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ABSTRACT
Query optimizers built on the Volcano/Cascades framework,
which is based on transformation rules, are used in many
commercial databases. Transformation rulesets proposed
earlier for join order enumeration in such a framework ei-
ther allow enumeration of joins with cross-products (which
can significantly increase the cost of optimization), or gener-
ate a large number of duplicate derivations. In this paper we
propose two new rulesets for generating cross-product free
trees. One of the rulesets is a minor extension of a simple
but inefficient ruleset, which we prove is complete (we also
show that a naive extension of an efficient ruleset leads to
incompleteness). We then propose an efficient new ruleset,
which is based on techniques proposed recently for top-down
join order enumeration, but unlike earlier work it is cleanly
integrated into the Volcano/Cascades framework, and can
be used in conjunction with other transformation rules. We
show that our ruleset is complete (i.e., it generates the entire
search space without cross products) while avoiding ineffi-
ciency due to duplicate derivations. We have implemented
this ruleset in the PyroJ Optimizer (an implementation of
the Volcano optimizer framework) and show that it signifi-
cantly outperforms the alternatives, in some cases by up to
two orders of magnitude, in terms of time taken.

1. INTRODUCTION
Query optimization has been studied for many years, and

in particular the subproblem of finding an optimal join or-
der has a very long history. Bottom-up enumeration of join
orders using dynamic programming is a well known tech-
nique for join order optimization. However, top-down join
enumeration has the benefit of allowing cost based pruning
during join order enumeration, and has been proposed as an
alternative in, e.g., [2]. In addition, transformation-based
optimizers such as those based on the Volcano/Cascades
framework [11, 10] are also inherently top-down.

It is well known that plans with cross-products are likely
to be inefficient, and for many join-graph topologies, the
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number of plans with cross-products is vastly more than the
number of cross-product free plans. A well-accepted heuris-
tic used in optimizers is to consider all bushy join trees, but
exclude cross products from the search, presuming that all
considered queries span a connected query graph [14].

Two approaches have done well at exploring this restricted
search space and finding the optimal plan: dynamic pro-
gramming based bottom-up join enumeration, and memo-
ization based top-down join enumeration. Recent work in
the area of efficiently exploring the space of cross-product
free join orders includes an efficient dynamic programming
based bottom-up algorithm DPccp by Moerkotte and Neu-
mann [13] and top-down enumeration strategy TDMinCut-
Conservative by Fender et al. [6].

All the above work focusses only on join orders, whereas
real queries involve many other operators such as aggrega-
tions, outer-joins and so on. While join-order enumeration
techniques have been extended to support aggregation [1],
or outer-joins (e.g. [8, 9, 5, 4, 12]), these extensions re-
quire significant algorithmic changes, making extensibility
difficult.

The Volcano/Cascades framework for optimization using
transformation rules, in contrast, is inherently extensible,
and has been implemented in several widely-used commer-
cial database systems such as Microsoft SQL Server. Not
only can this framework easily handle aggregations and outer-
joins using transformation rules, but it can also handle op-
timization of nested subqueries in a clean fashion [7].

Flexibility often comes at the cost of efficiency if the un-
derlying implementation is not done in the best possible
manner. As shown by Pellenkoft et al. [15], using associa-
tivity/commutativity rules to enumerate the space of join
orders results in an excessive number of duplicates, increas-
ing the worst case time complexity from O(3n) to O(4n) for
bushy join orders with n relations. An alternative ruleset
for efficiently enumerating bushy join orders was proposed
in [15]; however, that approach enumerates all join trees,
including those with cross products.

Thus, an open question is, how can we efficiently explore
the space of cross-product free bushy join trees in the context
of a transformation-based optimizer.

We address the above problem in this paper. The contri-
butions of this paper are as follows.

• We analyze existing rulesets used in transformation-
based optimizers [15] for their ability to explore the
cross-product free search space efficiently.

– We first consider a simple ruleset consisting of
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commutativity and left-associativity with cross-
product suppression, i.e., a modification to not
apply a transformation if it introduces a cross-
product. We show that this ruleset is complete,
i.e., any cross-product free tree can be transformed
to any other cross-product free tree by a sequence
of transformations from the ruleset. On the other
hand, this ruleset generates duplicate derivations,
which results in inferior performance, as our ex-
perimental results show.

– We show that the RS-B2 ruleset proposed by [15],
modified to include cross-product suppression, fails
to explore the entire search space.

• We present an extension to Volcano framework which,
instead of considering one or two adjacent join oper-
ators, performs transformations on maximal subtrees
consisting of inner join operators. This extension al-
lows us to use the partitioning strategies proposed, for
example, in [6], in the context of a transformation-
based optimizer, and thereby generate only cross-prod-
uct free trees.

In particular, we show how to get the benefit of effi-
cient exploration of the space of cross-product free join
trees, while retaining the extensibility of the Volcano
framework; our approach allows other transformation
rules to be easily introduced without any changes in
the optimization algorithm.

A key issue that needs to be addressed is the pres-
ence of multiple subtrees of joins under a single log-
ical equivalence node. For example, a subexpression
(Aγsum(B)(r 1 s)) 1 t has a join tree consisting of a
single join, with inputs t and (Aγsum(B)(r 1 s)), where
the aggregation operator Aγsum(B) computes the sum
of B, grouped by A. However, the application of a
transformation rule which pushes the aggregation op-
erator γ below the join could result in the expression
(Aγsum(B)(r) 1 s) 1 t. This expression has a join
subtree with s, t, and Aγsum(B)(r) as the leaves. Note
that both these subtrees are under the same equiv-
alence node in Volcano, since they are equivalent to
each other.

The join-enumeration ruleset we propose, which we
call RS-Graph, can handle such cases without repeated
effort in partitioning. We show that the RS-Graph
ruleset is complete, and in practice it does not gener-
ate duplicate derivations.

• We have implemented our ruleset in the PyroJ op-
timizer which is an implementation of the Volcano
framework. We present results of a performance study
showing that the RS-Graph ruleset is not only practi-
cal, but significantly outperforms alternative rulesets,
in some cases by up to two orders of magnitude in
terms of execution time.

The rest of the paper is organized as follows. Section
2 gives an overview of a transformation-based query opti-
mizers, existing rulesets used in transformation-based query
optimizers and top-down join enumeration without cross-
products. In Section 3 we prove the completeness / incom-
pleteness of existing rulesets. Section 4 introduces the RS-
Graph rule for join enumeration. We summarize our exper-
imental results in Section 5, and conclude in Section 6.

A B

C

(a) Initial Query

A B C

A B C

A B

(b) DAG representation of query

A B C

A B C

A B B C A C

(c) Expanded DAG after transformation (Commutativity not
shown explicitly)

Figure 1: Initial Query and Logical AND-OR DAG
(LQDAG) Representation

2. BACKGROUND AND RELATED WORK
We briefly review background material on which the rest

of the paper is based.

2.1 Query Optimization in Volcano
The Volcano/Cascades optimization framework [11, 10]

is based on a system of transformation rules (also known as
equivalence rules), which specify that the result of a particu-
lar transformation of a query tree is the same as the result of
the original query tree. The key contribution of this frame-
work is the efficient implementation of the transformation
based approach.

We now describe the AND-OR DAG data-structure used
in Volcano, which is the key technique for efficiently repre-
senting the given query and all its equivalent plans. Our
description is based on [17]. An AND-OR DAG is a di-
rected acyclic graph whose nodes can be divided into AND-
nodes and OR-nodes; the AND-nodes have only OR-nodes
as children and OR-nodes have only AND-nodes as children.
An AND-node in the AND-OR DAG corresponds to an al-
gebraic operator, such as the join operator (./) or a select
operator (σ). It represents the expression defined by the op-
erator and its inputs. Hereafter, we refer to the AND-nodes
as operator nodes. An OR-node in the AND-OR DAG rep-
resents a set of logical expressions that generate the same
result set; the set of such expressions is defined by the chil-
dren AND nodes of the OR node, and their inputs. We shall
refer to the OR-nodes as equivalence nodes henceforth.

The given query tree is initially represented in the AND-
OR DAG formulation. For example, the query tree of Figure
1a is initially represented in the AND-OR DAG formula-
tion, as shown in Figure 1b. Equivalence nodes (OR-nodes)
are shown as boxes, while operator nodes (AND-nodes) are
shown as circles.

The initial AND-OR DAG is then expanded by applying
all possible logical transformations on every node of the ini-
tial DAG created from the given query. Suppose the only
transformations possible are join associativity and commu-
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tativity. Then the plans A ./ (B ./ C) and (A ./ C) ./ B,
as well as several plans equivalent to these modulo commu-
tativity can be obtained by transformations on the initial
AND-OR DAG of Figure 1b. These are represented in the
DAG shown in Figure 1c. We call the AND-OR DAG repre-
sentation after all logical transformations have been applied
as the (expanded) Logical Query DAG (or LQDAG).

Note that the LQDAG has exactly one equivalence node
for every subset of A,B,C; the node represents all ways of
computing the joins of the relations in that subset.

In this paper we assume that before a transformation rule
is applied at an operator node, the child equivalence nodes
have been fully explored. Thus the children will not change
after a rule has been applied. This property holds for Vol-
cano as well as Cascades/Columbia optimizers.

Each equivalence node is assigned a unique ID when it
is created. Given an operator node and its child equiva-
lence nodes, we often need to check if that node is already
present in the LQDAG. To perform this check, Volcano
maintains a hash index on entries of the form “op(ID1, ID2,
..)” where IDi is the ID of the ith child of the operator.
The LQDAG along with associated indices is also called the
“memo” structure in the Volcano/Cascades terminology.

Transformation rules generate trees where the internal
nodes are operator nodes and leaf nodes are equivalence
nodes. Such trees are inserted into the LQDAG taking care
to ensure that if any subtree is already present in the DAG,
we reuse the equivalence node under which it is present, in-
stead of creating a new equivalence node. The above men-
tioned hash index is used for this task; for details see [11].
We note that the insertion process is very efficient, and its
cost is effectively linear in the size of the tree being inserted.

Each operator node can have different physical implemen-
tations; for example, a join operator can be implemented
as hash join, nested loop join or as merge join. Once the
LQDAG has been generated, physical implementation rules
are applied on the logical operators to generate the physical
AND-OR DAG, which is called the Physical Query DAG or
PQDAG for short. Cost-based pruning can be used in the
process of expansion, to reduce the size of search space. We
search through the space of all generated plans to find the
plan with least estimated cost. Details of cost estimation
and selection of the best plan are not relevant to our goal,
and hence not discussed.

2.2 Rulesets used for join reordering
As explained by Pellenkoft et al. [15], a number of different

rulesets have been used to explore the space of all join trees
in a transformation-based optimizer. Note that none of the
rulesets described in [15] suppresses cross products.

Rule set RS-B0: The simplest set of rules used (to gen-
erate the bushy space) is RS-B0.

• Left Associativity: A ./ (B ./ C)→ (A ./ B) ./ C

• Right Associativity: (A ./ B) ./ C → A ./ (B ./ C)

• Commutativity: A ./ B → B ./ A

RS-B0 is redundant since Right Associativity can be derived
from Left Associativity and Commutativity. The following
ruleset avoid this redundancy.

Rule set RS-B1: Rule set RS-B1 consists of subset of
rules of RS-B0 namely :

• Left Associativity: A ./ (B ./ C)→ (A ./ B) ./ C

• Commutativity: A ./ B → B ./ A

Even this ruleset can lead to duplicate derivations. As
an example, consider a sequence of application of left as-
sociativity(LA) and commutativity(C) rules. In the fol-
lowing [BC] denotes an equivalence node, under which we
would have B ./ C as well as C ./ B. The sequence
A ./1 [BC] →LA [AC] ./2 B →C B ./3 [AC] →LA [BC] ./4
A →C A ./5 [BC]. A ./5 [BC] is a duplicate of original
expression A ./1 [BC].

Pellenkoft et al. [15] showed that using RS-B1 for join
enumeration generates an exponential number of duplicates.
The complexity of join enumeration increases from O(3n) to
O(4n) where n is number of relations. To avoid duplicate
derivations, [15] presented a new rule set which generates the
space of all bushy join trees without generating duplicates.
The ruleset is as follows:

Rule set RS-B2:

• R1 (Commutativity): A ./0 B → B ./1 A
Disable application of R1, R2, R3, R4 on new operator
./1

• R2 (Left Associativity):
A ./0 (B ./1 C)→ (A ./2 B) ./3 C
Disable application of R2, R3, R4 on new operator ./3

• R3 (Right Associativity):
(A ./0 B) ./1 C → A ./2 (B ./3 C)
Disable application of R2, R3, R4 on new operator ./2

• R4 (Exchange):
(A ./0 B) ./1 (C ./2 D)→ (A ./3 C) ./4 (B ./5 D)
Disable application of R1, R2, R3, R4 on new operator
./4

Disabling rules prevents duplicate derivation of the same
join tree. Using RS-B2 in the example quoted previously, ap-
plication of commutativity on A ./1 [BC] generates [BC] ./4
A, left associativity generates [AC] ./2 B. Using commuta-
tivity on previous generates B ./2 [AC]. All the rules are
disabled on the 3 newly generated alternatives, hence the
duplicate A ./5 [BC] is not generated.

2.3 Top-Down Join Enumeration Without Cr-
oss-Products

Definition 1. A join graph is a pair H = (V,E) where V is
the set of base relations R1, ..., Rn and E is a set of edges.
An edge between Ri and Rj indicates the presence of a join
predicate between the relations.

When the join graph is sparse in comparison to a clique,
the number of join trees without cross products is much
smaller than the total number of join trees [14, 13]. Plans
containing a cross product are rarely optimal, and hence it
is desirable to exclude plans with cross-products from the
search space generated.

Two approaches have done well at exploring and find-
ing the optimal plan in this reduced space of all bushy join
orderings without cross products: bottom-up join enumera-
tion via dynamic programming and top-down join enumer-
ation via memoization. Moerkotte and Neumann [13] pre-
sented an efficient dynamic programming based algorithm
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(DPccp). The problem with bottom-up join enumeration
algorithms is that they don’t allow for pruning which is pos-
sible in top-down join enumeration algorithms.

TDMinCutLazy was the first efficient top-down join enu-
meration algorithm proposed by DeHaan and Tompa [2].
Fender and Moerkotte [3] proposed an alternative top-down
join enumeration strategy (TDMinCutBranch), which is
almost as efficient as DPccp. TDMinCutBranch used
a graph-based enumeration strategy which generates only
valid, i.e. cross-product free partitions, unlike TDMinCut-
Lazy which used a generate and test approach, i.e. it first
generates a partition and then checks whether it is valid.
In the following year, Fender et al. [6] proposed another
top-down enumeration strategy TDMinCutConservative
which is currently the best. It is easier to implement and
gives better runtime performance in comparison to TDMin-
CutBranch.

Algorithm 1 TDPlanGen(G)

Input: connected G=(V,E)
Output: optimal join tree for G

1: for i← 1 to |V | do
2: BestTree[{Ri}] ← Ri

3: end for
4: return TDPGSub(V)

Algorithm 2 TDPGSub(G|S)

Input: connected sub graph G|S
Output: optimal join tree for G|S
1: if BestTree[S] = null then
2: for all S1, S2 ∈ P sym

ccp do
3: BuildTree(G|S , TDPGSub(G|S1), TDPG-

Sub(G|S2))
4: end for
5: end if
6: return BestTree[S]

Algorithm 1, from [6] shows a generic top-down join enu-
meration algorithm TDPlanGen TDPlanGen initializes
the building blocks for atomic relations first (line 2). In line
4, the subroutine TDPGSub (Algorithm 2) is called, which
traverses recursively through the search space. TDPGSub
takes as argument a connected subgraphG|S . If the best tree
for this graph is not known, a suitable partitioning strategy
is used to partition S into two sets S1 and S2 such that the
following conditions are satisfied:

• S1 with S1 ⊂ S induces a connected subgraph G|S1

• S2 with S2 ⊂ S induces a connected subgraph G|S2

• S1 ∪ S2 = S and S1 ∩ S2 = φ

• ∃(v1, v2) ∈ E — v1 ∈ S1 ∧ v2 ∈ S2

If (S1, S2) is valid, so is (S2, S1). The set of all pairs (S1, S2)
such that symmetric pairs are counted only once is denoted
by P sym

ccp (S). For each (S1, S2) ∈ P sym
ccp (S), TDPGSub is

recursively called on the subgraph induced by S1 and the
subgraph induced by S2. The resulting best trees from both
the calls are passed as arguments to subroutine BuildTree.
The BuildTree subroutine creates a join tree for set S by

combining the best join trees for S1 and S2, calculates its
cost and updates the memo-table entry BestTree[S] if the
cost is lower than cost of current plan for S. The recur-
sive descent stops when |S| = 1 or the best tree is already
known. After all (S1, S2) ∈ P sym

ccp (S) have been tried, the
entry in BestTree[S] corresponds the optimal join tree for
set of relations in S.

Different top-down join enumeration algorithms use dif-
ferent partitioning strategy to compute P sym

ccp (S). In our
implementation we use the MinCutConservative parti-
tioning strategy, described in [6].

Extensions of the top-down enumeration algorithms to
handle non-equijoin predicates spanning more than 2 rela-
tions, such as R1.a+R2.b = R3.c, and to handle outer-joins,
are presented in [4, 5, 12].

3. COMPLETENESS OF RULESETS
In order to avoid generating trees with cross-products in a

transformation-based optimizer, we need to ensure that on
rule application, the alternative plans generated are within
the space of cross-product free join trees. To achieve this,
one approach is as follows. Every time a rule application
leads to an alternative with cross-product, the alternative is
discarded and rule is marked as applied. We call this cross-
product suppression. We denote the ruleset RS-B1 with
cross-product suppression as RS-B1-CPS. Similarly, rule-
set RS-B2 with cross-product suppression as RS-B2-CPS
and ruleset RS-B0 with cross-product suppression as RS-
B0-CPS.

A ruleset is said to be complete if it can be used to generate
the space of all cross-product free join orders starting from
an initial plan without cross-products.

In Section 3.1 we show that the rulesets RS-B0-CPS and
RS-B1-CPS are indeed complete. In Section 3.2 we give
an example to show that ruleset RS-B2-CPS is unable to
generate all trees in the space of all cross-product free join
orders, and hence is incomplete.

3.1 Completeness of Rulesets RS-B0-CPS and
RS-B1-CPS

Our goal is to show, given a connected join graph J and
cross-product free query tree Q on J , using RS-B1-CPS we
can reach any other cross-product free query tree Q′ on
J , starting with Q and remaining in the cross-product free
space (i.e., each intermediate tree is cross-product free).

Note that ruleset RS-B0-CPS is clearly a superset of rule-
set RS-B1-CPS. Hence it is sufficient to show ruleset RS-
B1-CPS is complete to prove RS-B0-CPS is also complete.

The input join graph J is connected, hence we can number
the nodes 1, 2, . . . , n such that (. . . ((R1 ./ R2) ./ R3) . . .) ./
Rn is a left-deep join tree without cross products. Such a
tree can be constructed iteratively by picking any node as
the initial one-node tree T1. At each step, any of the nodes
nk in J that is not in Ti but is connected to at least one of the
nodes in the current tree Ti is picked, and Ti+1 is created by
joining Ti with nk. This process is continued until all nodes
are added to the join tree. The resultant join tree is clearly
left-deep, and does not contain any cross-product.

Lemma 1. Given a cross-product free tree with relations
R1, R2, ...Rk, it is possible to transform it into T ./ Rk using
RS-B1-CPS where T is a join tree computing the join of
relations R1, R2..Rk−1.
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./

Cm ./

C2 ./

C1 Rk

Figure 2: Reduced Query Tree

Proof. The goal of this lemma is to show that given a query
tree, we can move the highest numbered relation to the top
so that it is the last relation to be joined.

Let LDT be any cross-product free left-deep join tree on
the relations in the given tree; as shown earlier, such a tree
must exist.

Let Rk be the highest numbered relation and let R1 ..
Rk−1 be the other relations in the tree. Using the commu-
tativity rule, we can transform the given query tree to a
form shown in Figure 2 where C1, C2, ...Cm are join trees
consisting of some number of relations. Application of com-
mutativity rule does not introduce cross-products, hence all
intermediate states are cross-product free. The depth of re-
lation Rk is m.

Base Case: When m = 1 , Rk is already the last relation
to be joined. Claim 1 holds trivially.

Induction on depth m: Assume Lemma 1 holds for
m <= j. Let the depth of Rk be m = j + 1. Consider the
subtree formed by R1, R2, ..Rk in LDT. Since Rk is the last
relation to be joined in the subtree, C1 can be joined with
at least one of the other C’s say Ci. We pull Ci down to C1

by repeatedly using a sequence of rules as follows.
We start from query tree as shown in Figure 3a, where X

denotes the right subtree that is joined with Ci−1. We apply
commutativity at ./2 (Figure 3b), apply left associativity at
./1 (Figure 3c) and finally apply commutativity at ./3 to
get a join tree as shown in Figure 3d.

Note that each intermediate step ensures cross-product
freedom, since Ci has a join predicate with C1, which is
part of the subtree denoted X, and so does Ci−1.

At the end of this sequence of transformations Ci has come
one step closer to C1. The same sequence of steps can be
applied repeatedly on Ci. Each time the sequence of rules
is applied, Ci comes one level closer to C1.

Finally when Ci is one level above C1, as shown in Figure
4a, we use left associativity to get the tree in Figure 4b. This
tree is also cross-product free since Ci and C1 are connected
by a join predicate, and so are Rk and C1.

Note that the depth of Rk has now reduced from j + 1 to
j The induction hypothesis holds for depth m ≤ j. Hence
the lemma is proved.

Lemma 2. Given any join graph J , any cross-product free
query tree on J can be transformed into any cross-product
free left-deep join tree on J using RS-B1-CPS.

Proof. Assume the relations in the desired left-deep join tree
are numbered R1 to Rn as mentioned earlier. As shown in
Lemma 1, the transformation rules in RS-B1-CPS can move
Rn to the top so that it is the last relation to be joined.

./1

Ci ./2

Ci−1 X

(a)

./1

Ci ./2

X Ci−1

(b)

./3

./4

Ci X

Ci−1

(c)

./3

Ci−1 ./4

Ci X

(d)

Figure 3: Swapping Ci and Ci−1

./1

Ci ./2

C1 Rk

(a) Apply Left Associativity at ./1

./3

./4

Ci C1

Rk

(b) Resulting tree

Figure 4: Reduction in depth of Rk

Rules in RS-B1-CPS can be applied on the left sub-tree of
the resultant tree to in turn move Rn−1 to the top of its
subtree. It is easy to show inductively that the desired left-
deep join tree can be reached by a series of applications of
rules in RS-B1-CPS.

Lemma 3. Given a join graph J , any cross-product free left-
deep query tree T1 on the graph can be transformed into any
cross-product free query tree T2 on J , using RS-B1-CPS.

Proof. As shown in Lemma 2, any cross-product free join
tree T2 can be transformed to any cross-product free left-
deep join tree T1. We can reverse the sequence of transfor-
mations to transform T1 to T2, by using right-associativity
in place of left-associativity, along with commutativity. Even
though RS-B1-CPS does not include right-associativity, the
following sequence of transformations using left-associativity
and commutativity has the same effect as right-associativity,
while avoiding cross-products. (Note that LA denotes left-
associativity and C denotes commutativity.)

(A ./ B) ./ C →C C ./ (A ./ B)→C C ./ (B ./ A)→LA

(C ./ B) ./ A→C (B ./ C) ./ A→C A ./ (B ./ C)

It should be clear that if the initial and final states, i.e.,
(A ./ B) ./ C and A ./ (B ./ C) are cross-product free,
so are each of the intermediate steps, so RS-B1-CPS can be
used to carry out the above sequence of transformations.

Given that the transformations in going from T2 to T1
ensured that the intermediate results are all cross-product
free, we can carry out the reverse set of transformations
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S1

S5

S6

S2

S3

S4

(a) Join Graph J

./

./

S2 ./

S1 S3

./

S5 ./

S4 S6

(b) Query Tree Q

./

./

S2 ./

S4 S3

./

S5 ./

S1 S6

(c) Query Tree Q2

Figure 5: Incompleteness of RS-B2-CPS

as described above using RS-B1-CPS, to transform T1 to
T2.

Theorem 1. Ruleset RS-B1-CPS is complete, i.e., given
any cross-product-free join tree T1, it is possible to gener-
ate any other cross-product-free join tree T2 by a series of
applications of rules in RS-B1-CPS.

Proof. The proof is straightforward given Lemmas 2 and 3:
we choose any cross-product free left deep join tree LDT,
and the above lemma show that we can use RS-B1-CPS to
transform T1 to LDT, and LDT to T2.

Although ruleset RS-B1-CPS is complete, it can be inef-
ficient because it generates duplicates in the same way as
RS-B1, and the inefficiency of RS-B1 was shown in [15].
The performance results in Section 5.2 also demonstrate the
inefficiency of RS-B1-CPS.

3.2 Incompleteness of Ruleset RS-B2-CPS
We show that RS-B2-CPS cannot generate the space of all

join trees without cross-products using an example. Given
a set of relations to be joined with join graph J (Figure 5a)
and initial query tree Q (Figure 5b), we wish to generate
Q2 (Figure 5c). Query tree Q2 differs from Q in that the
positions of relations S1 and S4 have been swapped. Query
tree Q2 contains no cross-products and hence belongs to the
space of cross-product free join trees. To show RS-B2-CPS
is incomplete, it is sufficient to show that Q2 cannot be
generated using RS-B2-CPS starting from Q.

In RS-B2-CPS, once any of rules R2, R3, R4 have been
applied on a join operator, none of them can be applied on
the newly generated join operator. Consider the rules that
can be applied at the root of Q.

1. Commutativity rule (R1) generates a mirror image of
original tree and doesn’t change the tree structurally.

2. Applying Left associativity (R2) at the root of the tree
would create a new join node which is similar to the
root of Q except that a subtree from the left child of

Q has been moved to the right child. But since R2, R3

and R4 are disabled on the new join node, it is not
possible to apply any transformation on the new join
node that will bring any part of the right-subtree to
the left of the root.

Applying rules at a node below the root node also can-
not move any part of the right-subtree to the left of
the root.

In our example, S1 has moved to right subtree and S4

has moved to left subtree; thus applying R2 at the root
of Q cannot possibly lead to the desired tree Q2.

3. The case of Right associativity (R3) is symmetric to
Left associativity.

4. To apply the exchange rule R3 at the root of Q to
swap S1 and S4, we need the left subtree to be of the
form (S2 ./ S3) ./ S1 and similarly the right subtree
to be S4 ./ (S5 ./ S6). Since S2 and S3 do not have an
edge between them in J , S2 ./ S3 is a cross-product.
Since the required intermediate state for application
of exchange rule does not belong to the space of cross-
product free join trees, RS-B2-CPS would not be able
to swap S1 and S4 at the root of Q.

Note that it is possible to swap S2 and S5, S2 and
S6, S3 and S5, or S3 and S6 by applying the exchange
operator R4 after applying some sequence of R1, R2,
R3 on the subtrees of Q. However, rules R2, R3 and
R4 are disabled on the resultant new join nodes, so it
is not possible to perform any further operations on
the new join nodes to bring S1 and S4 to the desired
sides.

Thus, whatever rule is applied at the root of Q, it cannot
lead to a sequence of transformations that exchange S1 and
S4 Note also that application of rules below the root of Q
have no impact on moving S1 and S4.

As a result, it is not possible to go from Q to Q2 using
any sequence of transformations using RS-B2-CPS. Thus,
ruleset RS-B2-CPS is incomplete.

The performance results in Section ?? show that the above
incompleteness can lead to the generation of suboptimal
plans with a much larger cost than the actual optimal plan.

4. GRAPH ENUMERATOR RULE
The Volcano framework is highly extensible, since it is

very easy to add new transformation rules. On the other
hand, as we saw in Section 3, the transformation rulesets
which have been proposed for join enumeration can be quite
inefficient. In contrast, state-of-the-art cross-product free
join enumeration techniques [3, 6] are very efficient, but do
not provide any support for extensibility.

In this section, we propose an approach that combines
the benefits of the two approaches. The first step in com-
bining the approaches is to note that we can use join-order
enumeration techniques using equivalence nodes in place of
relations. As a result, an equivalence node representing the
result of an aggregation operation can be treated just like a
relation.

Intuitively, our approach is based on finding maximal sub-
trees containing only join operations in the query DAG,
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and then applying cross-product free join-enumeration tech-
niques on the leaves of these maximal join subtrees to gen-
erate alternative join orders, instead of using the transfor-
mation rules in the rulesets RS-B1-CPS or RS-B2 described
earlier. As explained in Section 1, a key complication is
the fact that application of rules (such as pushdown/pull-
up of aggregation operations) could result in the presence of
multiple subtrees of joins under a single logical equivalence
node where the subtrees have different sets of leaf nodes.
Join enumeration should handle this case without repeated
work; in this section, we show how to achieve this goal.

In Section 4.1 we propose an extension to Volcano LQDAG
generation algorithm to track the sets of equivalence nodes
at the leaves of maximal join trees (which we call join-sets)
under each equivalence node. In Section 4.2 we show how
the partitioning algorithms used in top-down algorithms for
cross-product free join order enumeration can be used on
these join-sets. In Section 4.3 we describe how the output
of partitioning is converted into trees and added back into
the LQDAG. In Section 4.4 we show that our approach is
complete, while Section 4.5 addresses issues of efficiency.

4.1 Join-Sets
We first introduce some notation.

Definition 2. A base equivalence node in an expanded LQ-
DAG is an equivalence node that has no join operator as a
child; such an equivalence node can be either a base relation,
or it must have only non-join operators as children.

Definition 3. A join equivalence node in an expanded LQ-
DAG is an equivalence node such that at least one of its
child operator nodes is a join operator.

Definition 4. A join tree in an expanded LQDAG is a
tree in the LQDAG where the root is an equivalence node,
every internal node is either an equivalence node or a join
operator, and every leaf node is an equivalence node,

Definition 5. A maximal join tree in an expanded LQDAG
is a join tree where every leaf node is a base equivalence
node.

Definition 6. A join-set for an equivalence node E in an
expanded LQDAG is a pair J = (V, P ) where V is the set
of equivalence nodes at the leaves of some join tree T in the
LQDAG, and P is the set of predicates between V . We say
that T is a join tree corresponding to the join-set.

Definition 7. A maximal join-set for an equivalence node
E in an expanded LQDAG is a join-set whose corresponding
join tree T is a maximal join tree.

We store with each equivalence node the set of all maximal
join-sets for that node. It may appear that having multiple
maximal join-sets can increase execution time. However, as
we will show later in Section 4.5, with commonly used trans-
formation rules, nodes have only one such maximal join-set.

For example consider the expanded LQDAG as shown in
Figure 6. In the DAG, Ei’s represent equivalence nodes, Ri’s
represent equivalence nodes of base relations, γi’s are aggre-
gation operator nodes and ./i’s are join operator nodes. The
DAG was created from an initial tree (γ1(R1 ./1 R2)) ./0 R3

by application of the aggregation pushdown rule at root op-
erator γ1. The aggregation operator is pushed down to R2,
creating a new join operator ./2 which is exposed to join

E0

./0

R3E1

γ1 ./2

E2 E3

./1 γ2

R1 R2

Figure 6: Expanded DAG on applying aggregation push-
down

operators above E1. Note that R1, R2, R3 and E3 are base
equivalence nodes, E0, E1 and E2 are join equivalence nodes.

Let θi denote the join predicate of ./i. Then, the maximal
join-set for each node in the LQDAG is as follows: at R1 :
[({R1}, null)], at R2 : [({R2}, null)], at E3 : [({E3}, null)],
at E2 : [({R1, R2}, θ1)], at E1 : [({R1, E3}, θ2)], and at E0 :
[({R1, E3, R3}, {θ2, θ3})].

Note that Volcano expands the Logical Query DAG in
a top-down fashion. The process of exploring an equiva-
lence node applies rules to children of the equivalence node.
Specifically, when an equivalence node E is explored, all
rules that match operator children oi of E are applied. Be-
fore applying a rule to operator oi (and its descendants if
any that match the rule pattern) the equivalence nodes that
match the leaves of the rule pattern are explored first.

In the process of applying a rule to a child of E, more op-
erator children may get added to equivalence node E. Rules
that match these operator nodes are also applied as part of
exploring E. Once exploration of E is complete, no more
operator children can be added to E. This makes it is easy
to compute the set of maximal join-sets at each equivalence
node as follows:

• If E corresponds to a base relation, or after exploring E
completely, it has no join children, it is a base equiv-
alence node. If E is found to be a base equivalence
node add join-set ({E}, null) into E’s set of join-sets.

• When a join operator node child of equivalence node
E is explored, the following steps are taken by the
GraphRule algorithm described in Section 4.2: a cross
product of join-sets of the left equivalence node S1 and
right equivalence node S2 s used to create {{s1, s2}|s1 ∈
S1 ∧ s2 ∈ S2}. The merged set s1 ∪ s2 along with ap-
propriate join predicates are used to create a join-set
s′. If s′ is not already present in the set of join-sets of
E, it is added to the set of join-sets of node E.

4.2 Transformation Rule
We remove existing join enumeration rules and replace

it with our new rule RS-Graph. Rule RS-Graph matches
pattern E1 ./ E2 and calls GraphRule(./,E1, E2, parent)
to get the set of all join operations under equivalence node
parent.

We now describe the GraphRule subroutine (refer Algo-
rithm 3). Let rule be applied on join operator Op with child
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equivalence nodes A,B and parent equivalence node P. For
each pair of join-set (jsA, jsB) ∈ A.JoinSets ∗B.JoinSets,
we merge the pair to form a join-set js. We define the merge
of the two join-sets jsA = (V1, P1) and jsB = (V2, P2) as
(V1 ∪ V2, P1 ∧ P2).

To avoid recomputing the same join trees, we check if the
parent equivalence node contains js. To check if two join-
sets at an equivalence node are equal, it is sufficient to check
if they have same equivalence nodes. If the join-sets have
the same equivalence nodes, then they will also have the
same predicates.

Absence of join set js in the parent node indicates a new
set of base equivalence nodes being joined. We then generate
all join partitions S1 ./ S2 where S1 ∪ S2 = V1 ∪ V2. We
create join graph G from join-set js. We invoke partition
on G to generate all partitions. We use the partitions to
generate join trees which are then added into the result list.

Algorithm 3 GraphRule(Op, A, B, parent)

Input: Operator op, op’s parent equivalence node parent
and op’s child equivalence nodes A, B
Output: Set of join trees J

1: result← []
2: for all jsA ∈ A.JoinSets do
3: for all jsB ∈ B.JoinSets do
4: js← merge(jsA, jsB)
5: if not parent.JoinSets.contains(js) then
6: parent.JoinSets.add(js)
7: G← CreateGraph(js)
8: cuts← Partition(G,φ, φ)
9: trees← CreateTrees(cuts)

10: result.concat(trees)
11: end if
12: end for
13: end for
14: return result

In the CreateGraph subroutine, given a join-set js, we
construct a join graph whose vertices are the base equiv-
alence nodes being joined, and with an edge between two
nodes indicating a join predicate between them. Since cre-
ation of the join graph is done for each join-set, we use an
efficient implementation to create the join graph, described
below.

First note that in addition to explicit join predicates, other
join predicates might be present implicitly as well; for ex-
ample if predicates A.a = B.b and B.b = C.c are present,
the predicate A.a = C.c is also implicitly present and there-
fore there should be an edge between A and C in the join
graph. We use the standard technique of creating equiv-
alence classes of attributes, such that all attributes in an
equivalence class are constrained to have the same value.
For each pair of base equivalence classes Ri and Rj in the
join-set that have attributes in the same equivalence class,
we create an edge between Ri and Rj .

In the Partition subroutine, given a connected join graph
G with set of equivalence nodes S, we wish to partition it
into two disjoint subsets S1 and S2 where S1 ∪ S2 = S, and
each of S1 and S2 induces a connected subgraph in G. If
(S1, S2) is valid, so is (S2, S1). Since the latter gives no
additional information, we aim to generate only one of the
two.

A number of different graph-based partitioning algorithms
have been proposed[2, 3, 6]. In our implementation we use
the MinCutConservative partitioning algorithm proposed
by [6]. MinCutConservative has the best runtime perfor-
mance among the alternatives, as shown in [6].

4.3 From Partitions to Join Trees
The call to Partition returns a set of partitions. Each

partition in the set represents a set of base equivalence nodes
S1 such that S1 and G\S1 induce connected subgraphs in
join graph G and they have a join predicate between them.
Results of rule application are expression trees which are
added back into the LQDAG. Unlike existing rulesets which
generate a single output tree on every rule application, RS-
Graph generates all possible join operators below the root
operator’s parent equivalence node for the given set of base
equivalence nodes being joined.

Given a particular partition of S into S1 and S2 = S\S1,
we need to create a join node with equivalence nodes corre-
sponding to S1 and S2 as its children. The equivalence node
corresponding to Si represents the join of all the base equiv-
alence nodes in Si. To avoid creating unnecessary copies
due to commutativity, as in [6] we pick S1 as left child if the
ID of equivalence node corresponding to S1 is less than ID
of the equivalence node corresponding to S2; and otherwise
we use S2 as the left child.

For each Si, we first need to check if there is already an
equivalence node corresponding to Si; if it does not exist,
we need to create a (cross-product free) join tree containing
all base equivalence nodes in Si, and add it to the Volcano
memo structure as explained below, which would create the
required equivalence node.

To efficiently check if an equivalence node already exists
for Si, whenever we create an equivalence node using RS-
Graph, we (conceptually) create an extra n-ary join operator
whose children are the base equivalence nodes, sorted in
order of ID, and add the n-ary join operator node as a child
of the equivalence node. The Volcano memo structure then
automatically adds an entry for this n-ary join operator.
Thus, given partition Si, we create an n-ary join operator
as above, and look it up in the memo structure; if it is found,
we use the existing equivalence node.

To create a cross-product free join tree for Si, we do a
depth first traversal on the subgraph induced by Si to get a
ordered set of base equivalence node R1, R2, ..Rk such that
J1 = ((..(R1 ./ R2)..) ./ Rk) forms a cross-product free left-
deep join tree J1. Recall that for all join operators, we wish
to ensure that the ID of the left child equivalence node is less
than the ID of right child equivalence node. To ensure this,
we swap the children of any join node where this property
is violated. Let the resultant tree be Ji. We add Ji to the
memo structure using the standard Volcano algorithm. This
step returns an equivalence node for the root of Ji.

1

Note also that the above step does not by itself generate
all possible subtrees; it only generates all join children ji of
the equivalence node for S. RS-Graph is recursively applied
on the child equivalence nodes of the ji, which eventually
generates the entire space of cross-product free join trees.

1 Note that the Volcano memo structure detects if there
is already an equivalence node for Ji, so the test described
above for Si is not essential for correctness, but improves
performance by avoiding the creation of Ji and the steps
involved in checking if it is already in the memo.
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4.4 Completeness
Before we present a proof sketch, we use the example in

Figure 6 to explain the intuition. The initial DAG had a
single maximal join tree at E0, which joins E1 with R3, and
the only child of E1 was γ1. The aggregation pushdown rule
creates a new maximal join tree (R1 ./2 γ2(R2)) ./0 R3.
The maximal join-set at E0 is thus R1, E3, R3. If all parti-
tions of this join-set are cross-product free, RS-Graph would
generate equivalence nodes corresponding to R1 1 R3, and
E3 1 R3, in addition to the equivalence nodes shown.

The partitions do not explicitly include E1 1 R3 which
could correspond to the overall plan (γ1(R1 ./1 R2)) ./0 R3.
However, it is worth noting that the partition {R1, E3},
{R3} implicitly represents the join E1 1 R3, since the equiv-
alence node for {R1, E3}, is E1 (the memo lookup would in
fact return E1). In other words, any non-base equivalence
node Ei is implicitly represented by the set of base equiva-
lence nodes that form a maximal join-set at Ei, and one of
the partitions would include all the nodes in the join-set for
Ei.

We now sketch a proof of completeness of RS-Graph. Given
a join-set js = (V,E), Fender et al. [6] showed that the
MinCutConservative partitioning algorithm generates all
possible (S1, S2) such that S1 and S2 are connected and they
have a join predicate between them. As long as join-sets are
correctly maintained, and after any change in the join sets at
a node, the rule is applied at all the ancestors, we will gen-
erate all possible cross-product free join trees. We split the
proof into two subparts. First, we show that the join-set
maintenance correctly stores all maximal join-sets at each
equivalence node. Second, rule application using the maxi-
mal join-sets generates all the join trees.

If an equivalence node represents a base relation, or after
expansion does not have any join operator below it, it is a
base equivalence node, and as described earlier, the equiva-
lence node will be added into its own set of join-sets. If the
equivalence node is a join equivalence node, the RS-Graph
rule will be applied at the join operators below the equiva-
lence node and this will add the appropriate join-sets into
the equivalence node. Equivalence nodes below have the cor-
rect set of join-sets since in Volcano, the child equivalence
nodes are expanded before applying a rule at the operator
node, and hence the set of join-sets at the child equivalence
nodes will not change subsequently. Thus we can show that
the set of join-sets stored at a node contains all maximal
join-sets for the node. (This can be proved formally using
induction.)

When RS-Graph is applied, for a particular join-set, the
partition function generates all possible cross-product free
partitions of the join-set, and creates appropriate join nodes
(and child equivalence nodes as required).

Now, given any cross-product free join tree T for an equiv-
alence node E we can prove that it is represented in the re-
sultant DAG, as follows. The leaves of T may be any equiv-
alence nodes, not necessarily base equivalence nodes, and
such leaves may not be part of the maximal join-set. How-
ever, any leaf Li of T which is not a base equivalence node
is represented by the set of base equivalence nodes in one
of its maximal join-sets. Given a tree Ti let base-nodes(Ti)
denote the set containing all base equivalence node leaves
of Ti, and all the base equivalence nodes representing the
remaining leaves of Ti. Now, base-nodes(T ) is a maximal
join-set for E, by definition. Let Tl and Tr be the left and

right subtrees of T . Thus one of the partitions S1, S2 of this
join-set would be such that S1= base-nodes(Tl) and S2 =
base-nodes(Tr). The DAG would then have a join operator,
whose children are equivalence nodes representing S1 and
S2. We can use the above fact to prove that T is repre-
sented in the DAG, by an inductive argument, where the
base case corresponds to leaves of T .

Thus, the ruleset RS-Graph is complete.

4.5 Efficiency
Since the min-cut partitioning algorithm generates all par-

titions and the check on line 5 in Algorithm 3 ensures that
each join-set is enumerated only once, only one duplicate
can be generated, which is the tree from which the join-set
was generated. Since we know the pair (jsA, jsB) that were
merged to create a merged join-set js, we can remove the
initial pair from the set of partitions. Hence the RS-Graph
rule does not generate any duplicates within a joinset.

Duplicates are possible across maximal join-sets for a given
equivalence node: although a partition of one join-set will
not be exactly the same as a partition of another join-set,
the two may correspond to the same pair of equivalence
nodes, leading to duplicate derivations of the same root join
operation. The number of such duplicate derivations can be
capped by the number of maximal join-sets at an equivalence
node. In theory this number could be very large with arbi-
trary transformation rules. However, as described shortly,
with commonly used transformation rules, each equivalence
node will have only a single maximal join-set, and hence
there is no duplication within an equivalence node with such
transformation rules.

Duplication cannot occur across equivalence nodes, since
the joins generated by partitions at two different equiva-
lence nodes cannot be equivalent to each other. Note that
two equivalence nodes may well have many relations in com-
mon, but this does not result in any duplicate work due to
partitions.

We now consider the number of maximal join-sets at an
equivalence node. With arbitrary transformation rules, there
may be more than one maximal join-set for a given equiv-
alence node. However, in practise, for most transformation
rules the set of base equivalence nodes under the original
and transformed root are identical, and thus applying such
a rule cannot result in creation of a new maximal join-set.

In particular RS-Graph itself does not result in creation
of new maximal join-sets (nor do any of the rules in RS-B0,
RS-B1, and RS-B2). Transformations that push joins below
other operators, for example below aggregation (which can
be equivalently called aggregation pull-up) do not affect the
maximal join-set.

Some rules may add new join children, for example a rule
that pulls a join up from below a selection or aggregation
on top of equivalence node Ei creates a new join child under
the parent operation. If Ei is a join of multiple nodes, there
is a potential for multiple join-sets to be created.

Consider the case of join pull-up from below a selection,
equivalent to selection pushdown below a join, first. A se-
lection condition can be pushed to intermediate nodes, but
eventually it would be pushed to the relation on which it
is to be applied. In this case, there would be a unique
maximal join-set once the selection has been pushed all the
way down; all other join-sets corresponding to intermediate
states would be subsets of this maximal join-set.
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Consider now the rule to pull a join up from below an
aggregation, which transforms γLA(R1 ./ R2) to γLA(R1) ./
R2 (under some conditions such as R1 has a foreign key ref-
erencing R2). Such a rule is applicable only when the join is
really a semi-join. In general, if there are multiple relations
joined, several of the joins may be semi-joins satisfying the
join pull-up condition. Again, each of these can be pulled
up independent of the others, and there is a unique maxi-
mal join-set after all the pull-up transformations have been
applied.

Other transformations that can add relations to the join-
set include join pull-up from outer-joins and semi-joins, as
well as transformation of outer-joins and semi-joins to joins.
Although we have not examined all such rules, for rules we
have examined follow the same pattern as for selection and
aggregation, and result in a unique maximal join-set. A
more exhaustive analysis is a topic for future work.

4.6 Discussion
The graph partitioning techniques have been extended by

[5, 4] to allow predicates involving multiple relations (which
are represented by hyperedges) and to generate only parti-
tions that preserve correctness in the presence of outer-joins
and semi/anti-joins. Although we have not currently imple-
mented these extensions, the extensions fit nicely into our
framework, and do not require major changes to our algo-
rithms.

5. EVALUATION
We now describe our experimental setup and findings.

5.1 Implementation and Workload
We use the PyroJ optimizer as the base for all our exper-

iments. PyroJ is a Java translation of the Pyro optimizer
developed earlier at IIT Bombay [16] which is an implemen-
tation of the Volcano optimization framework. Our imple-
mentation performs unification of equivalence nodes E1 and
E2 when a transformation applied to a child expression e1
of E1 results in an expression e2 that is found to already
exist as a child of E2; see [16] for details.

Note that as in [6], our results are for the case of logical
plan generation without pruning, and do not include the
overhead of cost estimation or generation of physical plans.

The optimizer ruleset currently includes select push-down,
aggregation push-down and pull-up, and join enumeration
rules. We note that select push-down is done only as part
of a normalization phase (before transformations are run)
which creates an initial tree which is cross-product free, with
selections pushed down to the base relations.

Our implementation of the RS-Graph rule adds some fields
to the equivalence node data structures, but it does not im-
pact the runtime performance of other rulesets in any other
way.

We implemented a graph-based SQL generator to generate
chain, star, cycle and clique queries of any desired size.

Our experiments were conducted on Intel i5 3.5 GHz with
8 Gbyte of RAM running on Ubuntu 11.10. We found
that run times decreased greatly if the same query is opti-
mized multiple times, and ultimately traced the variations
to Java’s JIT compilation strategy, which performs opti-
mizations dynamically, based on how many times a partic-
ular piece of code is executed. Turning off JIT compilation
made execution times predictable but larger. We used a

Java HotSpot JVM flag -XX:CompileThreshold=1, and ran
a large query a few times to ensure that all functions get
compiled, before running other tests.

We checked if our implementations using rulesets RS-B1-
CPS and RS-Graph generated the same search space, by
comparing the number of equivalence nodes and operator
nodes in the LQDAG. These matched for all the queries that
we tested (RS-Graph generated fewer operator node since it
keeps only one of Ei 1 Ej and Ej 1 Ei, an optimization
that cannot be exploited by RS-B1-CPS but we checked the
counts taking this into account.)

5.2 Efficiency of Rulesets
We now compare RS-B1-CPS, RS-B2 and RS-Graph rule

in terms of their efficiency, i.e. the time required to generate
the LQDAG using each of the rulesets. We do not add
the time required to generating the Physical Query DAG
(PQDAG) and the time for finding the optimal plan.

We first evaluate the performance of different rulesets on
chain, cycle, star and clique queries of different sizes to ver-
ify what benefits RS-Graph provides. These queries do not
have any operators other than joins, and hence no other
transformations are applicable. Later, in Section 5.3, we
present results on the interaction of RS-Graph with aggre-
gation push-down and pull-up rules.

We begin with chain queries. Figure 7a shows how the
time taken for LQDAG generation increases with an increase
in the number of relations in the chain queries. (Note that
all the graphs in this section have a log-scale for the time
axis.) A chain query with n relations is the simplest of all
queries with a connected join graph. The number of equiv-
alence nodes in the cross-product free space is polynomial
(each such node corresponds to an interval from the chain),
whereas the number of equivalence nodes with cross prod-
ucts is exponential. RS-B2 performs extremely poorly, be-
cause it generates the space of all join trees including those
with cross-products. RS-B1-CPS and RS-Graph both take
time polynomial in the number of relations, but RS-Graph
outperforms RS-B1-CPS by an order of magnitude.

We also measured the breakup of the execution time; we
omit details but note that rule application times with RS-
Graph ranged from about 1/2 to 1/10th of the overall time,
with the rest of the time spent in LQDAG related activities,
across the range of queries (chain, cycle, star and clique)
that we considered.

The time for LQDAG generation for the case of cycle
queries, with varying number of relations, is shown in Figure
7b. The graph is very similar to that of the chain queries.
As the number of relations increase, the time taken by RS-
B1-CPS increases at a much faster rate in comparison to
RS-Graph since the number of duplicate derivations due to
RS-B1-CPS increases with the number of relations. As be-
fore RS-B2 performs very poorly, since it generates an expo-
nential number of join nodes, whereas the number of cross-
product free join nodes is polynomial for cycle queries

Figure 7c shows the number of equivalence nodes (num
eq), and the number of operator nodes (num op) (all join
nodes in this case) in the LQDAG. It also shows the number
of times rules were applied by each technique (the lines with
suffix ruleapp), and the number of times an operator node
is attempted to be added to the LQDAG (suffix addop).
Note that each partition counts as a rule application for
RS-Graph. Comparing the number of rule applications with
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(a) Performance results for chain queries
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Figure 7: Results on chain and cycle queries

the number of operator nodes in the LQDAG indicates how
many derivations were duplicates.

It can be seen from the figure that the number of rule ap-
plications performed by RS-Graph is about half the number
of operator nodes in the DAG, since commutative join cases
are suppressed. The number of times operators are added
to the DAG by RS-Graph is a little more than the number
of operator nodes, even though the top level is duplicate
free. There are two reasons: first each rule application re-
sults in two addops of the two child n-ary join operators,
and second, when an n-ary join operator is new, RS-Graph
inserts a whole tree, and lower operator nodes in the tree
may be duplicates. RS-B1-CPS has significantly more rule
applications than RS-Graph.

We note that statistics for chain queries are similar to
those for cycle queries and are omitted for lack of space.

For star queries (Figure 8a), RS-Graph outperforms RS-
B1-CPS by a factor of 4 or more in terms of time taken.
In turn, RS-B1-CPS outperforms RS-B2, with the margin
widening with increasing number of relations. The reason
is that for star queries, the only cross-product free trees are
those that are left-deep (or can be made left-deep by just
commutativity), and hence the number of operator nodes in
the LQDAG is n2n−1 with n relations, whereas there are
3n operator nodes with bushy trees when cross-products are
allowed, and RS-B2 generates the space of such plans.

These numbers can be cross-checked from Figure 8b; the
meaning of the legends in the figure are the same as in Fig-
ure 7c. Note that the lines for number of operator-adds and
number of rule applications of RS-B1-CPS are identical in
this case since associativity generates a non-cross-product
result in only half of the times it is applied, but when it
succeeds it results in two operator adds.

Lastly we consider clique queries. Clique queries are com-
pletely connected, and hence every join tree is cross-product
free. As shown in Figure 8c, for clique queries, RS-B2
performs better than RS-B1-CPS because RS-B2 generates
all nodes in the DAG without generating any duplicates,
whereas RS-B1-CPS generates 4n/3n duplicates per join
node in the DAG, which results in a very significant de-
terioration of performance. RS-Graph performs about 30 to
50 % better than RS-B2 in this case.

We note that statistics for clique queries follow the same
broad trend as those for star queries, although the number
of operator nodes are significantly larger since the cross-
product free join space now includes bushy trees. We omit
the details for lack of space.

In summary, RS-Graph always performs significantly bet-
ter than both the alternatives; RS-B1-CPS usually outper-
forms RS-B2, but for clique queries it performs worse by a
factor of up to 30.

5.3 Interaction with Other Transformations
We introduced rules for aggregation pull-up and push-

down, and studied the performance of RS-Graph and RS-
B1-CPS in conjunction with these rules.

To show the need for using aggregation transformation
rules along with join ordering rules, we used a sample query
with a fairly selective semi-join (expressed as a join) on top
of a query that aggregates a join result. The best plan has
the semi-join pushed below the aggregation, and was indeed
found by our optimizer using aggregate pull-up in conjunc-
tion with RS-Graph. The estimated cost of this plan was
less than half of the estimated cost without aggregation pull-
up. It is easy to create a set up where the difference can be
much more; see for example, [19].

We then checked the efficiency of RS-Graph versus RS-B1-
CPS in the presence of aggregation push-down rules. For
lack of space, we present results only for one case, a star
query with 14 relations with a aggregation on top of the
join query, a case which we believe stresses our techniques
significantly. The aggregation applies the min operation,
on an attribute of the central relation, with a group-by on
other attributes of the same relation. The joins with the re-
lations model semi-joins, and we assumed that a project is
implicitly present with each join operator to allow aggrega-
tion push-down without adding extra projection operators.
Aggregation push-down succeeds on one of the two inputs
of every join on which it is applied.

The results showed that optimization with aggregation
push-down combined with RS-B1-CPS took 3.4 seconds,
while aggregation push-down combined with RS-Graph took
1.4 seconds. The number of add operator calls was 1.7 mil-
lion for RS-B1-CPS versus 0.33 million for RS-Graph.

6. CONCLUSIONS AND FUTURE WORK
In this paper we have presented a new join transformation

rule, RS-Graph, based on top-down join enumeration tech-
niques, which allows transformation based optimizers such
as Volcano and Cascades to efficiently generate the space of
cross-product free join trees. The transformation rule can
co-exist with other transformation rules, such as aggrega-
tion transformations and semi/outer-join transformations.
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Figure 8: Results on star and clique queries

Our experimental results show the significant benefits of our
techniques.

One area of future work is in checking the performance
after adding more transformations to our optimizer, such as
outer-join transformations, and pushing of top-K selections.
We would also like to study the efficiency of using outer-join
transformation rules, as compared to top-down join enumer-
ation algorithms that have been extended to handle outer-
joins, such as [5, 4, 12].

Given incompleteness due to pruning of cross products,
completeness of RS-B2 in the presence of cost based pruning
(as proposed, for example, in the Columbia optimizer, [18])
also needs to be examined, as part of future work.
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