
MRTuner: A Toolkit to Enable Holistic Optimization for
MapReduce Jobs

Juwei Shi†⋆, Jia Zou†, Jiaheng Lu⋆, Zhao Cao†, Shiqiang Li† and Chen Wang†

†IBM Research - China, Beijing, China, {jwshi, jiazou, caozhao, shiqli, wangcwc}@cn.ibm.com
⋆Renmin University of China, Beijing, China, jiahenglu@ruc.edu.cn

ABSTRACT
MapReduce based data-intensive computing solutions are increas-
ingly deployed as production systems. Unlike Internet companies
who invent and adopt the technology from the very beginning, tra-
ditional enterprises demand easy-to-use software due to the limited
capabilities of administrators. Automatic job optimization software
for MapReduce is a promising technique to satisfy such require-
ments. In this paper, we introduce a toolkit from IBM, called MR-
Tuner, to enable holistic optimization for MapReduce jobs. In par-
ticular, we propose a novel Producer-Transporter-Consumer (PTC)
model, which characterizes the tradeoffs in the parallel execution
among tasks. We also carefully investigate the complicated rela-
tions among about twenty parameters, which have significant im-
pact on the job performance. We design an efficient search algo-
rithm to find the optimal execution plan. Finally, we conduct a
thorough experimental evaluation on two different types of clusters
using the HiBench suite which covers various Hadoop workloads
from GB to TB size levels. The results show that the search latency
of MRTuner is a few orders of magnitude faster than that of the
state-of-the-art cost-based optimizer, and the effectiveness of the
optimized execution plan is also significantly improved.

1. INTRODUCTION
Nowadays MapReduce based data-intensive computing solutions

are increasingly deployed as production systems. These systems
become popular in traditional industries such as banking and telecom-
munications, due to demands on processing fast-growing volumes
of data [10]. Enterprises usually demand easy-to-use and man-
ageable softwares. However, MapReduce-based systems such as
Hadoop from the open source community hold a high learning
curve to IT professionals, especially on system performance man-
agement to better utilize the system resources. The parameter con-
figuration in Hadoop requires the understanding of the character-
istics of the job, data and system resources, which is beyond the
knowledge of traditional enterprise IT people. Another interesting
scenario about MapReduce job tuning comes from analytic services

This work is licensed under the Creative Commons Attribution­
NonCommercial­NoDerivs 3.0 Unported License. To view a copy of this li­
cense, visit http://creativecommons.org/licenses/by­nc­nd/3.0/. Obtain per­
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st ­ 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 13
Copyright 2014 VLDB Endowment 2150­8097/14/08.

ts2
ts1

tov tnov1

m1

m2

m3

m4

m5

m6

m7

m8

m10

m9

m11

r1

r2

r3

r1

r3

r2

r4

r5

r6

r4

r5

r6

Time

Map Task

Reduce Task

(Reduce)

Reduce Task

(copy&merge)

Overlapped Time

Map Waves m=3

Reduce Waves r=2

Map task

slots=4

Reduce task

slots=3

Figure 1: The Pipelined Execution of a MapReduce Job

(e.g. Elastic MapReduce1) on the cloud. The users, such as data
scientists, do not know how to correctly choose the MapReduce
parameters to accelerate the job execution. Therefore, motivated
by above scenarios, this paper addresses the challenge to build an
automatic toolkit for MapReduce job optimization.

Job optimization (i.e. query optimization) [1] technologies are
widely used in relational database management systems (RDMBS)
over the past few decades. Traditional query optimizers build a
cost model to estimate query processing costs, and design search
algorithms like dynamic programming to find the best execution
plan. However, neither cost models nor search algorithms from
RDBMS work for MapReduce because of the intrinsical system
difference.

Cost-based optimization for MapReduce has been studied in [6,
7], which models the execution of individual Map or Reduce tasks,
and simulates all the MapReduce execution plans to find the best
one. This solution, while pioneering, has some drawbacks. For in-
stance, existing MapReduce cost models [6, 11] focus on predicting
the cost of individual Map or Reduce tasks, but rarely address the
parallel execution among tasks. In the MapReduce programming
model, the overall execution time may not be equal to the sum of
the cost of each individual task, because of the potential saving
from the overlapped time window among (Map and Reduce) tasks
in the parallel execution. The overlaps among tasks should be con-
sidered in a more holistic optimizer to maximally utilize the lim-
ited hardware resources in enterprises. Further, Hadoop has more
than 190 configuration parameters, out of which 10-20 parameters
have significant impact on job performance. To address the issue of
the high dimensionality, the existing algorithm [6] uses a random
search algorithm, which may lead to sub-optimal solutions without
deviation bounds.

To overcome the above two limitations, we have an in-depth
study about MapReduce job optimization. To model the inter-task

1http://aws.amazon.com/elasticmapreduce/

1319

parallelism of a MapReduce job, we use a pipelined execution model
to describe the relations among tasks. A key property of the pipelined
model is that part of the Shuffle stage can be overlapped with the
Map stage. An example of the pipelined execution is shown in Fig-
ure 1 (We will elaborate task slots, Map and Reduce waves and
other notions in Section 3). For this job execution, parts of the
Shuffle tasks (r1 to r3) are overlapped with the Map tasks (m5 to
m11) in the time duration tov . The overlap is affected by some crit-
ical parameters like the compression option, the number of Map
and Reduce tasks, and the number of copy threads. The over-
lapped time window makes the design of MapReduce cost models
challenging, and we thereby identify a few fundamental tradeoffs
(See Section 3.1 for details) to guide the design of a new MapRe-
duce cost model. As the foundation of this study, we propose the
Producer-Transporter-Consumer (PTC) cost model to characterize
the tradeoffs in the MapReduce parallel execution. The key intu-
ition of the PTC model is that, for a MapReduce job execution plan,
the generation of Map outputs (i.e. by the Producer), the transporta-
tion of Map outputs (i.e. by the Transporter) and the consumption
of Map outputs (i.e. by the Consumer) should keep pace with each
other so that utmost utilization of the system resources (CPU, disk,
memory and network) is achieved to minimize the overall running
time of the parallel execution.

To address the challenge of the high dimensionality, we focus on
the search space reduction without losing the accuracy of the op-
timization. By investigating the complicated relations among pa-
rameters, we have two important findings. Firstly, given the iden-
tified tradeoffs, some parameters should be optimized by a holistic
cost model. For example, considering the overlapped Shuffle du-
ration, the running time of the Map stage affects that of Reduce
tasks, meaning that the Map and Reduce stages should not be opti-
mized separately. Secondly, we figure out the dependencies among
parameters, and find that some parameters can be represented by
existing variables. For example, given the estimated Map selectiv-
ity (i.e. the ratio of output to input) and the average record size of
Map outputs, the size of the Map output buffer can be calculated
from the input split size. Thus this parameter is not an independent
variable in our cost model. As a result, the careful investigation of
relations among different parameters facilitates the reduction of the
search space and enables the design of a fast search method.

In this paper, we introduce the design and implementation of a
toolkit, namely MRTuner, to enable holistic optimization for MapRe-
duce jobs. The toolkit has been used in IBM and with several cus-
tomers for pilots. The key contributions of this paper are as follows.

• We design and implement a toolkit to enable holistic opti-
mization for MapReduce jobs, which covers parameters of
MapReduce and HDFS.

• We identify four key factors to model the pipelined execution
plan of a MapReduce job, and propose a Producer-Transporter-
Consumer (PTC) cost model to estimate the running time of
a MapReduce job.

• We figure out the relations among the performance sensitive
parameters, and design a fast search method to find the opti-
mal execution plan.

• We conduct a thorough experimental evaluation on two dif-
ferent types of clusters using HiBench [8], covering various
workloads from GB to TB levels. The search time of the MR-
Tuner job optimizer outperforms that of the state of the art
cost-based MapReduce optimizer by a few orders of magni-
tude. More importantly, MRTuner can find much better exe-
cution plans compared with existing MapReduce optimizers.

N copiers

Map()

Map()

File File … File

Sorted

File

Split 3

Split 2

Split 1

Split 0

Split 4

Split 5

spill
merge

Sorted

File

Map()

Index <k, v>

16 byte R byte

File File… File

Reduce()disk

Sorted

File

merge

merge

Last round

of merge

Reduce()

Reduce()

Part 2

Part 1

Part 0

HDFS

Buffer&Spill

& Merge

Buffer&Spill

& Merge

Buffer&Spill & Merge

Copy & sort & merge

Copy & sort & merge

Copy & sort & merge

HDFS

(each record)

Map Output

Buffer
Shuffle

Input Buffer
Reduce

Input

Buffer

memory

Sorted

File

Figure 2: Hadoop MapReduce Internals

As an in-depth study of MapReduce performance, we believe the
insights in designing and evaluating MRTuner can also benefit the
Hadoop system administrators and IT professionals who are inter-
ested in the performance tuning of Hadoop MapReduce.

The rest of the paper is organized as follows. We begin with Sec-
tion 2 to introduce MapReduce. We dive into our new PTC model
in Section 3. In Section 4, we describe the architecture of MRTuner.
Section 5 is devoted to the implementation of MRTuner. Then the
related work is showed in Section 6. Finally, we present the exper-
imental results and conclude in Section 7 and 8 respectively.

2. PRELIMINARIES
In this section, we introduce some preliminary knowledge about

MapReduce in Hadoop, which will be used in the rest of this paper.
Job Execution. MapReduce is a parallel computation framework
that executes user defined Map and Reduce functions. The task-
slot capacity (i.e. the maximum number of Map or Reduce tasks
that can run simultaneously) is fixed when the cluster instance gets
started. When a job is submitted, tasks will be assigned to slave
nodes for the execution when there are available task slots on these
nodes. When the first round of Map tasks finish, Reduce tasks are
able to start to transfer Map outputs. As shown in Figure 1, for
example, the number of Map and Reduce slots is 4 and 3, respec-
tively. Given 11 Map tasks and 6 Reduce tasks, there are 3 waves
(rounds) of Map tasks and 2 waves of Reduce tasks. When the first
wave of Map tasks (i.e. m1 to m4) completes, the first wave of
Reduce tasks (i.e. r1 to r3) would start to copy Map outputs.
Map Task. Map tasks read input records, and execute the user
defined Map function. The output records of Map tasks are col-
lected to the Map output buffer whose structure is shown in the top
left of Figure 2. For each record, there are 16 bytes meta-data for
sorting, partitioning and indexing. There are parameters to control
spill thresholds for both the meta-data and data buffers. When the
buffer exceeds the configured threshold, the buffered data will be
spilled to disk. When all the Map outputs are generated, the Map
task process will merge all the spilled blocks to one sorted file. In
other words, if the size of Map outputs exceeds the threshold of
the configured buffer, there is extra disk I/O for spill and merging.
Moreover, the Map output data can be compressed to save disk I/O
and network I/O.
Reduce Task. When a Reduce task starts, concurrent threads are
used to copy Map outputs. The number of concurrent copy threads
is determined by a parameter. This parameter impacts the paral-
lel execution of a job, and there is a tradeoff between the context
switch overhead and the Shuffle throughput. When Map outputs
are copied to the Reduce side, multiple rounds of on-disk and in-
memory combined sort & merge are performed to prepare Reduce
inputs. There is also a buffer in the Reduce side to keep Reduce in-
puts in memory without being spilled to disk. Finally, the outputs
of Reduce tasks are written to HDFS.

1320

3. A NEW COST MODEL FOR MAPREDUCE
In this section, we first elaborate the key findings in the parallel

execution of MapReduce jobs, and then present a new cost model.

3.1 MapReduce Inter­task Tradeoffs
The key idea of inter-task optimizations is to overlap the execu-

tion of Map and Reduce stages. To reduce the total running time of
a job, the Shuffle stage, which is network I/O bounded, is optimized
to be executed in parallel with the Map stage (without network I/O).
Specifically, when the first wave of Map tasks completes, the first
wave of Reduce tasks would start to copy Map outputs while ex-
ecuting the second wave of Map tasks. Based on the pipelined
execution model, we identify four key factors to characterize the
MapReduce execution path and important tradeoffs.

• The number of Map task waves m. The factor m is de-
termined by the Map input split size (or the number of Map
tasks) and the Map task slot capacity.

• The Map output compression option c. The factor c is the
parameter of the Map output compression option.

• The copy speed in the Shuffle phase v. The factor v is
determined by the number of parallel copiers, the network
bandwidth and the Reduce task slot capacity.

• The number of Reduce task waves r. The factor r is deter-
mined by the number of Reduce tasks and Reduce task slot
capacity.

We analyze the impact of the key factors on job performance in
the pipelined execution shown in Figure 1. tov is the overlapped
Shuffle time, and we assume Reduce tasks copy Map outputs with
the amount of Dov during tov . If m increases (i.e. the number of
Map tasks increases), Dov increases (i.e. more Map outputs can
be copied in the overlapped manner), with the cost in task creation,
scheduling and termination. If r increases, Dov decreases (only the
first wave of Reduce tasks can perform the overlapped copy). But
there is a benefit that more Reduce inputs can be hold in memory
without being spilled to the disk, since the maximum available Re-
duce input buffer is fixed for each wave of Reduce tasks. When the
number of copy threads increases, v increases, at the cost of more
context switch overhead. If the Map stage is slowed down by the
context switch overhead, the time window tov increases. Therefore,
we summarize the following fundamental tradeoffs that should be
addressed by the MapReduce cost model.

• (T1) Selecting m is a tradeoff between the time window for
the overlapped copying and task scheduling overhead. When
m increases, more Map outputs can be transferred in the
overlapped manner, but the cost to schedule the increased
wave of Map tasks should not be neglected. Further, the over-
lapped time duration affects the copy speed v.

• (T2) The compression option c is beneficial if the cost to
compress and decompress the total Map outputs is less than
the cost of transferring the additional amount of Map out-
puts without compression, excluding Dov . It means that we
should exclude the overlapped Shuffle time tov to estimate
the running time of a job.

• (T3) Selecting the copy speed v is a tradeoff between context
switch overhead and the amount of overlapped shuffled data.
Because of the context switch overhead of copy threads, the
speedup of transferring Map outputs may not lead to the re-
duction of the overall execution time. In other words, we

Producer

Transporter

Consumer

123

123

Disk

Disk

Generate Map outputs

of the ith wave
m

m

Start to consume Reduce

inputs when all the data of

the m waves are ready

Start to copy when the Map

outputs of the first wave is ready

Figure 3: The Components of the PTC Model

should minimize the number of Reduce copy threads while
trying to catch the throughput of Map outputs generation.

• (T4) Selecting the number of Reduce waves r is a tradeoff
between the amount of overlapped shuffled Map outputs and
the saved I/O overhead from buffered Reduce inputs. Since
the buffer allocated for each Reduce task is fixed, we need
to have more Reduce tasks to keep more Reduce inputs in
memory. But it comes at the cost of the potential increase of
the number of Reduce waves, which leads to the fewer Map
outputs that can be copied in the overlapped manner.

3.2 Producer­Transporter­Consumer Model
We propose a cost model, namely Producer-Transporter-Consumer

(PTC), to model the key tradeoffs. As shown in Figure 3, the PTC
model consists of three components: Producer, Transporter and
Consumer. The Producer is responsible for reading Map inputs
from HDFS, processing the user defined Map function, and gener-
ating Map outputs on the local disk. The Transporter is in charge
of reading Map outputs, copying it to the Reduce side, and merging
it to the disk. The Consumer needs to read Reduce inputs for the
user defined Reduce function.

The assumptions of the PTC model are given as follows.

• The Transporter starts to transfer Map outputs when the first
wave of Map tasks finishes.

• The Transporter can only pre-fetch Map outputs for the first
wave of Reduce tasks, meaning that at most 1/r of total Map
outputs can be copied in the overlapped manner.

• Only the network I/O cost may be eliminated in estimating
the running time. The disk I/O cost can not be excluded since
both Map and Reduce tasks preempt this resource.

• We assume that there is no skewness among tasks. We leave
it as future work to consider skew tasks in the PTC model
(See the discussion in Section 7.3).

• For simplicity of presentation, we assume that the allocated
system resources of each task slot are the same. The PTC
model can be easily extended to handle heterogeneous slots.

Cost Estimation of the PTC Model. The Producer models the
process of generating Map outputs in m waves. The main result of
the Producer model is summarized as the following proposition.

PROPOSITION 3.1. Given the inputs D, Map and Reduce slots
{Nms, Nrs} and four factors {m, r, v, c}, the running time of the
Producer to process all the Map tasks is

Tproducer = tmap(D, c) + tschedule(m) + tcs(D, c, v, r) (1)

where tmap(·) is the running time of Map tasks. tcs(·) is the context
switch time. tschedule(·) is the time spent on task scheduling.

1321

PROOF. Suppose that Map tasks perform only one-pass sort-
merge (See optimizations in section 5.2.1), the running time tmap(·)
is determined by the inputs D and the compression option c. tcs(·)
is the context switch time led by parallel Reduce copy threads,
which is determined by the inputs D, the compression option c, the
copy speed v and the number of Reduce waves r. Finally, for each
wave of Map tasks, there is a penalty factor tschedule(·) that repre-
sents the overhead to create, schedule and terminate tasks. There-
fore, Eq 1 holds in the proposition 3.1

The implementation of tmap(·), tcs(·) and tschedule(·) is given in
Section 5.1. We do not have Nms and Nrs as arguments of these
functions since they are fixed after the cluster is started. The key
design of the Producer model is to consider the context switch and
task scheduling overhead in the pipelined execution.

The Transporter models the process of transferring Map outputs.
The main result of the Transporter model is summarized as follows.

PROPOSITION 3.2. Given the inputs D, Map and Reduce slots
{Nms, Nrs} and four factors {m, r, v, c}, the running time of the
Transporter to transfer the Map outputs is

Ttrasporter =min((
m− 1

mrv
·Ds −

m− 1

m
· Tproducer

− tlrw(
m− 1

mr
·Ds)), 0)

+
(2mr −m− r + 1)

mrv
·Ds + tlrw(Ds))

(2)

where Tprocuder is given in Proposition 3.1. Ds is the amount of
transferred data which is determined by D and c. tlrw(x) is the
time to read and write data with the amount of x on local disk.

PROOF. As shown in Figure 1, since only the first wave of Re-
duce tasks can perform copy in parallel with the Map stage, the
maximum amount of Map outputs copied in the overlap manner is
Domax = Ds · m−1

m
· 1

r
. If all the Domax can be transferred be-

fore Map tasks finish (i.e. within the time window tov = m−1
m

·
Tproducer + tlrw(

m−1
mr

·Ds), where m−1
m

· Tproducer is the time to
process the first m − 1 waves of Map tasks, and tlrw(

m−1
mr

· Ds)
is the time to read (in the Map side) and write (in the Reduce
side) shuffled data), the non-overlapped time to transfer Domax is
tnov1 = 0. Otherwise, there is the additional time tnov1 to transfer
Map outputs with the amount of Domax − tov · v after all the Map
tasks finish. Thus the running time (excluded the overlapped time)
to transfer Map outputs for the first wave of Reduce tasks is

ts1 = tnov1 =min((Ds ·
m− 1

m
· 1
r
· 1
v
− m− 1

m
· Tproducer

− tlrw(
m− 1

mr
·Ds)), 0)

Next we derive the time to copy the rest of Map outputs Dn. The
amount of outputs generated by the last wave of Map tasks is Ds ·
1
m

. The amount of the rest of the Map outputs generated for the
second to the rth wave of Reduce tasks is Ds · m−1

m
· r−1

r
. Thus

the time to transfer Dn is

ts2 =Ds · (
1

m
+

m− 1

m
· r − 1

r
) · 1

v

=
(2mr −m− r + 1)

mrv
·Ds

Finally, the running time of reading Map outputs (in the Map side)
and writing Reduce inputs (in the Reduce side) is tsrw = tlrw(Ds).
Based on the assumption that Map and Reduce tasks preempt the
disk I/O resource, the time tsrw can not be excluded in estimating
the running time for the Transporter.

Therefore, Proposition 3.2 shows the sum of ts1, ts2 and tsrw,
as desired.

The Consumer models the process of consuming Reduce inputs.
The main result of the Consumer cost model is summarized as the
following proposition.

PROPOSITION 3.3. Given the inputs D, Map and Reduce slots
{Nms, Nrs} and four factors {m, r, v, c}, the running time of the
Consumer to consume the Reduce inputs is

Tconsumer = treduce(D, c) + tschedule(r)− tlrw(Br) · r (3)

where treduce(·) is the running time to process Reduce inputs with-
out enabling the Reduce side buffer. Br is the allocated Reduce
side buffer for each Reduce task.

PROOF. treduce(·) is determined by the shuffled Map outputs
size Ds. Ds is determined by the Map inputs D and the compres-
sion option c. Thus treduce()̇ is determined by D and c. For a
Reduce task, the amount of Map outputs that can be hold in the
Reduce side buffer is Br (i.e. the amount of allocated Reduce side
buffer for each Reduce task). Thus the total time can be saved by
the Reduce side buffer is tlrw(Br) · r. Moreover, there is a penalty
tschedule(·) to schedule Reduce tasks. Therefore, we have Eq 3 in
the proposition 3.3.

Based on the results in Proposition 3.1, 3.2 and 3.3, we have the
global cost function of the PTC model as follows.

TPTC = Tproducer + Ttransporter + Tconsumer (4)

Implication of the PTC Model. We use a serial of illustrative ex-
amples with different settings of the factors to demonstrate how to
address the tradeoffs with the PTC model. All the tasks in the same
wave are shown by a single line. Since the scheduling overhead
tschedule is constant, we do not show it in examples for simplicity.

Figure 4 (a) shows the running time break-down when {m =
3, r = 1, c = true, v = 2}. Under this setting of the factors,
we assume that: 1) The running time of each wave of Map tasks is
tmap = 20 seconds (The unit is omitted in the following examples
for simplicity). 2) The context switch time is tcs = 5 for the second
and the third waves of Map tasks respectively. 3) The network copy
time of each Map wave is ts = 15. 4) For each wave of Shuffle
tasks, the local read and write time is tlrw = tlr + tlw = 5 + 5 =
10. Note that tlrw can not be overlapped with the Map stage. So
we illustratively break Map tasks in the duration of tlrw. 5) The
running time of the wave of Reduce tasks is treduce = 35.

Since there is only one wave of Reduce tasks, 2/3 of the Map
outputs can be copied in parallel with the Map stage, and the non-
overlapped copy time of the first Reduce wave is tnov1 = 15. Thus
the running time to transfer Map outputs is ts1 = 15. The total
running time of this job is 150.

Figure 4 (b) illustrates the tradeoff T1. The factors of this job is
set to be {m = 1, r = 1, c = true, v = 2}. Compared with the
job in Figure 4 (a), there is only one wave of Map tasks. Although
the context switch time tcs is eliminated, the copy of all the Map
outputs can not be overlapped. This leads to additional 30 for the
Shuffle stage. The total running time of this job is 170.

Figure 4 (c) illustrates the tradeoff T2. The factors of this job is
set to be {m = 3, r = 1, c = false, v = 2}. In comparison to the
job in Figure 4 (a), the compression option c is disabled. The gray
dotted line points to the wave of Map outputs that the copy task
is responsible for. Since there is no compression/de-compression
overhead, tmap and treduce are reduced to 5 and 15 respectively,
but at the cost that both tlr and tlw are increased to 10, and ts

1322

tnov1

Map

Reduce

ts

treduce

ts ts

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

Time

tmap tlr tmap tcs tlrtmaptlr tcs

tlw tlw tlw

Producer

Transporter

Consumer

(a)

tnov1

Map

Reduce

tmap

treduce

Time
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

ts

tlr

tlw

Producer

Transporter

Consumer

(b)
tnov1

Map

Reduce

tmap

ts

treduce

tlr

tlw tlw tlw

tcs

tlr

ts ts

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

Time

tmap

tcs Producer

Transporter

Consumer

tmap

tnov1

tlr

(c)

tnov1

Map

Reduce

tmap

ts

treduce

tlr tmap

tlw tlw

tcs tlrtmaptlr

ts ts

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

Time

Producer

Transporter

Consumer

tcs

tlw

(d)
tnov2tnov1

Map

Reduce

tmap

ts

treduce

tlr tmap

tlw tlw tlw

tcs tlrtmaptlr tcs

ts ts

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

Time

treducetlw

ts

Producer

Transporter

Consumer

tlr

(e)

Figure 4: Examples to illustrate the PTC model

is increased to 35. The context switch time for each wave tcs is
increased to 7.5 due to the increased Map outputs. Then, tnov1 is
increased to 40. The running time of this job is 145.

Figure 4 (d) illustrates the tradeoff T3. The factors of this job
is set to be {m = 3, r = 1, c = true, v = 3}. Compared with
the job in Figure 4 (a), the copy speed is increased to reduce ts to
10, which is obtained at the cost that the context switch time tcs is
increased to 10. Although the non-overlapped copy time tnov1 is
reduced to 10, the total running time is increased to 155 due to the
increased context switch overhead. Actually, only the last wave of
Reduce copy benefits from the increased copy speed.

Figure 4 (e) illustrates the tradeoff T4. The factors of this job
is set to be {m = 3, r = 2, c = true, v = 2}. The number of
Reduce waves is increased to 2 comparing to Figure 4 (a). Each
wave of Reduce tasks can use the Reduce side buffer to reduce disk
I/O, which saves 2.5 seconds for each Reduce wave (treduce = 15).
Because of the reduction of the overlapped copy amount, tcs is
reduced to 2.5 for each wave. Since only the first wave of Reduce
tasks can copy Map outputs in the overlapped manner, the total
non-overlapped copy time is increased as tnov = tnov1 + tnov2 =
7.5 + 22.5 = 30. The running time of this job is 155.

4. SYSTEM ARCHITECTURE
Before discussing the specifics of our system, we first provide

the design goals of MRTuner.

• Integrated Self-tuning Solution. MRTuner is designed to op-
timize MapReduce jobs from the whole Hadoop stack in-
cluding MapReduce and HDFS.

• Low-latency Optimizer. The MRTuner job optimizer is de-
signed to respond in sub-second.

• Optimization for Job Running Time. MRTuner is designed
to optimize the job running time. Note that the running time

is used to measure the execution of parallel tasks. The op-
timization of the running time does not conflict with that of
system resource utilization.

• Loosely Coupled with Hadoop. MRTuner is designed to be
loosely coupled with Hadoop. We choose to build job pro-
files from the standard Hadoop log.

We provide the architecture of MRTuner in Figure 5. MRTuner
consists of three components: the Catalog Manager (CM), the Job
Optimizer (JBO) and the Hadoop Automatic Configuration (HAC).

The CM is responsible for building and managing the catalog
for historical jobs, data and system resources. We incrementally
extract the catalog in a batch manner, and respond to the upper
layer in real time. The statistics in the catalog are collected by the
job profiler, the data profiler and the system profiler. The catalog
query engine provides API for querying these statistics.

To optimize a MapReduce job, the JBO calls the Catalog Matcher
to find the most similar job profile as well as related data and sys-
tem information, and estimates the new job’s profile with the Job
Feature Estimation component. Then, the JBO estimates the run-
ning time of potential execution plans to find the optimal one.

The HAC is designed to advise the configuration time parame-
ters (i.e. parameters that are fixed after the Hadoop instance gets
started). The HAC covers MapReduce and HDFS.

5. IMPLEMENTATION
We implemented MRTuner on Hadoop 1.0.3 and 1.1.1. We first

describe the implementation of the catalog, and then present how
to use the PTC model to build the MapReduce optimizer with a fast
search capability. Finally, we present the HAC.

5.1 MRTuner Catalog
The MRTuner catalog is defined as a set of statistics which can

be extracted from Hadoop built-in counters [16], Hadoop configu-
ration files and system profiling results.

1323

Job Catalog
Data

Catalog

Resource

Catalog

Job Catalog

Builder

Hadoop Log

Parser

Hadoop MR

Log
HDFS

Data Profiler
System

Profiler

OS/Ganglia

Job Optimizer (JBO)

MapReduce Job

Optimizer

Catalog

Matcher Online (subsecond)

Offline

MapReduce Job

Optimization

Request

Hadoop Instance

Configuration Request

Catalog

Building

Request

Job Feature

Esimation

Catalog Manager (CM)

Data Flow

Function call

Catalog Query Engine

Hadoop

Automatic

Configuration

(HAC)

Job Profiler

Figure 5: MRTuner Architecture

Job, Data and Resource Profiles. Table 1 shows the fields of the
catalog for jobs, data and system resources. We only list the se-
lected fields that are required by the HAC and the JBO. As men-
tioned before, we assume that the allocated system resources for
each Map or Reduce slot are the same. Thus {Clw, Clr, Ccmpr,
Cdecmpr} in Table 1 are the average cost for each slot.

The job profile is built based on standard Hadoop logs to be com-
patible for the future upgrade of systems. To build the data profile,
we detect the input format and data information of the MapReduce
job from the historical job configuration files. The system resource
profile is built based on dd like micro-benchmarks. We implement
RRDtool2 parser to collect Ganglia3 data to compute the fields of
system resources from the micro-benchmarking results.

The existing logs are processed in batch to build the catalog
which will be incrementally updated as new logs coming in. We
use the catalog meta-data to track Hadoop logs, data paths and sys-
tem resources that have been processed. A daemon periodically
collects new catalog information along the three dimensions.

Job Feature Estimation. Given a job J with input data D, the
Catalog Matcher is responsible for finding the most similar job pro-
file from the catalog. The similarity of D and D′ is measured by
Sim(D,D′) = D·D′

|D|×|D′| . The attributes of D are the data fields in
Table 1.

Given a historical job profile J ′ and the input data D, we esti-
mate the features F of the newly submitted job J . The feature set
of the new job is defined in Table 2.We use a linear model to calcu-
late the data properties in F . For example, we have fm

sel(D) =

|D| · S
′
mo/S

′
mi, where S

′
mo and S

′
mi are fields in the matched

historical job profile J ′. fcs(·) and fcopy(·) are obtained by the
system profiling tool, which measures the context switch overhead
and copy speed with varied number of concurrent copy threads.
fm
maxm(·) and fr

maxr(·) are obtained based on the historical job
configuration and the memory usage from Ganglia.

Implementation of the PTC Model. Given the catalog in Table 1
and job features in Table 2, we provide the implementation of func-
tions in the PTC model as follows.

2http://oss.oetiker.ch/rrdtool/
3http://ganglia.info/

Table 1: The selected MRTuner catalog fields
Symbol Description
Job Fields for a Job J
Nmi Number of Map input records
Nmo Number of Map output records
Nri Number of Reduce input records
Nro Number of Reduce output records
Smi Map input bytes
Smo Map output bytes
Sri Reduce input bytes
Sro Reduce output bytes
Rmo Ratio of Map output compression
Data Fields for Data D
|D| Size of the data
SB Size of DFS blocks of the Data
Eik Length distribution of the input key
Eiv Length distribution of the input value
System Resources Fields for a Cluster C
Nn Number of machines
Clw Throughput of local disk write for each Map or Reduce slot
Clr Throughput of local disk read for each Map or Reduce slot
Ccmpr Compression throughput of each Map or Reduce task slot
Cdecmpr Decompression throughput of each Map or Reduce task slot
Cnet Network throughput of the cluster
Cschedule Overhead to create, schedule and destroy a Map or Reduce task.

Table 2: The features F for a job J with input data D
Symbol Description
fm
sel(·) Function for the size of Map output records

fm
num(·) Function for the number of Map output records

fm
maxm(·) Function for the maximum memory used by the Map Function

fr
maxr(·) Function for the maximum memory used by the Reduce Function

fm
rmc(·) Function for the running time of Map inputs read, user

defined Map function and in-memory collect
fm
cr(·) Function for the ratio of Map output compression

fcs(·) Function for the context switch overhead
fcopy(·) Function for the copy speed of Reduce tasks

The running time of Map tasks is tmap(D, c) = fm
rmc(D) +

fm
sel(D)·(fm

cr (D)·Clw+Ccmpr) if c is true. Otherwise, tmap(D, c) =
fm
rmc(D) + fm

sel(D) · Clw. Note that we should consider the over-
lapped Map tasks (equal to Nms) in each wave. For example, the
size of the data for fm

rmc(D) should be |D|
Nms

.
The context switch time is tcs(D, c, v, r) = fcs(f

m
sel(D)·fm

cr (D)·
γ, v,Nrs) if c is true. Otherwise, tcs(D, c, v, r) = fcs(f

m
sel(D) ·

γ, v,Nrs). The fraction γ is the percent of shuffled Map outputs
which will lead to the context switch overhead. When the Shuffle
phase is maximally overlapped, we have γ = 1

r
· m−1

m
.

The job scheduling time is tschedule(m) = m · Cschedule.
The local read and write time is tlrw(x) = |x|

Nms
· (Clr + Clw)

and tlrw(x) = |x|
Nrs

· (Clr + Clw), for Map and Reduce tasks
respectively, where x is the amount of data to read and write.

The running time to process Reduce inputs without the Reduce
side buffer is treduce(D, c) = Ds

Nrs
· Cdecmpr + Ds

Nrs
· Clr if c is

true. Otherwise, treduce(D, c) = Ds
Nrs

· Clr .

5.2 MapReduce Job Optimizer
Given a MapReduce job with inputs and the running cluster, the

goal of the job optimizer is to find the optimal setting of the per-
formance sensitive parameters in Table 3. The description of each
parameter can be found in [16].

5.2.1 From the PTC Model to Parameters
Based on the four key factors of the PTC model, we can de-

rive the optimal values for other performance sensitive parameters.

1324

Table 3: The List of Targeted Parameters
Symbol Parameter Groups
Nm mapred.map.tasks Map input split
Nr mapred.reduce.tasks Reduce output
smin mapred.min.split.size Map input split
smax mapred.max.split.size Map input split
Bm io.sort.mb Map output buffer
rrec io.sort.record.percent Map output buffer
c mapred.compress.map.output Map output compr.
Ncopy mapred.reduce.parallel. Reduce copy

copies
Nsf io.sort.factor Reduce input
Br mapred.job.reduce Reduce input

.input.buffer.percent
SOB dfs.block.size Reduce output
Nms(i) mapred.tasktracker Set by HAC

.map.tasks.maximum
Nrs(i) mapred.tasktracker Set by HAC

.reduce.tasks.maximum

In addition, the relationship among parameters described by the
model below can help further narrow down the search space as de-
scribed in Section 5.2.2.
Map Output Buffer. We first model the impact of parameters re-
lated to the Map output buffer. As shown in Table 3, we denote the
buffer for sorting files (io.sort.mb) as Bm, the fraction for meta-
data (io.sort.record.percent) as rrec, the spilling threshold
(io.sort.spill.percent) as rspill and the JVM heap size as
Bj . Since Bm < Bj − fm

maxm(D), the available memory buffer
Bma to store Map output records and their meta-data should satisfy
the following condition.

Bma ≤ Bm · rspill ≤ (Bj − fm
maxm(D)) · rspill (5)

Since each Map output record has 16 byte as the meta-data field,
we have

rrec =
16

16 +R
, (6)

where R is the average length of Map output records. Given the
job feature fm

num(·) in Table 2, we have R = |D|
fm
num(D)

.

Map Input Split. We denote the size of the Map input split as s,
and we have

s =
|D|

m ·Nms
(7)

To avoid the I/O overhead caused by additional spills when the
Map buffer Bma can not keep all the Map outputs, we adjust s.
Then, the size of each Map task output Dmo should be less than
the allocated buffer for the data field of Map outputs, that is,

Dmo =
fm
sel(D)

|D| · s ≤ Bma · (1− rrec) (8)

Based on Eq 5, Eq 6, Eq 7 and Eq 8, we derive the lower bound
of m as follows.

m ≥ fm
sel(D) · (16 +R)

Nms · (Bj − fm
maxm(D)) ·R · rspill

(9)

Then, given the number of Map waves m, Bm can be derived as

Bm ≥ Bma

rspill
≥ fm

sel(D) · s
rspill · |D| · (1− rrec)

=
fm
sel(D)

Nms ·m · rspill · (1− rrec)

(10)

Reduce Output. When the Map input split size is not equal to
the block size of the input file, it may result in the data locality

problem that incurs extra network overheads. The data is allocated
to nodes in terms of blocks by HDFS, and there is strictly one-to-
one mapping between Map tasks and input splits, then if the split
size is not equal to or is not a factor of the input file block size
(denoted as SB), some nodes may copy data from the remote to
prepare input splits for Map tasks. Then, to eliminate this data
movement overhead, the input split should satisfy:

SB mod (
|D|

m ·Nms
) = 0 (11)

We can further optimize the Reduce output block size SOB to be
multiples of the optimal Map split size of the most frequent con-
sumer job (i.e. the most frequent job that processes the Reduce
output file of the current job as Map inputs).
Reduce Input. Based on the estimation of the maximum memory
usage of the user defined Reduce function fr

maxr(D), the Reduce
side buffer Br is given as follows.

Br = Bj − fr
maxr(D) (12)

When the amount of data in the buffer exceeds the threshold
mapred.job.shuffle.merge.percent (denoted as rmg), data
will be spilled to disk. Those disk files will be merged progres-
sively whenever the number of such files exceeds the merge fac-
tor threshold (i.e. io.sort.factor). To ensure that the sort and
merge can be completed in one pass, we set merge factor Nsf as
below.

Nsf =
Ds

Nr ·BS · rmg
, (13)

where BS is the Shuffle buffer determined by the parameter mapred.
job.shuffle.input.buffer.percent.

5.2.2 Finding the Optimal Execution Plan
In this section, we present the method to find the optimal pa-

rameter setting for a MapReduce job. The basic idea is to find the
optimal setting of the four key factors based on the cost model in
Eq 4, and derive other performance sensitive parameters based on
the four factors.

To further reduce the search space, we derive ranges of the fac-
tors that may have large space of candidates. Note that c only has
two values: true or false, that is, C = {true, false}. The num-
ber of values for v is also limited. It depends on the parameter
Ncopy . We have V = {v|v = fcopy(Ncopy · Nns), 1 ≤ Ncopy ≤
Ncopymax}. Next we focus on the range of m and r.
Range of m. Based on the Proposition 3.2, the maximum amount
of Map outputs that can be transferred in the overlap manner is

D′
omax = lim

m→∞

m− 1

m
· fm

sel(D) = fm
sel(D) (14)

If the saved running time by the overlapped Shuffle phase is less
than that to schedule increased tasks, there is no need to increase
m. Thus we have the upper bound of m as

m ≤ fm
sel(D)

Cnet · Cschedule
(15)

Based on Eq 9 and Eq 15, we obtain the following lemma.

LEMMA 5.1. Given the inputs D, system resources C and job
feature functions F , the number of Map waves m is bounded by

M = {m| fm
sel(D) · (16 +R)

Nms · (Bj − fm
maxm(D)) ·R · rspill

≤ m

≤ fm
sel(D)

Cnet · Cschedule
}

(16)

1325

Range of r. Based on the Proposition 3.3, the maximum amount
of Reduce inputs that can be hold in memory is the total Map out-
puts fm

sel(D). Since the saving of the disk I/O is at the cost of the
additional task scheduling overhead, there is no need to increase
r if all the Reduce inputs can be kept in memory. Then we have
r ≤ fm

sel(D)·(Clr+Clw)

Cschedule·Nrs
. Thus we obtain the following lemma.

LEMMA 5.2. Given the inputs D, system resources C and esti-
mated job feature functions F , the number of Reduce waves r is
bounded by

R = {r|1 ≤ r ≤ fm
sel(D) · (Clr + Clw)

Cschedule ·Nrs
} (17)

Algorithm 1 PTC-Search (D, F , P)
1: Cmax ←∞
2: for each factor set {m, r, v, c} ∈ M×R× V× C do
3: C ← Tproducer + Ttransporter + Tconsumer ◃ Eq 4
4: if C < Cmax then
5: {mo, ro, vo, co} ← {m, r, v, c}
6: rrec ← 16/(16 +

|D|
fm
num(D)

)

7: Bm ←
fm
sel(D)

Nms·m·rspill·(1−rrec)
◃ Eq 10

8: s← |D|
m·Nms

◃ Eq 7
9: if s < SB then smax ← s

10: if s > SB then smin ← s

11: Nr ← r ·Nrs

12: Br ← Bj − fr
maxr(D) ◃ Eq 12

13: Nsf ← Ds
Nr·BS ·Pm

◃ Eq 13

14: Ncopy ← f−1
copy(v)

15: SOB ← k · s′ of the most frequent consumer job J ′

16: return the parameter setting Po

Finally we give the search method in Algorithm 1. In the first
step, according to the cost model in Section 3.2, we find the op-
timal setting of the four key factors with derived ranges. In the
second step, other parameters are figured out based on the models
in Section 5.2.1. In the implementation, the candidates and bounds
of each parameter are further determined by a rule-based engine.
Since there are only four factors with derived ranges need to search,
the PTC-Search is very efficient. More importantly, given the rela-
tionship in Section 5.2.1, the parameter setting is optimal.

5.3 Hadoop Automatic Configuration
The HAC component is designed to automatically configure static

parameters of MapReduce and HDFS (i.e. parameters shared by all
jobs, for example, task slots).
MapReduce Automatic Configuration. The goal of MapReduce
configuration is to determine the task slot capacity and the available
memory for each Map or Reduce task. We model the problem by a
non-linear programming problem to maximize memory utilization
with constraints on CPU utilization and concurrent write threads.
HDFS Automatic Configuration. The HAC configures HDFS
based on the overall historical workload behaviors. The main prob-
lem of configuring HDFS is how to allocate local disks for HDFS
and MapReduce temp directory. The allocation depends on the
workload submission pattern. For the Hadoop cluster that often
runs hybrid jobs, we separate the two directories in different disks
to avoid competitions. On the contrary, if a significant portion of
jobs are running alone, we allocate all the disks to both HDFS and
MapReduce temp directory to improve the disk throughput. The
detection of the job submission pattern is based on the submission
and the completion trace from standard Hadoop logs.

6. RELATED WORK
Hadoop Self-tuning and Models. Starfish is a self-tuning system
for MapReduce [6, 7]. The authors propose the profile-prediction-
optimization approach to optimize parameters for MapReduce jobs.
While Starfish is the pioneer work on MapReduce job optimization,
it does not well address the issues of inter-task parallelization and
parameter reduction. Wang [15] proposes a simulation approach
to provide fine-grained simulation of MapReduce at the sub-phase
level. However, it only models single node processes such as the
task processing time, and lacks the capturing of the cost that occurs
between nodes, which is modeled by our PTC model. Scalla [11]
proposes an analytical model for Hadoop. However, Scalla focuses
on the I/O cost and the task startup cost, and does not model the
running time. In addition, Scalla does not address the inter-task
parallelization problem.
Parallel Computation Models. Bandwidth-latency models such
as the LogP model [3] and the BSP model [14] are a group of per-
formance models for parallel programs that focus on modeling the
communication between the processes in terms of network band-
width and latency, allowing quite precise performance estimations.
However, since the MapReduce platform is not a typical message-
based system, it is difficult to apply those models to the MapReduce
platform directly.
Cloud-based Auto-tuning. Another class of related works comes
from the world of cloud infrastructures. A plenty of research exists
to monitor the workload and system events to manage and auto-
tune the platform, including database multi-tenancy [4], resource
orchestration [5], performance modeling [13], etc. For example,
Delphi [4] provides a self-managing system controller for multi-
tenant DBMS. However, these analytic models do not translate well
for Hadoop self-tuning, due to the characteristics of Big Data [2]
and the user defined function of the MapReduce workload [7]. In
this paper, MRTuner provides an analytical model based on the
characteristics of MapReduce and platform internal mechanisms.

7. EVALUATION
In this section, we conduct two groups of experiments to com-

pare MRTuner with a commercial enterprise Hadoop and with Starfish
under a variety of input data, jobs and clusters. In the first group,
we evaluate the response time of MapReduce optimizers. In the
second group, we demonstrate the effectiveness of MRTuner from
the perspectives of both job elapsed time and system resource uti-
lization, by using workloads with different characteristics. More
importantly, we dissect the performance improvements through pa-
rameter optimizations on selected workloads to elaborate why the
tuning of MRTuner works.

7.1 Experiment Setup
We deploy two clusters to evaluate MRTuner in scenarios where

the system resource configurations are different.

• Cluster A: The Hadoop cluster with ten machines is de-
ployed. For the Name Node and Job Tracker, we use the
HS21 blade with 4×3.66GHz Processors and 4 GB memory.
For other nine nodes, we use the HS20 blade with 4×1.66GHz
Processors and 4 GB memory.

• Cluster B: The Hadoop cluster of x3650 servers is deployed.
There are totally 128 2.9GHz CPU cores, 880 GB memory
and 36 TB local disk.

Both clusters are deployed upon the 1 Gbps Ethernet switch. The
Hadoop version is 1.0.3. The JVM is IBM J9 VM (build 2.4, JRE
1.6.0). We use Ganglia to monitor the cluster.

1326

Table 4: The Parameter Settings
Parameters Hadoop-X on A Hadoop-X on B TS-1 TS-2 TS-3 TS-4 NG-1 NG-3 NG-5 NG-6 PR-1 PR-3 PR-4 PR-6
Nms 30 128 29 29 118 118 29 29 118 118 29 29 118 118
Nrs 15 64 29 29 98 98 29 29 98 98 29 29 98 98
Nr 10 60 29 29 90 90 29 29 90 90 29 29 90 90
smin N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
smax N/A N/A N/A N/A N/A N/A 4m 4m 8m 8m N/A N/A N/A N/A
Bm 256 256 194 322 819 819 322 322 480 480 322 322 161 195
rrec 0.05 0.05 0.138 0.138 0.138 0.138 0.296 0.296 0.296 0.296 0.091 0.076 0.091 0.075
c false false true true true true true true true true true true true true
Ncopy 5 5 1 1 1 1 1 1 1 1 1 1 1 1
Nsf 10 10 10 10 30 10 10 20 10 20 10 10 10 10
Br 0 0 0.7 0.7 0.7 0.7 0.5 0.7 0.5 0.7 0.4 0.3 0.7 0.7
SOB 128m 128m 64m 64m 128m 128m 64m 128m 128m 128m 128m 64m 128m 128m

Optimizer Latency Comparison for Terasort

0

2000

4000

6000

8000

10000

12000

14000

Starfish MRTuner(File) MRTuner(DB)

m
ill
i-
s
e
c
o
n
d
s

Avg Time

Worst Time

(a) JBO Time Comparison

JBO Execution Time Breakdown

0

200

400

600

800

1000

File DB

m
ill
is
e
c
o
n
d
s ResourceMatcher

CatalogMatcher

Others

(b) JBO Time Breakdown

Figure 7: The Execution Time of Optimizers

Our benchmarking suite is derived from HiBench [8], which
includes both micro-benchmarks and real-world Hadoop applica-
tions. We present the results of Terasort for micro-benchmark, Text
Classification for Text Mining and Pagerank for Social Network
Analysis. MRTuner has been validated in some customer cases
and internal product integration. MRTuner achieves similar per-
formance improvements in these cases. For the purpose of results
reproducing, we focus on the publicly available HiBench in this pa-
per. However, we would like to emphasize some memory intensive
workloads in real production. For these memory intensive work-
loads, MRTuner is able to measure the memory usage of the user
defined Map and Reduce functions (covered by the fm

mmax(·) and
fr
rmax(·) estimations) to avoid out of memory issues.

In our evaluation, the following related work is compared with
MRTuner:

• Default Hadoop. The execution time of jobs under the de-
fault Hadoop configuration is an order of magnitude slower
than that of MRTuner optimized for almost all the workloads,
so the results are not shown.

• Hadoop-X. Hadoop-X is a commercial enterprise Hadoop
offering with built-in automatic configuration capabilities.
Hadoop-X is able to automatically configure the task slot ca-
pacity based on the system resources. Hadoop-X also has a
set of pre-configured performance sensitive parameters (See
Table 4 for details). Besides these parameters, we also tune
the number of Map and Reduce tasks to reasonable settings
for each job for Hadoop-X.

• Starfish. We compare MRTuner with the cost-based MapRe-
duce optimizer of Starfish 0.3.04. However, we can only run
a few micro-workloads like Terasort. Other workloads such
as Pagerank and text classification are not supported by the
Starfish that we can download.

4http://www.cs.duke.edu/starfish/

Table 5: The Comparison between Hadoop-X and MRTuner
JobName ID Clu- Input Hadoop MRTuner Speed

ster (GB) -X(sec) (sec) -up
Terasort TS-1 A 10 469 278 1.7
Terasort TS-2 A 50 2109 1122 1.87
Terasort TS-3 B 200 767 295 2.60
Terasort TS-4 B 1000 6274 2192 2.86
N-Gram NG-1 A 0.18 4364 192 22.7
N-Gram NG-2 A 0.7 N/A 661 ∞
N-Gram NG-3 A 1.4 N/A 1064 ∞
N-Gram NG-4 B 1.4 1100 249 4.41
N-Gram NG-5 B 2.8 1292 452 2.86
N-Gram NG-6 B 5.6 1630 930 1.75
PR(Trans.) PR-1 A 3.23 962 446 2.2
PR(Deg.) PR-2 A Inter 49 41 1.2
PR(Iter.) PR-3 A Inter 933 639 1.5
PR(Trans.) PR-4 B 3.23 148 65 2.28
PR(Deg.) PR-5 B Inter 24 22 1.09
PR(Iter.) PR-6 B Inter 190 82 2.32

7.2 Latency of MRTuner JBO
We implement both file-based and DB-based catalogs. Figure 7

shows the execution time of JBO. Note that the latency does not
include the catalog building time, which is the off-line overhead.

Catalog Matcher. The file-based catalog makes use of an index
file (pre-generated by the Catalog Builder) to retrieve similar jobs
for the Catalog Matcher. In the DB-based catalog, the latency of
this part is lower due to the indexing and caching of the database.
The average latency of the file-based catalog matching is 57 mil-
liseconds, and that of the DB-based catalog is 19 milliseconds.

Resource Matcher. For the file-based catalog, the query of sys-
tem resources is based on an XML file. The DB-based catalog uses
multiple tables loaded from Ganglia RRDtools to get such informa-
tion by join operations, which brings higher latency. The average
latency for resource matching is 37 milliseconds for the file-based
catalog and 747 milliseconds for the DB-based catalog.

Cost Model Optimization Searching. Since there are only four
factors in the PTC model, the number of candidates is as small
as 1000 − 10000 for the evaluated workloads, which reduces the
search time by four orders of magnitude of reduction compared
to Starfish optimizers [6]. The response time of the PTC search
is within 1 millisecond for all the evaluated cases. As shown in
Figure 7, the end-to-end response time of MRTuner JBO achieve 25
times faster than that of Starfish, mainly because of the reduction
of the search space from 20+ dimensions to 4 dimensions.

For jobs whose input data is not pre-existing, we need to get

1327

MapInputSplit (m)

MapOutputBuffer

MapOutputCompression (c)

ReduceCopy (v)

ReduceInputBuffer

ReduceOutput (r)

(a) TS-3

MapInputSplit (m)

MapOutputBuffer

MapOutputCompression (c)

ReduceCopy (v)

ReduceInputBuffer

ReduceOutput (r)

(b) NG-5

MapInputSplit (m)

MapOutputBuffer

MapOutputCompression (c)

ReduceCopy (v)

ReduceInputBuffer

ReduceOutput (r)

(c) PR-4

Figure 6: Impact of Parameter Groups on Selected Jobs

Disk Utilization

0%
20%
40%
60%
80%
100%

0 135 270 405 540 675
Running Time (sec)

P
e
rc
e
n
ta
g
e

CPU Utilization

0%

20%

40%

60%

80%

100%

0 135 270 405 540 675
Running Time (sec)

U
ti
liz
a
ti
o
n

wio
system
user

Memory Used

0
20
40
60
80
100
120

0 135 270 405 540 675
Running Time (sec)

G
B

Network I/O

0

200

400

600

0 135 270 405 540 675
Running Time (sec)

M
B

bytes_in

bytes_out

(a) Hadoop-X

Disk Utilization

0%
20%
40%
60%
80%
100%

0 60 120 180 240 300 360
Running Time (sec)

P
e
rc
e
n
ta
g
e

CPU Utilization

0%
20%
40%
60%
80%
100%

0 60 120 180 240 300 360
Running Time (sec)

U
ti
liz
a
ti
o
n

wio
system
user

Memory Used

0

60

120

180

240

0 60 120 180 240 300 360
Running Time (sec)

G
B

Network I/O

0

100

200

300

0 60 120 180 240 300 360
Running Time (sec)

M
B

bytes_in

bytes_out

(b) MRTuner

Figure 8: Resource Utilization of TS-3

its data catalog on the fly, which leads to about 650 milliseconds
latency. In such cases, we only use the data size and block size
properties of the data, and MRTuner still performs a factor of 6
faster than Starfish on the job optimizer response time.

7.3 MRTuner Effectiveness
To evaluate the effectiveness of MRTuner, we show not only the

running time, but also system resource utilization, and elaborate
why MRTuner outperforms the state-of-the-art MapReduce opti-
mizer, especially focusing on the inter-task optimizations of the
PTC model. For typical workloads, we give the quantitative analy-
sis on how each of the parameter (group) affects the performance.
Both Hadoop-X and MRTuner optimized settings are shown in Ta-
ble 4. The running time of these workloads is listed in Table 5.
Terasort. Terasort is a standard benchmark created by Jim Gray [12].
The input data is generated by the TeraGen program. The elapsed
time of Terasort is shown in Table 5. MRTuner achieves the job
elapsed time of 2 and 3 times faster than Hadoop-X on cluster A
and B, respectively. Figure 8 and Figure 9 shows cluster-wide sys-
tem resource utilization of TS-3 (200 GB) and TS-4 (1 TB) re-
spectively. The figures indicate that MRTuner achieves much better
CPU utilization, less context switch overhead (indicated by the sys-
tem CPU time), better memory utilization and less network over-
head compared with Hadoop-X.

We analyze the impact of each parameter group for TS-3 in Fig-
ure 6 (a) (See Table 3 for parameter groups). The ratio in Figure 6

Disk Utilization

0%
20%
40%
60%
80%
100%

0 1440 2880 4320 5760
Running Time (sec)

P
e
rc
e
n
ta
g
e

CPU Utilization

0%
20%
40%
60%
80%
100%

0 1440 2880 4320 5760
Running Time (sec)

U
ti
liz
a
ti
o
n

wio
system
user

Memory Used

0

60

120

180

0 1440 2880 4320 5760
Running Time (sec)

G
B

Network I/O

0

100

200

300

400

0 1440 2880 4320 5760
Running Time (sec)

M
B

bytes_in

bytes_out

(a) Hadoop-X

Disk Utilization

0%
20%
40%
60%
80%
100%

0 450 900 1350 1800 2250
Running Time (sec)

P
e
rc
e
n
ta
g
e

CPU Utilization

0%
20%
40%
60%
80%
100%

0 450 900 1350 1800 2250
Running Time (sec)

U
ti
liz
a
ti
o
n

wio
system
user

Memory Used

0

60

120

180

0 450 900 1350 1800 2250
Running Time (sec)

G
B

Network I/O

0

100

200

300

400

0 450 900 1350 1800 2250
Running Time (sec)

M
B

bytes_in

bytes_out

(b) MRTuner

Figure 9: Resource Utilization of TS-4

is obtained by setting the related parameters to the Hadoop-X set-
ting. For example, to evaluate the impact of Map output buffer
group, we change related parameters from the MRTuner setting to
the Hadoop-X setting (i.e. Bm = 256 and rrec = 0.05) to get the
running time t′. Suppose that the job elapsed time of MRTuner is
t. The impact of this parameter group is measured as t′−t

t
. Finally,

we normalize all the ratio of impacts in a pie chart. Figure 6 (a)
indicates that the Map output compression, the Map output buffer
and the Reduce output are the top three influencing factors for the
workload TS-3.

Next we dissect optimizations on TS-3 to elaborate why MR-
Tuner outperforms Hadoop-X. First, the task slot optimization of
MRTuner considers cluster-wide system resources. The non-linear
programming model in Section 5.3 figures out the optimal configu-
ration. The main contribution of this optimization is on the Reduce
output. The increased parallelism improves 21.2% of the elapsed
time compared with Hadoop-X. Second, based on the estimation
of map output properties (i.e. the size and the number of records),
MRTuner ensures that there is no additional disk spills before Map
tasks finish, which improves the job elapsed time by 26.99% over
Hadoop-X. (The disk read and write size of Hadoop-X is a factor of
2.99 more than that of MRTuner, due to the additional spills.) Simi-
larly, based on the estimation of Reduce input properties, MRTuner
is able to allocate 70% of the JVM heap as the Reduce input buffer,
which improves the job elapsed time by 6.27% over Hadoop-X.
Third, the PTC model of MRTuner ensures the maximal overlap-

1328

Disk Utilization

0%
20%
40%
60%
80%

100%

0 180 360 540 720 900 1080 1260
Running Time (sec)

P
e
rc

e
n
ta

g
e

CPU Utilization

0%
20%
40%
60%
80%

100%

0 180 360 540 720 900 1080 1260
Running Time (sec)

U
ti
liz

a
ti
o
n

wio
system
user

Memory Used

0

60

120

0 180 360 540 720 900 1080 1260
Running Time (sec)

G
B

Network I/O

0

200

400

600

0 180 360 540 720 900 1080 1260
Running Time (sec)

M
B

bytes_in

bytes_out

(a) Hadoop-X

Disk Utilization

0%
20%
40%
60%
80%
100%

0 75 150 225 300 375 450
Running Time (sec)

P
e
rc
e
n
ta
g
e

CPU Utilization

0%
20%
40%
60%
80%
100%

0 75 150 225 300 375 450
Running Time (sec)

U
ti
liz
a
ti
o
n

wio
system
user

Memory Used

0
20
40
60
80
100
120
140
160

0 75 150 225 300 375 450
Running Time (sec)

G
B

Network I/O

0

50

100

150

200

0 75 150 225 300 375 450
Running Time (sec)

M
B

bytes_in

bytes_out

(b) MRTuner

Figure 10: Resource Utilization of NG5

ping of the Map and Shuffle phases, while avoiding contention of
copy threads. The Reduce copy related optimization improves the
job elapsed time by 11.25% over Hadoop-X. In addition, MRTuner
decides that the compression should be enabled for Map outputs for
the evaluated Terasort workloads. Without compression, 70.3% of
Map outputs can not be copied to the Reduce side when all the Map
tasks complete, and the non-overlapped Reduce copy time leads to
50.52% of performance reduction although the compression and
decompression overhead is saved.

Text Classification. The Mahout Bayes based text classification [8]
is a workload with more than ten MapReduce jobs. The second job,
which is to tokenize the words and n-grams in a document, accounts
for more than half of the total execution time. Thus the analysis be-
low is focused on this job. The job elapsed time of this workload
is shown in Table 5. For NG-1, the job elapsed time of MRTuner
is a factor of 22.7 faster that of Hadoop-X. For NG-2 and NG-3,
Hadoop-X runs for more than three hours and still can not finish,
and we observe a lot of disk errors caused by the overwhelming
data spills in the Map phase (because of limited disk space of the
cluster A and the expanded Map spills). Such situation would not
happen in MRTuner, and jobs of this workload can finish in signifi-
cantly lower latency in MRTuner. Because MRTuner eliminates the
intermediate data spills effectively. NG-4, NG-5 and NG-6 show
only 1.75-4.41x speedups. Because Cluster B has sufficient disk
space, and the disk read/write capacity in Cluster B is significantly
higher than that in Cluster A. Figure 10 is cluster-wide system re-
source utilization of NG-5. It indicates that MRTuner obtains much
better CPU and Memory utilization compared with Hadoop-X.

We dissect optimizations on NG-5 to elaborate why MRTuner
outperforms Hadoop-X. First, MRTuner optimization eliminates
the additional disk spills in the Map stage. It is realized based on
the estimation of map output properties. Note that without this op-
timization, some jobs can not be completed in Cluster A. MRTuner
splits inputs based on the Map Output/Input ratio (456 map tasks
for NG-5) instead of splitting input based on the block size (22 map
tasks for NG-5). A side effect of this splitting is that MRTuner in-
creases the number of simultaneously running Map tasks, which
leads to much higher CPU utilization (see Figure 10). Second, the
compression of Map outputs also brings significant performance

Disk Utilization

0%
20%
40%
60%
80%
100%

0 135 270 405 540 675 810
Running Time (sec)

P
e
rc
e
n
ta
g
e

CPU Utilization

0%

20%

40%

60%

80%

100%

0 135 270 405 540 675 810
Running Time (sec)

U
ti
liz
a
ti
o
n

wio
system
user

Memory Used

0

20

40

60

0 135 270 405 540 675 810
Running Time (sec)

G
B

Network I/O

0

100

200

300

0 135 270 405 540 675 810
Running Time (sec)

M
B

bytes_in

bytes_out

(a) Hadoop-X

Disk Utilization

0%
20%
40%
60%
80%
100%

0 75 150 225 300 375
Running Time (sec)

P
e
rc
e
n
ta
g
e

CPU Utilization

0%
20%
40%
60%
80%
100%

0 75 150 225 300 375
Running Time (sec)

U
ti
liz
a
ti
o
n

system
wio
user

Memory Used

0

20

40

60

0 75 150 225 300 375
Running Time (sec)

G
B

Network I/O

0

100

200

300

0 75 150 225 300 375
Running Time (sec)

M
B

bytes_in

bytes_out

(b) MRTuner

Figure 11: Resource Utilization of Pagerank Workflow on B

gain (35%). Finally, MRTuner avoids copier thread contention by
estimating the throughput of Map output generation. Reducing the
number of copier threads to 1 obtains about 20% speed-up com-
pared with the Hadoop-X setting.

The impact of each parameter group settings is shown in Fig-
ure 6(b) for the NG-5 workload. We find that it is difficult to per-
form the thorough parameter impact analysis for NG-2 and NG-3.
Because for many parameter settings, the workloads can not run to
completion due to their larger intermediate data volume compared
with the available disk space in Cluster A. In addition, NG-4 and
NG-6 are all similar with NG-5 in the performance improvement
breakdown, showing that the Map Input Split and the Map Out-
put Compression are the top two influencing factors. Actually, the
impact of Map Input Split for NG-1 is significantly higher (80%),
due to the significantly lower disk transfer rate in Cluster A. In
addition, different with NG-5, the impact of the Reduce Copy for
NG-1 is almost 40%. Note that the major performance sensitive
parameters of the text classification are significantly different from
that of Terasort, which shows different characteristics of the two
workloads.

Pagerank. We use X-RIME [17] implementation of Pagerank and
publicly available social network data5. The directed user interac-
tion graph has 6, 034, 780 vertices and 52, 614, 182 arcs. We set
the number of Pagerank iterations to 3, and use the default Pager-
ank damping factor 0.85. We use the Java interface of MRTuner
to dynamically generate parameters for each iterative MapReduce
job. Table 5 shows the elapsed time of MapReduce jobs. The result
of Pagerank is the average of iterative steps. For the workloads on
the cluster A, we obtain 2.2x speedup on the transformation job
(transforming raw graph data to the adjacency list), 1.2x speedup
on the degree calculation job, and averagely 1.5x speedup on the
iterative Pagerank step jobs. For the workloads on the cluster B, we
obtain 2.3x, 1.1x and 2.3x speedups for the three jobs, respectively.
Figure 11 is cluster-wide system resource utilization of all jobs of
the Pagerank workflow on the cluster B. It indicates that MRTuner
obtains better CPU and memory utilization. The impact of each pa-
rameter group on PR-4 in the cluster B is shown in Figure 6 (c). It

5http://current.cs.ucsb.edu/facebook/index.html

1329

indicates that the Reduce output, the Map output compression and
the Reduce copy are the top three influencing factors for PR-4.

Figure 11 (b) further indicates that the Reduce phases of both
PR-4 and PR-6 have downward trends in terms of CPU utilization.
Through profiling Reduce tasks, we find that it is caused by data
skew [9]. The replication in HDFS writing further amplifies the
impact of data skew.

Although the skew issue is hardly to be addressed by parameter
tuning, it will affect the PTC model. For example, skew of Map
tasks may increase the overlapped time duration for the Shuffle
stage. As future work, we are extending the PTC model to esti-
mate task skew based on the historical task execution time.

Disk Utilization

0%
20%
40%
60%
80%
100%

0 375 750 1125 1500 1875 2250
Running Time (sec)

P
e
rc
e
n
ta
g
e

CPU Utilization

0%
20%
40%
60%
80%
100%

0 375 750 1125 1500 1875 2250
Running Time (sec)

U
ti
liz
a
ti
o
n

wio
system
user

Memory Used

0

20

0 375 750 1125 1500 1875 2250
Running Time (sec)

G
B

Network I/O

0

20

40

60

0 375 750 1125 1500 1875 2250
Running Time (sec)

M
B

bytes_in

bytes_out

(a) Starfish

Disk Utilization

0%
20%
40%
60%
80%

100%

0 188 377 565 753 942 1130
Running Time (sec)

P
e
rc

e
n
ta

g
e

CPU Utilization

0%
20%
40%
60%
80%

100%

0 188 377 565 753 942 1130
Running Time (sec)

U
ti
liz

a
ti
o
n

wio
system
user

Memory Used

0

20

40

0 188 377 565 753 942 1130
Running Time (sec)

G
B

Network I/O

0

10

20

30

40

0 188 377 565 753 942 1130
Running Time (sec)

M
B

bytes_in

bytes_out

(b) MRTuner

Figure 12: Resource Utilization of TS2

7.4 Comparison with Starfish
We deploy Starfish 0.3.0 in the cluster A, but fail to configure

it in the cluster B due to JVM issues. Since the version which we
download only supports a few micro-workloads such as Terasort
and Word Count, we only compare these workloads that are avail-
able in Starfish. The latency of JBO is compared in Section 7.2.

We present the effectiveness of job optimizers. For TS-2, the
job elapsed time of MRTuner is a factor of 1.6 faster than that of
Starfish. Figure 12 shows system resource utilization of Starfish
and MRTuner on TS-2, which indicates that MRTuner has better
system resource utilization. When we compare the suggested exe-
cution plans, we find that more network I/O of MRTuner are over-
lapped with the Map stage. Also, there is no additional disk I/O
in Map outputs using the MRTuner generated parameters for TS-2.
Finally, there is much less context switch overhead since the PTC
model optimizes tasks among Map and Reduce stages.

8. CONCLUSION
In this paper, we proposed the MRTuner toolkit to enable holis-

tic optimization for MapReduce jobs. The Producer-Transporter-
Consumer model was proposed to estimate the tradeoffs in MapRe-
duce execution plans. The relationship among parameters was de-
rived to develop a fast search algorithm. The experimental eval-
uation based on HiBench demonstrated the effectiveness and effi-
ciency of MRTuner. As future work, we are extending the PTC
model in YARN to address the multi-tenancy and skew issues.

9. ACKNOWLEDGMENTS
The authors would like to thank Ning Yang, Zeli Liu and Zelin

An from RUC, and Zhongxin Guo from BUPT, for implementing
the initial prototype of the catalog. The authors also thank anony-
mous reviewers for their valuable comments and suggestions to im-
prove the paper. Jiaheng Lu is partially supported by NSF China
(No. 60903056), 863 National High-tech Research Plan of China
(No. 2012AA011001), IBM-RUC research funds and the Funda-
mental Research Fund for RUC.

10. REFERENCES
[1] S. Chaudhuri. An overview of query optimization in

relational systems. In PODS, pages 34–43, 1998.
[2] S. Chaudhuri. What next?: a half-dozen data management

research goals for big data and the cloud. In PODS, pages
1–4, 2012.

[3] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser,
E. Santos, R. Subramonian, and T. von Eicken. Logp:
Towards a realistic model of parallel computation. SIGPLAN
Not., 28(7):1–12, 1993.

[4] A. J. Elmore, S. Das, A. Pucher, D. Agrawal, A. El Abbadi,
and X. Yan. Characterizing tenant behavior for placement
and crisis mitigation in multitenant dbmss. In SIGMOD,
pages 517–528, 2013.

[5] L. Grit, D. Irwin, A. Yumerefendi, and J. Chase. Virtual
machine hosting for networked clusters: Building the
foundations for ”autonomic” orchestration. In VTDC, page 7,
2006.

[6] H. Herodotou and S. Babu. Profiling, what-if analysis, and
cost-based optimization of mapreduce programs. PVLDB,
4(11):1111–1122, 2011.

[7] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B.
Cetin, and S. Babu. Starfish: A self-tuning system for big
data analytics. In CIDR, pages 261–272, 2011.

[8] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang. The
hibench benchmark suite: Characterization of the
mapreduce-based data analysis. In ICDEW, pages 41–51,
2010.

[9] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia. Skewtune:
Mitigating skew in mapreduce applications. In SIGMOD,
pages 25–36, 2012.

[10] J. K. Laurila, D. Gatica-Perez, I. Aad, O. Bornet, T.-M.-T.
Do, O. Dousse, J. Eberle, and M. Miettinen. The mobile data
challenge: Big data for mobile computing research. In Proc.
of Nokia Mobile Data Challenge Workshop, 2012.

[11] B. Li, E. Mazur, Y. Diao, A. McGregor, and P. Shenoy. A
platform for scalable one-pass analytics using mapreduce. In
SIGMOD, pages 985–996, 2011.

[12] O. OMalley and A. C. Murthy. Winning a 60 second dash
with a yellow elephant. Sort Benchmark, 2009.

[13] N. Park, I. Ahmad, and D. J. Lilja. Romano: autonomous
storage management using performance prediction in
multi-tenant datacenters. In SoCC, pages 1–14, 2012.

[14] L. G. Valiant. A bridging model for parallel computation.
Commun. ACM, 33(8):103–111, 1990.

[15] G. Wang, A. R. Butt, P. Pandey, and K. Gupta. A simulation
approach to evaluating design decisions in mapreduce setups.
In MASCOTS, pages 1–11, 2009.

[16] T. White. Hadoop: The Definitive Guide. O’Reilly, 2012.
[17] W. Xue, J. Shi, and B. Yang. X-rime: cloud-based large scale

social network analysis. In SCC, pages 506–513, 2010.

1330

