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ABSTRACT
In multi-version databases, updates and deletions of records by
transactions require appending a new record to tables rather than
performing in-place updates. This mechanism incurs non-negligible
performance overhead in the presence of multiple indexes on a ta-
ble, where changes need to be propagated to all indexes. Addition-
ally, an uncommitted record update will block other active trans-
actions from using the index to fetch the most recently committed
values for the updated record. In general, in order to support snap-
shot isolation and/or multi-version concurrency, either each active
transaction is forced to search a database temporary area (e.g., roll-
back segments) to fetch old values of desired records, or each trans-
action is forced to scan the entire table to find the older versions of
the record in a multi-version database (in the absence of specialized
temporal indexes).

In this work, we describe a novel kV-Indirection structure to en-
able efficient (parallelizable) optimistic and pessimistic multi-version
concurrency control by utilizing the old versions of records (at most
two versions of each record) to provide direct access to the recent
changes of records without the need of temporal indexes. As a
result, our technique results in higher degree of concurrency by re-
ducing the clashes between readers and writers of data and avoiding
extended lock delays. We have a working prototype of our concur-
rency model and kV-Indirection structure in a commercial database
and conducted an extensive evaluation to demonstrate the benefits
of our multi-version concurrency control, and we obtained orders of
magnitude speed up over the single-version concurrency control.

1. INTRODUCTION
In a multi-version database system, new records do not physi-

cally replace old ones. Instead, a new version of the record is cre-
ated, which becomes visible to other transactions at commit time.
Conceptually, there may be many rows for a record, each corre-
sponding to the state of the database at some point in the past. Older
versions may be garbage-collected as the need for old data dimin-
ishes, in order to reclaim space for new data.
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When indexing data, one typically indexes only the most recent
version of the data, since that version is most commonly accessed
and to reduce the overhead of maintaining older versions of the
records which affects the index fanout. In such a setting, record
insertions, deletions and updates trigger I/O to keep the indexes up
to date. With a traditional index structure, the deletion of a record
requires the traversal of each index and the removal of the row-
identifier (RID) from the leaf node. The update of a record (chang-
ing one attribute value to another) creates a new version, again trig-
gering a traversal of all indexes to change the RIDs to the new ver-
sion’s RID. In the case of a modified attribute, the position of the
record in the index may also change. For a newly inserted record,
the new RID must be inserted into each index. Therefore, man-
aging a multi-version database further increases the cost of index
maintenance.

The concurrent access of different transactions during index main-
tenance poses another obstacle when relying on traditional locking
because reader and writer transactions are incompatible and block
each other. Therefore, as the concurrency increases and resource
contention between the readers and writers increases (this is an
emerging hardware trend: exponential increase of processor’s core
count and increase in the size of main-memory [7, 24, 16]) the over-
all utilization of a system deteriorates. This effect is further mag-
nified when in addition to typical short update transactions, there
are long running read-only transactions that hold read locks for an
extended period of time, which could essentially bring the database
to a complete stall.

The conflict between readers and writers, especially those of
long readers, limits the prospect of single-version concurrency. A
naive (and rather common) approach is to deal with this limita-
tion by relaxing the consistency model and settling for transaction-
inconsistent answers to queries, or by relying on an existing multi-
version concurrency model (MVCC) such as [4, 1, 12, 17, 18]. In
this work, we address these limitations, namely, the clashes of both
short and long running transactions, and our contributions are as
follows.

• We propose a latch-free optimistic and pessimistic 2-version
concurrency control (2VCC) model to eliminate transaction
blocking and avoid prolonged lock wait times.

• We develop a parallel and optimistic 2VCC variant to reduce
the length of time that locks are held. This method avoids
locking resources prior to transferring data from a slow to a
fast medium, which would prevent other active transactions
from accessing the held resources.
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• We design a novel kV-Indirection structure, which is an effi-
cient method to transparently extend indexes in order to in-
corporate the 2VCC model by keeping at most k transient
references to the last k versions of the record.

• We propose a cost-effective and simple mapping to express
the 2VCC model using the existing single-version two-phase
locking (2PL) infrastructure found in most commercial database
systems.

• We develop a working prototype of the 2VCC model and kV-
Indirection structure in a commercial database and conducted
an extensive evaluation to demonstrate their benefits.

2. MULTI-VERSION DATABASES OVERVIEW
By keeping old data versions, a system can enable queries about

the state of the database at points in the past. The ability to query
the past has a number of important applications [28], for example,
(1) a financial firm is required to retain any changes made to client
information for up to five years in accordance with auditing regu-
lations; (2) a retailer ensures that they offer only one discount for
each product at any given time; (3) a bank needs to retroactively
correct an error for miscalculating the promised introductory inter-
est rate. In addition to these business-specific scenarios, there is
an inherent algorithmic benefit from retaining the old versions of
the record and avoiding in-place update, that is, to utilize efficient
optimistic locking and latch-free data structures.

A simple implementation of a multi-version database would store
the row-identifier (RID) of the old version within the row of the
new version, defining a linked list of versions. Such an implemen-
tation allows for the easy identification of old versions of each row,
but puts the burden of reconstructing consistent states at particular
times on the application, which would need to keep timing infor-
mation within each row.

To relieve applications of such burdens, a multi-version database
system can maintain explicit timing information for each row. In
a valid time temporal model [10] each row is associated with an
interval [begin-time,end-time) for which it was/is current. Several
implementation choices exist for such a model. One could store
the begin-time with each new row, and infer the end-time as the
begin-time of the next version. Compared with storing both the
begin-time and end-time explicitly for each row, this choice saves
space and also saves some write I/O to update the old version. On
the other hand, queries over historical versions are more complex
because they need to consult more rows to reconstruct validity in-
tervals.

In this work we do not commit to any one of these implemen-
tation options, each of which might be a valid choice for some
workloads. For any of these choices, our proposed methods will
not only reduce the I/O burden of index updates using the indirec-
tion technique [26], but leverage these versions to efficiently im-
plement multi-version concurrency control using existing locking
infrastructure in commercial databases.

2.1 Physical Organization
There are several options for the physical organization of a multi-

version database. For example, one organization option appends
old versions of records to a “history” table and only keeps the most
recent version in the main table, updating it in-place. Commercial
systems have implemented this technique: In IBM DB2 it is called
“System-period data versioning” [13], and it is used whenever a ta-
ble employs transaction time as the temporal attribute. The Oracle
Flashback Archive [23] also uses a history table. Such an organi-
zation clusters the history table by end-time, and does not impose a
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Figure 1: LID index using the indirection technique

clustering order on the main table. Updates need to read and write
the main table, and also write to the end of the history table. Be-
cause updates to the main table are in-place an index needs to be
updated only when the corresponding attribute value changes. For
insertions and deletions, all indexes need to be updated. In short,
using the history table approach, the temporal ordering of the data
is lost and additional random I/Os are required to perform in-place
updates of records.

In this paper, we assume an organization in which there is a sin-
gle table containing both current and historical data; however, we
are not limited to this design choice. Commercial systems that im-
plement this technique include Oracle 11g where the concept is
called “version-enabled tables” [22]. IBM’s DB2 also uses this ap-
proach for tables whose only temporal attribute is the application
time. New rows are appended to the table, so that the entire table
is clustered by begin-time. Updates need to read the table once and
write a new version of the record to the end of the table.

2.2 Index Maintenance Overview
Traditional index structures directly reference a record via a point-

er known as a physical row-identifier (RID). The RID usually en-
codes a combination of the database partition identifier, the page
number within the partition, and the row number within the page.

The choice of a physical identifier hinders the update perfor-
mance of a multi-version database in which updates result in a new
physical location for the updated record. Changes to the record in-
duce random access for every index, even indexes on “unaffected”
attributes, i.e., attributes that have not changed. Random accesses
are required to modify leaf pages.

To avoid random accesses for indexes on unaffected attributes,
we rely on an existing technique for decoupling the physical and
logical representations of records spanning many versions [26].
Thus, we distinguish between a physical row-identifier (RID) and a
logical record identifier (LID). For any given record, there may be
many RIDs for that record corresponding to the physical placement
of all of the versions of that record. In contrast, the LID is a refer-
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ence to the RID representing the most recent version of the record.
For now, one can think of a table LtoR(LID,RID) that has LID as
the primary key. Indexes now contain LIDs rather than RIDs in
their leaves.

Using this indirection technique [26], an index traversal must
convert a LID to a RID using the LtoR table. A missing LID, or a
LID with a NULL RID in the LtoR table are treated as deleted rows,
and are ignored during search. The new index design is demon-
strated in Figure 1.

When an existing record is modified, a new version of that record
is created. The LtoR table is updated to associate the new row’s
RID to the existing LID. That way, indexes on unchanged attributes
remain valid. Only for the changed attribute value will random
access to the index be required.

When a record is deleted, the (LID,RID) pair for this record in
the LtoR table is deleted. Index traversals ignore missing LIDs. In-
dexes can lazily update their leaves during traversal, when a read
I/O is performed anyway. At that time, any missing LIDs encoun-
tered lead to the removal of those LIDs from the index leaf page.
After a long period of activity, indexes should be validated off-
line against the LtoR table to remove deleted LIDs that have subse-
quently never been searched for.

When a new record is added, the new record is appended to the
tail of the relation and its RID is fetched and associated to a new
LID. The (LID, RID) pair for the new record is added to the LtoR
table. All indexes are also updated with the new record LID ac-
cordingly.

3. OVERVIEW OF KV-INDIRECTION
We extend the indirection to further differentiate between up to

k − 1 committed and one uncommitted versions of each record
through our indirection mapping. By decoupling committed and
uncommitted versions, we avoid clashes between readers of cur-
rently committed data and writers of newly updated/inserted records,
without changing the semantics or the structure of the index. An
overview of this structure is presented in Figure 2, in which for
clarity we only show one committed and one uncommitted version
of each record.

In 2V-Indirection, the currently committed version of every record
is given by cRID and the outstanding uncommitted version is given
by uRID. The triplet (LID, cRID, uRID) presents a conceptual and
logical connection; but, it does not dictate that the indirection map-
ping table must be physically extended such that it pre-allocates
enough space for the uRID. The uRID could be maintained for only
the active set of transactions to reduce space overhead.

There is an important subtlety that arises when combining in-
dexes with the 2V-Indirection mapping. Suppose we update a record
on column coli, where an index is also defined on coli. Now when-
ever a record value for coli is changed, then both the old value and
the new value of the column are associated to the record’s LID. This
allows readers to detect that both values are referring to the same
record due to the common LID and also gives an option of reading
either committed or uncommitted values from the index. This is
shown in Figure 3. By examining the index leaf page, it can easily
be determined whether value and LID pair is committed or uncom-
mitted using a single bit to indicate whether an entry is committed
or not.

Through 2V-Indirection, concurrent readers are able to access the
currently committed version of every record without interfering
with writers. Similarly, writers are able install an updated uncom-
mitted version of a record without blocking current readers. By
placing a reference to the uncommitted version of every record,
it also enables the readers to speculatively read uncommitted data
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Figure 2: 2V-Indirection structure

and ignore the committed version or vice versa. Therefore, kV-
Indirection seamlessly allows access to multiple versions of a record
without changing the underlying structure. kV-Indirection is tran-
sient in nature because it maintains only references to at most k
recent versions of the record.

With 8-byte LIDs, 8-byte cRIDs, and 8-byte uRIDs we need 24
bytes per database row (or the row in the active set). This could
further be compressed to less than half the size, since LIDs tend
to have many leading zeroes, and there are well-known techniques
for compressing RIDs. In addition, if a table is partitioned into
set of smaller tablets, a 4-byte cRID and uRID could be sufficient.
Alternatively, if we could guarantee that the number of LIDs are
chosen consecutively starting from 1 (for example use the original
RID of the record), one could omit the LID entirely, and just use
position in the table as a surrogate for the LID). Even without any
of the above schemes to reduce the size of indirection table, a table
with 240-byte rows incurs of an overhead of only 10% of the base
table footprint (regardless of how many indexes are defined on the
table).

4. ACCESS OVERVIEW OF 2V-INDIRECTION
The 2V-Indirection mapping keeps only the cRID of the most re-

cently committed version of a record and the uRID of the uncom-
mitted version of the record (at most one uncommitted version is
allowed). The indirection mapping table is keyed by LID (e.g., a
hash table) to enable fast lookups to both cRID and uRID. Indexes
would no longer point to RIDs, but to LIDs instead such that each
index may now indirectly point to different versions of the record, a
committed and uncommitted RID. The 2V-Indirection enables selec-
tion of the right version based on the transaction concurrency need
as to whether a committed or the uncommitted version is required.

Updates of uncommitted transactions will physically create a
new version of a record referenced by an uncommitted uRID ad-
dress in the 2V-Indirection. But all other concurrent transactions,
when searching through indexes will read the committed version of
the record (and not the uncommitted version); thus, always follow-
ing cRID pointers (unless the uncommitted/dirty read is tolerated,
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which is efficiently supported by 2V-Indirection). Only at the time of
committing the updates, the uRID address will replace the existing
cRID and the current uRID is set to null. Old key values associ-
ated to the older version of the record will be removed from the
affected indexes and new key values are inserted. Indexes on unaf-
fected columns are not modified. If a transaction aborts, then the
uRID is set to null and any new key added to the affected indexes is
removed (undo procedure); however, since the old key is retained
in the index until commit time, chasing the cRID is still valid in the
2V-Indirection; the old value does not need to be re-inserted.

5. MULTI-VERSION CONCURRENCY
We present our optimistic and pessimistic 2-version concurrency

control (2VCC) model with both transaction blocking and non-block-
ing behaviour, inspired by 2V2PL [4]. The original 2V2PL proto-
col is strictly a pessimistic lock-based (i.e., blocking) multi-version
concurrency control method that requires retaining at most two
versions of every record in order to guarantee transaction serial-
izability [4]. We characterize optimistic and pessimistic control
behaviour based on how a transaction validates its reading set as
follows:

• pessimistic, validating the reads during the transaction, or

• optimistic, validating the reads only before committing the
transaction.

Another aspect of our 2VCC model (for both pessimistic and
optimistic) is whether a transaction waits for the validation, i.e.,
whether the concurrency protocol relies on locking (blocking) or
not (non-blocking).

Our concurrency model is capable of supporting full range of
isolation levels including:

• read uncommitted ensures that there are no lost updates but
reads could be uncommitted (dirty reads are possible)

• read committed ensures that there are no lost updates and
reads are committed (reads are not repeatable)

• repeatable read ensures that there are no lost updates and
reads are repeatable (phantoms are possible)

• serializable ensures that there are no lost updates, reads are
repeatable, and there are no phantoms

• snapshot ensures reads are repeatable, i.e., transaction con-
sistent, with respect to a point in time such as transaction
begin time and there are no phantoms

What is common among these isolation variations is that by re-
taining old versions of a record (for non-snapshot isolation lev-
els only the last committed and the uncommitted versions are re-
quired), we can avoid conflicts between readers and writers of the
data as the level concurrency and contention increases. Most im-
portantly, we describe an efficient protocol to realize our proposed
concurrency protocol using kV-Indirection, which we have imple-
mented in an existing commercial database system.

5.1 Pessimistic Concurrency Control
The original lock-based pessimistic 2V2PL avoids clashes of

readers and writers by ensuring that writers certify their writes prior
to committing. The protocol is formalized as follows (as presented
in [4]):

• reading r(x), a read lock rl(x) is set prior to reading the
currently committed version of x; the current version is read
from the cRID column of 2V-Indirection. For phantom de-
tection, the range-predicate of the query is registered or the
next-key locking technique is employed.

• writing w(x), a new uncommitted version of a record is in-
stalled by locking wl(x), a write lock is set prior to modify-
ing x.

• certifying writes, a certify lock cl(x) is set prior to finalizing
the transaction, in parallel, on every data item x modified by
the transaction (lock promotions) in order to ensure that no
active transaction with repeatable read isolation or higher is
currently reading the current value of records. The certifi-
cation is also extended to satisfy the registered range-pred-
icates.

• commit, newly committed versions are installed, and all read
and write locks are released.

THEOREM 1. The parallel implementation of 2V2PL is con-
flict-free serializable.1

Supporting read committed semantics using pessimistic 2V2PL
is straightforward (following standard 2PL protocol for cursor sta-
bility). The read locks are released as soon as the records are read
in the reading phase. For uncommitted reads, no read locks are
acquired prior to reading the record.

Next we describe our latch-free (non-blocking) pessimistic 2VCC
mechanism. The latch-free operations are implemented using an
atomic compare-and-swap (CAS) operator.

1All proofs are presented in Appendix.
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• reading r(x), if the read counter of item x is greater or equal
to 0, then the read counter is incremented [implemented latch-
free using CAS operator] prior to reading the current version
of item x; the current cRID value of x is read from the 2V-
Indirection structure. If the read counter is smaller than 0,
then reading fails and the transaction is aborted and rolled
back.

• writing w(x), a new version of the record is installed by de-
tecting ww-conflict(x): a write-write conflict is detected prior
to modifying x. If no conflict is detected a new uncommitted
version of x is written and uRID is updated accordingly. The
value of uRID itself is an indicator of write-write conflict: a
null value means that no other transaction is currently chang-
ing the corresponding record and a non-null value means that
the record is already being changed [implemented latch-free
using CAS operator].

• certifying writes, every item in the writeset is certified prior
to finalizing the transaction in order to ensure that no active
transaction with repeatable read isolation or higher is cur-
rently reading the current value of records. Certify is sat-
isfied if the read counter is 0 for each item in the writeset.
If the read counter is 0, then on certify, set the counter to -1
[implemented latch-free using CAS operator], indicating that
the item is in the process of certification and its read counter
cannot be incremented. If the read counter is not 0, then the
write cannot be certified and the transaction is aborted and
rolled back.

• commit, once the transaction is committed; the increased read
counters for items in the readset are decremented, the read
counters of the writeset is set back to 0 from -1, the cRID is
replaced with the uRID, and the uRID of items in the writeset
are set to null.

THEOREM 2. The proposed latch-free pessimistic 2VCC is con-
flict-free serializable.

Similar to blocking pessimistic 2VCC, supporting read commit-
ted semantics using latch-free pessimistic 2VCC is also straight-
forward. For read committed, the read counter is decremented as
soon as the records are read in the reading phase (to support only
read-committed isolation, no read counter is required). For the un-
committed read, no read counter is incremented prior to reading
the record, essentially the counter is acting as a light-weight lock-
ing mechanism.2

5.2 Optimistic Concurrency Control
Optimistic concurrency is relevant when validation is needed,

namely, for repeatable read and serializability. The read commit-
ted isolation level always reads the committed version and does
not require validation, and snapshot isolation reads the view of the
database from an instantaneous point in time, which again does not
require validation. We focus first on repeatable read and not phan-
tom detection required for full serializability.

To efficiently implement our optimistic 2VCC model, we again
rely on our proposed 2V-Indirection that provides a fast mechanism
for the validation phase. We require each transaction to keep track
of the (LID, cRID) that was read during the read phase of the trans-
action. We also drop the need for holding read locks for the read-
set of a transaction. In the final phase of a transaction, during the
2Note that the read counter could be embedded within the 8 byte
pointer of the 2V-Indirection uRID (if not persisted) to avoid in-
curred cache misses when updating counters.

certify/validation phase, a transaction re-fetches the current (LID,
cRID) pairs from the 2V-Indirection structure (and at this stage it
also acquires read locks on these records). If the cRID has not
changed for the entire readset, then the transaction satisfies the val-
idation phase and continues with the rest of the certify phase of
2VCC (read locks acquired during the validation are released once
the certify phase is also completed). If either the cRID has changed
or the read lock cannot be acquired due to a certify lock already
held on the record by another active transaction, then the current
transaction is aborted.

In order to deal with phantoms, we propose two alternative ap-
proaches. (1) A standard technique repeats the entire range scan
when validating instead of just validating each element in the read-
set. (2) Rely on range-predicate phantom detection (or key-range
locking), in which when range scans are submitted, a predicate that
covers the range is also issued; thus, each writer transaction must
validate all of its writes against the (relevant) range predicates of
all active transactions during the certify stage to avoid invalidat-
ing repeatability requirement of other active transactions. Extend-
ing the notion of certification to include range-predicate validation
prevents phantoms.

The validation phase can be carried out efficiently and in parallel
because the 2V-Indirection structure has the necessary information
to complete the validation, and it is expected to be maintained on
a fast medium that supports random access (e.g., main memory or
storage-class memory). Once the transaction is ready to commit,
at which point the entire readset is also known, the readset can be
verified using 2V-Indirection in parallel. Validation time is reduced
including the time that read locks are maintained, which further
reduces the contention likelihood between concurrent transactions.
Since the readset is known at the end of transaction, effective batch-
ing techniques to acquire read locks in bulk can also be employed.
Lastly, since the most restrictive lock types are held only during
the final transaction phase, in which data most likely resides in-
memory (or even processor’s cache), exclusive lock duration is re-
duced because a lock is rarely held while transferring data from
slow to fast memory.

The proposed optimistic 2VCC is formalized as follows:

• reading r(x), the currently committed version of x is read;
the current version is read from the cRID column of the 2V-
Indirection structure. For phantom detection, the range-pred-
icate of the query is also registered.

• writing w(x), a new uncommitted version of record is in-
stalled by locking wl(x), a write lock is set prior to modify-
ing x.

• validating reads, a read lock rl(x) is set prior to reading the
current version of x in the readset; the current cRID value of
x is read from the 2V-Indirection structure, for each x if its
cRID value has not changed from when it was first read, then
the validation is satisfied.

• certifying writes, a certify lock cl(x) is set prior to finalizing
the transaction on every data item x modified by the transac-
tion (lock promotions) in order to ensure that no active trans-
action with repeatable read isolation or higher is currently
reading the current value of records. The certification is also
extended to satisfy the registered range-predicates.

• commit, newly committed versions are installed, and all read
and write locks are released.

THEOREM 3. The proposed optimistic 2VCC is conflict-free se-
rializable.
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Supporting read committed/uncommitted semantics for optimistic
2VCC is achieved by not requiring validation of the reads prior to
committing the transaction. Next we outline our latch-free (non-
blocking) optimistic 2VCC mechanism. The latch-free operations
are implemented using an atomic compare-and-swap (CAS) opera-
tor.

• reading r(x), the currently committed version of x is read;
the current version is read from the cRID column of the 2V-
Indirection structure. For phantom detection, the range-pred-
icate of the query is also registered.

• writing w(x), a new uncommitted version of record is in-
stalled by detecting ww-conflict(x), a write-write conflict is
detected prior to modifying x. If no conflict is detected a
new uncommitted version of x is written and uRID is up-
dated accordingly. The value of uRID itself is an indicator
of write-write conflict: the null value means that no other
transaction is currently changing the corresponding record
and a non-null value means that the record is already being
changed [implemented latch-free using the CAS operator].

• validating reads, for each item x in the readset, if its read
counter is greater or equal to 0, then the read counter is in-
cremented [implemented latch-free using the CAS operator]
prior to reading the current version of item x; the current
cRID value of x is read from the 2V-Indirection structure. For
each item x if its cRID value has not changed from when
it was first read, then the validation is satisfied. If the read
counter is smaller than 0, the validation fails and the transac-
tion is rolled back.

• certifying writes, every item in the writeset is certified prior
to finalizing the transaction in order to ensure that no active
transaction with repeatable read isolation or higher is cur-
rently reading the current value of records. Certify is satis-
fied if the read counter is 0 for each item in the writeset. If
the read counter is 0, then certify sets the counter to -1 [im-
plemented latch-free using CAS operator], which indicates
that item is in the process of certification and its read counter
cannot be incremented. If the read counter is not 0, then the
write cannot be certified and the transaction is aborted and
rolled back. The certification is also extended to satisfy the
registered range-predicates.

• commit, when the transaction is committed; the reference to
the uncommitted versions replace the reference to committed
versions, the increased read counters for items in the readset
are decremented, the read counters of the writeset is set back
to 0 from -1, and uRID of items in the writeset are set to null.

THEOREM 4. The proposed latch-free optimistic 2VCC is conf-
lict-free serializable.

Supporting read committed/uncommitted semantics for latch-free
optimistic 2VCC is achieved by not requiring validation of the reads
prior to committing the transactions.

5.3 Pessimistic and Optimistic Co-existence
The blocking versions of pessimistic and optimistic 2VCC can

naturally co-exist because both rely on the lock manager, and the
only difference is the time when the locks are acquired. Appropri-
ate locks, including certify locks, must be acquired. The situation
is slightly more complex when we also include non-blocking con-
currency mechanisms.

Share Update Exclusive

Read

Update

Exclusive

2VCC

2PL

Read Write Certify

Read

Write

Certify

Figure 4: Lock compatibility comparison for 2PL and 2VCC

Consider the case of mixing latch-free pessimistic and optimistic
transactions first. Again, both models respect how read counters
are incremented, ensure that there is at most one outstanding write
for each record, and certify writes always. The only difference be-
tween the two models is that read counters are incremented at the
beginning of a transaction for the pessimistic approach while the
increment is deferred to the end of transaction for optimistic trans-
actions. Therefore, latch-free pessimistic and latch-free optimistic
concurrency can peacefully co-exist.

However, the co-existence of blocking and non-blocking (i.e.,
latch-free) concurrency is non-trivial irrespective of whether they
are pessimistic or optimistic. Blocking transactions are relying on
the lock manager and its queuing capability while the non-blocking
transactions altogether bypass the lock manager. In other words,
there is no obvious mechanism to enable coordination between block-
ing and non-blocking transactions.3

We propose a light-weight coordination mechanism based on
2V-Indirection and the lock manager to enable the co-existence of
both blocking and non-blocking transactions. First, we require that
blocking transactions increment the read counters in addition to ac-
quiring the read locks (depending on pessimistic or optimistic be-
havior, the read counter could be incremented either at the begin-
ning or the end of the transaction, respectively). If the read counter
cannot be incremented due to certification of an outstanding write
by a latch-free transaction, then the blocked transaction also ac-
quires a wait-for dependency on the writer transaction. The writes
for a blocking concurrency must also detect the possible write-write
conflicts (using the uRID column of the 2V-Indirection structure)
and acquire a wait-for dependency again using the lock manager.
Therefore, using our proposed coordination, we can support the
mix of blocking and non-blocking of both pessimistic and opti-
mistic concurrency.

5.4 Mapping 2VCC-to-2PL Infrastructure
We incorporated the 2VCC protocol efficiently using 2V-Indirection

within an existing commercial database system based on 2PL. The
existing 2PL lock manager consists of two main locks: shared
and exclusive. Shared locks are for reading and can be shared
across transactions and exclusive locks are for writing and pre-
vent other transactions from reading or writing records. In addition,
most commercial systems have update lock which is an intention to
write, but does not actually allow the changing of records; the lock
must be promoted to an exclusive lock first. This 2PL characteriza-
tion nicely fits into our 2VCC lock scheme (as shown in Figure 4 by
mapping read lock to shared lock, write lock to update lock, and
certify lock to exclusive lock. In addition, we can also relax update

3Certain (existing) applications may require the blocking feature
and expect the database to manage conflicting transactions as op-
posed to simply aborting such transactions and returning them to
the user.
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lock conditions to allow the transaction that holds an update lock
to physically change the record. Using this lock mapping, we effi-
ciently transform the locking infrastructure designed for a database
with single-version concurrency to multi-version concurrency with
minimal changes.

5.5 Impacts on recovery
The persistence of the 2V-Indirection mapping table (together with

the append-only approach for retaining all versions of the record)
plays a central role in rapid recovery, so that the indexes are still
valid. If we store LIDs with rows in the log, we can recover the
mapping table after a failure. The recovery procedure can drop
the uRID from the affected indexes while leaving the cRID in 2V-
Indirection. Also since the old values of committed versions are
retained, the undo process of recovery (or roll back) is much sim-
pler, and it does not affect transactions accessing the committed
version (also accessible through the index).

The append-only insertion of records further improves recovery
time, because the redo will strictly be limited to the tail of the re-
lation (also exhibiting a fast sequential I/O pattern) and only undo
for rare and very long running transactions may require some ran-
dom accesses to mark an earlier inserted record as invalid/deleted.
All dirty pages are naturally flushed and committed even under a
no-force policy (enabling fast fuzzy checkpoints), which results in
examining a limited number of dirty pages and redo pages during
recovery. In addition, simple bufferpool eviction policies (such as
stealing the oldest dirty page) or frequently committing the tail of
a relation ensure a provably bounded recovery time without any
checkpointing.

5.6 Proposed concurrency model benefits
The key advantages of our 2VCC model using kV-Indirection are

summarized as follows. The transaction writeset can be protected
adaptively based on the workload characteristics. Update locks
can be taken when there is contention among writer transactions.
Our proposed latch-free write-write conflict detection using 2V-
Indirectionś uRIDs can be taken when there is contention between
reader and writer transactions. For the latter case, it is notable that
even our pessimistic 2VCC protocol is optimistic by design and can
seamlessly benefit from an optimistic philosophy. If there is al-
ways contention between readers and writers, but transactions are
short lived and touch only a few records, then the reader of an older
version of a record could be already completed before a writer com-
mits a newer version of the record. Therefore, certification can be
completed quickly.

During the validate stage, the readset is verified by checking in
parallel using kV-Indirection the current (LID, cRID); if cRID has
changed, then abort the transaction, roll back, and release all locks:

• Unlike an in-place update scheme, the checking of the RID
using kV-Indirection is an indicator of change (for monotoni-
cally increasing RIDs); it could simulate a global timestamp.

• Using the RID for validation, the need for a global clock is
avoided, the new disk location indicates a change and guar-
antees correctness.

• Writers do not wait for non-repeatable readers. Only read-
ers must validate their readset for repeatable read and read
stability isolation levels.

• A transaction does not take locks in a serial order because at
the end of transactions, if a lock is needed, the list of required
locks is known and can be acquired in bulk. Thus, parallel
requests of locks for the entire readset is possible.

• No exclusive locks are held while data are being transferred
from slow to fast memory during reads.

Our latch-free 2VCC model uses a light-weight locking mecha-
nism relying on counters. Our proposed optimistic and pessimistic
concurrency control supports both blocking and non-blocking be-
haviours and can be implemented using the existing 2PL infrastruc-
tures, allowing both multi-version and single-version concurrency
to co-exist peacefully.

6. EXPERIMENTAL EVALUATION
In this section, we present a comprehensive evaluation of the

proposed MVCC techniques in a commercial database prototype.
Experiments were conducted on a machine running Red Hat Enter-
prise Linux Server release 6.4 using two 8-core Intel Xeon E7-4820
CPUs clocked at 2.0GHz (providing total of 32 hardware threads)
and having 32GB of RAM. Our experiment is based on modifying
an existing commercial database engine to implement our proposed
kV-Indirection and 2VCC techniques.

We focus our study on an existing micro benchmark proposed
in [17]. The goal of this benchmark was to narrow down the im-
pact of concurrency with respect to the database active set, which
determines the degree of the readers’ and writers’ lock contention.
Three types of workload were studied: (1) low contention, where
the active set is 10M records; medium contention, where the active
set is 10K records; and high contention, where the active set is 1k
records. It is important to note that the database size is not limited
to the active set, and can be much larger (millions or billions of
records). Similar to [17], we consider two classes of transactions:
read-only transactions that scan up to 10% of the data (to model
TPC-H style queries) and short update transactions (to model TPC-
C and TPC-E transactions) that consist of 10 reads and 2 writes. In
addition, we studied varying the ratio of read/writes in these update
transactions to model different customer scenarios with different
read/write degrees. Like [17], we focus on the read-committed iso-
lation level for update transactions.4 For read-only transactions, we
focus on getting transaction-consistent view, which is efficiently
achieved using snapshot isolation for a multi-version database by
retaining the history of all records while acquiring a consistent view
is only possible using repeatable read isolation semantics for the
single-version database. In this study, we took a vanilla commercial
database that relies on single-version concurrency and enhanced it
with the 2VCC model that avoids in-place updates and maintains
the complete history of all records.

Unlike the work in [17] that dealt with an in-memory database,
our database prototype is disk-based. We acknowledge the poten-
tial trend toward memory-optimized databases, in which the entire
transactional workload will fit in memory. In a memory-optimized
database, where the disk I/O is virtually eliminated, there is an even
a higher degree of concurrency (due to a lower latency) and a higher
degree of lock contention. To capture this higher degree of con-
tention, we adjusted the database bufferpool such that all reads (in-
cluding indirection mapping accesses) are served from memory,5

and writes did not result in page cleaning. Additionally, we placed
the log on an enterprise FusionIO SSD card and enabled OS file-
system caching. We essentially eliminated any log-related bottle-
necks as well.

Effects of varying contention: We study the effect of varying
contention among short update transactions to model OLTP type
4Therefore, we focus our experiments on the latch-free opti-
mistic/pessimistic transaction model.
5We also ensured that the bufferpool is warmed up prior to running
measured experiments.
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Figure 5: Effects of varying the number of parallel short update transactions (update execution time)

workloads. We control the degree of contention by varying the
database active set size and varying the number of parallel update
transactions. We construct up to 64 parallel streams of update trans-
actions, where in each stream we issue up to 10,000 transactions in
sequence, and we report the total execution of all streams. As we
increase the number of concurrent short update transactions from
1 to 64, we observed that the our 2VCC model using 2V-Indirection
outperforms the database with a single-version concurrency model
consistently for both high (up to 43x speed up) and medium con-
tention (up to 1.6x speed up) and achieves a comparable perfor-
mance when dealing with low contention (up to 1.1x speed up),
as shown in Figure 5. The reasons for improvement are two-fold:
(1) fewer read locks are acquired and/or latch-free reads are utilized
without acquiring any read locks, and (2) readers and writers do not
conflict because when an updater writes a new version of a record,
a read could continue reading the currently committed version of
the record without any blockage.

These improvements are also supported by statistics from the
database such as the number of lock waits issued, the total lock wait
time, and the number of deadlocks. As shown in Figure 5(b), for
the high-contention workload, as the number of parallel threads in-
creases, the lock wait time and the deadlock ratio of single-version
over mutli-version is substantially increased due to readers and
writers conflicts.6

Effects of varying workload read/write ratio: A key property
of update transactions is the ratio between reads and writes. In

6For the medium and low contention workloads similar trends were
also observed, but they are omitted in the interest of space.

the previous experiments, we considered only a read/write ratio of
10:2. We now explore the spectrum from a read-intensive workload
having read/write ratio of 12:0 to a write-intensive workload hav-
ing read/write ratio of 0:12 for both high and medium contention.
Interestingly, in Figure 6 we observe that for the read-intensive
workload, the single- and multi-version database performs the same
(true also for low contention, which is not shown here) despite the
fact that multi-version database with the latch-free feature avoids
taking any read locks. This shows the maturity of the commercial
database lock infrastructure, where lock avoidance logic is effective
and, in general, acquiring and releasing locks without any lock wait
are not expensive. However, this picture quickly changes as soon
as we introduce writes into the mix, where the lock avoidance logic
fails, and acquiring read locks conflicts with the exclusive locks
(resulting in an extended lock wait time) that are held for the en-
tire duration of the transaction in the single-version database. The
clashes between readers and writers are eliminated by acquiring
only update locks during transaction life-time, and holding exclu-
sive locks for a much shorter period only during the commit time.

Effects of combining OLTP- and OLAP-type queries: An-
other major benefit of our approach manifests itself when long
read-only transactions are also present, modelling an operational
data store where both OLTP and OLAP queries are run. The long-
running queries on average touch 10% of the base table. A desired
isolation semantics for read-only query is to have transaction con-
sistent view; this is efficiently achieved through snapshot (through
table scan and by retaining the history of all records) in a multi-
version database, but in a single-version database, a repeatable read
isolation level is needed to achieve a consistent view. However, in a
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Figure 6: Effects of varying the read/write ratio of short update transactions (update execution time)

single-version database, the execution of long running queries are
increased due to frequent lock wait times on records that are be-
ing modified. To address this challenge, we rely on what refer to
as last committed (LC) isolation level, which is a highly efficient
mechanism to support long-running queries by eliminating the read
and write contention at the of cost weaker isolation semantics. Ba-
sically, under the LC semantics, if a query attempts to read a record
that is being modified by an update transaction, it simply reads the
last committed version of that record from the log space;7 thus,
LC semantics may not provide a transaction consistent view. We
benchmark our proposal against both ends of the spectrum: RR
and LC isolation levels for read-only queries in a single-version
database.

We further consider two scenarios: first, keeping the number
of parallel update transactions constant at 16 while increasing the
number of concurrent read-only transactions from 1 to 16 and, sec-
ond, keeping the number of parallel read-only transactions constant
at 16 while increasing the number of concurrent short update trans-
actions from 1 to 16. We present results for high and medium con-
tention and report both read and update throughput as shown in
Figure 7.

We observe, as the number of long running queries is increased
(Figures 7(a) and 7(b)), the contention is increased significantly
between the read locks of long running read-only transactions and

7Note that reads from the log does not necessarily mean disk I/O
because the last committed versions may be in the log buffer and
in most cases it would require only memory access to fetch the old
versions.

the write locks (exclusive locks) of update transactions in a single-
version database. This increased contention is less significant for
single-version with LC isolation (2VCC benefit over LC reaches
up to 16x). In fact, once the number of read-only transactions ex-
ceeded two, both the lock wait time and the number of deadlocks
are increased substantially when a consistent transaction view is
required in a single-version database. The clashes between heavy
reader transactions and update transactions were avoided by avoid-
ing in-place updates and retaining all the old versions in our 2VCC
model. Similar performance advantages were observed when the
number of read-only queries is fixed and the number of update
transactions is varied. These results are demonstrated in Figures 7(c)
and 7(d). We also repeat these experiments for medium contention
scenarios as shown in Figures 7(e) and 7(f), although the gap is re-
duced, yet 2VCC model outperformed the single-version with RR
and LC semantics by orders of magnitudes and a factor up to 2x,
respectively.

7. RELATED WORK
Database concurrency theory [4], an old age problem, has re-

cently been revived by industry [7, 17, 18] and academia [25, 33,
6, 32, 29, 14, 16, 34] due to hardware trends (e.g., multi-cores and
large main memory) and application requirements (e.g., millions of
transactions per second in algorithmic trading).

Microsoft Hekaton focuses primarily on optimistic concurrency
by assuming that roll backs are inexpensive and conflicts are rare
(despite the high contention) [7, 17]. Hekaton avoids the use of
a lock manager and relies on read validation to ensure repeatable
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Figure 7: Effects of varying the number of read-only vs. short update transactions (High to Medium Contention)

reads, performs re-execution of all range queries to achieve serial-
izability, and detects write-write conflicts by using a CAS operator,
aborting the second writer to avoid any blocking. This optimistic
outlook is implicitly rejected by recent academic work [25, 33, 6,
32, 14, 16] that argues validation is expensive and, thus, advocates
a deterministic execution that avoids both the need for a lock man-
ager and validation. However, this deterministic paradigm is prac-
tical only in an ideal world where workloads are completely parti-
tionable.

For example, H-Store proposes a disjoint partitioning of the work-
load across cores, and by assuming that a transaction only access
a data within the assigned partition, all transactions for each core
are run serially [16] without any concurrency control mechanism.
This simple and potentially effective model breaks as soon as a
transaction attempts to access data on more than one partition. To
address the problem of multi-partition transactions (that are com-
mon in many customer settings and unavoidable for any general

purpose commercial database systems [7]), speculative execution
and lightweight locking mechanisms are proposed [25, 33, 6, 32,
14] for both central and distributed execution. To overcome the
challenges of statically assigning transactions/partitions to a core, a
data-oriented transaction model is introduced in DORA [24], which
continues to rely on a traditional lock manager, but reduces the
size of the transaction critical path. However, DORA threading
is substantially different from the conventional assignment of a
transaction-to-thread (or to an agent) and relies a on producer-con-
sumer model, where the work for each transaction is spread across
many threads based on the data access pattern (the assignment is
typically determined based on the available indexes). Although
DORA could in principle address some of the shortcomings of
multi-partition transactions, its adoption is limited due to the high
cost of redesigning the transactional model of existing systems.
The producer-consumer rendezvous engine must incur the neces-
sary coordination overhead especially when dealing with multi-
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socket and non-uniform memory accesses to communicate between
threads. None of these data partitioning methods consider a multi-
version concurrency model.

Our kV-Indirection model using 2VCC differ from Hekaton by
providing both efficient (latch-free) pessimistic and optimistic mod-
els. Similar to Hekaton, it does not focus on a specific type of
workload, like partitionable workloads [25, 33, 6, 32, 14, 16], and
does not require redesigning the transactional threading model of
existing systems [24].

In [8], Dou et al. propose specialized index structures and al-
gorithms that support querying of historical data in flash-equipped
sensor devices. Since the sensor devices have limited memory ca-
pacity (SRAM) and the underlying flash devices have certain limi-
tations, there are challenges in maintaining and querying indexes.

Many specialized indexes for (transient) versioned and tempo-
ral data have been proposed. A comprehensive survey of temporal
indexing methods is provided in [27]. Tree based indexes on tem-
poral data include the multi-version B-tree [3], Interval B-tree [2],
Interval B+-tree [5], TP-Index [30], Append-only Tree [11] Mono-
tonic B+tree [9], and distributed multi-version B-Tree [31]. Effi-
ciently indexing data with branched evolution is discussed by Jouni
et al. [15], who build efficient structures to run queries on both cur-
rent and historical data. A transient versioned database introduced
by Mohan et al. aim to isolate reader and writer transactions, sim-
ilar to our technique, at the cost of slightly outdated but a consis-
tent snapshot for readers[21]. However, our scope is not limited
to supporting consistent snapshot read and we focus on the general
problem of (latch-free) multi-version concurrency control. Our ap-
proach avoids challenges associated with advancing outdated snap-
shot reads presented in [21] by explicitly retaining the history of all
records and constructing the database snapshot based on the time
records were inserted or deleted. For example, the maintained tran-
sient snapshot can only advance when there are no outstanding read
queries in the system (the age of snapshot is proportional to the du-
ration of longest running queries in the system) or the system is
forced to explicitly maintain as many concurrent snapshots as there
are active readers in the system [21].

Specialized transaction time database systems such as Immortal
DB [19, 20] provide high performance for temporal applications.
Lomet et al. [20] describe how a temporal indexing technique, the
TSB-tree, is integrated into SQL Server. The paper also describes
an efficient page layout for multi-version databases.

8. CONCLUSIONS
We presented our commercial database working prototype en-

hanced with our multi-version concurrency control. We described
a kV-Indirection mapping that translates a version-independent logi-
cal ID into the version-dependent RID. Our proposed 2V-Indirection
mapping maintains two RIDs: the cRID that points to the most re-
cently committed version of the record and the uRID that points
to the most recent uncommitted version of the record. Indexes no
longer point to RIDs, but to LIDs instead. And each index may
point to at least two versions of a record through a single LID via a
(cRID, uRID) pair.

Exploiting the 2V-Indirection mapping not only has the advan-
tages of limiting updates or deletes to affected indexes but also
provides a mechanism for implementing multi-version concurrency
control (such as 2VCC) because at any point in time the 2VCC re-
quires efficient and fast access to both last committed and last un-
committed values, and the indirection mapping allows the direct
access to this information. In addition, our proposed latch-free pes-
simistic/optimistic 2VCC can efficiently be implemented using 2V-

Indirection. In general, kVCC can be generalized to kV-Indirection in
order to access the last k versions of the index efficiently.
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APPENDIX
This section contains the proofs of pessimistic and optimistic con-
currency theorems.

THEOREM 1. The parallel implementation of 2V2PL is con-
flict-free serializable.

PROOF. This is directly follows by the fact that every history
of transactions produced by 2V2PL is 1-serializable (1SR) [4], and
our implementation of the 2VCC protocol using 2V-Indirection does
not change its semantics nor the order in which locks are acquired.

THEOREM 2. The proposed latch-free pessimistic 2VCC is con-
flict-free serializable.

PROOF. Our latch-free pessimistic 2VCC prevents any write op-
eration on items read by active transactions; therefore, the certifi-
cation is always trivially satisfied.

The proposed 2VCC with write-write conflict is also 1SR be-
cause it aborts and avoids queuing transactions that discover their
writeset is being changed by other active transactions. Since the
only modification is to abort certain transactions, there are no lost
updates.

Finally, the pessimistic 2VCC certification guarantees that the
version read by transactions throughout the transaction remains un-
changed throughout the life of the transaction. The only subtle
point is to ensure that certification itself is done in a critical section,
meaning once an item in the writeset is certified no new readers are
admitted. This is achieved by setting the read counter of each item
in the writeset to -1 if the counter is 0. If the read counter is greater
than 0, then the certification fails and the transaction is aborted in
order to ensure read stability for active transaction without block-
ing the certifying transaction. Hence, all histories produced by our
proposed 2VCC are 1SR.

THEOREM 3. The proposed optimistic 2VCC is conflict-free se-
rializable.

PROOF. The optimistic 2VCC with validation guarantees that
the version read by transaction remains unchanged throughout the
life of transaction. The only subtle point is to ensure that valida-
tion itself is done in a critical section, meaning once an item in the
readset is validated no other transaction can change the item until
validation is completed. This is achieved by holding a read lock for
every item in the readset before validating it and releasing the read
lock after transaction is committed. Hence, all histories produced
by our proposed optimistic 2VCC are 1SR.

THEOREM 4. The proposed latch-free optimistic 2VCC is conf-
lict-free serializable.

PROOF. Our latch-free optimistic 2VCC is based on the read-
counter mechanism preventing any write operation on items read
by active transactions; therefore, the certification is always trivially
satisfied.

The proposed 2VCC with write-write conflict is also 1SR be-
cause it aborts and avoids queuing transactions that discovered that
their writeset is being changed by other active transactions. Since
the only modification is to abort certain transactions, there are no
lost updates.

The optimistic 2VCC ensures the correctness of the validation
by guaranteeing that the version read by transaction remains un-
changed throughout the life of transaction. The only subtle point is
to ensure that validation itself is done in a critical section, meaning
once an item in the readset is validated (its reader counter incre-
mented) no other transaction can change the item until validation is
completed. This is achieved by incrementing the counter for items
in the readset before validating, and only decrement them once the
transaction is committed.

Finally, the optimistic 2VCC certification guarantees that the older
versions read by other active transaction remains unchanged through-
out the life of transaction. The only subtle point is to ensure that
certification is also done in a critical section, meaning once an item
in the writeset is certified no new readers are admitted. This is
achieved by setting the read counter of each item in the writeset to
-1 if the counter is 0. If the read counter is greater than 0, then the
certification fails and the transaction is aborted in order to ensure
read stability for active transactions without blocking the certifying
transaction. Hence, all histories produced by our proposed opti-
mistic 2VCC are 1SR.
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