
Mesa: Geo-Replicated, Near Real-Time, Scalable Data
Warehousing

Ashish Gupta, Fan Yang, Jason Govig, Adam Kirsch, Kelvin Chan
Kevin Lai, Shuo Wu, Sandeep Govind Dhoot, Abhilash Rajesh Kumar, Ankur Agiwal
Sanjay Bhansali, Mingsheng Hong, Jamie Cameron, Masood Siddiqi, David Jones

Jeff Shute, Andrey Gubarev, Shivakumar Venkataraman, Divyakant Agrawal
Google, Inc.

ABSTRACT
Mesa is a highly scalable analytic data warehousing system
that stores critical measurement data related to Google’s
Internet advertising business. Mesa is designed to satisfy
a complex and challenging set of user and systems require-
ments, including near real-time data ingestion and querya-
bility, as well as high availability, reliability, fault tolerance,
and scalability for large data and query volumes. Specifi-
cally, Mesa handles petabytes of data, processes millions of
row updates per second, and serves billions of queries that
fetch trillions of rows per day. Mesa is geo-replicated across
multiple datacenters and provides consistent and repeatable
query answers at low latency, even when an entire datacen-
ter fails. This paper presents the Mesa system and reports
the performance and scale that it achieves.

1. INTRODUCTION
Google runs an extensive advertising platform across mul-

tiple channels that serves billions of advertisements (or ads)
every day to users all over the globe. Detailed information
associated with each served ad, such as the targeting cri-
teria, number of impressions and clicks, etc., are recorded
and processed in real time. This data is used extensively at
Google for different use cases, including reporting, internal
auditing, analysis, billing, and forecasting. Advertisers gain
fine-grained insights into their advertising campaign perfor-
mance by interacting with a sophisticated front-end service
that issues online and on-demand queries to the underly-
ing data store. Google’s internal ad serving platforms use
this data in real time to determine budgeting and previ-
ously served ad performance to enhance present and future
ad serving relevancy. As the Google ad platform continues
to expand and as internal and external customers request
greater visibility into their advertising campaigns, the de-
mand for more detailed and fine-grained information leads
to tremendous growth in the data size. The scale and busi-

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment,Vol. 7, No. 12
Copyright 2014 VLDB Endowment 2150-8097/14/08.

ness critical nature of this data result in unique technical and
operational challenges for processing, storing, and querying.
The requirements for such a data store are:

Atomic Updates.A single user action may lead to multiple
updates at the relational data level, affecting thousands of
consistent views, defined over a set of metrics (e.g., clicks
and cost) across a set of dimensions (e.g., advertiser and
country). It must not be possible to query the system in a
state where only some of the updates have been applied.

Consistency and Correctness.For business and legal rea-
sons, this system must return consistent and correct data.
We require strong consistency and repeatable query results
even if a query involves multiple datacenters.

Availability. The system must not have any single point of
failure. There can be no downtime in the event of planned or
unplanned maintenance or failures, including outages that
affect an entire datacenter or a geographical region.

Near Real-Time Update Throughput.The system must
support continuous updates, both new rows and incremental
updates to existing rows, with the update volume on the
order of millions of rows updated per second. These updates
should be available for querying consistently across different
views and datacenters within minutes.

Query Performance.The system must support latency-
sensitive users serving live customer reports with very low
latency requirements and batch extraction users requiring
very high throughput. Overall, the system must support
point queries with 99th percentile latency in the hundreds
of milliseconds and overall query throughput of trillions of
rows fetched per day.

Scalability. The system must be able to scale with the
growth in data size and query volume. For example, it must
support trillions of rows and petabytes of data. The update
and query performance must hold even as these parameters
grow significantly.

Online Data and Metadata Transformation.In order
to support new feature launches or change the granularity
of existing data, clients often require transformation of the
data schema or modifications to existing data values. These
changes must not interfere with the normal query and up-
date operations.

1259

Mesa is Google’s solution to these technical and opera-
tional challenges. Even though subsets of these requirements
are solved by existing data warehousing systems, Mesa is
unique in solving all of these problems simultaneously for
business critical data. Mesa is a distributed, replicated, and
highly available data processing, storage, and query system
for structured data. Mesa ingests data generated by up-
stream services, aggregates and persists the data internally,
and serves the data via user queries. Even though this paper
mostly discusses Mesa in the context of ads metrics, Mesa is
a generic data warehousing solution that satisfies all of the
above requirements.
Mesa leverages common Google infrastructure and ser-

vices, such as Colossus (Google’s next-generation distributed
file system) [22, 23], BigTable [12], and MapReduce [19]. To
achieve storage scalability and availability, data is horizon-
tally partitioned and replicated. Updates may be applied at
the granularity of a single table or across many tables. To
achieve consistent and repeatable queries during updates,
the underlying data is multi-versioned. To achieve update
scalability, data updates are batched, assigned a new version
number, and periodically (e.g., every few minutes) incorpo-
rated into Mesa. To achieve update consistency across mul-
tiple data centers, Mesa uses a distributed synchronization
protocol based on Paxos [35].
Most commercial data warehousing products based on re-

lational technology and data cubes [25] do not support con-
tinuous integration and aggregation of warehousing data ev-
ery few minutes while providing near real-time answers to
user queries. In general, these solutions are pertinent to
the classical enterprise context where data aggregation into
the warehouse occurs less frequently, e.g., daily or weekly.
Similarly, none of Google’s other in-house technologies for
handling big data, specifically BigTable [12], Megastore [11],
Spanner [18], and F1 [41], are applicable in our context.
BigTable does not provide the necessary atomicity required
by Mesa applications. While Megastore, Spanner, and F1
(all three are intended for online transaction processing)
do provide strong consistency across geo-replicated data,
they do not support the peak update throughput needed
by clients of Mesa. However, Mesa does leverage BigTable
and the Paxos technology underlying Spanner for metadata
storage and maintenance.
Recent research initiatives also address data analytics and

data warehousing at scale. Wong et al. [49] have devel-
oped a system that provides massively parallel analytics as
a service in the cloud. However, the system is designed for
multi-tenant environments with a large number of tenants
with relatively small data footprints. Xin et al. [51] have
developed Shark to leverage distributed shared memory to
support data analytics at scale. Shark, however, focuses on
in-memory processing of analysis queries. Athanassoulis et
al. [10] have proposed the MaSM (materialized sort-merge)
algorithm, which can be used in conjunction with flash stor-
age to support online updates in data warehouses.
The key contributions of this paper are:
• We show how we have created a petascale data ware-

house that has the ACID semantics required of a trans-
action processing system, and is still able to scale up to
the high throughput rates required to process Google’s
ad metrics.

• We describe a novel version management system that
batches updates to achieve acceptable latencies and

high throughput for updates, as well as low latency
and high throughput query performance.

• We describe a highly scalable distributed architecture
that is resilient to machine and network failures within
a single datacenter. We also present the geo-replicated
architecture needed to deal with datacenter failures.
The distinguishing aspect of our design is that appli-
cation data is asynchronously replicated through in-
dependent and redundant processing at multiple data-
centers, while only critical metadata is synchronously
replicated by copying the state to all replicas. This
technique minimizes the synchronization overhead in
managing replicas across multiple datacenters, while
providing very high update throughput.

• We show how schema changes for a large number of
tables can be performed dynamically and efficiently
without affecting correctness or performance of exist-
ing applications.

• We describe key techniques used to withstand the prob-
lems of data corruption that may result from software
errors and hardware faults.

• We describe some of the operational challenges of main-
taining a system at this scale with strong guarantees of
correctness, consistency, and performance, and suggest
areas where new research can contribute to improve
the state of the art.

The rest of the paper is organized as follows. Section 2 de-
scribes Mesa’s storage subsystem. Section 3 presents Mesa’s
system architecture and describes its multi-datacenter de-
ployment. Section 4 presents some of the advanced function-
ality and features of Mesa. Section 5 reports our experiences
from Mesa’s development and Section 6 reports metrics for
Mesa’s production deployment. Section 7 reviews related
work and Section 8 concludes the paper.

2. MESA STORAGE SUBSYSTEM
Data in Mesa is continuously generated and is one of the

largest and most valuable data sets at Google. Analysis
queries on this data can range from simple queries such as,
“How many ad clicks were there for a particular advertiser
on a specific day?” to a more involved query scenario such
as, “How many ad clicks were there for a particular adver-
tiser matching the keyword ‘decaf’ during the first week of
October between 8:00am and 11:00am that were displayed
on google.com for users in a specific geographic location us-
ing a mobile device?”

Data in Mesa is inherently multi-dimensional, capturing
all the microscopic facts about the overall performance of
Google’s advertising platform in terms of different dimen-
sions. These facts typically consist of two types of attributes:
dimensional attributes (which we call keys) and measure
attributes (which we call values). Since many dimension
attributes are hierarchical (and may even have multiple hi-
erarchies, e.g., the date dimension can organize data at the
day/month/year level or fiscal week/quarter/year level), a
single fact may be aggregated in multiple materialized views
based on these dimensional hierarchies to enable data anal-
ysis using drill-downs and roll-ups. A careful warehouse
design requires that the existence of a single fact is con-
sistent across all possible ways the fact is materialized and
aggregated.

1260

Date PublisherId Country Clicks Cost
2013/12/31 100 US 10 32
2014/01/01 100 US 205 103
2014/01/01 200 UK 100 50

(a) Mesa table A

Date AdvertiserId Country Clicks Cost
2013/12/31 1 US 10 32
2014/01/01 1 US 5 3
2014/01/01 2 UK 100 50
2014/01/01 2 US 200 100

(b) Mesa table B

AdvertiserId Country Clicks Cost
1 US 15 35
2 UK 100 50
2 US 200 100

(c) Mesa table C

Figure 1: Three related Mesa tables

2.1 The Data Model
In Mesa, data is maintained using tables. Each table has

a table schema that specifies its structure. Specifically, a
table schema specifies the key space K for the table and
the corresponding value space V , where both K and V are
sets. The table schema also specifies the aggregation func-
tion F : V × V → V which is used to aggregate the values
corresponding to the same key. The aggregation function
must be associative (i.e., F (F (v0, v1), v2) = F (v0, F (v1, v2)
for any values v0, v1, v2 ∈ V). In practice, it is usually also
commutative (i.e., F (v0, v1) = F (v1, v0)), although Mesa
does have tables with non-commutative aggregation func-
tions (e.g., F (v0, v1) = v1 to replace a value). The schema
also specifies one or more indexes for a table, which are total
orderings of K.
The key space K and value space V are represented as tu-

ples of columns, each of which has a fixed type (e.g., int32,
int64, string, etc.). The schema specifies an associative ag-
gregation function for each individual value column, and F
is implicitly defined as the coordinate-wise aggregation of
the value columns, i.e.:

F ((x1, . . . , xk), (y1, . . . , yk)) = (f1(x1, y1), . . . , fk(xk, yk)),

where (x1, . . . , xk), (y1, . . . , yk) ∈ V are any two tuples of
column values, and f1, . . . , fk are explicitly defined by the
schema for each value column.
As an example, Figure 1 illustrates three Mesa tables.

All three tables contain ad click and cost metrics (value
columns) broken down by various attributes, such as the
date of the click, the advertiser, the publisher website that
showed the ad, and the country (key columns). The aggre-
gation function used for both value columns is SUM. All
metrics are consistently represented across the three tables,
assuming the same underlying events have updated data in
all these tables. Figure 1 is a simplified view of Mesa’s table
schemas. In production, Mesa contains over a thousand ta-
bles, many of which have hundreds of columns, using various
aggregation functions.

Date PublisherId Country Clicks Cost
2013/12/31 100 US +10 +32
2014/01/01 100 US +150 +80
2014/01/01 200 UK +40 +20

(a) Update version 0 for Mesa table A

Date AdvertiserId Country Clicks Cost
2013/12/31 1 US +10 +32
2014/01/01 2 UK +40 +20
2014/01/01 2 US +150 +80

(b) Update version 0 for Mesa table B

Date PublisherId Country Clicks Cost
2014/01/01 100 US +55 +23
2014/01/01 200 UK +60 +30

(c) Update version 1 for Mesa table A

Date AdvertiserId Country Clicks Cost
2013/01/01 1 US +5 +3
2014/01/01 2 UK +60 +30
2014/01/01 2 US +50 +20

(d) Update version 1 for Mesa table B

Figure 2: Two Mesa updates

2.2 Updates and Queries
To achieve high update throughput, Mesa applies updates

in batches. The update batches themselves are produced by
an upstream system outside of Mesa, typically at a frequency
of every few minutes (smaller and more frequent batches
would imply lower update latency, but higher resource con-
sumption). Formally, an update to Mesa specifies a version
number n (sequentially assigned from 0) and a set of rows
of the form (table name, key, value). Each update contains
at most one aggregated value for every (table name, key).

A query to Mesa consists of a version number n and a
predicate P on the key space. The response contains one row
for each key matching P that appears in some update with
version between 0 and n. The value for a key in the response
is the aggregate of all values for that key in those updates.
Mesa actually supports more complex query functionality
than this, but all of that can be viewed as pre-processing
and post-processing with respect to this primitive.

As an example, Figure 2 shows two updates corresponding
to tables defined in Figure 1 that, when aggregated, yield ta-
bles A, B and C. To maintain table consistency (as discussed
in Section 2.1), each update contains consistent rows for the
two tables, A and B. Mesa computes the updates to table
C automatically, because they can be derived directly from
the updates to table B. Conceptually, a single update in-
cluding both the AdvertiserId and PublisherId attributes
could also be used to update all three tables, but that could
be expensive, especially in more general cases where tables
have many attributes (e.g., due to a cross product).

Note that table C corresponds to a materialized view
of the following query over table B: SELECT SUM(Clicks),

SUM(Cost) GROUP BY AdvertiserId, Country. This query
can be represented directly as a Mesa table because the use
of SUM in the query matches the use of SUM as the aggrega-
tion function for the value columns in table B. Mesa restricts
materialized views to use the same aggregation functions for
metric columns as the parent table.

1261

To enforce update atomicity, Mesa uses a multi-versioned
approach. Mesa applies updates in order by version num-
ber, ensuring atomicity by always incorporating an update
entirely before moving on to the next update. Users can
never see any effects from a partially incorporated update.
The strict ordering of updates has additional applications

beyond atomicity. Indeed, the aggregation functions in the
Mesa schema may be non-commutative, such as in the stan-
dard key-value store use case where a (key, value) update
completely overwrites any previous value for the key. More
subtly, the ordering constraint allows Mesa to support use
cases where an incorrect fact is represented by an inverse
action. In particular, Google uses online fraud detection
to determine whether ad clicks are legitimate. Fraudulent
clicks are offset by negative facts. For example, there could
be an update version 2 following the updates in Figure 2 that
contains negative clicks and costs, corresponding to marking
previously processed ad clicks as illegitimate. By enforcing
strict ordering of updates, Mesa ensures that a negative fact
can never be incorporated before its positive counterpart.

2.3 Versioned Data Management
Versioned data plays a crucial role in both update and

query processing in Mesa. However, it presents multiple
challenges. First, given the aggregatable nature of ads statis-
tics, storing each version independently is very expensive
from the storage perspective. The aggregated data can typ-
ically be much smaller. Second, going over all the versions
and aggregating them at query time is also very expen-
sive and increases the query latency. Third, näıve pre-
aggregation of all versions on every update can be pro-
hibitively expensive.
To handle these challenges, Mesa pre-aggregates certain

versioned data and stores it using deltas, each of which con-
sists of a set of rows (with no repeated keys) and a delta
version (or, more simply, a version), represented by [V1, V2],
where V1 and V2 are update version numbers and V1 ≤ V2.
We refer to deltas by their versions when the meaning is
clear. The rows in a delta [V1, V2] correspond to the set
of keys that appeared in updates with version numbers be-
tween V1 and V2 (inclusively). The value for each such key is
the aggregation of its values in those updates. Updates are
incorporated into Mesa as singleton deltas (or, more simply,
singletons). The delta version [V1, V2] for a singleton corre-
sponding to an update with version number n is denoted by
setting V1 = V2 = n.
A delta [V1, V2] and another delta [V2 + 1, V3] can be ag-

gregated to produce the delta [V1, V3], simply by merging
row keys and aggregating values accordingly. (As discussed
in Section 2.4, the rows in a delta are sorted by key, and
therefore two deltas can be merged in linear time.) The cor-
rectness of this computation follows from associativity of the
aggregation function F . Notably, correctness does not de-
pend on commutativity of F , as whenever Mesa aggregates
two values for a given key, the delta versions are always of
the form [V1, V2] and [V2 + 1, V3], and the aggregation is
performed in the increasing order of versions.
Mesa allows users to query at a particular version for only

a limited time period (e.g., 24 hours). This implies that ver-
sions that are older than this time period can be aggregated
into a base delta (or, more simply, a base) with version [0, B]
for some base version B ≥ 0, and after that any other deltas
[V1, V2] with 0 ≤ V1 ≤ V2 ≤ B can be deleted. This process

Figure 3: A two level delta compaction policy

is called base compaction, and Mesa performs it concurrently
and asynchronously with respect to other operations (e.g.,
incorporating updates and answering queries).

Note that for compaction purposes, the time associated
with an update version is the time that version was gener-
ated, which is independent of any time series information
that may be present in the data. For example, for the Mesa
tables in Figure 1, the data associated with 2014/01/01 is
never removed. However, Mesa may reject a query to the
particular depicted version after some time. The date in the
data is just another attribute and is opaque to Mesa.

With base compaction, to answer a query for version num-
ber n, we could aggregate the base delta [0, B] with all sin-
gleton deltas [B + 1, B + 1], [B + 2, B + 2], . . . , [n, n], and
then return the requested rows. Even though we run base
expansion frequently (e.g., every day), the number of sin-
gletons can still easily approach hundreds (or even a thou-
sand), especially for update intensive tables. In order to
support more efficient query processing, Mesa maintains a
set of cumulative deltas D of the form [U, V] with B <
U < V through a process called cumulative compaction.
These deltas can be used to find a spanning set of deltas
{[0, B], [B + 1, V1], [V1 + 1, V2], . . . , [Vk + 1, n]} for a version
n that requires significantly less aggregation than simply
using the singletons. Of course, there is a storage and pro-
cessing cost associated with the cumulative deltas, but that
cost is amortized over all operations (particularly queries)
that are able to use those deltas instead of singletons.

The delta compaction policy determines the set of deltas
maintained by Mesa at any point in time. Its primary pur-
pose is to balance the processing that must be done for a
query, the latency with which an update can be incorporated
into a Mesa delta, and the processing and storage costs asso-
ciated with generating and maintaining deltas. More specifi-
cally, the delta policy determines: (i) what deltas (excluding
the singleton) must be generated prior to allowing an update
version to be queried (synchronously inside the update path,
slowing down updates at the expense of faster queries), (ii)
what deltas should be generated asynchronously outside of
the update path, and (iii) when a delta can be deleted.

An example of delta compaction policy is the two level
policy illustrated in Figure 3. Under this example policy,
at any point in time there is a base delta [0, B], cumulative
deltas with versions [B + 1, B + 10], [B + 1, B + 20], [B +
1, B+30], . . ., and singleton deltas for every version greater
than B. Generation of the cumulative [B+1, B+10x] begins
asynchronously as soon as a singleton with version B+10x is
incorporated. A new base delta [0, B′] is computed approx-
imately every day, but the new base cannot be used until
the corresponding cumulative deltas relative to B′ are gen-

1262

erated as well. When the base version B changes to B′, the
policy deletes the old base, old cumulative deltas, and any
singletons with versions less than or equal to B′. A query
then involves the base, one cumulative, and a few singletons,
reducing the amount of work done at query time.
Mesa currently uses a variation of the two level delta pol-

icy in production that uses multiple levels of cumulative
deltas. For recent versions, the cumulative deltas compact
a small number of singletons, and for older versions the cu-
mulative deltas compact a larger number of versions. For
example, a delta hierarchy may maintain the base, then
a delta with the next 100 versions, then a delta with the
next 10 versions after that, followed by singletons. Re-
lated approaches for storage management are also used in
other append-only log-structured storage systems such as
LevelDB [2] and BigTable. We note that Mesa’s data main-
tenance based on differential updates is a simplified adapta-
tion of differential storage schemes [40] that are also used for
incremental view maintenance [7, 39, 53] and for updating
columnar read-stores [28, 44].

2.4 Physical Data and Index Formats
Mesa deltas are created and deleted based on the delta

compaction policy. Once a delta is created, it is immutable,
and therefore there is no need for its physical format to
efficiently support incremental modification.
The immutability of Mesa deltas allows them to use a

fairly simple physical format. The primary requirements are
only that the format must be space efficient, as storage is a
major cost for Mesa, and that it must support fast seeking
to a specific key, because a query often involves seeking into
several deltas and aggregating the results across keys. To
enable efficient seeking using keys, each Mesa table has one
or more table indexes. Each table index has its own copy of
the data that is sorted according to the index’s order.
The details of the format itself are somewhat technical, so

we focus only on the most important aspects. The rows in a
delta are stored in sorted order in data files of bounded size
(to optimize for filesystem file size constraints). The rows
themselves are organized into row blocks, each of which is
individually transposed and compressed. The transposition
lays out the data by column instead of by row to allow for
better compression. Since storage is a major cost for Mesa
and decompression performance on read/query significantly
outweighs the compression performance on write, we em-
phasize the compression ratio and read/decompression times
over the cost of write/compression times when choosing the
compression algorithm.
Mesa also stores an index file corresponding to each data

file. (Recall that each data file is specific to a higher-level
table index.) An index entry contains the short key for the
row block, which is a fixed size prefix of the first key in the
row block, and the offset of the compressed row block in the
data file. A näıve algorithm for querying a specific key is to
perform a binary search on the index file to find the range
of row blocks that may contain a short key matching the
query key, followed by a binary search on the compressed
row blocks in the data files to find the desired key.

3. MESA SYSTEM ARCHITECTURE
Mesa is built using common Google infrastructure and

services, including BigTable [12] and Colossus [22, 23]. Mesa
runs in multiple datacenters, each of which runs a single

instance. We start by describing the design of an instance.
Then we discuss how those instances are integrated to form
a full multi-datacenter Mesa deployment.

3.1 Single Datacenter Instance
Each Mesa instance is composed of two subsystems: up-

date/maintenance and querying. These subsystems are de-
coupled, allowing them to scale independently. All persis-
tent metadata is stored in BigTable and all data files are
stored in Colossus. No direct communication is required
between the two subsystems for operational correctness.

3.1.1 Update/Maintenance Subsystem
The update and maintenance subsystem performs all nec-

essary operations to ensure the data in the local Mesa in-
stance is correct, up to date, and optimized for querying. It
runs various background operations such as loading updates,
performing table compaction, applying schema changes, and
running table checksums. These operations are managed
and performed by a collection of components known as the
controller/worker framework, illustrated in Figure 4.

The controller determines the work that needs to be done
and manages all table metadata, which it persists in the
metadata BigTable. The table metadata consists of detailed
state and operational metadata for each table, including en-
tries for all delta files and update versions associated with
the table, the delta compaction policy assigned to the table,
and accounting entries for current and previously applied
operations broken down by the operation type.

The controller can be viewed as a large scale table meta-
data cache, work scheduler, and work queue manager. The
controller does not perform any actual table data manipu-
lation work; it only schedules work and updates the meta-
data. At startup, the controller loads table metadata from
a BigTable, which includes entries for all tables assigned
to the local Mesa instance. For every known table, it sub-
scribes to a metadata feed to listen for table updates. This
subscription is dynamically updated as tables are added and
dropped from the instance. New update metadata received
on this feed is validated and recorded. The controller is the
exclusive writer of the table metadata in the BigTable.

The controller maintains separate internal queues for dif-
ferent types of data manipulation work (e.g., incorporat-
ing updates, delta compaction, schema changes, and table
checksums). For operations specific to a single Mesa in-
stance, such as incorporating updates and delta compaction,
the controller determines what work to queue. Work that
requires globally coordinated application or global synchro-
nization, such as schema changes and table checksums, are
initiated by other components that run outside the context
of a single Mesa instance. For these tasks, the controller
accepts work requests by RPC and inserts these tasks into
the corresponding internal work queues.

Worker components are responsible for performing the
data manipulation work within each Mesa instance. Mesa
has a separate set of worker pools for each task type, al-
lowing each worker pool to scale independently. Mesa uses
an in-house worker pool scheduler that scales the number of
workers based on the percentage of idle workers available.

Each idle worker periodically polls the controller to re-
quest work for the type of task associated with its worker
type until valid work is found. Upon receiving valid work,
the worker validates the request, processes the retrieved

1263

Figure 4: Mesa’s controller/worker framework

work, and notifies the controller when the task is completed.
Each task has an associated maximum ownership time and a
periodic lease renewal interval to ensure that a slow or dead
worker does not hold on to the task forever. The controller
is free to reassign the task if either of the above conditions
could not be met; this is safe because the controller will
only accept the task result from the worker to which it is
assigned. This ensures that Mesa is resilient to worker fail-
ures. A garbage collector runs continuously to delete files
left behind due to worker crashes.
Since the controller/worker framework is only used for up-

date and maintenance work, these components can restart
without impacting external users. Also, the controller itself
is sharded by table, allowing the framework to scale. In ad-
dition, the controller is stateless – all state information is
maintained consistently in the BigTable. This ensures that
Mesa is resilient to controller failures, since a new controller
can reconstruct the state prior to the failure from the meta-
data in the BigTable.

3.1.2 Query Subsystem
Mesa’s query subsystem consists of query servers, illus-

trated in Figure 5. These servers receive user queries, look
up table metadata, determine the set of files storing the
required data, perform on-the-fly aggregation of this data,
and convert the data from the Mesa internal format to the
client protocol format before sending the data back to the
client. Mesa’s query servers provide a limited query engine
with basic support for server-side conditional filtering and
“group by” aggregation. Higher-level database engines such
as MySQL [3], F1 [41], and Dremel [37] use these primitives
to provide richer SQL functionality such as join queries.
Mesa clients have vastly different requirements and per-

formance characteristics. In some use cases, Mesa receives
queries directly from interactive reporting front-ends, which
have very strict low latency requirements. These queries
are usually small but must be fulfilled almost immediately.
Mesa also receives queries from large extraction-type work-
loads, such as offline daily reports, that send millions of
requests and fetch billions of rows per day. These queries
require high throughput and are typically not latency sensi-
tive (a few seconds/minutes of latency is acceptable). Mesa
ensures that these latency and throughput requirements are
met by requiring workloads to be labeled appropriately and
then using those labels in isolation and prioritization mech-
anisms in the query servers.
The query servers for a single Mesa instance are orga-

nized into multiple sets, each of which is collectively capa-
ble of serving all tables known to the controller. By using
multiple sets of query servers, it is easier to perform query

Figure 5: Mesa’s query processing framework

Figure 6: Update processing in a multi-datacenter
Mesa deployment

server updates (e.g., binary releases) without unduly im-
pacting clients, who can automatically failover to another
set in the same (or even a different) Mesa instance. Within
a set, each query server is in principle capable of handling a
query for any table. However, for performance reasons, Mesa
prefers to direct queries over similar data (e.g., all queries
over the same table) to a subset of the query servers. This
technique allows Mesa to provide strong latency guarantees
by allowing for effective query server in-memory pre-fetching
and caching of data stored in Colossus, while also allowing
for excellent overall throughput by balancing load across the
query servers. On startup, each query server registers the
list of tables it actively caches with a global locator service,
which is then used by clients to discover query servers.

3.2 Multi-Datacenter Deployment
Mesa is deployed in multiple geographical regions in order

to provide high availability. Each instance is independent
and stores a separate copy of the data. In this section, we
discuss the global aspects of Mesa’s architecture.

3.2.1 Consistent Update Mechanism
All tables in Mesa are multi-versioned, allowing Mesa to

continue to serve consistent data from previous states while
new updates are being processed. An upstream system gen-
erates the update data in batches for incorporation by Mesa,
typically once every few minutes. As illustrated in Fig-
ure 6, Mesa’s committer is responsible for coordinating up-
dates across all Mesa instances worldwide, one version at a
time. The committer assigns each update batch a new ver-
sion number and publishes all metadata associated with the
update (e.g., the locations of the files containing the update
data) to the versions database, a globally replicated and con-
sistent data store build on top of the Paxos [35] consensus

1264

algorithm. The committer itself is stateless, with instances
running in multiple datacenters to ensure high availability.
Mesa’s controllers listen to the changes to the versions

database to detect the availability of new updates, assign the
corresponding work to update workers, and report successful
incorporation of the update back to the versions database.
The committer continuously evaluates if commit criteria are
met (specifically, whether the update has been incorporated
by a sufficient number of Mesa instances across multiple ge-
ographical regions). The committer enforces the commit
criteria across all tables in the update. This property is es-
sential for maintaining consistency of related tables (e.g., a
Mesa table that is a materialized view over another Mesa
table). When the commit criteria are met, the committer
declares the update’s version number to be the new commit-
ted version, storing that value in the versions database. New
queries are always issued against the committed version.
Mesa’s update mechanism design has interesting perfor-

mance implications. First, since all new queries are issued
against the committed version and updates are applied in
batches, Mesa does not require any locking between queries
and updates. Second, all update data is incorporated asyn-
chronously by the various Mesa instances, with only meta-
data passing through the synchronously replicated Paxos-
based versions database. Together, these two properties al-
low Mesa to simultaneously achieve very high query and
update throughputs.

3.2.2 New Mesa Instances
As Google builds new datacenters and retires older ones,

we need to bring up new Mesa instances. To bootstrap a
new Mesa instance, we use a peer-to-peer load mechanism.
Mesa has a special load worker (similar to other workers in
the controller/worker framework) that copies a table from
another Mesa instance to the current one. Mesa then uses
the update workers to catch up to the latest committed ver-
sion for the table before making it available to queries. Dur-
ing bootstrapping, we do this to load all tables into a new
Mesa instance. Mesa also uses the same peer-to-peer load
mechanism to recover from table corruptions.

4. ENHANCEMENTS
In this section, we describe some of the advanced features

of Mesa’s design: performance optimizations during query
processing, parallelized worker operations, online schema
changes, and ensuring data integrity.

4.1 Query Server Performance Optimizations
Mesa’s query servers perform delta pruning, where the

query server examines metadata that describes the key range
that each delta contains. If the filter in the query falls out-
side that range, the delta can be pruned entirely. This op-
timization is especially effective for queries on time series
data that specify recent times because these queries can fre-
quently prune the base delta completely (in the common
case where the date columns in the row keys at least roughly
correspond to the time those row keys were last updated).
Similarly, queries specifying older times on time series data
can usually prune cumulative deltas and singletons, and be
answered entirely from the base.
A query that does not specify a filter on the first key

column would typically require a scan of the entire table.
However, for certain queries where there is a filter on other

key columns, we can still take advantage of the index using
the scan-to-seek optimization. For example, for a table with
index key columns A and B, a filter B = 2 does not form a
prefix and requires scanning every row in the table. Scan-to-
seek translation is based on the observation that the values
for key columns before B (in this case only A) form a prefix
and thus allow a seek to the next possibly matching row.
For example, suppose the first value for A in the table is 1.
During scan-to-seek translation, the query server uses the
index to look up all rows with the key prefix (A = 1, B = 2).
This skips all rows for which A = 1 and B < 2. If the next
value for A is 4, then the query server can skip to (A =
4, B = 2), and so on. This optimization can significantly
speed up queries, depending on the cardinality of the key
columns to the left of B.

Another interesting aspect of Mesa’s query servers is the
notion of a resume key. Mesa typically returns data to the
clients in a streaming fashion, one block at a time. With
each block, Mesa attaches a resume key. If a query server
becomes unresponsive, an affected Mesa client can trans-
parently switch to another query server, resuming the query
from the resume key instead of re-executing the entire query.
Note that the query can resume at any Mesa instance. This
is greatly beneficial for reliability and availability, especially
in the cloud environment where individual machines can go
offline at any time.

4.2 Parallelizing Worker Operation
Mesa’s controller/worker framework consists of a controller

that coordinates a number of different types of Mesa work-
ers, each of which is specialized to handle a specific operation
that involves reading and/or writing Mesa data for a single
Mesa table.

Sequential processing of terabytes of highly compressed
Mesa table data can routinely take over a day to complete
for any particular operation. This creates significant scala-
bility bottleneck in Mesa as table sizes in Mesa continue to
grow. To achieve better scalability, Mesa typically uses the
MapReduce framework [19] for parallelizing the execution of
different types of workers. One of the challenges here is to
partition the work across multiple mappers and reducers in
the MapReduce operation.

To enable this parallelization, when writing any delta, a
Mesa worker samples every s-th row key, where s is a pa-
rameter that we describe later. These row key samples are
stored alongside the delta. To parallelize reading of a delta
version across multiple mappers, the MapReduce launcher
first determines a spanning set of deltas that can be aggre-
gated to give the desired version, then reads and merges
the row key samples for the deltas in the spanning set to
determine a balanced partitioning of those input rows over
multiple mappers. The number of partitions is chosen to
bound the total amount of input for any mapper.

The main challenge is to define s so that the number of
samples that the MapReduce launcher must read is rea-
sonable (to reduce load imbalance among the mappers),
while simultaneously guaranteeing that no mapper partition
is larger than some fixed threshold (to ensure parallelism).
Suppose we have m deltas in the spanning set for a particu-
lar version, with a total of n rows, and we want p partitions.
Ideally, each partition should be of size n/p. We define each
row key sample as having weight s. Then we merge all the
samples from the deltas in the spanning set, choosing a row

1265

key sample to be a partition boundary whenever the sum of
the weights of the samples for the current partition exceeds
n/p. The crucial observation here is that the number of row
keys in a particular delta that are not properly accounted
for in the current cumulative weight is at most s (or 0 if
the current row key sample was taken from this particular
delta). The total error is bounded by (m − 1)s. Hence,
the maximum number of input rows per partition is at most
n/p + (m − 1)s. Since most delta versions can be spanned
with a small value of m (to support fast queries), we can
typically afford to set a large value for s and compensate
for the partition imbalance by increasing the total number
of partitions. Since s is large and determines the sampling
ratio (i.e., one out of every s rows), the total number of
samples read by the MapReduce launcher is small.

4.3 Schema Changes in Mesa
Mesa users frequently need to modify schemas associated

with Mesa tables (e.g., to support new features or to improve
query performance). Some common forms of schema change
include adding or dropping columns (both key and value),
adding or removing indexes, and adding or removing entire
tables (particularly creating roll-up tables, such as creating
a materialized view of monthly time series data from a pre-
viously existing table with daily granularity). Hundreds of
Mesa tables go through schema changes every month.
Since Mesa data freshness and availability are critical to

Google’s business, all schema changes must be online: nei-
ther queries nor updates may block while a schema change
is in progress. Mesa uses two main techniques to perform
online schema changes: a simple but expensive method that
covers all cases, and an optimized method that covers many
important common cases.
The näıve method Mesa uses to perform online schema

changes is to (i) make a separate copy of the table with
data stored in the new schema version at a fixed update
version, (ii) replay any updates to the table generated in the
meantime until the new schema version is current, and (iii)
switch the schema version used for new queries to the new
schema version as an atomic controller BigTable metadata
operation. Older queries may continue to run against the
old schema version for some amount of time before the old
schema version is dropped to reclaim space.
This method is reliable but expensive, particularly for

schema changes involving many tables. For example, sup-
pose that a user wants to add a new value column to a family
of related tables. The näıve schema change method requires
doubling the disk space and update/compaction processing
resources for the duration of the schema change.
Instead, Mesa performs a linked schema change to han-

dle this case by treating the old and new schema versions
as one for update/compaction. Specifically, Mesa makes the
schema change visible to new queries immediately, handles
conversion to the new schema version at query time on the
fly (using a default value for the new column), and similarly
writes all new deltas for the table in the new schema ver-
sion. Thus, a linked schema change saves 50% of the disk
space and update/compaction resources when compared to
the näıve method, at the cost of some small additional com-
putation in the query path until the next base compaction.
Linked schema change is not applicable in certain cases, for
example when a schema change reorders the key columns in
an existing table, necessitating a re-sorting of the existing

data. Despite such limitations, linked schema change is ef-
fective at conserving resources (and speeding up the schema
change process) for many common types of schema changes.

4.4 Mitigating Data Corruption Problems
Mesa uses tens of thousands of machines in the cloud that

are administered independently and are shared among many
services at Google to host and process data. For any compu-
tation, there is a non-negligible probability that faulty hard-
ware or software will cause incorrect data to be generated
and/or stored. Simple file level checksums are not sufficient
to defend against such events because the corruption can
occur transiently in CPU or RAM. At Mesa’s scale, these
seemingly rare events are common. Guarding against such
corruptions is an important goal in Mesa’s overall design.

Although Mesa deploys multiple instances globally, each
instance manages delta versions independently. At the log-
ical level all instances store the same data, but the spe-
cific delta versions (and therefore files) are different. Mesa
leverages this diversity to guard against faulty machines and
human errors through a combination of online and offline
data verification processes, each of which exhibits a differ-
ent trade-off between accuracy and cost. Online checks are
done at every update and query operation. When writing
deltas, Mesa performs row ordering, key range, and aggre-
gate value checks. Since Mesa deltas store rows in sorted
order, the libraries for writing Mesa deltas explicitly enforce
this property; violations result in a retry of the correspond-
ing controller/worker operation. When generating cumula-
tive deltas, Mesa combines the key ranges and the aggre-
gate values of the spanning deltas and checks whether they
match the output delta. These checks discover rare corrup-
tions in Mesa data that occur during computations and not
in storage. They can also uncover bugs in computation im-
plementation. Mesa’s sparse index and data files also store
checksums for each row block, which Mesa verifies whenever
a row block is read. The index files themselves also contain
checksums for header and index data.

In addition to these per-instance verifications, Mesa pe-
riodically performs global offline checks, the most compre-
hensive of which is a global checksum for each index of a
table across all instances. During this process, each Mesa
instance computes a strong row-order-dependent checksum
and a weak row-order-independent checksum for each index
at a particular version, and a global component verifies that
the table data is consistent across all indexes and instances
(even though the underlying file level data may be repre-
sented differently). Mesa generates alerts whenever there is
a checksum mismatch.

As a lighter weight offline process, Mesa also runs a global
aggregate value checker that computes the spanning set of
the most recently committed version of every index of a table
in every Mesa instance, reads the aggregate values of those
deltas from metadata, and aggregates them appropriately
to verify consistency across all indexes and instances. Since
Mesa performs this operation entirely on metadata, it is
much more efficient than the full global checksum.

When a table is corrupted, a Mesa instance can automat-
ically reload an uncorrupted copy of the table from another
instance, usually from a nearby datacenter. If all instances
are corrupted, Mesa can restore an older version of the table
from a backup and replay subsequent updates.

1266

5. EXPERIENCES & LESSONS LEARNED
In this section, we briefly highlight the key lessons we

have learned from building a large scale data warehousing
system over the past few years. A key lesson is to prepare for
the unexpected when engineering large scale infrastructures.
Furthermore, at our scale many low probability events occur
and can lead to major disruptions in the production envi-
ronment. Below is a representative list of lessons, grouped
by area, that is by no means exhaustive.

Distribution, Parallelism, and Cloud Computing.Mesa
is able to manage large rates of data growth through its
absolute reliance on the principles of distribution and paral-
lelism. The cloud computing paradigm in conjunction with
a decentralized architecture has proven to be very useful to
scale with growth in data and query load. Moving from spe-
cialized high performance dedicated machines to this new
environment with generic server machines poses interesting
challenges in terms of overall system performance. New
approaches are needed to offset the limited capabilities of
the generic machines in this environment, where techniques
which often perform well for dedicated high performance
machines may not always work. For example, with data
now distributed over possibly thousands of machines, Mesa’s
query servers aggressively pre-fetch data from Colossus and
use a lot of parallelism to offset the performance degrada-
tion from migrating the data from local disks to Colossus.

Modularity, Abstraction and Layered Architecture.We
recognize that layered design and architecture is crucial to
confront system complexity even if it comes at the expense
of loss of performance. At Google, we have benefited from
modularity and abstraction of lower-level architectural com-
ponents such as Colossus and BigTable, which have allowed
us to focus on the architectural components of Mesa. Our
task would have been much harder if we had to build Mesa
from scratch using bare machines.

Capacity Planning.From early on we had to plan and de-
sign for continuous growth. While we were running Mesa’s
predecessor system, which was built directly on enterprise
class machines, we found that we could forecast our capacity
needs fairly easily based on projected data growth. However,
it was challenging to actually acquire and deploy specialty
hardware in a cost effective way. With Mesa we have transi-
tioned over to Google’s standard cloud-based infrastructure
and dramatically simplified our capacity planning.

Application Level Assumptions.One has to be very care-
ful about making strong assumptions about applications
while designing large scale infrastructure. For example, when
designing Mesa’s predecessor system, we made an assump-
tion that schema changes would be very rare. This assump-
tion turned out to be wrong. Due to the constantly evolving
nature of a live enterprise, products, services, and applica-
tions are in constant flux. Furthermore, new applications
come on board either organically or due to acquisitions of
other companies that need to be supported. In summary,
the design should be as general as possible with minimal
assumptions about current and future applications.

Geo-Replication.Although we support geo-replication in
Mesa for high data and system availability, we have also
seen added benefit in terms of our day-to-day operations. In
Mesa’s predecessor system, when there was a planned main-

tenance outage of a datacenter, we had to perform a labo-
rious operations drill to migrate a 24×7 operational system
to another datacenter. Today, such planned outages, which
are fairly routine, have minimal impact on Mesa.

Data Corruption and Component Failures.Data cor-
ruption and component failures are a major concern for sys-
tems at the scale of Mesa. Data corruptions can arise for a
variety of reasons and it is extremely important to have the
necessary tools in place to prevent and detect them. Simi-
larly, a faulty component such as a floating-point unit on one
machine can be extremely hard to diagnose. Due to the dy-
namic nature of the allocation of cloud machines to Mesa, it
is highly uncertain whether such a machine is consistently
active. Furthermore, even if the machine with the faulty
unit is actively allocated to Mesa, its usage may cause only
intermittent issues. Overcoming such operational challenges
remains an open problem.

Testing and Incremental Deployment.Mesa is a large,
complex, critical, and continuously evolving system. Simul-
taneously maintaining new feature velocity and the health
of the production system is a crucial challenge. Fortunately,
we have found that by combining some standard engineer-
ing practices with Mesa’s overall fault-tolerant architecture
and resilience to data corruptions, we can consistently de-
liver major improvements to Mesa with minimal risk. Some
of the techniques we use are: unit testing, private developer
Mesa instances that can run with a small fraction of produc-
tion data, and a shared testing environment that runs with
a large fraction of production data from upstream systems.
We are careful to incrementally deploy new features across
Mesa instances. For example, when deploying a high risk
feature, we might deploy it to one instance at a time. Since
Mesa has measures to detect data inconsistencies across mul-
tiple datacenters (along with thorough monitoring and alert-
ing on all components), we find that we can detect and debug
problems quickly.

Human Factors.Finally, one of the major challenges we
face is that behind every system like Mesa, there is a large
engineering team with a continuous inflow of new employ-
ees. The main challenge is how to communicate and keep the
knowledge up-to-date across the entire team. We currently
rely on code clarity, unit tests, documentation of common
procedures, operational drills, and extensive cross-training
of engineers across all parts of the system. Still, manag-
ing all of this complexity and these diverse responsibilities
is consistently very challenging from both the human and
engineering perspectives.

6. MESA PRODUCTION METRICS
In this section, we report update and query processing

performance metrics for Mesa’s production deployment. We
show the metrics over a seven day period to demonstrate
both their variability and stability. We also show system
growth metrics over a multi-year period to illustrate how
the system scales to support increasing data sizes with lin-
early increasing resource requirements, while ensuring the
required query performance. Overall, Mesa is highly decen-
tralized and replicated over multiple datacenters, using hun-
dreds to thousands of machines at each datacenter for both
update and query processing. Although we do not report
the proprietary details of our deployment, the architectural

1267

 3

 3.5

 4

 4.5

 5

 5.5

 6
R

ow
 U

pd
at

es
 /

S
ec

on
d

(M
ill

io
ns

)

Time

 0
 10
 20
 30
 40
 50
 60
 70
 80

0-1 1-2 2-3 3-4 4-5

P
er

ce
nt

ag
e

of
U

pd
at

e
B

at
ch

es

Update Times (Minutes)

Figure 7: Update performance for a single data
source over a seven day period

 400

 450

 500

 550

 600

 650

DAY 1
DAY 2

DAY 3
DAY 4

DAY 5
DAY 6

DAY 7

Q
ue

rie
s

(M
ill

io
ns

)

 1

 1.5

 2

 2.5

 3

 3.5

DAY 1
DAY 2

DAY 3
DAY 4

DAY 5
DAY 6

DAY 7

R
ow

s
R

et
ur

ne
d

(T
ril

lio
ns

)

 0
 2
 4
 6
 8

 10
 12
 14
 16

DAY 1
DAY 2

DAY 3
DAY 4

DAY 5
DAY 6

DAY 7

A
ve

ra
ge

 L
at

en
cy

(m
s)

 0
 20
 40
 60
 80

 100
 120
 140

DAY 1
DAY 2

DAY 3
DAY 4

DAY 5
DAY 6

DAY 7

99
th

 P
er

ce
nt

ile
La

te
nc

y
(m

s)

Figure 8: Query performance metrics for a single
data source over a seven day period

details that we do provide are comprehensive and convey
the highly distributed, large scale nature of the system.

6.1 Update Processing
Figure 7 illustrates Mesa update performance for one data

source over a seven day period. Mesa supports hundreds of
concurrent update data sources. For this particular data
source, on average, Mesa reads 30 to 60 megabytes of com-
pressed data per second, updating 3 to 6 million distinct
rows and adding about 300 thousand new rows. The data
source generates updates in batches about every five min-
utes, with median and 95th percentile Mesa commit times
of 54 seconds and 211 seconds. Mesa maintains this update
latency, avoiding update backlog by dynamically scaling re-
sources.

6.2 Query Processing
Figure 8 illustrates Mesa’s query performance over a seven

day period for tables from the same data source as above.
Mesa executed more than 500 million queries per day for
those tables, returning 1.7 to 3.2 trillion rows. The na-
ture of these production queries varies greatly, from simple
point lookups to large range scans. We report their average
and 99th percentile latencies, which show that Mesa an-
swers most queries within tens to hundreds of milliseconds.
The large difference between the average and tail latencies is
driven by multiple factors, including the type of query, the
contents of the query server caches, transient failures and
retries at various layers of the cloud architecture, and even
the occasional slow machine.

 0
 2
 4
 6
 8

 10
 12
 14
 16

DAY 1 DAY 2 DAY 3 DAY 4 DAY 5 DAY 6 DAY 7

R
ow

s
(T

ril
lio

ns
) Rows Read Rows Skipped Rows Returned

Figure 9: Rows read, skipped, and returned

 0
 1000
 2000
 3000
 4000
 5000
 6000

 4 8 16 32 64 128

Q
ue

rie
s

/ S
ec

on
d

Number of Query Servers

Figure 10: Scalability of query throughput

 0

 100

 200

 300

 400

 500

 0 3 6 9 12 15 18 21 24
 0
 20
 40
 60
 80
 100
 120
 140
 160
 180
 200

R
el

at
iv

e
G

ro
w

th
(P

er
ce

nt
)

La
te

nc
y

(m
s)

Month

Data Size Growth
Average CPU Growth

Latency

Figure 11: Growth and latency metrics over a 24
month period

Figure 9 illustrates the overhead of query processing and
the effectiveness of the scan-to-seek optimization discussed
in Section 4.1 over the same 7 day period. The rows returned
are only about 30%-50% of rows read due to delta merging
and filtering specified by the queries. The scan-to-seek op-
timization avoids decompressing/reading 60% to 70% of the
delta rows that we would otherwise need to process.

In Figure 10, we report the scalability characteristics of
Mesa’s query servers. Mesa’s design allows components to
independently scale with augmented resources. In this eval-
uation, we measure the query throughput as the number of
servers increases from 4 to 128. This result establishes linear
scaling of Mesa’s query processing.

6.3 Growth
Figure 11 illustrates the data and CPU usage growth in

Mesa over a 24 month period for one of our largest produc-
tion data sets. Total data size increased almost 500%, driven
by update rate (which increased by over 80%) and the ad-
dition of new tables, indexes, and materialized views. CPU
usage increased similarly, driven primarily by the cost of pe-
riodically rewriting data during base compaction, but also
affected by one-off computations such as schema changes,
as well as optimizations that were deployed over time. Fig-
ure 11 also includes fairly stable latency measurements by
a monitoring tool that continuously issues synthetic point

1268

queries to Mesa that bypass the query server caches. In fact,
throughout this period, Mesa answered user point queries
with latencies consistent with those shown in Figure 8, while
maintaining a similarly high rate of rows returned.

7. RELATED WORK
Traditionally, RDBMS are widely used to manage struc-

tured data with strong consistency guarantees. However,
they have difficulty with the scalability and performance
required by modern data-driven applications. Key-value
stores (also referred to as NoSQL systems) emerged to make
non-relational storage systems highly scalable [1, 4, 12, 17,
20, 24]. Key-value stores achieve the required scalability by
sacrificing transactional and strong consistency guarantees.
Mesa explores a new point in the design space with high
scalability, strong consistency, and transactional guarantees
by restricting the system to be only available for batched
and controlled updates that are processed in near real-time.
Data warehouses [9, 14] provide OLAP support for min-

ing and analyzing large scale data. There exists an extensive
body of research in this area: efficient heuristics for view se-
lection [26, 27, 52], view maintenance [7, 15, 30, 39, 53], data
cubes [25, 32, 42], schema evolution [31] and indexing [33,
38] and caching [21, 29, 43] in data warehouses. Much of this
work is in the context of centralized architectures and muta-
ble storage. We envision adapting some of these techniques
in Mesa by extending them for the massively distributed
architectures in the cloud, which in general provisions im-
mutable storage using log-structured file-systems. Other in-
dustrial research groups have undertaken similar efforts for
view maintenance over key-value stores [8].
In the commercial context, the demand for real-time and

scalable data warehousing is constantly growing due to the
increasing reliance on online and real-time analytics of busi-
ness critical data. In the past few years, there has been
an explosion of data volumes for both traditional enter-
prises as well as companies that provide internet-scale ser-
vices. Industry leaders such as Teradata, SAP [5], Ora-
cle [48] and EMC/Greenplum [16] have addressed this chal-
lenge by leveraging more powerful and parallel hardware in
combination with sophisticated parallelization techniques in
the underlying data management software. Internet services
companies such as Twitter [36], LinkedIn [50], Facebook [45,
46, 47], Google [13, 37], and others [6] address the scalability
challenge by leveraging a combination of new technologies:
key-value stores, columnar storage, and the MapReduce pro-
gramming paradigm. However, many of these systems are
designed to support bulk load interfaces to import data and
can require hours to run. From that perspective, Mesa is
very similar to an OLAP system. Mesa’s update cycle is
minutes and it processes hundreds of millions of rows. Mesa
uses multi-versioning to support transactional updates and
queries across tables. A system that is close to Mesa in
terms of supporting both dynamic updates and real-time
querying of transactional data is Vertica [34]. However, to
the best of our knowledge, none of these commercial prod-
ucts or production systems have been designed to manage
replicated data across multiple datacenters. Furthermore, it
is not clear if these systems are truly cloud enabled or elastic.
They may have a limited ability to dynamically provision or
decommission resources to handle load fluctuations.
None of Google’s other in-house data solutions [11, 12,

18, 41] can support the data size and update volume re-

quired to serve as a data warehousing platform supporting
Google’s advertising business. Mesa achieves this scale by
processing updates in batches. Each update takes a few
minutes to commit and the metadata for each batch is com-
mitted using Paxos to achieve the same strong consistency
that Megastore, Spanner and F1 provide. Mesa is therefore
unique in that application data is redundantly (and inde-
pendently) processed at all datacenters, while the metadata
is maintained using synchronous replication. This approach
minimizes the synchronization overhead across multiple dat-
acenters in addition to providing additional robustness in
face of data corruption.

8. CONCLUSIONS
In this paper, we present an end-to-end design and im-

plementation of a geo-replicated, near real-time, scalable
data warehousing system called Mesa. The engineering de-
sign of Mesa leverages foundational research ideas in the
areas of databases and distributed systems. In particular,
Mesa supports online queries and updates while providing
strong consistency and transactional correctness guarantees.
It achieves these properties using a batch-oriented interface,
guaranteeing atomicity of updates by introducing transient
versioning of data that eliminates the need for lock-based
synchronization of query and update transactions. Mesa
is geo-replicated across multiple datacenters for increased
fault-tolerance. Finally, within each datacenter, Mesa’s con-
troller/worker framework allows it to distribute work and
dynamically scale the required computation over a large
number of machines to provide high scalability.

Real-time analysis over vast volumes of continuously gen-
erated data (informally, “Big Data”) has emerged as an
important challenge in the context of database and dis-
tributed systems research and practice. One approach has
been to use specialized hardware technologies (e.g., mas-
sively parallel machines with high-speed interconnects and
large amounts of main memory). Another approach is to
leverage cloud resources with batched parallel processing
based on a MapReduce-like programming paradigm. The
former facilitates real-time data analytics at a very high cost
whereas the latter sacrifices analysis on fresh data in favor
of inexpensive throughput.

In contrast, Mesa is a data warehouse that is truly cloud
enabled (running on dynamically provisioned generic ma-
chines with no dependency on local disks), is geo-replicated
across multiple datacenters, and provides strong consistent
and ordered versioning of data. Mesa also supports petabyte-
scale data sizes and large update and query workloads. In
particular, Mesa supports high update throughput with only
minutes of latency, low query latencies for point queries, and
high query throughput for batch extraction query workloads.

9. ACKNOWLEDGMENTS
We would like to thank everyone who has served on the

Mesa team, including former team members Karthik Laksh-
minarayanan, Sanjay Agarwal, Sivasankaran Chandrasekar,
Justin Tolmer, Chip Turner, and Michael Ballbach, for their
substantial contributions to the design and development of
Mesa. We are also grateful to Sridhar Ramaswamy for pro-
viding strategic vision and guidance to the Mesa team. Fi-
nally, we thank the anonymous reviewers, whose feedback
significantly improved the paper.

1269

10. REFERENCES
[1] HBase. http://hbase.apache.org/.
[2] LevelDB. http://en.wikipedia.org/wiki/LevelDB.
[3] MySQL. http:www.mysql.com.

[4] Project Voldemart: A Distributed Database.
http://www.project-voldemort.com/voldemort/.

[5] SAP HANA. http://www.saphana.com/welcome.
[6] A. Abouzeid, K. Bajda-Pawlikowski, et al. HadoopDB: An

Architectural Hybrid of MapReduce and DBMS
Technologies for Analytical Workloads. PVLDB,
2(1):922–933, 2009.

[7] D. Agrawal, A. El Abbadi, et al. Efficient View
Maintenance at Data Warehouses. In SIGMOD, pages
417–427, 1997.

[8] P. Agrawal, A. Silberstein, et al. Asynchronous View
Maintenance for VLSD Databases. In SIGMOD, pages
179–192, 2009.

[9] M. O. Akinde, M. H. Bohlen, et al. Efficient OLAP Query
Processing in Distributed Data Warehouses. Information
Systems, 28(1-2):111–135, 2003.

[10] M. Athanassoulis, S. Chen, et al. MaSM: Efficient Online
Updates in Data Warehouses. In SIGMOD, pages 865–876,
2011.

[11] J. Baker, C. Bond, et al. Megastore: Providing Scalable,
Highly Available Storage for Interactive Services. In CIDR,
pages 223–234, 2011.

[12] F. Chang, J. Dean, et al. Bigtable: A Distributed Storage
System for Structured Data. In OSDI, pages 205–218, 2006.

[13] B. Chattopadhyay, L. Lin, et al. Tenzing A SQL
Implementation on the MapReduce Framework. PVLDB,
4(12):1318–1327, 2011.

[14] S. Chaudhuri and U. Dayal. An Overview of Data
Warehousing and OLAP Technology. SIGMOD Rec.,
26(1):65–74, 1997.

[15] S. Chen, B. Liu, et al. Multiversion-Based View
Maintenance Over Distributed Data Sources. ACM TODS,
29(4):675–709, 2004.

[16] J. Cohen, J. Eshleman, et al. Online Expansion of
Largescale Data Warehouses. PVLDB, 4(12):1249–1259,
2011.

[17] B. F. Cooper, R. Ramakrishnan, et al. PNUTS: Yahoo!’s
Hosted Data Serving Platform. PVLDB, 1(2):1277–1288,
2008.

[18] J. C. Corbett, J. Dean, et al. Spanner: Google’s
Globally-Distributed Database. In OSDI, pages 251–264,
2012.

[19] J. Dean and S. Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. Commun. ACM,
51(1):107–113, 2008.

[20] G. DeCandia, D. Hastorun, et al. Dynamo: Amazon’s
Highly Available Key-value Store. In SOSP, pages 205–220,
2007.

[21] P. Deshpande, K. Ramasamy, et al. Caching
Multidimensional Queries Using Chunks. In SIGMOD,
pages 259–270, 1998.

[22] A. Fikes. Storage Architecture and Challenges.
http://goo.gl/pF6kmz, 2010.

[23] S. Ghemawat, H. Gobioff, et al. The Google File System. In
SOSP, pages 29–43, 2003.

[24] L. Glendenning, I. Beschastnikh, et al. Scalable
Consistency in Scatter. In SOSP, pages 15–28, 2011.

[25] J. Gray, A. Bosworth, et al. Data Cube: A Relational
Aggregation Operator Generalizing Group-By, Cross-Tabs
and Sub-Totals. In IEEE ICDE, pages 152–159, 1996.

[26] H. Gupta and I. S. Mumick. Selection of Views to
Materialize Under a Maintenance Cost Constraint. In
ICDT, 1999.

[27] V. Harinarayan, A. Rajaraman, et al. Implementing Data
Cubes Efficiently. In SIGMOD, pages 205–216, 1996.

[28] S. Héman, M. Zukowski, et al. Positional Update Handling
in Column Stores. In SIGMOD, pages 543–554, 2010.

[29] H. V. Jagadish, L. V. S. Lakshmanan, and D. Srivastava.
Snakes and Sandwiches: Optimal Clustering Strategies for
a Data Warehouse. In SIGMOD, pages 37–48, 1999.

[30] H. V. Jagadish, I. S. Mumick, et al. View Maintenance
Issues for the Chronicle Data Model. In PODS, pages
113–124, 1995.

[31] A. Koeller and E. A. Rundensteiner. Incremental
Maintenance of Schema-Restructuring Views in
SchemaSQL. IEEE TKDE, 16(9):1096–1111, 2004.

[32] L. V. S. Lakshmanan, J. Pei, et al. Quotient cube: How to
Summarize the Semantics of a Data Cube. In VLDB, pages
778–789, 2002.

[33] L. V. S. Lakshmanan, J. Pei, et al. QC-Trees: An Efficient
Summary Structure for Semantic OLAP. In SIGMOD,
pages 64–75, 2003.

[34] A. Lamb, M. Fuller, et al. The Vertica Analytic Database:
C-Store 7 Years Later. PVLDB, 5(12):1790–1801, 2012.

[35] L. Lamport. The Part-Time Parliament. ACM Trans.
Comput. Syst., 16(2):133–169, 1998.

[36] G. Lee, J. Lin, et al. The Unified Logging Infrastructure for
Data Analytics at Twitter. PVLDB, 5(12):1771–1780, 2012.

[37] S. Melnik, A. Gubarev, et al. Dremel: Interactive Analysis
of Web-Scale Datasets. PVLDB, 3(1-2):330–339, 2010.

[38] N. Roussopoulos, Y. Kotidis, et al. Cubetree: Organization
of and Bulk Incremental Updates on the Data Cube. In
SIGMOD, pages 89–99, 1997.

[39] K. Salem, K. Beyer, et al. How To Roll a Join:
Asynchronous Incremental View Maintenance. In
SIGMOD, pages 129–140, 2000.

[40] D. Severance and G. Lohman. Differential Files: Their
Application to the Maintenance of Large Databases. ACM
Trans. Database Syst., 1(3):256–267, 1976.

[41] J. Shute, R. Vingralek, et al. F1: A Distributed SQL
Database That Scales. PVLDB, 6(11):1068–1079, 2013.

[42] Y. Sismanis, A. Deligiannakis, et al. Dwarf: Shrinking the
PetaCube. In SIGMOD, pages 464–475, 2002.

[43] D. Srivastava, S. Dar, et al. Answering Queries with
Aggregation Using Views. In VLDB, pages 318–329, 1996.

[44] M. Stonebraker, D. J. Abadi, et al. C-Store: A
Column-oriented DBMS. In VLDB, pages 553–564, 2005.

[45] A. Thusoo, J. Sarma, et al. Hive: A Warehousing Solution
Over a Map-Reduce Framework. PVLDB, 2(2):1626–1629,
2009.

[46] A. Thusoo, J. Sarma, et al. Hive - A Petabyte Scale Data
Warehouse Using Hadoop. In IEEE ICDE, pages 996–1005,
2010.

[47] A. Thusoo, Z. Shao, et al. Data Warehousing and Analytics
Infrastructure at Facebook. In SIGMOD, pages 1013–1020,
2010.

[48] R. Weiss. A Technical Overview of the Oracle Exadata
Database Machine and Exadata Storage Server. Oracle
White Paper. Oracle Corporation, Redwood Shores, 2012.

[49] P. Wong, Z. He, et al. Parallel Analytics as a Service. In
SIGMOD, pages 25–36, 2013.

[50] L. Wu, R. Sumbaly, et al. Avatara: OLAP for Web-Scale
Analytics Products. PVLDB, 5(12):1874–1877, 2012.

[51] R. S. Xin, J. Rosen, et al. Shark: SQL and Rich Analytics
at Scale. In SIGMOD, pages 13–24, 2013.

[52] J. Yang, K. Karlapalem, et al. Algorithms for Materialized
View Design in Data Warehousing Environment. In VLDB,
pages 136–145, 1997.

[53] Y. Zhuge, H. Garcia-Molina, et al. The Strobe Algorithms
for Multi-Source Warehouse Consistency. In PDIS, pages
146–157, 1996.

1270

