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ABSTRACT
The RDF data model has recently been extended to support rep-
resentation and querying of spatial information (i.e., locations and
geometries), which is associated with RDF entities. Still, there are
limited efforts towards extending RDF stores to efficiently support
spatial queries, such as range selections (e.g., find entities within
a given range) and spatial joins (e.g., find pairs of entities whose
locations are close to each other). In this paper, we propose an ex-
tension for RDF stores that supports efficient spatial data manage-
ment. Our contributions include an effective encoding scheme for
entities having spatial locations, the introduction of on-the-fly spa-
tial filters and spatial join algorithms, and several optimizations that
minimize the overhead of geometry and dictionary accesses. We
implemented the proposed techniques as an extension to the open-
source RDF-3X engine and we experimentally evaluated them us-
ing real RDF knowledge bases. The results show that our system
offers robust performance for spatial queries, while introducing lit-
tle overhead to the original query engine.

1. INTRODUCTION
The Resource Description Framework (RDF) has become a stan-
dard for expressing information that does not conform to a crisp
schema. Semantic-Web applications manage large knowledge bases
and data ontologies in the form of RDF. RDF is a simple model,
where all data are in the form of 〈subject, property, object〉 (SPO)
triples, also known as statements. The subject of a statement mod-
els a resource (e.g., a Web resource) and the property (a.k.a. predi-
cate) denotes the subject’s relationship to the object, which can be
another resource or a simple value (called literal). A resource is
specified by a uniform resource identifier (URI) or by a blank node
(denoting an unknown resource). An RDF knowledge base can be
modeled as a graph, where nodes are resources or literals and edges
are properties.

SPARQL is the standard query language for RDF data. A SPARQL
query includes a Select clause, specifying the output variables and
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a Where clause which includes the conditions that bind the vari-
ables together (or with literals), forming a query graph pattern that
has to be matched in the RDF data graph. The recent GeoSPARQL
standard [7], defined by the Open Geospatial Consortium (OGC),
extends RDF and SPARQL to represent geographic information
and support spatial queries. Real-world entities, represented as re-
sources in RDF, may have geometries, modeled by basic shapes,
such as points and polygons. GeoSPARQL uses the OGC’s Sim-
ple Features ontology for spatial entities. Geospatial filter func-
tions are used to evaluate topological and distance relationships be-
tween entities and express spatial predicates in SPARQL queries.
stSPARQL [16], developed independently to GeoSPARQL, has sim-
ilar features.

Despite the large volume of work on indexing and querying large
RDF knowledge bases [5, 6, 8, 11, 12, 21, 25, 26, 27, 28, 29,
30], only a few works focus on the effective handling of spatial se-
mantics in RDF data. In particular, the current spatial extensions
of RDF stores (e.g., Virtuoso [4], Parliament [3], Strabon [17],
and others [10, 23, 24]) focus mainly on supporting GeoSPARQL
features, and less on performance optimization. The features and
weaknesses of these systems are reviewed in Section 3. On the
other hand, there is a large number of spatial entities (i.e., resources)
in RDF knowledge bases (e.g., YAGO2 [15]). Thus, the power of
the state-of-the-art RDF stores is limited by the inadequate han-
dling of spatial semantics, given that it is not uncommon for user
queries to include spatial predicates.

In this paper, we attempt to fill this gap by proposing a number
of extensions that can be applied to RDF engines in order to effi-
ciently support spatial queries. We present the details of a system,
which extends the open-source RDF-3X store [21]. RDF-3X en-
codes all values that appear in SPO triples by identifiers with a help
of a dictionary and models the RDF knowledge base as a single,
long table of ID triples. A SPARQL query can then be modeled as
a multi-way join on the triples table. The system creates a clustered
B+-tree for each of the six SPO permutations; the query optimizer
identifies an appropriate join order, considering all the available
permutations and advanced statistics [20]. RDF-3X is shown to
have robust performance in comparison studies on various RDF
datasets and query benchmarks [8, 21, 28]. Although we have cho-
sen RDF-3X as a proof of concept for implementing our ideas, our
techniques are also applicable to other RDF stores which have been
developed recently (e.g., [28]). In a nutshell, our system includes
the following extensions over RDF-3X:
Index Support for Spatial Queries. Similar to previous spatial
extensions of RDF stores (e.g., [10]), our system includes a spatial
index (i.e., an R-tree [13]) for the geometries associated to the spa-
tial entities. This facilitates the efficient evaluation of queries with
very selective spatial components.
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Spatial Encoding of Entities. The identifiers given to RDF re-
sources in the dictionary of RDF-3X (and other RDF stores) do
not carry any semantics. Taking advantage of this fact, we encode
spatial approximations inside the IDs of entities (i.e., resources)
associated to spatial locations and geometries. This mechanism
has several benefits. First, for queries that include spatial compo-
nents, the IDs of resources can be used as cheap filters and data
can be pruned without having to access the exact geometries of
the involved entities. Second, our encoding scheme does not affect
the standard ordering (i.e., sorting) of triples used by the RDF-3X
evaluation engine, therefore it does not conflict with the RDF-3X
query optimizer; in other words, the original system’s performance
on non-spatial queries is not compromised. Finally, our encoding
scheme adopts a flexible hierarchical space decomposition so that
it can easily handle spatially skewed datasets and updates without
the need to re-assign IDs for all entities.
Spatial Join Algorithms. We design spatial join algorithms tai-
lored to our encoding scheme. Our Spatial Merge Join (SMJ) al-
gorithm extends the traditional merge join algorithm to process the
filter step of a spatial join at the approximation level of our encod-
ing, while (i) preserving interesting orders of the qualifying triples
that can be used by succeeding operators, and (ii) not breaking the
pipeline within the operator tree. In typical SPARQL queries which
usually involve a large number of joins, the last two aspects are cru-
cial for the overall performance of the system. Our Spatial Hash
Join (SHJ-ID) operates with unordered inputs, using their encod-
ings to identify fast candidate join pairs.
Spatial Query Optimization. In addition to including standard se-
lectivity estimation models and techniques for spatial queries, we
extend the query optimizer of RDF-3X to consider spatial filter-
ing operations that can be applied on the spatially encoded enti-
ties. For this purpose, we augment the original join query graph
of a SPARQL expression to include binding of spatial variables via
spatial join conditions.

We evaluate our system by comparing it with two commercial
spatial RDF management systems, Virtuoso [4] and OWLIM-SE
[2]. For our evaluation, we use two real datasets: LinkedGeoData
(LGD) [1] and YAGO2 [15]. The results demonstrate the superior
performance and robustness of our approach.

The rest of the paper is organized as follows. Section 2 includes
definitions and examples of GeoSPARQL queries that we consider
in this paper. Section 3 reviews related work on RDF stores and
spatial extensions thereof. In Section 4, we show how RDF-3X
can be extended to use a spatial index for the entities associated
with geometries. Section 5 presents our proposal of approximately
encoding the geometries of entities inside their IDs. Query evalua-
tion techniques that take advantage of this encoding are presented
in Section 6. Section 7 presents our extensions to the query opti-
mizer. Section 8 includes our experimental evaluation and Section
9 concludes the paper.

2. PRELIMINARIES
The SPARQL queries we consider in this work follow the format:

Select [projection clause]
Where [graph pattern]
Filter [condition]

The Select clause includes a set of variables that should be instan-
tiated from the RDF knowledge base (variables in SPARQL are
denoted by a ? prefix). A graph pattern in the Where clause con-
sists of triple patterns in the form of s p o where any of the s, p and
o can be either a constant or a variable. Finally, the Filter clause

subject property object
Dresden cityOf Germany
Prague cityOf CzechRepublic
Leipzig cityOf Germany

Wrocław cityOf Poland
Dresden sisterCityOf Wrocław
Dresden sisterCityOf Ostrava
Leipzig sisterCityOf Hannover
Dresden hosted Wagner
Leipzig hosted Bach
Wagner hasName “Richard Wagner”
Wagner performedIn Leipzig
Wagner performedIn Prague
Dresden hasGeometry “POINT (...)”
Prague hasGeometry “POINT (...)”
Leipzig hasGeometry “POINT (...)”

. . . . . . . . .

(b) Spatial Within query

(c) Spatial Join query

(a) RDF triples

Figure 1: Example of RDF data and two spatial queries

includes one or more spatial predicates. For the ease of presenta-
tion, in our discussion and examples, we consider only WITHIN
range predicates (for spatial selections) and DISTANCE predicates
(for spatial joins). However, we emphasize that the results of our
work are directly applicable to all spatial predicates defined in the
GeoSPARQL standard [7]. In addition, we use a simplified syntax
for expressing queries and not the one of the GeoSPARQL standard
because the latter is verbose.

As an example, consider the (incomplete) RDF knowledge base
listed in Figure 1(a). Literals and spatial literals (i.e., geometries)
are in quotes. An exemplary query with a range predicate is:

Select ?s ?o
Where ?s cityOf Germany . ?s hosted ?o . ?s hasGeometry ?g .
Filter WITHIN(?g, “POLYGON(...)”);

This query finds the cities of Germany within a specified polygo-
nal range together with the persons they hosted. Note that there are
three variables involved (?s, ?o, and ?g) connected via a set of triple
patterns which also include constants, i.e., Germany. For exam-
ple, if POLYGON(...) covers the area of East Germany, (Dresden,
Wagner) and (Leipsiz, Bach) are results of this query. The query is
represented by the pattern graph of Figure 1(b). In general, queries
can be represented as graphs with chain (e.g., ?s1 hosted ?s2. ?s2
performedIn ?s3.) and star (e.g., ?s cityOf ?o. ?s hosted Wag-
ner.) components.

Another exemplary query, which includes a spatial join predi-
cate, represented by the pattern graph of Figure 1(c), is:

Select ?s1 ?s2
Where ?s1 cityOf Germany . ?s1 sisterCityOf ?s2 .

?s1 hasGeometry ?g1 . ?s2 hasGeometry ?g2 .
Filter DISTANCE(?g1, ?g2) < “300km”;

This query asks for pairs of sister cities (i.e., ?s1 and ?s2) such
that the first city (i.e., ?s1) is in Germany and the distance between
them does not exceed 300km. In the exemplary RDF base of Fig-
ure 1(a), (Dresden, Worcław) and (Leipzig, Hanover) are results of
this query while (Dresden, Ostrava) is not returned as the distance
between Dresden and Ostrava is around 500km.

3. RELATED WORK
RDF Storage and Query Engines. There have been many efforts
toward the efficient storage and indexing of RDF data. The most
intuitive method is to store all 〈subject, property, object〉 (SPO)
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ID URI/literal
1 Dresden
2 cityOf
3 Germany
4 Prague
5 CzechRepublic
6 Leipzig

. . . . . .

subject property object
1 2 3
4 2 5
6 2 3

. . . . . . . . .

(a) Dictionary (b) ID-encoded SPO triples

Figure 2: Use of Dictiorary

statements in a single, very large triples table. The RDF-3X sys-
tem [21] is based on this simple architecture. RDF-3X (following
an idea from previous work) uses a dictionary to encode URIs and
literals as IDs. Indexing is then applied on the ID-encoded SPO
triples. Figure 2 illustrates a dictionary and the ID-encoded triples
for the RDF base of Figure 1(a). RDF-3X creates a clustered B+-
tree index for each of the six SPO permutations (i.e., SPO, SOP,
PSO, POS, OSP, OPS). A SPARQL query is transformed to a multi-
way self-join query on the triples table; the query engine binds the
query variables to SPO values and joins them (if the query contains
literals or filter conditions, these are included as selection condi-
tions). A query is first translated by replacing URIs or literals by
the respective IDs and then evaluated using the six indices; finally,
the query results (in the form of ID-triples) are translated back to
their original form. The six indices offer different ways for access-
ing and joining the triples; RDF-3X includes a query optimizer to
identify a good query evaluation plan. The system favors plans that
produce interesting orders, where merge joins are pipelined with-
out intermediate sorts. In addition, a run-time sideways information
passing (SIP) mechanism [22] reduces the cost of long join chains.
RDF-3X maintains nine additional aggregate indices, correspond-
ing to the nine projections of the SPO table (i.e., SP, SO, PO, PS,
OS, OP, S, P, O), which provide statistics to the query optimizer
and are also useful for evaluating specialized queries. The query
optimizer was extended in [20] to use more accurate statistics for
star-pattern queries. RDF-3X employs a compression scheme to
reduce the size of the indices by differential storage of consecu-
tive triples in them. Hexastore [25] is a contemporary to RDF-3X
proposal, which also indexes SPO permutations on top of a triples
table. An earlier implementation of a triples table by Oracle [12]
uses materialized join views to improve performance.

An alternative storage scheme is to decompose the RDF data into
property tables: one binary table is defined per distinct property,
storing the SO pairs that are linked via this property. In order to
avoid the case of having a huge number of property tables, this ex-
treme approach was refined to a clustered-property tables approach
(used by early RDF stores, like Jena [26] and Sesame [11]), where
correlated tables are clustered into the same table and triples with
infrequent properties are placed into a left-over table. Abadi et al.
[5] use a column-store database engine to manage one SO table for
each property, sorted by subject and optionally indexed on object.

A common drawback of the column-store approach and RDF-
3X is the potentially large number of joins that have to be evalu-
ated, together with the potentially large intermediate results they
generate. Atre et al. [6] alleviate this problem by introducing a 3D
compressed bitmap index, which reduces the intermediate results
before joining them. A similar idea was recently proposed in [28];
the participation of subjects and objects in property tables is rep-
resented as a sparse 3D matrix, which is compressed. Yet another
storage architecture was proposed in [8]. The idea is to first cluster
the triples by subject and then combine multiple triples about the

same subject into a single row. Thus, the system saves join cost for
star-pattern queries, however, it may suffer from redundancy due to
repetitions and null values.

Trinity [29] is a distributed memory-based RDF data store, which
focuses on graph query operations such as random walk distance,
reachability, etc. RDF data are represented as a huge (distributed)
graph and query evaluation is done in an exploration-based man-
ner; starting from the most selective predicates, query variables are
bound progressively, while the RDF graph is browsed. Trinity’s
power lies on the fact that memory storage eliminates the other-
wise very high random access cost for graph exploration. gStore
[30] is an earlier, graph-based approach, which models SPARQL
queries as graph pattern matching queries on the RDF graph.
Spatial Extensions of RDF Stores. Parliament [7], built on top of
Jena [26], implements most of the features of GeoSPARQL. Stra-
bon [17], developed in parallel to Parliament, extends Sesame [11]
to manage spatial RDF data stored in PostGIS. Strabon adopts a
column-store approach, implementing two SO and OS indices for
each property table. Spatial literals (e.g., points, polygons) are
given an identifier and are stored at a separate table, which is in-
dexed by an R-tree [13]. Strabon extends the query optimizer of
Sesame to consider spatial predicates and indices. The optimizer
applies simple heuristics to push down (spatial) filters or literal
binding expressions in order to minimize intermediate results. Stra-
bon and Parliament are based on old RDF stores (i.e., Jena and
Sesame) and lack sophisticated query optimization techniques.

Brodt et al. [10] extend RDF-3X [21] to support spatial data. The
extension is limited, since range selection is the only supported spa-
tial operation. Furthermore, query evaluation is restricted to either
processing the non-spatial query components first and then verify-
ing the spatial ones or the other way around. Finally, the opportu-
nity of producing an interesting order from a spatial index (in order
to facilitate subsequent joins) is not explored.

Geo-Store [23] is another spatial extension of RDF-3X. Geo-
Store divides the space by a grid and orders the cells using a Hilbert
space-filling curve. Each geometry literal g (e.g. “POINT (...)”) is
approximated by the Hilbert order g.ID of the cell that includes
it. Then, for all triples of the form s hasGeometry g, a triple s
hasPos g.ID is added to the data. During query evaluation, an
extra join with the hasPos triples is applied to perform the filter
step of spatial queries. Geo-Store supports only spatial range and
k nearest neighbor queries, but not spatial joins. In addition, it
does not extend the query optimizer of RDF-3X to consider spa-
tial query components. Finally, besides increasing the size of the
original database with the introduction of hasPos triples, it is not
clear how its encoding can handle complex spatial literals, such as
“POLYGON (...)”, which may span multiple cells of the grid.

S-Store [24] is a spatial extension of gStore [30]. Although S-
Store was shown to outperform gStore for spatial queries, it handles
spatial information only at a high level (i.e., the data are primarily
indexed based on their structure). Finally, commercial systems, like
Oracle, Virtuoso [4], and OWLIM-SE [2] have spatial extensions,
however, details about their internal design are not public.

4. A BASIC SPATIAL EXTENSION
In the remainder of the paper, we present the steps of extending
a standard query evaluation framework for triple stores (i.e., the
framework of RDF-3X) to efficiently handle the spatial compo-
nents of RDF queries. In RDF-3X, a query evaluation plan is a tree
of operators applied on the base data (i.e., the set of RDF-triples).
The leaves of the tree are any of the 6 SPO clustered indices. The
operators apply either selections or joins. Each operator addresses
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a triple of the query pattern and instantiates the corresponding vari-
ables; the instantiated triples (or query subgraphs) are passed to the
next operator, until they reach the root operator, which computes
instances for the entire query graph.

This section outlines the basic (but essential) spatial extension
to RDF-3X and discusses drawbacks of it that motivated us to de-
sign and use a spatial encoding scheme described in Sections 5 and
6. This basic extension improves the spatial RDF-3X extension of
Brodt et al. [10] to support spatial join evaluation.
Spatial Indexing. Spatial entities i.e., resources associated to spa-
tial literals like POINT and POLYGON, are indexed by an R-tree
[13]. For each entity associated to a polygon, there is an entry at
a leaf of the R-tree of the form (mbr, ID), where mbr is the min-
imum bounding rectangle (MBR) of the polygon. For each entry
associated to a point pt, there is a (pt, ID) entry.
Spatial Selections. Given a query with a spatial selection Filter
condition, the optimizer may opt to use the R-tree to evaluate this
condition first and retrieve the IDs of all entities that satisfy it.1

However, the output fed to the operators that follow (i.e., those that
process non-spatial query components) is in a random order. Thus,
query evaluation algorithms that rely on the input being in an in-
teresting order (such as merge-join) are inapplicable. On the other
hand, if the spatial selection is evaluated after another (i.e., non-
spatial) operator, the R-tree cannot be used because the input is no
longer indexed. Therefore, in this case, the system must look up the
geometries of the entities that qualify the preceding operator at the
dictionary, incurring significant cost. Figures 3(a) and 3(b) illus-
trate two alternative plans for the spatial selection query of Figure
1(b). The plan of Figure 3(a) uses the R-tree to perform the spatial
selection and joins the result with the instances of triple ?s cityOf
Germany. Finally, the join results are joined with the results of ?s
hosted ?o. The plan of Figure 3(b) first evaluates the non-spatial
part of the query and then looks up and verifies the geometries of
all ?s instances in it (i.e., the R-tree is not used here).
Spatial Joins. The R-tree can also be used to evaluate spatial join
Filter conditions, by applying join algorithms based on R-trees.
We implemented three algorithms for this purpose. First, the R-
tree join algorithm [9] can be used in the case where both spatially
joined variables involved in the Filter condition are instantiated di-
rectly from the base data and do not come as outputs of other query
operators. Second, we use the SISJ algorithm [19] for the case
where the R-tree can be used only for one variable. Finally, we
implemented a spatial hash join (SHJ) algorithm [18] for the case
where both inputs of the spatial join filter condition are output by
other operators. (If the spatial join inputs are very small, we simply
fetch the geometries of the input entity sets and do a nested-loops
spatial join.) As in the case of spatial selections, spatial join algo-
rithms do not produce interesting orders and for spatial join inputs
that are instantiated by preceding query operators, the system has to
perform dictionary look-ups in order to retrieve the geometries of
the entities before the join. Figures 3(c) and 3(d) illustrate two al-
ternative plans for the spatial join query of Figure 1(c). The plan of
Figure 3(c) applies an R-tree self-join [9] to retrieve nearby (?s1,
?s2) pairs and then binds ?s1 with the result of ?s1 cityOf Ger-
many. The output is then joined with the result of ?s1 sisterCityOf
?s2. The plan of Figure 3(d) first evaluates the non-spatial part of

1For entities that have point geometries, the spatial selection can
always be evaluated exactly using only the R-tree. On the other
hand, if the entities have polygon geometries, the R-tree search may
allow for false positives; in this case, the final results of the spatial
filter are confirmed by retrieving the exact polygon geometries from
the dictionary, using the IDs of the entities.

(a) spatial selection (b) spatial selection (alt.)

(c) spatial join (d) spatial join (alt.)

Figure 3: Query plans in the basic extension

(a)

(b)

Figure 4: Spatial encoding of entity IDs

the query and then looks up the geometries of all (?s1, ?s2) pairs,
and joins them using SHJ.

5. ENCODING THE SPATIAL DIMENSION
We observe that in most RDF engines, the IDs given to resources
or literals at the dictionary mapping do not carry any semantics. In-
stead of assigning random IDs to resources, we propose to encode
into the ID of a resource an approximation of the resource’s loca-
tion and geometry that can be used to (i) apply spatial Filter con-
ditions on-the-fly in a query evaluation plan, and (ii) define spatial
operators that apply on the approximations.

Figure 4(b) illustrates the Hilbert space filling curve, a classic
encoding scheme of spatial locations into one-dimensional values.
We partition the space using a grid, and order the cells based on
the curve. We then divide the ID given to a spatial resource r into
two components: (i) the Hilbert order of the cell where r spatially
resides occupies the m most significant bits (where 2m/2 × 2m/2
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is the resolution of the grid), and (ii) a local identifier which dis-
tinguishes r from other resources that reside in the same cell as r.
Since the RDF data may also contain resources or literals, which
are not spatial, we use a different range of ID values for non-spatial
resources with the help of the least significant bit as a flag. In the
toy example of Figure 4(a), the least significant bit (b0) indicates
whether the entity modeled by the ID is spatial (b0 = 1) or non-
spatial (b0 = 0), the next 4 bits are used for the local identifier, and
the 6 most significant bits encode the Hilbert order of the cell. For
example, in Figure 4(b), entity e1961 is spatial (b0 is set) and it is
located in the cell with Hilbert order 111101 (cell with ID 61), hav-
ing local code 0100. For a non-spatial resource, bit b0 would be 0
and the remaining ones would not have any spatial interpretation.
Figure 4(c) illustrates which IDs encode the cities of Figure 1(a).

In the case of a skewed dataset, a cell may overflow, i.e., there
could be too many entities falling inside it rendering the available
bits for the local codes of entities in it insufficient. In this case,
entities that do not fit in a full cell are assigned to the parent of the
cell in the hierarchical space decomposition. For instance, consider
the data in Figure 4(b) and assume than the cell with ID 61 is full
and that the entity e1931 cannot be assigned to it. e1931 will be
assigned to the parent cell, i.e., the square that consists of the cells
60, 61, 62, and 63. This cell’s encoding has 4 bits, that is, 2 bits
less than its children cells. These 2 bits are now used for the local
encoding of entities in it. Intuitively, as we go up in the hierarchy
of the grid, each cell can accommodate more entities. An entity
that must be assigned to an overflown cell ends in the first non-full
ancestor of that cell as we go up in the hierarchy. The dlog2(m/2)e
least significant bits of the local code area are reserved to encode
the level of the spatially-encoded cell in the ID (the most detailed
level being 0). In our example, m = 6, hence, 2 bits of the local
code are used to denote the level of the cell that approximates each
entity.

The encoding we described is also used for arbitrary geometries
that may overlap with more than one cells of the bottom level. For
example, the polygon at the lower left corner of the grid of Fig-
ure 4(b) spans across cells with IDs 1 and 2, thus, it will be assigned
to their parent cell, which has a spatial encoding 0000. Due to the
variable number of bits given to the spatial approximations, the en-
coding is also suitable for dynamic data (i.e., inserted entities that
fall into overflown cells are given less accurate approximations).

The most important benefit of the spatial encoding is that the
(approximate) evaluation of spatial predicates can be seamlessly
combined with the evaluation of non-spatial patterns in SPARQL.
For example, spatial Filter conditions included in a query which are
bound to entity variables (for example, ?s hasGeometry ?g, Filter
WITHIN (?g, “POLYGON(...)”) can be evaluated on-the-fly at any
place in the evaluation plan where the entity variable (e.g., ?s) has
been instantiated, by decoding the IDs of the instances. Note that
the spatial mapping is only approximate (based on the conservative
grid approximation of the spatial locations); by applying a spatial
predicate on the approximations (i.e., cells) of the entities, false
hits may be included in the results, which need to be verified. Still,
for many entities, the spatial approximation suffices to confirm that
they are definitely included (or not) in the query result. This way,
random accesses for retrieving their exact geometries are avoided.

A side-benefit of using a Hibert-encoded grid to approximate the
object geometries is that by counting the number of resources in
each cell (counting is already performed by the mapping scheme),
we can have a spatial histogram to be used for selectivity estima-
tion in query optimization (this issue will be discussed in detail in
Section 7). Finally, extending current systems (e.g., RDF-3X) to
use this spatial encoding is quite easy.

Figure 5: Plan for the query of Figure 1(b)

6. QUERY EVALUATION
We now show how our encoding scheme further extends the basic
framework presented in Section 4 to apply spatial filters early and
on-the-fly and significantly accelerate the evaluation of GeoSPARQL
queries. In a nutshell, after each non-spatial operator that instanti-
ates entity variables, which also appear in a spatial Filter condition,
the condition is applied on the spatially encoded IDs of the entities.
In general, the sooner we apply these on-the-fly spatial filters, the
better because they do not incur any I/O cost and their CPU cost
is negligible.2 After the application of a spatial filter, we append
a verification bit (or vbit) to the tuples that survive the filter. If,
for a tuple, this bit is 1, the tuple is guaranteed to qualify the cor-
responding spatial predicate (no verification is required). On the
other hand, if the bit is 0, this means that it is unknown at this point
whether the exact geometries of the entities in the tuple qualify the
spatial predicate (however, they cannot be pruned based on their
spatial approximations encoded in their IDs). By the end of pro-
cessing all non-spatial query components, for tuples having their
vbits 0, the system fetches the exact geometries of the involved en-
tities and perform verification of the spatial Filter conditions.

6.1 Spatial Range Filtering
Spatial range queries bind a pattern variable to geometries that are
spatially restricted by a range. As an example, consider again the
query depicted in Figure 1(b). Our encoding scheme allows the fil-
tering phase of the spatial range query to be performed on-the-fly
while scanning the indices, as illustrated by the evaluation plan of
Figure 5. The plan searches the OPS and PSO indexes in order to
fetch and merge-join (?s =?s′) the two lists that qualify patterns
?s cityOf Germany, ?s′ hosted ?o, i.e., the plan follows the logic
of the plan shown in Figure 3(b). Taking advantage of the spatial
encoding, before the merge-join, the plan of Figure 5 applies the
spatial filter for (?s hasGeometry ?g, WITHIN(?g,“POLYGON
(...)”)) on the instances of ?s that arrive from scanning the OPS
and PSO indexes; a vbit is appended to each survived tuple, to be
used by the next operators. In this example, assume that the spatial
entities and the spatial range (i.e., “POLYGON (...)”) are the points
and the shadowed range, respectively, shown in Figure 4(b). Enti-
ties e809 and e841 are filtered out from the left scan, because they
are not within the cells that intersect the query spatial range. Entity

2Most spatial predicates, when translated to the grid-based approx-
imations of the encoding, involve distance computations and/or
cheap geometry intersection tests.
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Figure 6: Plan for the query of Figure 1(c)

e969 survives spatial filtering, but we cannot ensure that it qualifies
the spatial range predicate either, because its cell-ID is not com-
pletely covered by the spatial query range; therefore the vbit for
the tuples that involve e969 is 0. On the other hand, the vbit for
tuples containing e585 or e593 is 1 as their cell-ID is completely
covered by the spatial range. Therefore, after the merge-join, we
only have to fetch and verify the geometry of e969. Range filtering
is applied at the bottom of query plans, after each index scan that
contains a respective spatial variable.

6.2 Spatial Join Filtering
Similar to spatial range selections, the filtering phase for binary
spatial join predicates can also be applied on-the-fly, as soon as the
IDs of candidate entity pairs are available. As an example, consider
the join query depicted in Figure 1(c). A possible query evaluation
subplan is given in Figure 6, which follows the flow of the plan
shown in Figure 3(d); however, the plan of Figure 6 applies the
spatial join filter (i.e., the distance filter) early. By the time the can-
didate pairs (?s′1, ?s2) are fetched by the index scan on PSO, the
filter is applied so that only the pairs of entities that cannot be spa-
tially pruned are passed to the next operator. Assume that the pairs
that qualify ?s′1 sisterCityOf ?s2 are as shown at the right-bottom
side of Figure 6, above the search PSO index operator. Assume that
the distance threshold (i.e., 300km) corresponds to the length of the
diagonal of each cell in Figure 4. After applying the distance spa-
tial filter on all (?s′1, ?s2) pairs produced by the PSO index scan,
the pairs that survive are (e585, e593), (e969, e1001) and (e585, e329).
However, only entities e585 and e593 are guaranteed to be within ε
distance as they belong to same cell; thus, the vbit for pair (e585,
e593) is 1. When the pairs are merge-joined (?s1 =?s′1) with the
results of the OPS index-scan on the left (for ?s1 cityOf Germany),
the vbits of qualifying tuples are carried forward.

In contrast to the range filter that always appears at the bottom
level of the operator tree, distance join filtering can be applied on
any intermediate relation that contains two joined spatial variables.
This case is possible when two relations are first joined on attributes
other than the spatial entities. In Section 7.1, we show how the
query optimizer can identify all pairs of spatially joined variables
in a query, for which distance join filtering can be applied; here, we
only gave an example with a pair coming from an index scan.

6.3 Spatial Merge Join on Encoded Entities
In this section, we propose a spatial merge join (SMJ) operator that
applies directly on the spatial encodings (i.e., the IDs) of the enti-
ties from the two join inputs. SMJ assumes that both its inputs are
sorted by the IDs of the spatial entities to be joined. Like the spatial

Figure 7: Example of SMJ

filters discussed above, this algorithm only produces pairs of enti-
ties for which the exact geometries are likely to qualify the spatial
join predicate (typically, a DISTANCE filter). Again, a verifica-
tion bit is used to indicate whether the join condition is definitely
qualified by a pair. Besides using the spatially encoded IDs of the
entities, SMJ takes advantage of and preserves the ID-based sorting
of its inputs. Thus, the algorithm does not break the pipeline within
the operator tree, as any other spatial join algorithm would. Note
that SMJ is a binary join algorithm that takes two inputs, while the
filtering technique discussed in Section 6.2 takes a single input of
candidate join pairs and merely applies the join condition on the
entity-ID pairs on-the-fly.

Similarly to a classic merge join algorithm, SMJ uses a buffer
BR to cache the streaming tuples from its right input R. For each
entity el read from the left input L, SMJ uses the ID of el to com-
pute the minimum and maximum cell-IDs that could include enti-
ties er from R, which could possibly pair with el in the join result,
based on the given DISTANCE filter. SMJ then keeps reading tu-
ples from input R and buffering them into BR, as long as they are
likely to join with el. As soon as BR is guaranteed to contain all
possible entities that may pair with el, SMJ computes all join re-
sults for el and discards el (and potentially tuples from BR).

We now provide the details of SMJ. The algorithm is based on
the (on-the-fly and on-demand) computation of four cell IDs for
each entity e based on e’s ID. First, minNeighborID and maxNeigh-
borID are the minimum and maximum cell-IDs that could include
entities that pair with e in the join result, respectively. To com-
pute these cells, we have to expand e’s cell based on the distance
join threshold and find the minimum and maximum cell-ID that in-
tersects the resulting range. For example, consider entity e841 con-
tained in cell with ID 26 in Figure 4(b) and assume that the join dis-
tance threshold equals the diagonal length of a cell. For this entity,
minNeighborID=18 and maxNeighborID=39. Second, minChildID
and maxChildID correspond to the minimum and maximum cell-
IDs that have a common non-empty ancestor (in the hierarchical
Hilbert space decomposition) with the cell of e. For entity e841
which has only empty ancestors, the minChildID and maxChildID
are both 26, that is, the cell ID of e841. For e1931, the minChil-
dID and maxChildID are 60 and 63 respectively because e1931 is
assigned to a cell at the first level of the grid.

At each step, the distance join is performed between the current
entity el from the left input and all entries in BR. After reading
el, SMJ reads entries er and buffers them into BR and stops as
soon as er’s minChildID is greater than the maxNeighborID of el;
then we know that we can join el and all entities in BR and then
discard el, because any unseen tuples from R cannot be included
within the required distance from el.3 For example, consider the
buffered inputs of Figure 7 that have to be joined. The maxNeigh-
borID of the first entity e585 on the left is smaller than the min-

3Recall that the inputs are sorted by ID and that entities may be
encoded at different granularities due to data skew or geometry ex-
tents. Therefore, using the cell-ID of er alone is not sufficient and
we have to use the minChildID of er .
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ChildID of entry e1931, therefore e585 cannot be paired with entries
after e1931 (that are guaranteed to have minChildID greater than
the maxNeighborID of e585).4 Thus, for any el, we only need to
consider all entities in R before the first entity having minChildID
greater than the maxNeighborID of el.

After el has been joined, it is discarded. At that point we also
check if buffered tuples in BR can also be removed. In order to
decide this, we use maxNeighborID of each entity on the right. In
case this is smaller than the minChildID of the next entity in L,
then the right entry can be safely removed from the buffer without
losing any qualifying pairs. Below, we give a pseudocode for SMJ.

Algorithm: SMJ
Input : Two join inputs L and R; a distance threshold ε
Output : Grid-based spatial distance join of L and R

1 Initialize (empty) buffer BR;
2 er = R.get next(); add er to BR;
3 while el = L.get next() do
4 Prune from BR all tuples er such that er .maxNeighborID <

el.minChildID
5 while el.maxNeighborID ≥er .maxChildID do
6 er = R.get next(); add er to BR;

7 join el with all tuples in BR and output results to the next
operator;

We now discuss some implementation details. First, the required
min/maxNeighborID and min/maxChildID for the entries are com-
puted fast on-the-fly by bit-shifting operations. Second, for joining
an entity el from L, we scan through the qualifying entities of BR

and compute their grid-based distances to el, but only for entities
whose minChildID-maxChildID range overlaps with the minNeigh-
borID-maxNeighborID range of el; this is a cheap filter used to
avoid grid-based distance computations. Finally, we buffer all tu-
ples that have the same entity ID (in either input). For such a buffer,
we perform the join only once but generate all join pairs.

6.4 Spatial Hash Join on Encoded Entities
If either of the two inputs of a spatial join are not ordered with re-
spect to the joined entities, SMJ is not applicable. In this case we
can still use the IDs of the joined entities to perform the filter step
of the spatial join. The idea is to apply a spatial hash join (SHJ-ID)
algorithm (similar to that proposed in [18]) using the approximate
geometries of the entities taken from their IDs.5 SHJ-ID simply
uses the existing assignment of the entities to the cells of the grid
(as encoded in their IDs) and considers each such cell as a distinct
bucket. The only difference from a typical spatial hash join algo-
rithm is that in the bucket-to-bucket join phase, we have to consider
all levels of the encoding scheme. Therefore, each bucket from the
left input, corresponding to a cell c, is joined with all buckets from
the right input which correspond to all cells that satisfy the DIS-
TANCE filter with c. The output of SHJ-ID is verified as soon as
the geometries of the candidate pairs are retrieved from disk.

6.5 Runtime Optimizations
RDF-3X uses a lightweight Sideways Information Passing (SIP)
mechanism for skipping redundant values when scanning the in-
dexes [22]. Consider a merge join, which binds the values of a
variable ?s coming from two inputs. If the join result is fed to
another (upper) merge join operator that binds ?s, then the upper
operator can use the next value v of its other input to notify the
lower operator that ?s values less than v need not be computed.
4The fact that the entities arrive from the inputs sorted by their IDs
guarantees that they are also sorted based on their minChildIDs.
5Recall that the actual geometries of the entities have not been re-
trieved yet; otherwise, SHJ [18] would be used (see Section 4).

(a) RDF query

(b) Join graph GQ

Figure 8: Augmenting a query graph

In the case of spatial joins where at least one side comes from a
scan in the R-tree (e.g., consider the plan shown in Figure 3(a)), SIP
is not applicable since there is no global order for the geometries
in the 2D space. On the other hand, the SMJ algorithm proposed in
Section 6.3 can use SIP to notify the operators below its left input
which is the minimum ID value for the next entity el to pair with
any entity buffered in BR. For the spatial hash join, we can also
use SIP, by creating a bloom filter for one input, similar to the one
RDF-3X constructs for the traditional hash join, and use it to prune
tuples from its other input, while scanning the B+-tree index. A
value is pruned if it is not included in the bloom filter.

7. QUERY OPTIMIZATION
In this section we describe our extensions to the query optimizer
of RDF-3X, in order to take into consideration (i) the R-tree index
and the query evaluation plans that involve it (see Section 4) and
(ii) the query evaluation techniques described in Section 6, based
on the spatial encoding of entity IDs.

7.1 Augmenting the Query Graph
Consider the query depicted in Figure 8(a). This query includes
a spatial distance join between the geometries ?g1 and ?g2. The
filtering phase of the spatial distance join can also be applied on
the variables ?s1 and ?s2, using their IDs, as explained in Section
6.3. We call such variables spatial variables. More formally:

DEFINITION 1. (SPATIAL VARIABLE) A variable ?si at the
subject position of a triple pattern ?si hasGeometry ?gi that ap-
pears in the Where clause of a queryQ is called a spatial variable.
We say that two spatial variables ?si, ?sj (i 6= j) are joined iff
?gi and ?gj appear in the same DISTANCE predicate in the Filter
clause of Q.

Spatial variables are identified in the beginning of the optimization
process and they are used to augment the initial join query graph
GQ with additional join edges that correspond to the filtering step
of the spatial operation. For example, the initial GQ for the RDF
query of Figure 8(a) is the graph shown in Figure 8(b), considering
solid lines only as edges; the nodes of GQ are the triples of the
RDF query graph and there is an edge between every pair of nodes
that have at least one common variable. An ordering of the edges
of GQ corresponds to a join order evaluation plan.

The procedure of augmenting GQ is given in Algorithm AUG-
MENT. First, we identify all spatial variables in the query Q; in
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our example, ?s1 and ?s2. Note that a spatial variable ?si may
also appear either as subject or object in triple patterns, other than
?si hasGeometry ?gi. The second step is to collect all pairs of
nodes in GQ that include at least one spatial variable. In the ex-
ample of Figure 8(b), all nodes include one of ?s1 and ?s2. Then,
for each pair of nodes (ni, nj), where ni 6= nj , such that ni in-
cludes ?s1 and nj includes ?s2, we either add a new edge (if no
edge exists between ni and nj) or we add the spatial join pred-
icate (e.g., DISTANCE(ni.si, nj .sj) < “200km”) in the set of
predicates modeled by the edge between these two nodes (these
are equality predicates for their common variables). For instance,
n4 and n5 in the initialGQ are connected by an edge with predicate
n4.x = n5.x, but after the augmentation the predicates on this edge
are n4.x = n5.x and DISTANCE(n4.s2, n5.s1) < “200km”.
This implies that the query optimizer will consider two possible
subplans for joining n4 with n5. The first one will first perform the
equality join on x and then evaluate the distance predicate whereas
the second subplan will first perform the filtering phase of the spa-
tial join on (s1, s2) and then apply the equality selection on x. In
the augmented GQ for our example (Figure 8(b)) the additional
edges are denoted with dashed lines.

If a query Q also includes WITHIN predicates, in the end of the
augmentation procedure and for each spatial variable ?s whose ge-
ometry ?g participates in a WITHIN predicate, we add a condition
of the form WITHIN(?s,GEOMETRY) in the set of filters of Q,
so that this filter can be applied in any (intermediate) relation that
contains the spatial variable ?s. Similarly, for each pair (si,sj) of
joined spatial variables, we add the corresponding spatial join con-
dition in the set of filters of Q, so that this filter can be applied on
the fly on every (intermediate) relation that includes both the spatial
variables si and sj . Overall, the final augmented GQ may include
more edges than the initial GQ, additional predicates in the edges,
and a set of general spatial filters for variables or pairs of variables
that can be applied on intermediate results of subplans.

Algorithm: AUGMENT
Input : A query Q and its initial join query graph GQ

Output : An augmented query graph GQ for Q

1 Identify all triples in Q that include at least one spatial variable in as
subject or object. Each such triple corresponds to a node of GQ;

2 for each pair ?si, ?sj of joined spatial variables do
3 for each pair of nodes (ni, nj ) ∈ GQ, such that ni includes ?si

and n2 includes ?sj do
4 if there is no edge in GQ between ni and nj then
5 Add a new edge denoting the filtering phase of the

spatial join of ?si and ?sj ;

6 else
7 Add the filtering phase of the spatial join predicate of ?si

and ?sj in the predicate list of edge between ni and nj ;

8 For each spatial variable ?s appearing in a WITHIN predicate, add
WITHIN(?s,GEOMETRY) to filtering conditions of Q;

9 For each pair of spatial variables ?si, ?sj (i 6= j) joined in Q, add
DISTANCE(?si, ?sj) Op ε to filtering conditions of Q;

10 return GQ;

7.2 Spatial Join Operators
Our plan generator can place a spatial join operation at every level
of the operator tree. Table 1 summarizes all possible cases of the
L and R inputs of a spatial join (if L and R are swapped there
is no difference because the join is symmetric). The right column
includes the join algorithms, which the plan generator of the query
optimizer is going to consider in each case.

Case Algorithm(s) to Consider
L andR sorted on entity IDs SMJ (Section 6.3)
L andR results of (?si hasGeometry ?gi) SMJ or R-tree Join [9]
L sorted on entity IDs SMJ (Section 6.3), SISJ [19],
R result of a pattern (?s2 hasGeometry ?g2) or Index Nested Loops
L unsorted SHJ-ID (Section 6.4), SISJ [19]
R result of a pattern (?s2 hasGeometry ?g2) or Index Nested Loops
L andR unsorted SHJ-ID, SHJ [18] or Nested Loops

Table 1: Spatial Join Scenarios in Optimal Plan Construction

Depending on whether the inputs of the join are indexed, sorted,
or unsorted, there are different algorithms to be considered. If both
join inputs come ordered by the IDs of the spatial entities to be
joined, then SMJ (Section 6.3) is the algorithm of choice. In the
special case where both inputs are the results of ?si hasGeometry ?gi
patterns applied on the entire set of triples, besides of applying SMJ
on the SPO (or SOP) index, we can apply an R-tree self-join [9] on
the R-tree index (see Section 4). When just one of the inputs, e.g.,
R, is a result of a ?si hasGeometry ?gi pattern, besides SMJ, we
can also apply the SISJ algorithm [19] (see Section 4). In this case,
we also consider Index Nested Loops join using the R-tree, by ap-
plying one spatial range query for each tuple of the other input,
e.g., L. This is expected to be cheap only when L is very small. Fi-
nally, when either L or R are unsorted, SMJ is not applicable and
we can use SHJ-ID on the entity IDs (Section 6.4), or either SISJ
or SHJ depending on whether one of the inputs is a direct result
of a ?si hasGeometry ?gi pattern or not. We also consider Index
Nested Loops or Nested Loops, if any of the inputs is too small.

7.3 Query Optimization
We extend the query optimizer of RDF-3X to consider all possi-
ble spatial join cases and algorithms outlined in Section 7.2. In
addition, the optimizer considers the case of performing a spatial
selection Filter using the R-tree (see Section 4). The optimizer also
considers any spatial selection and join filter conditions that are ap-
plied on-the-fly; i.e., in plans where the non-spatial query pattern
components are evaluated first, our optimizer uses spatial query se-
lectivity statistics to estimate the output size of these components
after the spatial filter is applied on them. Consider for example,
the plan of Figure 5. The estimated output of the ?s hosted ?o
pattern is further refined to consider the spatial WITHIN filter that
follows. In other words, the cardinality of the right input to the
merge-join algorithm that follows is estimated using both RDF-3X
statistics on the selectivity of ?s hosted ?o and spatial statistics for
the selectivity of WITHIN(?g,“’POLYGON (...)”).

7.4 Selectivity Estimation
For estimating the selectivity of spatial query components, we use
grid-based statistics, similar to previous work on spatial query op-
timization (e.g., see [19]). Specifically, we take advantage of statis-
tics that are obtained by the spatial encoding phase of the entity
IDs. For each cell of the grid, defined by the Hilbert order, we keep
track of the number of spatial entities that fall inside. The spatial
join or selection is then applied at the level of the grid, based on
uniformity assumptions about the spatial distributions inside the
cells. In addition, we assume independence with respect to the
other query components. For example, for estimating the input car-
dinality of the right merge-join input at the plan of Figure 5, we
multiply the selectivity of the ?s hosted ?o pattern with that of the
WITHIN(?g,“POLYGON (...)”) filter. In practice, this gives good
estimates if the spatial distribution of the entities that instantiate ?s
is independent to the spatial distribution of all entities.
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8. EXPERIMENTAL EVALUATION
In this section we present an experimental evaluation of our tech-
niques on spatially enriched RDF data. Section 8.1 discusses the
implementation details of our methodology and the experimental
setup. Section 8.2 compares our extended version of RDF-3X against
the original system [21] and two commercial triple stores with spa-
tial query support, namely Virtuoso [4] and OWLIM-SE [2].

8.1 Setup
Implementation Details. We implemented our system in C++
(g++ 4.8) and all experiments were conducted on a machine with
an i7-3820 CPU at 3.60GHz, a RAID hard disk of 6Tb, and 60Gb
of main memory running Linux Debian (3.11-2-amd64). For the
R-tree implementation, we used the open-source SaIL library [14].
Datasets. We experimentally evaluate our system using two real
datasets: LinkedGeoData (LGD) [1] and YAGO2 [15]. LGD con-
tains user-contributed content from the OpenStreetMap project.
YAGO2 is an RDF knowledge base, derived from Wikipedia, Word-
Net and Geonames. Table 2 shows statistics about the sizes of the
datasets (including the dictionary and indexes) and the number of
entities and geometries in them. The sizes of the input triple files
are 1.7GB (LGD) and 16GB (YAGO2). The R-trees (using 4KB
nodes) occupy 152MB and 212MB, respectively. The size of the
grid in both datasets is 358MB (89M cells in total for all levels).
Note that, despite the agressive indexing, in both cases, we end up
with a database size having less than double the size of the input
files. Regarding the spatial distribution of the entities they include,
both datasets are highly skewed (i.e., the density of the data is high
in populated areas); this is reflected by the percentage of geometries
that reside at the different levels of our encoding scheme (see Table
3). YAGO2 includes a significant percentage of geometries which
have not been cleaned and span a very large area; this explains the
increased percentage of geometries encoded at high levels of the
grid hierarchy.
Encoding. We used a grid of 8,192 × 8,192 cells at the bottom
level, hence, the maximum number of bits used in an entity’s ID
to encode its cell-ID is 26. This means that we can have up to 14
levels of spatial approximation. This is the maximum granularity
we can achieve when the IDs of the entities are 32-bit integers.
Using 64-bit IDs for better spatial approximation is also possible,
but it significantly increases the size of the triple indexes, thus, we
should do this only when the total number of entities is greater than
232. Besides, the grid must be relatively small so that it can be
kept in memory (for selectivity estimation purposes). In our case,
the grid size is less than 1Gb for both datasets. As shown in Table
3, all levels of the grid are used in the encoding, because some
of the extended geometries (polygons, lines, multipoints) span the
borders of quadrants at high levels of the grid and some multipoints
in YAGO2 have very large MBRs.
Queries. All queries we used in our experiments consist of two
parts: (i) an RDF part that can be evaluated by a traditional SPARQL
engine and (ii) a spatial part, i.e., a FILTER condition that includes
either a WITHIN predicate (for spatial range queries) or a DIS-
TANCE predicate (for spatial distance joins). The range queries
have similar form as that of Figure 1(b); we divide them into four
classes based on the selectivities of the two parts. Queries belong-
ing to class SL have their RDF part more selective compared to
their spatial part and the opposite holds for queries in class LS (S
stands for small result, L for large). For queries in classes SS and
LL, both parts roughly have the same selectivity. The characteris-
tics of the spatial join queries (denoted by J) will be discussed in
Section 8.2. All query expressions can be found in the Appendix.

Dataset Triples Entities Points Polygons Lines Multipoints

LGD (3 Gb) 15.4M 10.6M 590K 264K 2.6M 0
YAGO2 (22 Gb) 205.3M 108.5M 4M 0 0 780K

Table 2: Characteristics of the datasets

Level 0 (bottom) 1 2 3 4 5 6 ≥ 7

LGD 42.7 13.7 13.2 11.1 7.9 5.1 3.0 3.3
YAGO2 50.3 19.2 8.1 4.5 3.0 2.4 1.9 10.6

Table 3: Percentage (%) of geometries per grid level

Comparison measures. We evaluated each query 5 times (both
with cold and warm cache) and report their average response times.
The reported runtimes include the query optimization cost (i.e., the
time spent by the optimizer to apply the techniques of Section 7)
and the time spent in the ID-to-string dictionary lookups for the
variables in the Select clause.
System Parameters. RDF-3X does not have its own data cache
for the query results; instead, it relies entirely on the OS caching
mechanism. The same architectural principle is also adopted in our
implementation.6 When a query is executed for a second time, its
optimization and evaluation is performed from scratch, since there
are no logs or cached results as in a full-fledged database system.
To illustrate the effect of caching (by the system’s kernel) in the
overall response time of the system, we report query evaluation
times on warm and cold caches separately.

8.2 Comparison
Results on Range Queries. Table 4 shows response times for
range queries on the LGD dataset. The first three columns of the ta-
ble show the number of results of the RDF query component only,
the spatial component only and the complete query (combined). We
first focus on comparing our approach (Encoding) with the basic
extension presented in Section 4 (Basic) and the original RDF-3X
system (Baseline). Only for queries where the spatial component
is more selective (LS class), Basic utilizes the R-tree in order to
retrieve the entities that fall in the given range; in all other cases, it
applies the same plan as Baseline; i.e, it evaluates the RDF part first
and then applies the WITHIN filter to the tuples that qualify it. On
the other hand, Encoding always chooses to evaluate the RDF part
of the queries first and uses the spatial range filtering technique (see
Section 6.1) to reduce the number of entities that have to be spa-
tially verified. Our approach is superior in all queries. In specific,
we avoid fetching a large percentage of exact geometries (96% on
average for all range queries in both datasets), which Baseline ob-
tains by random accesses to the dictionary. The cost differences
between our approach and Baseline is small only for SL queries,
where the spatial filtering has little effect. In all other cases, En-
coding is significantly faster than Baseline and Basic especially in
LS and LL queries and in queries involving entities having non-
point geometries, denoted by a star (*), where the difference is up
to one order of magnitude. In the case of warm caches, all runtimes
are very low, so the cost of our approach may exceed the cost of
Baseline sometimes (e.g., see SL queries) due to the overhead of
applying the spatial filter on all accessed entities in the evaluation
of the RDF component of the query.

6We only included a small separate cache of 40Kb for the R-tree.
Since the OS caches R-tree pages, we used a small cache size in
order to reduce the effect of double caching by the SaIL library.
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Query Number of results OWLIM-SE Virtuoso Baseline Basic extension Encoding
RDF Spatial Combined Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm

LGD.SL1 524 2,537,757 411 5,836 3,054 15,207 28 1,274 (134) 36 (1) 1,285 (175) 33 (23) 1,079 (141) 75(23)
LGD.SL2 215,355 2,943,209 186,302 9,667 5,379 19,781 2,047 1,693 (123) 938 (1) 1,720 (235) 890 (72) 1,346 (186) 464 (68)
LGD.SL3* 13,090 2,537,757 9814 - - - - 2,748 (126) 609 (1) 2,670 (150) 730 (31) 1,909 (140) 228 (23)
LGD.LS1 25,617 9,002 86 1,281 59 15,059 53 641 (122) 157 (1) 705 (161) 37 (12) 297 (159) 23 (9)
LGD.LS2 191,976 908 3 912 46 13,808 20 1,136 (122) 688 (1) 364 (159) 14 (11) 290 (165) 16 (8)
LGD.LS3* 5,791 908 9 - - - - 4,037 (128) 137 (1) 348 (161) 14 (10) 336 (171) 12 (8)
LGD.SS1 8,621 9,002 69 1,032 58 15,434 54 638 (125) 89 (1) 718 (162) 37 (13) 311 (159) 20 (11)
LGD.SS2* 13,090 9,002 120 - - - - 2,086 (130) 593 (1) 1,956 (167) 441 (12) 546 (163) 20 (14)
LGD.SS3* 5,791 9,002 7 - - - - 4,148 (119) 136 (1) 4,000 (149) 101 (19) 463 (127) 19 (14)
LGD.LL1 191,976 350,405 13,416 4,254 585 17,852 182 1,275 (128) 710 (1) 1,344 (145) 678 (27) 491 (135) 81 (19)

Table 4: Spatial range queries on LGD (total response time in msecs - optimizer time in parentheses)

Query Number of results Baseline Basic extension Encoding
RDF Spatial Combined Cold Warm Cold Warm Cold Warm

YAGO2.SL1* 11,547 364,992 891 3,503 (47) 64 (1) 3,604 (160) 88 (17) 3,116 (169) 66 (15)
YAGO2.SL2* 6,030 31,260 69 2,344 (161) 76 (1) 2,634 (333) 96 (16) 2,054 (251) 63 (16)
YAGO2.LS1* 2,226 138 7 1,535 (51) 58 (1) 4,345 (182) 221 (16) 1,382 (168) 59 (17)
YAGO2.LS2* 285,613 41,945 4,471 4,030 (156) 1,198 (1) 6,919 (316) 1,482 (16) 2,873 (332) 172 (15)
YAGO2.SS1* 6,030 8,440 3 1,987 (162) 77 (1) 2,173 (333) 98 (17) 1,823 (328) 63 (17)
YAGO2.SS2* 7,074 7,042 32 2,200 (46) 60 (1) 2,241 (178) 87 (16) 2,043 (171) 59 (15)
YAGO2.LL1* 285,613 184,743 10,454 4,480 (157) 1,203 (1) 5,015 (337) 1,597 (16) 3,411 (331) 189 (16)
YAGO2.LL2* 152,693 107,625 88 5,770 (49) 3,561 (1) 6,081 (187) 3,652 (16) 4,795 (172) 2,272 (16)

Table 5: Spatial range queries on YAGO2 (total response time in msecs - optimizer time in parentheses)

The difference in the optimization times (in parentheses) be-
tween warm and cold caches in all alternatives is because of in-
cluding the time spent for parsing the query, resolving the IDs of
the URIs/strings in it, and finally building the optimal plan. Hence,
when a query is issued for the first time, it requires some dictionary
lookups for resolving the IDs of the entities. With warm caches,
the respective dictionary pages are already cached by the OS, thus,
query optimization is always cheaper. Note that, in most cases,
the time spent for query optimization by our approach is similar
to that of Baseline, meaning that the overhead of augmenting the
query graph and using spatial statistics is negligible compared to
the query optimization overhead of the original RDF-3X system.
With warm caches, the overhead in query optimization by our ap-
proach and Basic compared to Baseline (due to the use of spatial
statistics) is more profound.

Similar results are observed for range queries on the YAGO2
dataset (see Table 5). All queries in this case involve entities that
may have multipoint geometries (therefore they are marked by a
star). Like before, Encoding always chooses to evaluate the RDF
part of the queries first. Basic chooses the same plan as Baseline in
all cases, except for LS queries, where it opts to evaluate the spatial
selection using the R-tree. Note that in this case the cost of Basic
is very high (even higher than Baseline). After analysis, we found
that this is due to the bad performance of the R-tree on the YAGO2
dataset; the range queries access roughly half of the R-tree nodes.
The reason is that many multipoints in YAGO2 are dirty and have
huge MBRs that cover most of the data space. Thus, the non-leaf
R-tree entries have extremely large MBRs, causing a random query
to access a large percentage of tree nodes.
Results on Spatial Joins. Tables 6 and 7 show the costs of spa-
tial distance join queries on LGD and YAGO2, respectively. The
threshold 0.1 shown in the tables corresponds to a distance around
10km. In LGD, all queries have thresholds greater than the diago-
nal of a cell in our encoding except queries LGD.J6.1 and LGD.J6.2.
In YAGO2, threshold 0.1 is greater than the cell diagonal, but 0.01
is not. After performing experiments with various types of queries,
we found that the SMJ and SHJ-ID algorithms should only be used

when the spatial distance threshold is greater than the diagonal of
the grid cell at the bottom level. Otherwise, they do not produce any
verified results and, hence, they have similar or slightly worse per-
formance compared to directly applying SHJ (as Basic would). We
have added this simple rule of thumb in the optimizer of our sys-
tem, hence, in all spatial join queries that have a distance threshold
less than the cell diagonal, Encoding applies the same plans as Ba-
sic. For this reason, we focus mostly on queries where the distance
threshold is greater than the cell diagonal.

All spatial join queries on the LGD dataset (Table 6) have a sim-
ilar pattern: they include two disjoint RDF star-shaped parts with
a spatial distance predicate between the geometries of their cen-
ter nodes. This is the only type of queries we could define here
since the LGD dataset includes a rather poor RDF part; besides the
POI type, there are very few properties such as “label” and “name”
which link the POIs with text attributes. For this type of queries,
Baseline can only execute a bushy plan where the two stars are eval-
uated separately and then joined in a nested-loop fashion, applying
the spatial distance filter. On the other hand, Basic may choose to
apply an R-tree join first for retrieving the candidate pairs within
distance ε or to first evaluate the RDF part of the query and follow-
up with a spatial hash join (SHJ) in the end (e.g., see the plans of
Figures 3(c) and (d)). In all queries we tested, Basic chose the SHJ
option and this is quite reasonable; in large datasets, the optimizer
would prefer not to perform an expensive spatial self join over the
whole set of points. Encoding can choose between one of the pre-
viously mentioned methods and also try the algorithms of Sections
6.3 and 6.4 on the augmented query graph. Since we have star-
shaped queries and the IDs of the center nodes are coming sorted,
SMJ was favored in all queries we present. Although Encoding is
much faster than Baseline, we observe that our encoding does not
bring benefit over Basic for join queries on LGD. The main reason
for this is that, due to the data distribution, our approach does not
save any geometry look-ups; every entity from either of the two
spatial join inputs participates in at least one non-verified spatial
join pair and therefore it cannot be pruned without fetching its ge-
ometry. In addition, Basic benefits from the fact that it buffers the
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Query Spatial join Number of OWLIM-SE Virtuoso Baseline Basic extension Encoding
threshold ε results Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm

LGD.J1 0.003 6,831 164,522 159,365 19,694 8,083 114,147 (120) 110,414 (2) 1,478 (260) 211 (141) 1,754 (253) 680 (144)
LGD.J2 0.01 538 13,577 9,423 9,752 3,044 20,447 (107) 19,053 (2) 1,696 (303) 269 (202) 1,812 (326) 497 (219)
LGD.J3 0.02 8,742 >5mins >5mins 22,683 17,125 >5mins >5mins 1,909 (383) 498 (284) 2,150 (385) 834 (300)
LGD.J4* 0.05 795,322 - - - - >5mins >5mins 117,881 (611) 115,634 (497) 25,698 (613) 23,688 (498)
LGD.J5* 0.01 2,782 - - - - 56,815 (106) 55,324 (2) 2,772 (318) 392 (201) 3,664 (309) 1,456 (204)

LGD.J6.1* 0.0005 7 - - - - 130,954 (117) 127,525 (2) 3,726 (206) 213 (98) 3,922 (228) 214 (99)
LGD.J6.2* 0.001 22 - - - - 130,969 (115) 127,519 (1) 3,833 (212) 203 (98) 4,059 (214) 207 (101)
LGD.J6.3* 0.01 743 - - - - 130,943 (117) 127,625 (2) 4,645 (307) 330 (201) 5,357 (312) 1,755 (203)

Table 6: Spatial distance join queries on LGD (total response time in msecs - optimizer time in parentheses)

Query Spatial join Number of Baseline Basic extension Encoding
threshold ε results Cold Warm Cold Warm Cold Warm

YAGO2.J1* 0.1 2,635 108,464 (83) 103,980 (15) 4,618 (308) 798 (239) 4,424 (305) 892 (238)
YAGO2.J2* 0.1 6,799,189 >5 min >5 min 153,869 (325) 151,088 (240) 144,317 (526) 140,472 (450)
YAGO2.J3* 0.1 832 3,804 (79) 195 (12) 4,018 (321) 388 (240) 4,059 (323) 386 (238)
YAGO2.J4* 0.1 451 3,603 (84) 180 (13) 3,553 (317) 339 (239) 3,611 (318) 337 (240)
YAGO2.J5* 0.1 113 2,518 (69) 107 (10) 2,784 (320) 278 (239) 2,786 (319) 276 (238)
YAGO2.J6* 0.1 664,613 >5 min >5 min 32,734 (468) 29,185 (241) 31,596 (676) 27,972 (451)
YAGO2.J7* 0.1 4,204,184 >5 min >5 min 42,545 (312) 38,044 (238) 6,359 (517) 2,435 (447)

YAGO2.J8.1* 0.001 85,188 >5 min >5 min 3,039 (195) 171 (119) 2,947 (199) 457 (119)
YAGO2.J8.2* 0.01 86,222 >5 min >5 min 3,071 (188) 273 (120) 2,916 (183) 458 (119)
YAGO2.J8.3* 0.1 131,828 >5 min >5 min 3,537 (320) 713 (239) 3,029 (308) 584 (238)

Table 7: Spatial distance join queries on YAGO2 (total response time in msecs - optimizer time in parentheses)

complete join inputs before hashing them into SHJ buckets, thus
the geometry of each entity is processed only once. On the other
hand, SMJ (used by Encoding) produces and verifies the join pair
candidates on-the-fly, resulting in the processing of a given geom-
etry multiple times (this explains the favorable performance of Ba-
sic over Encoding in the case of warm caches). However, if the
size of inputs is very large, Basic can become significantly slower
than Encoding (see LGD.J4*) because SHJ requires the allocation
of a large hash table to accommodate a huge number of buffered
geometries; recall that SHJ, used by Basic, is a blocking operator
which requires its entire inputs to be read before processing the join
and can become a bottleneck if the inputs are too large.

In the YAGO2 dataset, we were able to define alternative queries
with spatial join components and the results are shown in Table
7. Depending on the type of the query and the selectivities of the
two parts, our encoding-based approach uses either SMJ or SHJ-
ID. Specifically, SMJ is used in queries J1 and J8.3, whereas SHJ-
ID is used in J2, J6, and J7. In queries J8.1 and J8.2, Encoding
follows the same plans as Basic. In the remaining queries (J3, J4
and J5), Basic and our encoding-based approach produced the same
plans as Baseline; these queries include a single connected RDF
graph pattern with a rather selective RDF part. In most queries, the
performance of Basic is similar to that of Encoding for the reasons
we explained before. For queries YAGO2.J2 and YAGO2.J6 our
approach is slightly faster than Basic, because our approach selects
a rather different plan, based on the augmented query graph. In
query YAGO2.J7, our approach performs much better than Basic,
because the spatial join inputs have a different spatial distribution
and Encoding can prune many tuples using SHD-ID.
Comparison with Existing Systems. We also compared our sys-
tem against two popular RDF stores with geospatial query support,
namely OWLIM-SE and Virtuoso. Tables 4 and 6 include the per-
formance of these systems on range and join queries respectively,
on the LGD dataset. Note that OWLIM-SE and Virtuoso support
point data only, therefore we loaded the data to them after sim-
plifying all geometries into points (we kept one point only from
each geometry) and include in our comparison only queries for

which the involved geometries are points. We allowed each sys-
tem to allocate the whole available memory of the machine and
performed the experiments with cold and warm caches just like for
our system. Since these systems have their own data caches, exper-
iments with cold caches were conducted by clearing the OS cache
and restarting the tool. In sum, our system performs significantly
better in all queries, especially in spatial distance joins. We can-
not comment about the reasons, since OWLIM-SE and Virtuoso
are closed source and there are no published works describing their
functionality and query optimization techniques. Finally, regarding
YAGO2, OWLIM-SE on one hand could not load the dataset even
by using all 64Gb of the available RAM, while on the other hand,
Virtuoso successfully loaded the dataset but we could not evaluate
any of the queries correctly (in all of them zero or incorrect results
were returned).

9. CONCLUSION
In this paper we presented a number of techniques that extend an
RDF store to effectively manage of spatial RDF data. We intro-
duced a flexible scheme that encodes approximations of the spa-
tial features of RDF entities into their IDs. The encoding is based
on a hierarchical decomposition of the 2D space, it is independent
from the physical design of the underlying triple store, and it can
be effectively exploited in the evaluation of SPARQL queries with
spatial filters. We implemented our ideas by extending the popu-
lar RDF-3X system and conducted detailed experiments with real
datasets. In summary, our approach minimizes the evaluation cost
incurred due to the spatial component in all RDF queries. In ad-
dition, it allows the consideration of different plans due to a query
graph augmentation technique performed by our optimizer. In the
future, we plan to extend our query optimizer to consider the spa-
tial distribution of entities that support a characteristic set [20]. For
example, cities that are coastal (and belong to a characteristic set
with this property) have different distribution than the general spa-
tial data distribution of entities. In addition, we will investigate the
idea of embedding discretized spatial coordinates of the data into
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the leaves of the B+-tree indexes of RDF-3X, in order to avoid dic-
tionary lookups to retrieve the geometries of entities. Finally, we
plan to investigate alternative encoding schemes that are suited for
extremely skewed spatial distributions and entities with very large
geometries.
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APPENDIX
Range queries used in the experiments

All LGD queries have the following
template:

Select ?s
Where ?s name ?n .?s label ?l .
?s type [TYPE] . ?s hasGeometry ?g .

Filter
WITHIN(?g, “RECTANGLE([MBR])”)

The table on the right shows how [TYPE]
and [MBR] are instantiated in each query

QueryID [TYPE] [MBR]
LGD.SL1 police -5,50,0,55
LGD.SL2 bus stop -10,50,0,60
LGD.SL3* park -5,50,0,55
LGD.LS1 pub -5,45,0,50
LGD.LS2 bus stop -10,45,-5,50
LGD.LS3* road -10,45,-5,50
LGD.SS1 restaurant -5,45,0,50
LGD.SS2* park -5,45,0,50
LGD.SS3* road -5,45,0,50
LGD.LL1 bus stop -5,55,0,60

YAGO2.SL1
Select ?gn ?fn ?pr Where ?p hasGivenName ?gn .
?p hasFamilyName ?fn . ?p hasWonPrize ?pr .
?p diedIn ?c . ?c hasGeometry ?g .

Filter WITHIN(?g, “RECTANGLE(-100, 20, -80, 40)”)

YAGO2.SL2
Select ?gn ?fn Where ?p hasGivenName ?gn . ?p
hasFamilyName ?fn . ?p a Wordnet scientist 110560637 .
?p wasBornIn ?c . ?c hasGeometry ?g .

Filter WITHIN(?g, “RECTANGLE(-95, 40, -90, 45)”)
YAGO2.LS1
Select ?p ?w Where ?p hasAcademicAdvisor ?a .
?a worksAt ?w . ?w isLocatedIn ?l .
?l hasGeometry ?g .

Filter WITHIN(?g, “RECTANGLE(-160, -50, -150, -40)”)

YAGO2.LS2
Select ?e ?c Where ?e happenedIn ?l .
?l a ?c . ?c subClassOf Wordnet city 108524735 .
?l hasGeometry ?g .

Filter WITHIN(?g, “RECTANGLE(-130, 40, -120, 50)”)
YAGO2.SS1
Select ?gn ?fn Where ?p hasGivenName ?gn . ?p
hasFamilyName ?fn . ?p a Wordnet scientist 110560637 .
?p wasBornIn ?c . ?c hasGeometry ?g .

Filter WITHIN(?g, “RECTANGLE(-105, 45, -100, 50)”)

YAGO2.SS2
Select ?p ?w Where ?p graduatedFrom ?u .
?p worksAt ?w . ?u isLocatedIn ?l .
?l hasGeometry ?g .

Filter WITHIN(?g, “RECTANGLE(-110, 50, -100, 60)”)
YAGO2.LL1
Select ?e ?c Where ?e happenedIn ?l .
?l a ?c . ?c subClassOf Wordnet city 108524735 .
?l hasGeometry ?g .

Filter WITHIN(?g, “RECTANGLE(-90, 30, -80, 40)”)

YAGO2.LL2
Select ?p Where ?p hasArea ?a .
?p isLocatedIn ?l . ?l hasGeometry ?g .

Filter WITHIN(?g, “RECTANGLE(-100, 30, -90, 40)”)

Join queries used in the experiments

LGD.J1 (point-point)
Select ?s1 ?s2 Where ?s1 type hotel .
?s1 hasGeometry ?g1 . ?s2 type hotel .
?s2 hasGeometry ?g2 .

Filter DISTANCE(?g1,?g2) < “0.003”

LGD.J2 (point-point)
Select ?s1 ?s2 ?l1 ?l2 Where ?s1 name ?l1 .
?s1 label ?b1 . ?s1 type police . ?s1 hasGeometry ?g1 .
?s2 name ?l2 . ?s2 label ?b2 . ?s2 type police .
?s2 hasGeometry ?g2 .

Filter DISTANCE(?g1,?g2) < “0.01”
LGD.J3 (point-point)
Select ?s1 ?s2 Where ?s1 name ?l1 . ?s1 label ?b1 .
?s1 type pub . ?s1 hasGeometry ?g1 .
?s2 name ?l2 . ?s2 label ?b2 . ?s2 type police .
?s2 hasGeometry ?g2 .

Filter DISTANCE(?g1,?g2) < “0.02”

LGD.J4* (polygon-polygon)
Select ?s1 ?s2 Where ?s1 type park .
?s1 hasGeometry ?g1 . ?s2 type park .
?s2 hasGeometry ?g2 .

Filter DISTANCE(?g1,?g2) < “0.05”

LGD.J5* (point-polygon)
Select ?s1 ?s2 Where ?s1 label ?b1 . ?s1 type police .
?s1 hasGeometry ?g1 . ?s2 label ?b2 . ?s2 type park .
?s2 hasGeometry ?g2 .

Filter DISTANCE(?g1,?g2) < “0.01”

LGD.J6* (point-line), [EPS] ∈{0.01,0.001,0.0005}
Select ?s1 ?s2 Where ?s1 label ?b1 .
?s1 type hotel . ?s1 hasGeometry ?g1 .
?s2 label ?b2 . ?s2 type road . ?s2 hasGeometry ?g2 .

Filter DISTANCE(?g1,?g2) < “[EPS]”

YAGO2.J1*
Select ?c1 ?c2 Where ?a1 hasAirportCode ?c1 .
?a1 hasGeometry ?g1 . ?a2 hasAirportCode ?c2 .
?a2 hasGeometry ?g2 .

Filter DISTANCE(?g1,?g2) < “0.1”

YAGO2.J2*
Select ?p1 ?p2 Where ?p1 hasGivenName ?gn1 .
?p1 hasFamilyName ?fn1 . ?p1 hasWonPrize ?pr1 .
?p1 wasBornIn ?c1 . ?c1 hasGeometry ?g1 .
?p2 hasGivenName ?gn2 . ?p2 hasFamilyName ?fn2 .
?p2 hasWonPrize ?pr2 . ?p2 wasBornIn ?c2 .
?c2 hasGeometry ?g2 .

Filter DISTANCE(?g1,?g2) < “0.1”
YAGO2.J3*
Select ?p ?c1 ?c2 Where ?p hasGivenName ?gn .
?p hasFamilyName ?fn . ?p actedIn ?m .
?m isLocatedIn ?c1 . ?c1 hasGeometry ?g1 .
?p wasBornIn ?c2 . ?c2 hasGeometry ?g2 .

Filter DISTANCE(?g1,?g2) < “0.1”

YAGO2.J4*
Select ?p1 ?p2 Where ?p1 hasFamilyName ?fn1 .
?p1 wasBornIn ?c1 . ?c1 hasGeometry ?g1 .
?p1 isMarriedTo ?p2 . ?p2 wasBornIn ?c2 .
?c2 hasGeometry ?g2 .

Filter DISTANCE(?g1,?g2) < “0.1”
YAGO2.J5*
Select ?p Where ?p hasFamilyName ?fn .
?p livesIn ?c1 . ?c1 hasGeometry ?g1 .
?p worksAt ?c2 . ?c2 hasGeometry ?g2 .

Filter DISTANCE(?g1,?g2) < “0.1”

YAGO2.J6*
Select ?p1 ?p2 Where ?p1 graduatedFrom ?u1 .
?u1 hasGeometry ?g1 . ?p2 actedIn ?m2 .
?m2 isLocatedIn ?l2 . ?l2 hasGeometry ?g2 .

Filter DISTANCE(?g1,?g2) < “0.1”
YAGO2.J7*
Select ?p1 ?p2 Where ?p1 graduatedFrom ?u1 .
?u1 hasGeometry ?g1 . ?p2 actedIn ?m2 .
?m2 isLocatedIn ?l2 . ?l2 hasGeometry ?g2 .

Filter DISTANCE(?g1,?g2) < “0.1”

YAGO2.J8*, [EPS] ∈{0.1,0.01,0.001}
Select ?p1 ?p2 Where ?p1 worksAt ?w1 .
?w1 hasGeometry ?g1 . ?p2 worksAt ?w2 .
?w2 hasGeometry ?g2 .

Filter DISTANCE(?g1,?g2) < “[EPS]”
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