the accumula-
tor and combiner functions. In order to achieve performance
improvement, one must carefully design the Spliterator as
well as the stream operators and collectors.

2.3 Challenges Not Addressed By Stream
The Java 8 Stream API provides expressive and efficient

ways of processing data inside a JVM, either sequentially or
in parallel. However, there are many challenges brought by
data sets that cannot fit in a single machine and thus require
distributed storage and processing. These challenges include
but are not limited to

• Querying against distributed data sources like HDFS,
Coherence, and distributed Databases;

• Shipping functions and results among multiple nodes;

• Storing results in distributed form other than single-
JVM Java Collections;

• Federating multiple compute engines for query pro-
cessing and global query optimization.

In the following sections, we present the distributable ver-
sion of the Stream API and describe how we address these
challenges in our design and implementation.

1345

3. DISTRIBUTABLE STREAM

3.1 The Basic Idea
DistributableStream is a stream-like interface that pro-

vides similar filter/map/collect operations that can be ap-
plied to distributed data sets. At the high level, Distributa-
bleStream works by serializing the whole operation pipeline
and shipping them to worker nodes. Each worker node is
responsible for performing a local portion of the Distributa-
bleStream, usually from the data partitions that are locally
resident on this node. To do this, the stream pipeline is de-
serialized and applied directly to the local stream. Shipping
the stream pipeline to the place where data resides enables
efficient stream execution. Finally, these partial answers
from local streams are connected by some form of distribut-
ed collection to form a global view of the data. Additional
streams can be generated from such distributed collections
to be consumed by downstream applications. See Figure 2
for an illustration of this paradigm.

 Compute Engine
Client Node

Distributed
job

optimizations

Serialized ops
/ collectors

DistributableStream

 Worker Node

Computational
Stage

Deserialized ops
/ collectors

Stream

Data Storage

Runtime JVM
optimizations

Local
collection

Engine
specific

distributed
collection

Data
partitions

Figure 2: The workflow of DistributableStream.

We rely on serialization to achieve function shipping de-
scribed above. Serialization is the process of converting a
graph of object instances into a linear stream of bytes, which
can be stored to a file or sent over the network. A clone of the
original objects can be obtained by deserializing the bytes.
To facilitate this, we define Serializable subclasses of the Ja-
va 8 java.utils.function interfaces. By using these interfaces
as the arguments for DistributableStream, we ensure that
the lambda expressions can be serialized and the functions
can be shipped to the node where the data resides. We al-
so define a Serializable subclass for the Collector interface
as DistributableCollector and use this type in Distributa-
bleStream. A companion factory called DistributableCollec-
tors is provided to create commonly used collectors appro-
priate for DistributableStream.

3.2 The Engine Abstraction
An important feature of the DistributableStream frame-

work is its support for multiple compute engines and feder-
ated queries that over them. The Engine interface provides
a convenient abstraction for this purpose. Each implemen-
tation of DistributableStream has a corresponding instance
of the Engine interface that controls which compute engine
is to be used to execute the computation. Modern data cen-
ters have many clusters, supporting multiple engines. An
instance of Engine refers to one engine running on one clus-
ter. Calling the

DistributableStream.withEngine(Engine engine)

method switches the underlying compute engine from the
current one to the one specified in the argument, and re-
turns an instance of the DistributableStream associated with
the new engine. The Engine class is also used for passing
platform specific parameters, as well as providing an avenue
for two compute engines to negotiate the data movement
between them. The Engine abstraction makes the stream
computational model succinct and clean.

Currently we have support for three engines, LocalEngine,
MapReduceEngine, and CoherenceEngine. Supporting new
engines is convenient as the only requirement is to imple-
ment the Engine interface. We plan to add the support
for more distributed platforms such as Apache Spark and
Apache Tez in the future.

3.3 Extended Forms of Collect
In the standard Stream library, the collect() operation is a

terminal operation – it consumes a data set and produces a
summary result. However, more flexibility is needed in a dis-
tributed environment, so we extend the default terminating
collect in two ways in DistributableStream.

A method collectToStream() is added to the interface
that provides for a collecting operator that is blocking but
not terminating. CollectToStream() returns another Dis-
tributableStream so that we can build longer running op-
erations, reduce startup time and avoid materialization of
intermediate results. This approach also allows for opti-
mizations span beyond collect call boundaries.

We also define a subclass of Collector called ByKeyCol-
lector. It is introduced to instruct the implementation that
collection can be done independently for each key allowing
for less communication during the collection process. To do
this we insist that the result of such a collection is a ja-
va.util.Map. Instead of a more general combiner, used in
the base class, a merger is used to combine just the values
associated with the same key. By-key collect is especially
important when implementing the non-terminating collect-
ToStream() method on a distributed compute engine.

3.4 Engine Specific Distributed Collections
To facilitate the representation of distributed data sets

used for creating DistributableStreams and as the output of
a DistributableCollector, we introduce engine specific dis-
tributed collections. These are distributed materializations
of Java List and Map. Unlike lazily materialized Pig Latin
relations and Spark RDDs, they are always materialized. We
provide this distributed abstraction so that multiple engines
can be supported using the same Java 8 program. These col-
lections are not required to support normal operations such
as Map.get(), instead they are DistributableStream facto-
ries, providing access to the data they represent. These dis-
tributed collections can be named independently of the JVM
using engine specific naming scheme. Collections have a pre-
ferred engine, and by default, DistributableStreams created
from such a collection will use that engine. We also al-
low collections associated with one engine to be accessed by
another engine. If these engines are running on the same
cluster, as enabled by Apache Hadoop YARN [2], this can
be done without network transfers.

3.5 Creation of a DistributableStream
In summary, there are three ways to create a Distributa-

bleStream, (i) Use the Engine instance methods to create

1346

a DistributableStream over a persistent engine specific data
set, (ii) Build a DistributableStream from an engine specific
distributed collection created by DistributableStream.collect(),
(iii) Use the result of DistributableStream.collectToStream().

4. DESIGN AND IMPLEMENTATION
In this section, we discuss our design and implementation

in greater detail. We will cover how we integrate Distributa-
bleStream with the native Java 8 Stream, and how we trans-
late stream computation into execution plans over Hadoop
MapReduce and Coherence, respectively.

4.1 DistributableStream and Stream
We considered three potential relationships for these two

interfaces, (i) Have Stream implement DistributableStream,
(ii) Have DistributableStream implement Stream, (iii) Pro-
vide efficient conversion operators. We chose (iii) but it is
instructive to consider the alternatives.

From a type-theory point of view (i) is the most attractive,
as Stream is logically a restriction of DistributableStream
that is bound to a local compute engine. This runs into a
series of technical problems. First of all Java does not sup-
port parameter contra-variance for method overrides. This
means that a method with a parameter restricted in the base
class, for example serializable functions and collectors, can-
not be overridden with a method that removes the param-
eter restriction. An alternative to contra-variance is poly-
morphism, two methods with the same name that accept
different parameters, for example Stream instead of overrid-
ing the operator methods taking serializable functions and
collectors, defines new methods that accept nonserializable
functions and collectors. When matching polymorphic func-
tions, Java picks the most restrictive function that the actual
argument can be coerced into. This means that potential-
ly serializable functions will match the DistributableStream
methods but not the Stream methods. Unfortunately the
Java implementation of Serializability adds additional over-
head to the creation of serializable instances which we do
not want to pay in the local case.

Alternative (ii) can be made to work but it has problems
because for a DistributableStream to implement Stream, it
must check that its parameters are Serializable at runtime.
If the parameter is not Serializable, it must either fail or
move to the local engine which does not require serializabil-
ity. Of course a DistributableStream can add polymorphic
operator methods that accept the serializable functions and
collectors, and as long as the arguments are Serializable,
these will be called in preference to the Stream methods.
But this is error prone as it will be easy for a programmer
to write a nondistributable computation thinking it is dis-
tributable, only to find out at runtime there is a problem.

This is why we ended up with the option (iii) of convert-
ing efficiently between DistributableStream and Stream. We
do this by defining an local engine called LocalEngine. Lo-
calEngine is a singleton class that represents an engine that
runs within this JVM and can be used to process Distributa-
bleStream computations. We provide a factory method in
LocalEngine that accepts a Stream and returns a Distributa-
bleStream associated with the local engine. The result-
ing DistributableStream is implemented by projecting each
method onto the local Stream hidden inside the LocalEngine
implementation of DistributableStream.

We handle the other direction by defining

DistributableStream.stream()

This pulls a local stream out of a distributable stream to
allow its result to be examined locally. If the Distributa-
bleStream is managed by LocalEngine, then it can just re-
turn the underlying Stream object directly. Otherwise it
can call withEngine(LocalEngine.getInstance()).stream() to
perform the equivalent operation.

Local Java 8 Streams are used to process both small and
large amounts of local data so we need to make both Stream
creation and per item processing very efficient. On the oth-
er hand, DistributableStreams need to be understood by
the distributed execution planner which must optimize the
movement of data and state between engines. Therefore, our
design supports the optimization of both use cases. The lo-
cal streams are structured to enable runtime JVM optimiza-
tions while the distributed tasks can be efficiently managed
by the DistributableStream library.

4.2 Mapping Streams into Job Plans
One interesting challenge in designing DistributableStream

is to translate stream computations into job plans. We break
stream computations into stages at the points where shuffle
is required. Shuffling data is generally needed in blocking
and terminal operators. For example, the following query
is mapped into two stages, “filter-flatMap-collectToStream”
followed by “map-collect”.

distributableStream

.filter(predicate)

.flatMap(firstMapper)

.collectToStream(firstCollector)

.map(secondMapper)

.collect(secondCollector);

We implement the translation lazily, similar to the way
Java 8 Stream implements operation pipelines. When an
intermediate operation is called on a DistributableStream,
the transformation is stored in a data structure referred to
by the new instance of DistributableStream returned. Only
when a terminal operation is called are both the transforma-
tions and the terminal operation serialized and shipped to
the appropriate engine’s worker nodes. This lazy approach
allows the execution of stream operations to be delayed until
a concrete result is needed, leaving opportunities for opera-
tion pipelining and job plan optimization.

For those compute engines that already support shuffle
operation, such as Hadoop MapReduce, we rely on it to
shuffle the data at the end of each stage. For underlying en-
gines without explicit shuffle operations, such as Coherence,
the Engine implementation will implement the shuffle itself.

4.3 MapReduceStream
MapReduceStream was our first attempt to implement

DistributableStream on a distributed engine. It supports
the execution of stream operations on Hadoop clusters. To
support MapReduceStream, there is no need to recompile
Hadoop source code with JDK8. The only requirement is to
install the Java 8 runtime environment (JRE8).

The first challenge we addressed in MapReduceStream
was function shipping. We provide three options, all using
Java serialization to serialize the pipeline and the functions
it references, to a sequence of bytes. (i) When the pipeline
being shipped does not reference large objects, we stringi-
fy the serialized pipeline and insert it into the Hadoop job

1347

Configuration object. (ii) When the pipeline does reference
large objects, this becomes inefficient so instead we store
the serialized pipeline into a file and add it to the Hadoop
DistributedCache. (iii) If the objects being referenced are
very large, we require the programmer to use a distributed
collection class with a smart serializer and deserializer so
that the reference to the distributed collection rather than
the actual data is included in the serialized pipeline.

Another challenge for MapReduceStream is dealing with
the strong typing in Hadoop. It is required that the in-
put and output key/value instances match the classes spec-
ified in the job configuration. While this is quite useful to
guarantee the correct job behavior, it is tedious and error-
prone to configure such parameters for jobs with multiple
rounds of map and reduce. Initially we provided a way for
users to embed these parameters to the Collector and made
the framework responsible for setting the job configuration.
This approach made stream application code less clean and
too specific to the MapReduceEngine – other engines may
not have such a strong typing requirement and we did not
want to pollute the DistributableCollector interface. We
decided to remove this Hadoop-specific constraint from the
interface and instead require users to specify the classes in
the Engine configuration at each step of the stream compu-
tation. For improved usability, we also provide a wrapper
class that can wrap any Serializable or Writable objects.
The framework can wrap and unwrap the data items if the
classes are set to this wrapper type. This saves effort in
configuring each computational stage at the cost of efficien-
cy due to wrapping and unwrapping.

Stream computations are broken into stages by blocking
and terminal operations. Each stage of MapReduceStream
is implemented by a single Hadoop job. Hadoop jobs are
only submitted when a terminal operation is called.

 Hadoop Cluster

 Reducer

collector

Combiner,
Merger

HDFS

Local
collection

Shuffling

Container,
key/value

 Mapper

filter(predicate)
flatMap(mapper)

collector

Stream

HDFS

Runtime JVM
optimizations

Container,
key/valueInputSplit

Figure 3: Translating a stage to a Hadoop job.

Figure 3 shows how a single stage of a stream computation
is mapped to a Hadoop job in greater detail. In particular,
by assembling local stream from an InputSplit of a map-
per, we are able to apply the pipelined operations to data
items in one pass. This gives the same result as the native
Hadoop ChainMapper that runs several map phases inside
a single mapper, with the advantages of being inline-able,
avoiding configuring parameters for each map phase sepa-
rately, and providing in-memory partial merging opportuni-
ty before collecting records to the MapOutputBuffer. Note
that collecting into containers can happen at both mapper
and reducer side, with the distinction that the mapper side
never applies the optional finisher embedded in the collector.

We rely on the Hadoop framework to shuffle mapper output
to reducers. If the collector is a ByKeyCollector, individual
records are shuffled by key and efficient merging of values
associated with the same key is performed on the reducer
side; otherwise, all containers are sent to a single reducer
that combines them in pairs. At the end of this stage, all
local collections coming out of the reducers are logically put
together to form an engine specific distributed collection.
Then the next stage continues from there.

MapReduceEngine includes factories to generate MapRe-
duceStreams based on a Hadoop Configuration object, which
must contain properly configured parameters such as Input-
Format and InputPath. Three methods keyStream(conf),
valueStream(conf), and entryStream(conf) return a Dis-
tributableStream of keys, values, and entries, respectively.

4.4 CoherenceStream
Oracle Coherence [16] is an in-memory Java object store

equipped with computational capability. Our design and
implementation of CoherenceStream has benefited from the
lessons we have learned from MapReduceStream. We bor-
row ideas from MapReduceStream and adapt them to fit
requirements in the Coherence environment.

The first special treatment for CoherenceStream was to
add the support for streams without keys. The current
version of Coherence provides distributed in-memory map-
s but not lists. Therefore, storing stream elements into a
Coherence NamedCache requires that the framework gen-
erate unique keys for these items. One solution is to use
machine-specific auto-incrementing integers as the primary
key. The key structure we use contains an optional thread
id, a machine id, and an integer. Another approach is to use
a Coherence provided primary key generator that allows for
optimized data loading.

Another challenge comes from the fact that Coherence us-
es its own object format, the portable object format (POF),
to do object serialization. POF is language independent and
very efficient. Usually (de)serialization of POF object is sev-
eral times faster than the standard Java serialization and
the result is much smaller. Standard Java types have their
default serializer implemented in Coherence. However, user-
defined types have to either implement the PortableObject
interface themselves or register their own serializers that im-
plement the PofSerializer interface. This means that Writa-
bles that come with Hadoop and user-defined Serializables
that are not standard in Java cannot be serialized directly
into Coherence. We provide serializers for commonly used
Writable types and we also provide a wrapper class that
translates objects between the different serialization meth-
ods. However, we recommend that users write their own se-
rializers for their customized types if the performance penal-
ty caused by wrapping becomes significant.

Coherence does not have a similar framework like Hadoop
for accepting jobs, assigning mappers and reducers, and
shuffling data between them. Instead, we provide our own
implementation to achieve the same functionalities. This
framework is responsible for assigning an id to each job sub-
mission, starting necessary services for the job execution,
and keeping track of the job status and output.

The actual computation is implemented using distributed
Invocation Services. An invocation service allows the exe-
cution of single-pass agents called Invocable objects (i) on
a given node, (ii) in parallel on a given set of nodes, or

1348

(iii) in parallel on all nodes of the grid. We take a two-
step approach similar to MapReduceStream to implement
a single stage of the stream computation. For each stage,
the framework first starts an invocation service to run the
pipeline of intermediate operations and collect the results
into an intermediate MapperOutputCache. We call this step
the MapperService which has functionality corresponding to
a Hadoop Map task. Upon the completion of the Map-
perService, the framework starts another invocation service,
the ReducerService, to read from the intermediate cache and
write the final results into the output cache.

We have applied some optimization techniques to avoid
unnecessary data movement in CoherenceStream. A Named-
Cache in Coherence is partitioned and distributed across a
set of member nodes in the grid by the framework. A Map-
perService is started on the member nodes that own the
input cache, and we use a filter so that each Map task pro-
cesses only the locally available data from the input cache.
In Hadoop terminology, all Map tasks are data-local. The
OutputCollector accumulator is called by the MapperSer-
vice and buffers entries in local memory and flushes them to
the MapperOutputCache when a pre-configured threshold
is reached. The MapperOutputCache is implemented with
partition affinity so that all entries associated with the same
key are stored in the same partition, thus eliminating the
need to reshuffle the data before starting the ReducerSer-
vice. Like MapperService, the ReducerService is started on
member nodes storing the MapperOutputCache and, with
the help of a filter, each of them only processes its local
partitions. At the end of the ReducerService execution, the
final results are written to their local nodes with partition
affinity. See Figure 4 for an illustration of CoherenceStream
that corresponds to the MapReduceStream example in Fig-
ure 3. The ReducerService could also execute the map and
collect associated with the next stage of the computation
but we have not implemented this yet.

 Coherence Grid

 ReducerService

collector

Combiner,
Merger

NamedCache

Local
collection

Partition
affinity

Container,
key/value

 MapperService

filter(predicate)
flatMap(mapper)

collector

Stream

NamedCache

Runtime JVM
optimizations

Container,
key/value

Local
partitions

Figure 4: Translating a stage to invocation services.

We define a Configuration class to store job related config-
uration parameters. We also provide factory methods in Co-
herenceEngine to generate CoherenceStreams based on such
a Configuration object. Three methods keyStream(conf),
valueStream(conf), and entryStream(conf) return a Dis-
tributableStream of keys, values, and entries, respectively.

4.5 Changing Engines in Midstream
To support federated query, the DistributableStream frame-

work relies on the Engine abstraction to separate the engine-
specific details from the computational model. The Engine

abstraction also provides an avenue for two compute engines
adjacent in the computation to negotiate the data movement
at their boundary. The two approaches for data movement
between engines is shown in Figure 5. By default, data
movement follows the push-based model where the upstream
engine directly writes the result to the downstream engine.
But in some cases, having the upstream engine materialize
the result itself and the downstream engine to pull from it
reduces the data transfer cost. Let us take a look at the
following example,

CoherenceEngine

.entryStream(conf)

.filter(predicate)

.withEngine(mapReduceEngine);

Instead of having Coherence to write entries into HDFS
files, we ask Hadoop to directly pull the data from the
NamedCache via the NamedCacheInputFormat. This strat-
egy saves two passes over the entire disk resident data set.

Upstream
Engine

Push

Task

Data Storage

Downstream
Engine

Task

Data Storage

Read

Upstream
Engine

Task

Data Storage

Downstream
Engine

Task

Data Storage

Write Pull

Figure 5: Data movement between engines.

There is also an optimization called “short-circuiting”, as
illustrated by Figure 6, available to the special case where
the downstream engine simply pulls data from the upstream
engine without having the latter to do any preprocessing. In
this case, if the downstream engine is able to read directly
from the upstream storage, there is no need to run a separate
job in the upstream engine just for data movement.

Upstream
Engine

Task

Data Storage

Downstream
Engine

Task

Data Storage

Pull

Figure 6: Short-circuiting without upstream job.

A useful application of short-circuiting is the pulling of
external data specified by a Hadoop InputFormat directly
into the Coherence in-memory cache. This enables us to
pull data from Hadoop into memory similar to the creation
of a HadoopRDD in Spark.

MapReduceEngine

.entryStream(conf)

.withEngine(coherenceEngine);

1349

We have implemented factories for creating local streams
from various data sources, for example, InputFormatStream
from HDFS files or Hive tables and NamedCacheStream from
Coherence NamedCaches. We have the corresponding im-
plementations OutputFormatCollector and NamedCacheCol-
lector for collecting to Hadoop and Coherence. We use these
streams inside of our Engine implementations but they are
also useful for programmers writing nondistributed applica-
tions that want to access distributed data sets.

5. EXAMPLE STREAM APPLICATIONS

5.1 Distributed Reservoir Sampling
Reservoir sampling is a family of randomized algorithms

for uniformly sampling k items from a base stream of n
items, where n is either very large or unknown in advance. A
simple O(n) algorithm maintains a reservoir list of size k and
runs in a single pass over the base stream. The algorithm
works by storing the first k items in the reservoir. For the
i-th item where k < i ≤ n, the algorithm includes it in the
reservoir with probability k/i. If this happens, a random
item from the reservoir is removed to keep the total as k.

To sample from a distributed stream in parallel, we extend
the basic algorithm and choose at most k samples uniform-
ly from each partition and then combine these samples by
choosing a subset so that each item from the base stream
has equal probability k/n of being chosen. To achieve this
goal, we implement a SampleContainer where the put(T

item) method implements the basic reservoir sampling algo-
rithm above and the putAll(SampleContainer<T> other)

method combines two containers by choosing elements from
the partitions with weights computed from their respective
sizes. The distributed reservoir sampling algorithm is im-
plemented as a collector where the supplier creates Sample-
Containers, the accumulator puts an item into a SampleCon-
tainer, the combiner combines two SampleContainers, and
the finisher extracts the reservoir list after the final combin-
ing. To facilitate the creation of such collectors, we provide
a factory SamplingCollector.get(k) to return a reservoir
sampler with the appropriate size reservoir.

Program 2 Distributed Reservoir Sampling

public class SamplingCollector {

public static <T> DistributableCollector<

T, SampleContainer<T>, List<T>> get(int k) {

return DistributableCollector

.of(() -> new SampleContainer<T>(k),

SampleContainer::put,

SampleContainer::putAll,

SampleContainer::getList); } }

public static <T> List<T> distReservoirSample (

DistributableStream<T> stream) {

return stream

.collect(SamplingCollector.get(k)); }

5.2 PageRank
PageRank is a graph algorithm for measuring the impor-

tance of webpages. On a directed graph, the algorithm itera-
tively updates the rank of a vertex by computing a weighted
sum of ranks from its incoming neighbors.

Program 3 PageRank

// Page is a class that represents the format

// <URL, <[neighbor-URL, neighbor-URL], rank>>

public static DistributableStream<Page> iterate(

DistributableStream<Page> stream, float damp) {

return stream

.flatMap(p -> {

final float rank = p.getRank();

p.setRank(1 - damp);

List<String> nbrs = p.getNeighbors();

final int size = nbrs.size();

return Stream.concat(

// contribution from incoming neighbors

nbrs.stream()

.map(nbr -> new Page(nbr,

emptyList, damp * rank / size)),

// contribution from damping factor

Stream.of(p)); })

.collectToStream(

DistributableCollectors

.toMap(

// clustering based on URL

p -> p.getURL(),

p -> p.getValue(),

(left, right) -> {

// reconstructing neighbor list

mergeNeighbors(left, right);

// updating rank

left.setRank(

left.getRank() + right.getRank());

return left; })); }

public static DistributableStream<Page> pageRank(

DistributableStream<Page> stream,

float damp, int iteration) {

return Stream

.iterate(stream, s -> iterate(s, damp))

.skip(iteration - 1).findFirst().get(); }

Assume a webpage is represented in the format <URL,

<[neighbor-URL, neighbor-URL], rank>>. In one itera-
tion of the algorithm, it parses every page so that an en-
try <neighbor-URL, <[], contribution>> is emitted for
each of its neighbors, where contribution is calculated as
the product of its rank and the damping factor, divided by
the neighbor size. A special entry <URL, <[neighbor-URL,

neighbor-URL], 1 - damp>> is also emitted for this page
so that the list of neighbors can be reconstructed for next
iteration. Entries are then by-key collected by their URLs
and their page ranks updated. Note how we take advantage
of the non-terminating collectToStream() method to build
larger multi-stage computations.

5.3 K-Means Clustering
K-means clustering is a popular clustering method in ma-

chine learning and data mining. Given n vertices in the
space, the algorithm assigns each vertex to the cluster whose
centroid is closest to it. At each iteration the centroids are
updated using the mean of the vertices assigned to it.

In each iteration, the stream supplier returns a stream of
all vertices in the space. The vertices are by-key collected

1350

Program 4 K-Means Clustering

public static List<Vertex> kMeans(

Supplier<DistributableStream<Vertex>> supplier,

List<Vertex> centroids, int maxIter,

double threshold) {

do {} while (

supplier

.get() // generating vertex stream

.collect(DistributableCollectors

.toMap(// clustering by cluster id

v -> closestCentroid(v, centroids),

v -> new Pair(v, 1),

(left, right) -> {

left.setVert(

sum(left.getVert(),

right.getVert()));

left.setCnt(

left.getCnt() + right.getCnt());

return left; }))

.entrySet()

.parallelStream() // SMP processing

.collect(// updating means

Collector.of(

() -> new DoubleWritable(0),

(delta, entry) -> {

int id = entry.getKey();

Vertex centroid = mean(

entry.getValue());

delta.set(delta.get() +

distance(centroid,

centroids.get(id)));

centroids.set(id, centroid); },

(left, right) -> {

left.set(left.get()

+ right.get());

return left; },

delta -> delta.get())) > threshold

&& maxIter-- > 0)

return centroids; }

into a map, where the key is the id of the cluster to which
the vertex is closest and the value is a pair consisting of the
vertex coordinate and 1. The merger merges two pairs re-
turning a new pair that represents the vector sum and the
vertex count. The clustering step is done with a distributed
compute engine. After that, the means for each cluster are
computed by dividing the vector sum by the vertex count
to create the new centroids of the k clusters. The new cen-
troids and the termination condition are evaluated by the
LocalEngine running inside the client JVM. This stage could
have been executed using a second reduce step on the itera-
tion engine, but this is less efficient if k is sufficiently small
and the client machine is sufficiently large.

To bootstrap this algorithm, we need to give it a stream
supplier and a list of initial centroids. Hadoop is used to
parse and filter the raw data. The filtered input is then
written into a Coherence NamedCache to take advantage
of the fast in-memory store for the iterative computations.
The initial k centroids are obtained using our distributed
reservoir sampling algorithm described in Section 5.1. The
driver for k-means clustering is written in Program 5.

Program 5 Driver for K-Means Clustering

List<Vertex> centroids =

MapReduceEngine.valueStream(hConf)

.map(parser)

.withEngine(CoherenceEngine.get(cConf))

.collect(SamplingCollector.get(k));

return kMeans(

() -> CoherenceEngine.valueStream(cConf),

centroids, maxIter, threshold);

6. EVALUATION
We evaluate our implementation through a series of ex-

periments in an Oracle Big Data Appliance [15], where each
node is equipped with 2 × eight-core Intel Xeon processors,
64GB memory, and 12 × 4TB 7200RPM disks. Nodes are
connected by InfiniBand switches for high network through-
put. We use Cloudera CDH 5.0.2 Hadoop distribution, Or-
acle Coherence 12.1.2, and Java SE 8u5 as the testing envi-
ronment. Coherence cache server instances are started by a
long running map-only Hadoop job.

We first compare a DistributableStream program with a
native program for the same engine. In this test we com-
pare MapReduceStream with a native Hadoop job. We run
WordCount on 45GB Wikipedia dumps. We compare the
stream implementation using Java immutable types shown
in Program 1 and another using Hadoop Writable types.
For comparison, we compare both the standard WordCount
example in the Hadoop package and another using Java im-
mutable types. The four implementations are executed us-
ing the same hardware with equal amount of resources.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

Writable Immutable

N
o
rm

a
li
z
e
d

 T
im

e

Object Type

MRStream

Hadoop

1

4.63

1.17

8.54

Figure 7: WordCount.

The normalized job completion times are shown in Fig-
ure 7. MapReduceStream outperforms Hadoop by 17% for
Writable types, and by 84% for immutable types. This is be-
cause MapReduceStream performs in-memory partial merg-
ing before collecting records to MapOutputBuffer. The sav-
ing is substantial for immutable types, which incur higher
serialization and garbage collection costs.

One of the most important features of DistributableStream
is the ability to perform federated queries on top of multiple
compute engines for query optimization. We run k-means
clustering algorithm shown in Section 5 to test the bene-
fit of using Coherence over Hadoop as the compute engine
for iterations. About 45GB of raw data representing one

1351

billion vertices is first parsed and filtered by the Hadoop en-
gine, and gets written into HDFS or Coherence, depending
on the compute engine to be used for the iterative steps.
Then the compute engine chosen for iterations is used to
cluster vertices into one thousand clusters. At the end of
each iteration, the LocalEngine is used for updating the list
of centroids and evaluating the termination condition.

Previous work has shown that by avoiding disk IOs, in-
memory processing can outperform Hadoop by up to 20× in
iterative applications [19]. We take a different approach in
our evaluation: by caching the input data and all intermedi-
ate results in the OS cache, we avoid most disk IOs during
the job execution. The number of iterations is varied to see
how the job completion time is affected by the increased
workload. We configure the parameters so that Hadoop and
Coherence have equal amounts of available resources.

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

1 5 10 20 30

N
o
rm

a
li
z
e
d

 T
im

e

Number of Iterations

Hadoop + Coherence + Local

Hadoop + Hadoop + Local

1
1.86

2.88

4.87

6.98

3.1

4.79

6.92

11.67

16.13

Figure 8: K-means clustering.

The normalized job completion times are shown in Fig-
ure 8. We observe that for evaluating each iteration, Hadoop
is outperformed by Coherence by 2.3× to 3.1×, even with-
out the extra disk IOs. This is partly because accessing the
OS cache is slower than accessing the Java heap and also
because Coherence stores data in memory as Java objects
which saves deserialization cost.

7. FURTHER DISCUSSIONS

7.1 Operation Pipeline Improvement
Consider again the example shown in Section 4.2. In our

current MapReduceStream implementation, two consecutive
Hadoop jobs are needed for the two stream stages, result-
ing in the “map-reduce-map-reduce” pattern. Spark and
Tez, with their ability to perform “map-reduce-reduce” op-
erations, can apply the second map operation in the same
reducer processes in the first stage, right after they finish re-
ducing on each key. This will allow intermediate operations
from the next stage of the computation to be pipelined with
the terminal operation in the previous stage, saving one pass
over the data set.

7.2 Job Planner and Optimizer
The ability to change engines in midstream offers great

flexibility in designing stream applications. Choosing the
right engine based on price, data locality, and available re-
sources is critical in performance optimization.

Small Data Sets: Some applications with small data sets
fit within a single JVM. Running such applications in a local
engine avoids unnecessary costs of starting distributed ser-
vices and worker instances and sometimes can be more effi-
cient than a distributed engine. As we provide Distributa-
bleStream with an efficient local implementation, applica-
tions written with this API can easily scale down for pro-
cessing small amounts of data efficiently.

Iterative Algorithms: Many graph and machine learning
algorithms apply computations iteratively until a conver-
gence condition is reached. Loading the input to the fast
in-memory store and running iterations there avoids expen-
sive IOs and can lead to a huge performance improvement.

Huge Data Sets or CPU-Bound Applications: Some
applications work on huge amount of data that just cannot
fit in memory. Other applications, such as natural language
processing and video encoding, are CPU-bound and benefit
more from increased computing resources rather than faster
IO. Memory is also much more expensive than disk: extra
money spent on memory might be better used to buy more
or faster processors.

Resource Availability: Data centers are generally not
built out as one uniform cluster. Data centers have a va-
riety of different clusters, purchased at different times, run-
ning different software, storing different data, with differ-
ent amounts of memory, disk and computational resources.
The ability to run a federated computation allows the pro-
grammer to exploit the available resources. For example, a
memory based engine, like Coherence, may be a cache layer
shared by multiple applications. It can make sense to ship
data and offload some work to another cluster which has
more resources available to it.

Automatic Engine Assignment: In the current imple-
mentation, we do not have a computation optimizer to auto-
matically choose the right engine for each stage in a stream
application. By including the withEngine() method in Dis-
tributableStream interface, we provide a convenient means
for an optimizer to take charge. Programmers now can man-
ually design the execution plan by explicitly calling the with-
Engine() method. We give such an example for the k-means
clustering algorithm in Section 5. Using our Engine frame-
work, programmers can write programs that do not hard
code the engine and instead read the engine class name and
configuration from the command line.

Without careful application design, the flexibility provid-
ed by our framework can lead to poor performance. Let us
assume some input data resides in a Hadoop cluster. Con-
sider the two examples shown in Figure 9.

The first approach first generates an InputFormatStream
that represents the input data, and then wraps it into a
LocalStream which is a DistributableStream with the Lo-
calEngine, and finally uses withEngine() call to switch back
to the MapReduceEngine.

LocalEngine

.of(InputFormatStream.valueStream(conf))

.withEngine(mapReduceEngine);

This approach is semantically identical to the second ap-
proach shown as the direct path in Figure 9,

MapReduceEngine.valueStream(conf);

1352

MapReduce
Engine

(3) PushTask

HDFS

Local
Engine

Task

Memory

(4) Read

MapReduce
Engine

Task

HDFS
(1) Pull

(2) Read Read

Figure 9: Improper engine assignment.

However, the first one suffers from the fact that all stream
elements go through the local JVM before being consumed
by the processing tasks in the Hadoop cluster, resulting in
a less efficient program. While this example might seem
artificial, given the flexibility our framework offers to the
programmers, we could end up seeing a few similar cases.
This is similar to what we have discussed in Section 2.2.4
on parallelism in local streams – making a stream parallel is
not always beneficial, and sometimes can be harmful.

Therefore, we emphasize here that, carefully choosing the
right source representation and the engine assignment is im-
portant in designing stream applications. The users need to
have a basic performance cost model in order to use the tools
effectively. While good visualization and monitoring tools
are useful for programmers to approach the right design, an
automatic job planner and optimizer is a more attractive
way of achieving the same goal.

7.3 Job Progress Monitoring and Workspace
Management

The chance of failure during a job execution grows with
the scale of the distributed environment. Each compute en-
gine usually has its own way of monitoring job progress and
tolerating task failures during the job execution. However,
as the execution of a DistributableStream application can
span across multiple compute engines, job progress moni-
toring also needs to go across their boundaries.

Assume a stream application consists of stages on several
engines. On the top level, a centralized service, ZooKeeper
[8] for example, can be responsible for keeping track of the
unique global job id. Engine-specific job information can
be stored under the global job id by the individual Engine
implementations. Task-level progress monitoring and fault
tolerance within each compute engine are still handled by
individual engines. When a portion of the job on a specific
engine fails entirely, the centralized service takes the charge
to recover or fail the job.

Consider data movement between two engines. The pull-
based model works by providing a means for tasks in the
downstream engine to read from the data storage in the up-
stream engine. Temporary results from failed tasks in the
upstream engine will not move across the engine boundary
because they are automatically handled by the first engine.
On the other hand, the push-based model usually works by
side-effects, instructing upstream engine to write directly in-
to downstream data storage. Without proper output com-
mitment, partial results from failed upstream engine tasks
could sneak into the downstream storage. One technique for
avoiding problems is to generate repeatable primary keys.

In this case, entries generated by a restarted task will over-
write the partial results from the failed task, even if they
have made through into the downstream storage.

Once the execution of the entire job is complete, inter-
mediate results inside individual compute engines need to
be cleaned up and temporary files deleted. The centralized
service can, in a similar way as Cascading and Tez, instruct
every compute engine to handle its own piece. It could also
leave the users to do the cleanup themselves, in case that
some of the results were named for later reuse.

Currently, in the MapReduceStream implementation, tem-
porary files are written under a temporary directory which
gets cleaned up periodically, while in the CoherenceStream
intermediate caches for MapperServices are destroyed upon
the completion of ReducerServices.

8. RELATED WORK

Language Integrated Query: We like SQL, but not all
Java programmers use SQL and implementing certain ap-
plications is more natural in Java. Therefore, instead of
integrating SQL style declarative query as LINQ [14] and
OptiQL [13], DistributableStream takes a similar approach
to Dryad [11] and Spark [5] to adopt functional programming
style for the language integrated interface. This allows ap-
plication developers to live on the stream abstraction with
its well-defined data-parallel operations and still enjoy the
flexibility of procedural languages. While one could consid-
er building yet another SQL compiler on top of Distributa-
bleStream, like Hive [3] on Hadoop or Shark [17] on Spark,
we are more interested in extending existing SQL engines
with table functions defined using Java computations.

Cascading [9] is an application development platform for
building applications on Hadoop and most recently Tez [7].
Similar to DistributableStream, Cascading provides an ab-
straction layer between the compute engine APIs and devel-
opers, so that applications developed with Cascading APIs
can be reused without rewriting any business logic when the
underlying engine is replaced. However, it is not clear to us
that Cascading supports changing engines within the same
application. By reusing the patterns and concepts from the
standard Java 8 Stream interface and supporting changing
engines in midstream, DistributableStream could be a better
choice to help Java programmers quickly and conveniently
adopt the API for processing big data sets.

Massively Parallel Processing Systems: MapReduce
[10], Hadoop [1], Dryad [11], Spark [5], Storm [6], and Tez
[7] are examples of recent data-parallel MPP systems. These
systems store data as individual splits and run parallel tasks
responsible for processing their own data splits. Distributa-
bleStream, on the other hand, does not provide its own data-
parallel MPP infrastructure. Our focus here is to provide a
clean computational model and API for federating different
MPP systems both between and within a query. The goal is
to facilitate the development of simple, generic, and efficient
applications across an extensible set of compute engines to
process distributed data sets.

Distributed Streaming Computation: Apache Storm
[6] is a distributed realtime computation system for pro-
cessing streams of data. Computations in Storm are spec-
ified by topology transformations in DAGs. Storm defines

1353

a spout abstraction, which is responsible for feeding mes-
sages into the topology for processing, for integration with
new queuing systems. Spark Streaming [18] is another dis-
tributed stream processing system that has tight integra-
tion with Spark and combines streaming with batch and in-
teractive queries. Although the engine implementations we
currently have for DistributableStream do not support real-
time streaming, the DistributableStream API itself can be
extended with tee and window functions to support Storm
and Spark Streaming.

Resilient Distributed Datasets (RDDs): Combining
Coherence and Hadoop allows us to cache, store, and pro-
cess data that originally resides in HDFS in a similar way as
RDDs in Spark. Both Spark and Coherence allow storing da-
ta at different levels depending on whether they are stored as
Java objects or as serialized bytes, whether they are stored
in memory or on disk, and whether they are replicated or
not. RDDs also support storing the transformation recipe
to allow lineage-based recovery for fault tolerance, while the
current Coherence implementation does not include this fea-
ture. We have developed a preliminary implementation that
allows us to use RDDs as a data source and Spark as a com-
pute engine for stream computations. Detailed evaluations
are planned for future work.

9. CONCLUSIONS
Java and other JVM-based languages play an important

role in the Hadoop and Big Data ecosystem. Java is a
more natural implementation language for certain applica-
tions and we have seen these JVM-based distributed systems
complement the SQL based analytical systems for process-
ing unstructured data and for algorithmic programming.

While the flexibility of Java has been appreciated in the
Hadoop ecosystem, there are some features in high demand.
First, expressiveness and conciseness brought by functional
and declarative languages are convenient for application de-
velopment, which were not well supported by older versions
of Java. Second, many JVM-based distributed systems have
their own distinct APIs. This forces companies and appli-
cation programmers to split their effort and investment a-
mong several frameworks, hoping that their bet on today’s
frameworks will not become obsolete tomorrow with newly
emerged systems. A single API that can be supported over
multiple engines can be seen as insurance against obsoles-
cence. Third, the demand for improved performance can
never be satisfied. It is preferred that a framework can be
organized so that it can easily benefit both from high-level
job planning and low-level JVM optimizations.

To address this demand, we present DistributableStream,
a Java computational model that enables programmers to
write generic, distributed and federated queries on top of
an extensible set of compute engines, allowing data to flow
between them so that different stages of the computation
can be carried out on their respective optimized engines.
By reusing the patterns and concepts from the standard Ja-
va Stream interface, DistributableStream provides a friendly
way of integrating queries into the programming language,
making Java a more expressive tool for Big Data processing.
With the Engine abstraction, the platform-specific param-
eters are separated from the computational model, freeing
programmers from low-level details as they design the al-
gorithmic part of their applications. The abstraction also

makes it convenient to run existing applications develop-
ed on the DistributableStream framework on new engines,
leveraging the investment in past development. The Dis-
tributableStream approach, translating computations into
stages and decomposing data into local streams, allows for
efficient execution that benefits from both job optimization
and intelligent Java runtimes.

We validate this API by showing three implementations
– a local SMP engine, a distributed file based engine and a
distributed in-memory engine – and demonstrate the useful-
ness of DistributableStream with examples and performance
evaluations. We are considering incorporating this work in
a JSR and hope that others will write applications using the
API, support the API on additional engines, and extend the
computational model supported by the API.

10. ACKNOWLEDGEMENT
We thank the Oracle Java team for their work on the Java

8 Stream API and Michel Benoliel for his inspiring imple-
mentation of MapReduce on Coherence. We also thank the
anonymous referees for their useful suggestions that signifi-
cantly improved the quality of this work.

11. REFERENCES
[1] Apache Hadoop. http://hadoop.apache.org/.

[2] Apache Hadoop YARN.
http://hadoop.apache.org/docs/current/

hadoop-yarn/hadoop-yarn-site/YARN.html.

[3] Apache Hive. http://hive.apache.org/.

[4] Apache Pig. http://pig.apache.org/.

[5] Apache Spark. http://spark.apache.org/.

[6] Apache Storm.
http://storm.incubator.apache.org/.

[7] Apache Tez. http://tez.incubator.apache.org/.

[8] Apache ZooKeeper. http://zookeeper.apache.org/.

[9] Cascading. http://www.cascading.org/.

[10] J. Dean and S. Ghemawat. MapReduce: Simplified
data processing on large clusters. In Proceedings of
OSDI, pages 137–150, 2004.

[11] The Dryad project. http:
//research.microsoft.com/en-us/projects/Dryad/.

[12] JDK 8 project. https://jdk8.java.net/.

[13] H. Lee, K. J. Brown, A. K. Sujeeth, H. Chafi,
T. Rompf, M. Odersky, and K. Olukotun.
Implementing domain-specific languages for
heterogeneous parallel computing. IEEE Micro,
31(5):42–53, 2011.

[14] LINQ: language integrated query. http://msdn.
microsoft.com/en-us/library/bb397926.aspx/.

[15] Oracle Big Data Appliance. http://www.oracle.com/
us/products/database/big-data-appliance/.

[16] Oracle Coherence. http://www.oracle.com/
technetwork/middleware/coherence/.

[17] Shark. http://shark.cs.berkeley.edu/.

[18] Spark streaming.
http://spark.apache.org/streaming/.

[19] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. J. Franklin, S. Shenker, and
I. Stoica. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster
computing. In Proceedings of NSDI, pages 15–28, 2012.

1354

http://hadoop.apache.org/
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
http://hive.apache.org/
http://pig.apache.org/
http://spark.apache.org/
http://storm.incubator.apache.org/
http://tez.incubator.apache.org/
http://zookeeper.apache.org/
http://www.cascading.org/
http://research.microsoft.com/en-us/projects/Dryad/
http://research.microsoft.com/en-us/projects/Dryad/
https://jdk8.java.net/
http://msdn.microsoft.com/en-us/library/bb397926.aspx/
http://msdn.microsoft.com/en-us/library/bb397926.aspx/
http://www.oracle.com/us/products/database/big-data-appliance/
http://www.oracle.com/us/products/database/big-data-appliance/
http://www.oracle.com/technetwork/middleware/coherence/
http://www.oracle.com/technetwork/middleware/coherence/
http://shark.cs.berkeley.edu/
http://spark.apache.org/streaming/

	Introduction
	Stream in Java 8
	Prerequisite Features for Supporting Stream
	Lambda Expressions
	Dynamic Compilation

	The Stream Computational Model
	Streams: Data in Motion
	Stream Transforms: Intermediate Operations
	Collectors and Terminal Operations
	Spliterator and Parallelism

	Challenges Not Addressed By Stream

	Distributable Stream
	The Basic Idea
	The Engine Abstraction
	Extended Forms of Collect
	Engine Specific Distributed Collections
	Creation of a DistributableStream

	Design and Implementation
	DistributableStream and Stream
	Mapping Streams into Job Plans
	MapReduceStream
	CoherenceStream
	Changing Engines in Midstream

	Example Stream Applications
	Distributed Reservoir Sampling
	PageRank
	K-Means Clustering

	Evaluation
	Further Discussions
	Operation Pipeline Improvement
	Job Planner and Optimizer
	Job Progress Monitoring and Workspace Management

	Related Work
	Conclusions
	Acknowledgement
	References

