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ABSTRACT
Reachability query is a fundamental graph operation which answer-
s whether a vertex can reach another vertex over a large directed
graph G with n vertices and m edges, and has been extensively
studied. In the literature, all the approaches compute a label for
every vertex in a graph G by index construction offline. The query
time for answering reachability queries online is affected by the
quality of the labels computed in index construction. The three
main costs are the index construction time, the index size, and the
query time. Some of the up-to-date approaches can answer reach-
ability queries efficiently, but spend non-linear time to construct
an index. Some of the up-to-date approaches construct an index
in linear time and space, but may need to depth-first search G at
run-time in O(n + m). In this paper, as the first, we propose a
new randomized labeling approach to answer reachability queries,
and the randomness is by independent permutation. We conduct
extensive experimental studies to compare with the up-to-date ap-
proaches using 19 large real datasets used in the existing work and
synthetic datasets. We confirm the efficiency of our approach.

1. INTRODUCTION
Reachability query is one of the fundamental graph operations

to answer whether a vertex can reach another vertex over a large
directed graph. The real applications that need this operation are
many and can be found among online social networks, biological
networks, ontology, transportation networks, etc. The reachability
query has been extensively studied over a decade [1, 16, 13, 23, 11,
28, 7, 26, 12, 8, 21, 20, 29, 27, 9, 10, 19, 24, 31], and the early work
can be traced back to 1989 to compute transitive closure (TC) over a
graph. However, it is still an unsolved question whether we can do
faster to answer reachability queries online over even larger and/or
even denser graphs with the possible minimum cost (time/space)
for offline precomputing and preparation.

The main idea behind the approaches in the literature is to com-
pute a label for every vertex in a graph G by precomputing offline.
This is known as index construction, because it is to construct an
index to maintain all the labels computed to vertices of a graph.
The index construction needs time and space to be done, and the
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quality of the labels computed offline will affect the query time for
answering reachability queries online. In this work, we classify al-
l the existing works in the literature into two categories. One is
called Label-Only. By the name, the approaches in this category
only use the labels computed to answer reachability queries, and
include Chain-Cover [16, 8], Tree-Cover [1], Dual-Label [28], 2-
Hop [13], Path-Tree [21], 3-Hop [20], PWAH8 [27], TF-Label [10],
HL [19], and DL [19]. The other is called Label+G. By the name,
the approaches in this category use labels computed where possible,
and conduct depth-first-search (DFS) at run-time, if the reachability
queries cannot be answered using the labels only. Such approaches
include Tree+SSPI [7], GRIPP [26], GRAIL [29], and Ferrari [24].

All the approaches take a different way to balance the three main
costs, namely, the index construction time, the index size, and the
query time. The Label+G approaches construct an index in lin-
ear (time/space). By linear we mean it in terms of the number of
vertices (n) plus the number of edges (m) of a graph G. The up-
to-date Label+G approaches are GRAIL and Ferrari. However, the
Label+G approaches may take long query time when it needs DFS
to search the destination vertex over a large graph in O(n + m).
On the other hand, there are two main ways taken by the Label-
Only approaches. (1) Some works aim at constructing a small
index by compressing TC, because it leads to a small index, and
therefore reduces query time [1, 16, 13, 28, 11, 12, 8, 21, 20, 27].
(2) Some works aim at constructing an index fast. Different from
the Label+G approaches, none of the Label-Only approaches can
construct an index in linear time, and the index size by an Label-
Only approach can be either non-linear or be small but cannot be
bounded. The up-to-date Label-Only approaches are all from (2)
including TF-Label, HL, and DL.

The main contributions of this work are summarized below. First,
different from all the existing approaches, as the first, we study a
new approach which employs randomness. With the randomness
introduced, we can construct an index fast, and answer reachability
queries efficiently. Second, we propose a novel labeling, denoted
as IP, based on independent permutation [3]. We discuss the ideas,
give the algorithms, and show the bounds. Third, we propose two
additional labels which can be computed in linear time and used
to reduce the search cost when DFS is needed at run-time. Final-
ly, we conduct extensive experimental studies to compare with the
up-to-date approaches using 19 large real datasets used in the exist-
ing work and synthetic datasets. We confirm the efficiency of our
approach.

The remainder of the paper is organized as follows. We discuss
the preliminaries and the problem in Section 2, and discuss the re-
lated work in Section 3. We give the main ideas of IP labels in
Section 4 followed by the discussion on the algorithms to compute
IP labels in Section 5. We also discuss two additional labels to
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be used to together with IP at run-time in Section 6. We give our
algorithm to answer reachability queries in Section 7. We report
our experimental studies using large real and synthetic datasets in
Section 8, and conclude our paper in Section 9.

2. PRELIMINARIES
We model a directed graph as G = (V,E) where V (G) rep-

resents a set of vertices and E(G) represents a set of edges (or-
dered pairs of vertices) of G. We may simply use V and E if the
context is obvious. The numbers of vertices and edges in G are
denoted as n = |V | and m = |E|, respectively. A path from a ver-
tex u to a vertex v is defined as path(u, v) = (v1, v2, · · · , vp)
where (vi, vi+1) is an edge in E, for 1 ≤ i < p, u = v1,
and v = vp. The length of path(u, v) is the number of edges
in the path. The distance between two vertices, u and v, denot-
ed as dst(u, v), is the shortest path distance (length) from u to v
in G. A vertex u is said to reach v if there exists a path from
u to v over G. In the following, we use Out(u) to denote the
entire set of vertices that u can reach including u itself, and use
In(u) to denote the entire set of vertices in which every vertex
can reach u including u itself. In addition, we use NO(u) and
NI(u) to denote the out-neighbors and in-neighbors of u, such as
NO(u) = {v | (u, v) ∈ G} and NI(u) = {v | (v, u) ∈ G},
respectively. The in-degree, out-degree, and the degree of a ver-
tex u is denoted as, dI(u) = |NI(u)|, dO(u) = |NO(u)|, and
d(u) = dI(u) + dO(u).

A reachability query, denoted as Reach(u, v), is to answer if
u can reach v over G. We use u  v to denote u can reach v
(reachable), and u ̸ v otherwise.

In this paper, like the existing works, we assume G is a directed
acyclic graph (DAG). This is because any directed graph G can be
condensed into a DAG, where a vertex in DAG represents a strong-
ly connected component (SCC) in G, and an edge (Si, Sj) in DAG
represents that there is at least one edge from a vertex in an SC-
C that Si represents to a vertex in another SCC that Sj represents.
Therefore, Reach(u, v) in G can be answered by Reach(Si, Sj) in
the corresponding DAG, if u and v belong to Si and Sj , respective-
ly. Note that u and v are reachable, u  v and v  u, if u and v
co-exist in the same SCC in G.

The problem we study in this paper is to answer Reach(u, v)
online when G is very large. It is commonly known that the on-
line breadth/depth-first search (BFS/DFS) algorithms cannot an-
swer Reach(u, v) for a large graph G efficiently, because both have
the time complexity in O(m + n). On the other hand, although it
is possible to answer Reach(u, v) in O(1) by maintaining the edge
transitive closure (TC) of G, the space complexity for maintaining
TC is O(n2), which is too large for a very large graph G, with the
time complexity O(nm) to compute TC.

3. RELATED WORKS
In general, the main idea to answer Reach(u, v) online is to con-

struct an index offline, where every entry in the index keeps a label
computed for a vertex u ∈ G, denoted label(u). Reach(u, v) can
be answered either by Label-Only approach or Label+G approach.
The former is to answer Reach(u, v) by label(u) and label(v) on-
ly, and the latter is to answer Reach(u, v) by label(u) and label(v)
with the possibility of accessing G if needed. There are three main
costs, namely, query time (the time to answer online), construction
time (the time to construct an index offline), and the index size (the
space needed to maintain the index). Here, as indicated in many
works, the query time is in the range between O(1) with TC as an
index and O(n +m) without any index, the index size is between

Query Time Index Size Construction Time
BFS/DFS O(n+m) O(1) O(1)
TC [25, 27] O(1) O(n2) O(nm)

Chain-Cover [8]O(log k) O(kn) O(n2 + kn
√
k)

Tree-Cover [1] O(logn) O(n2) O(nm)
Dual-Label [28]O(1) O(n+ t2) O(n+m+ t3)
Path-Tree [21] O(log2 k) O(kn) O(km) or O(nm)

2-Hop [13] O(m1/2) O(nm1/2) O(n3 · |TC|)
3-Hop [20] O(logn+ k) O(kn) O(kn2 · |Con(G)|)
TF-Label [10] – – O(T )
HL [19] – – O(H)
DL [19] – – O(n(n+m)L)
Tree+SSPI [7] O(m− n) O(n+m) O(n+m)
GRIPP [26] O(m− n) O(n+m) O(n+m)
GRAIL [29] O(k) or O(n+m)O(kn) O(k(n+m))
Ferrari [24] O(k) or O(n+m)O((k + s)n)O(k2m+ S)
IP+ (ours) O(k) or O(knr2) O((k + h)n)O((k + h)(m+ n))

Table 1: Time and Space Complexity (T =
∑

1≤i≤log ℓ(G)∑
v∈V (G∗

i
)\V (Gi+1) h(v), H =

∑
1≤i<h(

∑
v∈V (Bi)\V (Bi+1) g(v)))

O(n2) with TC and O(1) without an index computed, and the time
complexity for index construction can be very high, when it aims at
compressing TC to minimal. A survey can be found in [31]. Table 1
summarizes the three main costs for the existing work.

Label-Only: Several approaches proposed aim at finding a way
to compress TC, because a smaller index size implies labels com-
puted for vertices are smaller, which leads to a better query time.
Jagadish [16] first introduces chain decomposition, which is also
known as Chain-Cover, to compress TC by finding a minimal num-
ber of pair-wise disjoint chains to represent DAG. Here, a chain
is a sequence of (v1, v2, · · · , vc) in which vi  vj if i ≤ j.
In G, every vertex v is assigned to a pair of (ci, pj) where ci is
the chain id v belongs to and pj is the position of v in ci, and
label(u) is a set of such pairs. By Chain-Cover, u  v if there is
a pair (ci, pj) in label(u), such that v is in the chain ci and its po-
sition is ≥ pj . Let k be the minimal number of chains in DAG, the
query time of Chain-Cover is O(log k). Chen and Chen propose
algorithms in [8] to compute Chain-Cover to construct an index
of O(kn) in O(n2 + kn

√
k) time. Agrawal et al. propose Tree-

Cover [1] that covers TC using an optimal spanning tree, based on
which a vertex, v, is assigned to an interval [s, e], where e is the
postorder of v, and s is the smallest postorder of v’s descendants.
Here, label(u) in Tree-Cover is a set of intervals, and u  v if
the interval of v is fully contained in an interval in label(u). The
query time is O(logn), but its index size is O(n2) and the con-
struction time is O(nm), which are both high. Wang et al. propose
Dual-Label [28] for a sparse graph. By Dual-Label, label(v) has
two parts. One is a single interval for answering reachability over
a spanning tree of G, and the other is to deal with the transitive
closure over the non-tree edges of G. Let the number of non-tree
edges be t. The transitive closure is O(t2) for t ≪ n over a sparse
graph G. Dual-Label can achieve O(1) query time, since it works
as to maintain TC. Dual-Label is constructed in O(n+t2) time and
in O(n+m+ t3) space. When G becomes denser, t will approach
n. Jin et al. propose Path-Tree [18], which decomposes a DAG G
into a set of pair-wise disjoint paths. Path-Tree shares the similar
ideas used in Chain-Cover. But, unlike Chain-Cover, Path-Tree us-
es paths instead of chains. The query time is O(log2 k) where k is
the number of paths computed in Path-Tree. Path-Tree can have a
smaller index size than Chain-Cover. van Schaik and de Moor pro-
pose a bit-vector approach to compress TC [27]. Even though many
approaches make use of a spanning tree to construct an index using
intervals (a pair of numbers), the construction time is non-linear
and cannot deal with larger and denser graphs.
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Cohen et al. in [13] propose 2-Hop label. A label(u) consists
of Lout(u) and Lin(u), where Lout(u) is a subset of vertices that
u can reach (Lout(u) ⊆ Out(u)) and Lin(u) is a subset of those
vertices that can reach u (Lin(u) ⊆ In(u)). 2-Hop compresses
TC. By 2-Hop, u  v if and only if Lout(u) ∩ Lin(v) ̸= ∅.
Computing the optimal 2-Hop for G is known to be NP-hard [13],
since it is a set-cover problem. In [13], an approximate (greedy)
algorithm is proposed. Several heuristic approaches are proposed
to compute 2-Hop [23, 11, 12]. Furthermore, Jin et al. propose
3-Hop [20] to improve 2-Hop by utilizing the idea of the chain
decomposition as used in Chain-Cover. It takes O(log n+k) query
time, but it takes O(kn2 · |Con(G)|) time to construct 3-Hop with
the space complexity of O(kn), where k is the number of chains
and Con(G) is the transitive closure contour (Definition 3 in [20]).
Cai et al. propose Path-Hop [5] to replace the chain decomposition
with a tree structure to improve 3-Hop.

Cheng et al. [10] propose TF-Label (topological folding) to com-
pute 2-Hop labels for a DAG G using topological level. A vertex in
G has a level assigned, denoted as ℓ(u,G), where the min level is
1, and the max level is ℓ(G). Given the levels, V (G) can be repre-
sented as a disjoint set of vertices, such that V (G) = ∪ℓ(G)

i=1 Li(G),
where Li(G) is the set of vertices at the level i. Furthermore, G
can be represented as a sequence of DAGs, such that G = (G1, G2,
· · ·Gf ), for f = ⌊log2 ℓ(G)⌋+1. Here, G1 = G, and Gi for i > 1
is constructed as follows: V (Gi) = ∪1≤j≤⌊ℓ(Gi−1)/2⌋L2j(Gi−1)
and E(Gi) is a set of edges, (u, v), over V (Gi) if u  v in
the original G and ℓ(v,Gi) = ℓ(u,Gi) + 1 (non-cross-edge).
For example, suppose a DAG G has 6 levels ℓ(G) = 6. Then,
G1 = G. G2 is a DAG with 3 levels consisting of all vertices
at the level 2, 4, and 6 of G1, and all non-cross-edges. G3 is a
DAG with 1 level. Since Gi may have cross-edges from a ver-
tex at the level i to a vertex at level j for j > i + 1, TF-Label
transforms Gi to G∗

i such all edges in G∗
i are from a vertex at

the level i to a vertex at the level i+1 by adding dummy vertices.
The topological folding reduces the computational cost to compute
2-Hop labels. The bound for index construction time given [10]
is O(

∑
1≤i≤log ℓ(G)

∑
v∈V (G∗

i )\V (Gi+1)
h(v)), where h(·) is the

cost of computing 2-Hop label for v. It is worth noting that the time
complexity of TF-Label is non-linear, because it needs to merge 2-
Hop labels for a vertex v in Gi+1 to Gi. Also because TF-Label
aims at computing 2-Hop labels efficiently instead of attempting
to minimizing the index size, there is no tight bound for the index
size, and the time complexity for query time depends on the index
size.

Jin et al. [17] propose SCARAB as a general framework to rep-
resent a reachability backbone, denoted as a graph B(V,E), for a
graph G. The reachability backbone B represents every u v that
are reachable in G, if u and v exist in B, given V (B) ⊆ V (G).
With the reachability backbone B, Reach(u, v) for u and v in G
can be answered. That is, u  v, if there exists a pair of local
neighbor vertices, u′ and v′, such that dst(u, u′) ≤ ϵ, u′  v′ in
B, and dst(v′, v) ≤ ϵ. Any algorithms can be used to construct an
index over B which is smaller than G. In [19], Jin et al. further
propose HL (Hierarchical Labeling) over SCARAB. Informally, a
graph G can be represented as a sequence of reachability back-
bones, B = (B0, B1, B2, · · · , Bh), where B0 = G and Bi+1 is
the reachability backbone of Bi, for i > 0. With HL, the 2-Hop la-
bels computed for Bi+1 can be merged to Bi. The time complexity
of HL construction time is O(

∑
1≤i<h(

∑
v∈V (Bi)\V (Bi+1)

g(v)),
where h is the number of backbones, and g(·) is the cost of com-
puting 2-Hop label for v. Also, in [19], Jin et al. propose DL
(Distribution Labeling). It is based on a list of vertices in an order

V = (v1, v2, · · · , vn). Given V, the 2-Hop labels are comput-
ed by breadth-first search (BFS) for every vertex vj twice: BFS-
forward following the direction of edges and BFS-backward fol-
lowing the reversed direction of edges, with an early stop condition.
First, we assign v1 for every vertex in Out(v1) and In(v1). That is,
Lin(w) = {v1} for every w ∈ Out(v1), and Lout(u) = {v1} for
every u ∈ In(v1). Second, consider BFS of vi in V for i > 1. vi
will be inserted into Lin(vi). Assume the BFS-forward reaches vj
from vi, vi will be inserted into Lin(vj) if Lin(vj)∩Lout(vi) = ∅,
otherwise BFS-forward will not continue from vj . In a similar
way, assume the BFS-backward reaches vj from vi, vi will be in-
serted into Lout(vj) if Lout(vj) ∩ Lin(vi) = ∅, otherwise BFS-
backward will not continue from vj . The early stop condition
makes the 2-Hop labels for G compact. The time complexity of
DL is O(n(n+m)L) where L is the maximal labeling size. How-
ever, like TF-Label, HL and DL aim at reducing the construction
time to compute 2-Hop labels, and the index size and the query
time are not tightly bounded.

Label+G: Tree+SSPI [7] and GRIPP [26] are two works that use
an interval label for every vertex over a spanning tree, and attempt
to reduce depth-first-search (DFS) time if needed at run-time. The
query time for Tree+SSPI and GRIPP are O(m − n), and both
construction time and index size are O(n+m).

Yildirim et al. propose GRAIL [29, 30], which randomly gen-
erates k DFS spanning trees to cover G, which can significantly
reduce query time than that of using a single spanning tree. The
label of a vertex is k intervals, label(v) = (I1, I2, · · · , Ik), where
the j-th interval Ij = [sj , ej ] is computed by the j-th DFS. Let
label(v) ⊆ label(u) if all intervals Ij of v are contained in Ij of
u computed in the same DFS, and label(v) ̸⊆ label(u) otherwise.
GRAIL can only answer u ̸ v over G if label(v) ̸⊆ label(u).
But, GRAIL needs to do DFS from u to reach v at run-time, if
label(v) ⊆ label(u). The DFS from u does not need to continue at
a vertex w, if label(v) ̸⊆ label(w). The query time is either O(k)
using the label only or O(n+m) when it needs to do DFS.

Seufert et al. propose Ferrari [24]. Like GRAIL, Ferrari com-
putes up to k intervals for every vertex over an optimal spanning
tree computed by [1]. Let label(u) = (I1, I2, · · · ) be the set of
intervals for u. It is worth noting that by Tree-Cover the number of
intervals for a vertex cannot be bounded, but in order to control the
index size Ferrari only assigns up to k intervals for a vertex. There-
fore, some intervals in label(u) are approximate intervals, because
they cover certain interval that is not supposed to be covered to
correctly answer Reach(u, v). Ferrari is to minimize the size of
approximate intervals. This is done by computing up to k intervals
of u with the intervals computed for all children of u using dynam-
ic programming. The Ferrari constructed is not optimal. The time
complexity for construction is O(k2m + S), where S is the time
complexity of finding the top-s largest degree vertex for seed based
pruning and constructing the index. Its index size is O((k + s)n),
where s is the number of seeds added to every vertex label.

4. A NEW LINEAR LABELING
As discussed in Section 3, in the category of the Label-Only ap-

proaches, the approaches that aim at compressing TC, like 2-Hop
and 3-Hop, incur high construction cost and large index size, which
affects query time. Chain-Cover and Tree-Cover use a disjoint set
of chains and a tree cover, respectively, but they cannot deal with
large dense graphs. Dual-Label can reach O(1) query time in the-
ory, but it is for a considerably sparse graph. The up-to-date ap-
proaches in this category are TF-Label, HL, and DL. They aim at
reducing the construction time, but the construction time is non-
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linear, which will incur high construction time for large and dense
graphs. In addition, both index size and query time cannot be tight-
ly bounded.

In comparison with the Label-Only approaches, in the category
of Label+G, all approaches are linear regarding construction time
and index size. Here, linear is on the basis of the graph size (the
number of vertices plus the number of edges). Given the linear
construction time and index size, the query time for Tree+SSPI and
GRIPP is O(m−n) and the query time for GRAIL and Ferrari can
be up to O(n + m), which means it cannot deal with large dense
graphs. In [10, 19], the authors indicate that TF-Label, HL, and DL
outperform GRAIL, in terms of query time in practice.

The main idea: In this paper, we propose a novel labeling ap-
proach, called IP (Independent Permutation), and test set contain-
ment with probability guarantee, where the label of a vertex is a
set. Let A and B be two subsets of a set V . There are two ways
to check whether B is contained in A. One is to check B ⊆ A,
and the other is to check B ̸⊆ A. Both are time consuming if an
exact answer is needed for large sets. We take the latter approach,
and answer a reachability query by finding whether there is at least
one element in one set that is not contained in the other for B ̸⊆ A.
Our approach is based on randomness with high probability guar-
antee where the guarantee is ensured by independent permutation.
With the probability guarantee, we can answer a large number of
B ̸⊆ A tests with 100% probability guarantee by IP. For those we
cannot answer by IP with 100% probability guarantee, we do DFS
online. It is important to note that the randomness we use is to min-
imize the probability of doing DFS, and the randomness is based
on min-wise independent permutations [4]. We further improve the
probability guarantee by min-wise independent permutations with
a new k-min-wise independent permutations proposed in this work.

Before introducing min-wise independent permutations followed
by our k-min-wise independent permutations, we show how u v
is connected to A and B in IP. This is based on our observation that
u  v, if Out(v) ⊆ Out(u) or In(u) ⊆ In(v). In other words,
if u can reach all the vertices that v can reach, or all vertices that
can reach u can also reach v, then u  v. In a similar manner,
u ̸ v, if Out(v) ̸⊆ Out(u) or In(u) ̸⊆ In(v). Therefore,
A and B denote Out(u) and Out(v) respectively, or In(v) and
In(u) respectively. Below, we consider A and B as a subset of V
which is a set of n numbers, V = {0, 1, 2, · · · , n−1}, representing
all vertices in V (G) for n = |V (G)|.
Min-wise Independent Permutations: We briefly review the min-
wise independent permutations as given [4]. Given a set of num-
bers, Ω, a permutation of Ω is a bijection from Ω to itself, denoted
as π : Ω → Ω. It is important to note that π(x), for x ∈ Ω, is
unique in π(Ω). Consider V as a set of numbers of size n. Let Vn

be the set of all permutations of V . F ⊆ Vn is min-wise indepen-
dent, if for any X ⊆ V and any x ∈ X , when π is given to choose
uniformly and randomly from F , then the following holds:

Pr(min{π(X)} = π(x)) =
1

|X|
(1)

This says that, for any x ∈ X , the probability that π(x) is the s-
mallest number in π(X) is 1/|X|. Based on the min-wise indepen-
dent permutations, Min-Hash [3] is designed to compute Jaccard
similarity of two sets, A and B, Jacard(A,B) = |A ∩ B|/|A ∪ B|
as Pr(min{π(A)} = min{π(B)})

In this work, our focus is on set containment, B ⊆ A. We know
that B ⊆ A if A = A ∪ B. Let min{X} indicates the smallest
number of a set of numbers, X , we have

Pr(min{π(A∪B)} = min{π(B\A)}) =
|B \ A|
|A ∪ B|

= 1−
|A|
|A ∪ B|

(2)

By min-wise independent permutations, any number in A ∪ B is
equally likely to have the smallest number in π(A∪B), e.g., min{
π(A∪B)}, and min{π(A∪B}) = min{π(B \A)} is true, if and
only if min{π(A)} > min{π(B)}. Hence, we have

Pr(min{π(A)} > min{π(B)}) = 1−
|A|
|A ∪ B|

(3)

Because B ⊆ A if |A| = |A∪B|, there does not exist any possible
permutation π by which min{π(A)} > min{π(B)}, as given in
Eq. (3). Therefore, the condition of min{π(A)} > min{π(B)}
can be used to conclude B ̸⊆ A. However, there are cases that
B ̸⊆ A is true, when min{π(A)} > min{π(B)} is not true.
As can be seen from Eq. (3), the probability for min{π(A)} >

min{π(B)} to be false is non-zero, |A|
|A∪B| . In other words, when

min{π(A)} > min{π(B)} is not true, it can be possible that ei-
ther B ⊆ A or B ̸⊆ A. Here, our problem to answer u ̸ v by
B ̸⊆ A becomes a problem on how to increase the probability for
min{π(A)} > min{π(B)} to be true.

k-min-wise: In order to increase Pr(min{π(A)} > min{π(B)}),
for testing B ⊆ A, we propose to use top-k smallest number-
s instead of the top-1 smallest number as used in min-wise in-
dependent permutation. By independent permutation π, we de-
fine mink{π(X)} as a subset of π(X) containing up to k small-
est numbers, such as mink{π(X)} = (π(x1), π(x2), · · · ), where
π(xi) < π(xj) if i < j, and |mink{π(X)}| ≤ k, Here, by
k-min-wise (mink), we mean π(xi) < π(xj) for any π(xi) ∈
mink{π(X)} and any π(xj) ∈ π(X) \mink{π(X)}.

To deal with B ⊆ A, we define an order (≼) between mink{π(A)}
and mink{π(B)}, such that mink{π(A)} ≼ mink{π(B)} if ev-
ery π(bi) ∈ mink{π(B)}\mink{π(A)} is greater than the largest
number in mink{π(A)}. We use mink{π(A)} ≻ mink{π(B)}
otherwise. We prove B ̸⊆ A, if mink{π(A)} ≻ mink{π(B)} in
Theorem 4.1.

Theorem 4.1: Let A and B be a subset of V = {0, 1, 2, · · · , n −
1}, and π be randomly and uniformly chosen from Vn (the set
of all permutations of V). Then, B ̸⊆ A, if mink{π(A)} ≻
mink{π(B)}.

Proof Sketch: Consider the case when B ⊆ A. We have π(B) ⊆
π(A). Because the k smallest numbers in mink{π(A)} are taken
from π(A) or in other words taken from π(A ∪ B), there can-
not exist π(bi) in mink{π(B)} \mink{π(A)} that is smaller than
the largest number in mink{π(A)}. Therefore, if B ⊆ A, we
have mink{π(A)} ≼ mink{π(B)}. Hence, if mink{π(A)} ≻
mink{π(B)}, then B ̸⊆ A. 2

Next, like Eq. (3), we give the probability for mink{π(A)} ≻
mink{π(B)} in Theorem 4.2.
Theorem 4.2: Let A and B be a subset of V = {0, 1, 2, · · · , n −
1}, and π be randomly and uniformly chosen from Vn (the set
of all permutations of V). Assume |A| = p, |A ∪ B| = q, and
|mink{π(A)}| = kA for kA ≤ k.

Pr(mink{π(A)} ≻ mink{π(B)}) = 1−
p!(q − kA)!

q!(p− kA)!
(4)

Proof Sketch: For B ⊆ A, Pr(mink{π(A)} ≻ mink{π(B)}) =
0 because p = q. We focus on the cases for B ̸⊆ A, provided
X = A ∪ B.

Recall that for a given k, “up to k” is for the cases that the size
of a set can be less than k. In general, |A|, |B|, and |X | can be
possible ≤ k. We use kA, kB , and kX , which are a max possible
number ≤ k, for |mink{π(A)}| = kA, |mink{π(B)}| = kB , and
|mink{π(X )}| = kX , because kA ≤ |A|, kB ≤ |B|, and kX ≤
|X |. We also know kA ≤ kX and kB ≤ kX because X is the union
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Figure 1: A permutation π

Vertex Lout Lin Vertex Lout Lin
v0 {0,1,2,3,4} {7} v6 {2,10} {2,3,6,7,8}
v1 {0,1,2,3,4} {11} v7 {1} {0,1,6,7,11}
v2 {2,3,4,8,10} {7,8} v8 {10} {0,2,3,6,7}
v3 {1,2,3,4,6} {6,7} v9 {4} {3,4,6,7,8}
v4 {2,3,4,10} {3,6,7,8,11} v10 {9} {0,7,9,11}
v5 {0,1,5,9,10} {0,7,11} v11 {5} {0,5,7,11}

Table 2: IP Label for DAG G given in Fig. 1

of A and B. For simplicity, we use minkA{π(A)}, minkB{π(B)},
and minkX{π(X )}, to indicates mink{π(A)}, mink{π(B)}, and
mink{π(X )}, whose sizes are kA, kB , and kX .

By Theorem 4.1, we know that if all the smallest numbers in
minkA{π(A)} are the top-kA smallest numbers in minkX{π(X )},
such that minkA{π(A)} = minkA{π(X )}, then mink{π(A)} ≼
mink{π(B)}. In a similar way, it is also true mink{π(A)} =
minkA{π(X )} if mink{π(A)} ≼ mink{π(B)}.

Recall that π is equally likely to be any permutation in the set
of all permutations of X , denoted Xn. We consider the probability
of minkA{π(A)} = minkA{π(X )}. There are q!

(q−kA)!
permuta-

tions in total to have minkA{π(X )}. Among such q!
(q−kA)!

permu-

tations, there are p!
(p−kA)!

for minkA{π(A)} = minkA{π(X )} in
total. As a result, the probability that mink{π(A)} ≻ mink{π(B)}
is 1− p!(q−kA)!

q!(p−kA)!
. 2

In practice, kA is up to k which is small and is user-controlled.
p (= |A|) and q (= |A∪B|) can be large considering a large graph
G. We have kA ≪ p ≤ q. When it is the case, the probability that
mink{π(A)} ≻ mink{π(B)} can be represented as

1−
p(p− 1) · · · (p− kA + 1)

q(q − 1) · · · (q − kA + 1)
≈ 1− (

p

q
)kA (5)

Here, ( p
q
)kA can be very small, even for a relatively small kA.

Comparing Eq. (4) with Eq. (3), Pr(mink{π(A)} ≻ mink{π(B)})
is much larger than Pr(min{π(A)} > min{π(B)}), and is equal
to Pr(min{π(A)} > min{π(B)}) when kA = 1.

The IP Labeling: By k-min-wise independent permutations, for a
vertex u ∈ G, for a given k, we define label(u) as a pair of sets,
Lout(u) and Lin(u). Lout(u) keeps up to k smallest numbers by
the permutation π for the set of Out(u), denoted as Lout(u) =
mink{π(Out(u))}. Lin(u) keeps up to k smallest number by the
same permutation π for the set of In(u), denoted as Lin(u) =
mink{π(In(u))}. By Theorem 4.1, to answer Reach(u, v), u ̸ 
v if Lout(u) ≻ Lout(v) or Lin(v) ≻ Lin(u) by the labels only.
However, it needs to check by DFS online otherwise whether u 
v or u ̸ v since the probability given in Eq. (4) is non-zero.

Example 4.1: A DAG G is shown in Fig. 1(a). The numbers in
Fig. 1(a) identify the 12 vertices, V (G) = {v0, v1, · · · , v11}. With
a permutation π, which we will show how to compute, we assume
the result is π(0) = 7, π(1) = 11, π(2) = 8, π(3) = 6, π(4) = 3,

π(5) = 0, π(6) = 2, π(7) = 1, π(8) = 10, π(9) = 4, π(10) =
9, and π(11) = 5. Fig. 1(b) shows the π(vi) for every vi ∈
V (G). Let k = 5. Table 2 shows IP labels of G given in Fig. 1.
We show four reachability queries. (Q1) consider Reach(v2, v7).
We have Lout(v2) = {2, 3, 4, 8, 10} and Lout(v7) = {1}. S-
ince 1 ∈ Lout(v7), 1 ̸∈ Lout(v2), and 1 < the largest num-
ber 10 in Lout(v2), we have Lout(v2) ≻ Lout(v7). By Theo-
rem 4.1, we have Out(v7) ̸⊆ Out(v2), and therefore v2 ̸ v7.
(Q2) consider Reach(v3, v2). We have Lout(v3) = {1, 2, 3, 4, 6},
Lout(v2) = {2, 3, 4, 8, 10}. By definition, Lout(v3) ≼ Lout(v2).
However, since Lin(v2) = {7, 8} and Lin(v3) = {6, 7}, we have
Lin(v2) ≻ Lin(v3). Because In(v3) ̸⊆ In(v2), the answer of
Reach(v3, v2) is v3 ̸ v2. (Q3) consider Reach(v1, v8). We have
Lout(v1) ≼ Lout(v8) and Lin(v8) ≼ Lin(v1). We cannot an-
swer it by IP labels only, and DFS is needed over G (Fig. 1(a)).
We start DFS from v1. Supposed the next vertex to be visited is
v4. We have to further DFS, because Lout(v4) ≼ Lout(v8) and
Lin(v8) ≼ Lin(v4). Suppose the next to be visited is v8, we
can conclude that v1  v8. (Q4) consider Reach(v1, v3). We
have Lout(v1) ≼ Lout(v3) and Lin(v3) ≼ Lin(v1), we cannot
answer it by IP labels only, and DFS is needed. We start DFS
from v1, which has the two children v4 and v5. For v4, we cannot
do DFS further, because v4 ̸ v3 for Lout(v4) ≻ Lout(v3) and
Lin(v3) ≻ Lin(v4). For v5, we cannot do DFS further neither, be-
cause v5 ̸ v3 for Lout(v5) ≻ Lout(v3) and Lin(v3) ≻ Lin(v5).

The value of p/q: Reconsider Eq. (4) (or Eq. (5)). Here, p and
q imply either |Out(u)| and |Out(u) ∪ Out(v)| respectively, or
|In(v)| and |In(v) ∪ In(u)| respectively. Since p ≤ q, if q − p is
larger, p/q becomes smaller, and Pr(mink{π(A)} ≻ mink{π(B)})
becomes larger. Below, we show that the difference between p
and q is not small. We discuss the case for p = |Out(u)|, and
q = |Out(u) ∪ Out(v)|. The same can be applied to the In(v)
and In(v) ∪ In(u).

First, as observed in many works, given a DAG G, the percentage
of reachability queries (Reach(u, v)) that are answered negatively,
u ̸ v, over all possible reachability queries is over 90%. On the
other hand, the reachability queries that are answered positively,
u  v, over all possible reachability queries is very small, which
we call reachability-ratio (or simply R-ratio), denoted as r. We
conducted testing to confirm r is very small. We generate large
DAGs by fixing the number of vertices to be 10 million vertices and
increasing the average degree from 2 to 8. For each DAG G, we
sample 100 million vertex pairs, u and v, to estimate the reachabil-
ity ratio of r for G. The R-ratio for the average degree (2, 3, 4, 5, 6,
7, 8) is (9.0E-7, 6.2E-6, 3.8E-5, 2.17E-4, 1.24E-3, 5.68E-3, 1.68E-
2). As a summary, for sparse DAGs, when the average degree ≤ 4,
the R-ratio is smaller than 0.0001, and for dense DAGs, when the
average degree is 8, the R-ratio is below 0.017 still.

Second, given the R-ratio (r) for a DAG G, for two vertices u and
v, the expected value of |Out(u)| and |Out(v)| is nr, where n is
the number of vertices in G. If u cannot reach v, the number of the
common vertices between Out(u) and Out(v) is expected to be

|Out(u) ∩Out(v)| = |Out(u)| ×
|Out(v)|
|V (G)|

= nr ·
nr

n
= nr2 (6)

Then, the percentage of |Out(u) ∩ Out(v)|/|Out(u)| becomes
nr2/nr = r. This implies that q is much larger than p given
q = |Out(u) ∪ Out(v)| and p = |Out(u)|. This fact shows
Pr(mink{π(A)} ≻ mink{π(B)}) is large.
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The number of vertices to be visited by DFS: Given Reach(u, v)
and assume that we cannot answer by IP labels, and DFS is need-
ed even though u ̸ v. Suppose we visit a vertex w by DFS.
Because u can reach w by DFS, we have |Out(w)| < |Out(u)|
and |In(u)| < |In(w)| due to Out(w) ⊆ Out(u) and In(u) ⊆
In(w). While DFS along some path toward v further, |Out(w)|
will become significantly smaller than |Out(u)| and |In(u)| will
become significantly smaller than |In(w)|. Accordingly, the fol-
lowing is true.

|Out(w)|
|Out(w) ∪Out(v)|

<
|Out(u)|

|Out(u) ∪Out(v)|
(7)

In(v)|
|In(v) ∪ In(w)|

<
|In(v)|

|In(v) ∪ In(u)|
(8)

As a result, if u cannot reach v, during DFS, the vertex w we visit
will become more unlikely to reach v by Eq. (4). Given this, the
length of DFS is supposed not to large. We give a lemma below.

Lemma 4.1: Given Reach(u, v), assume DFS is needed even though
u ̸ v. Consider when a vertex w, as a descendant of u, is visited
by DFS towards v. The followings are true.

Pr(Lout(u) ≻ Lout(v)) < Pr(Lout(w) ≻ Lout(v))
Pr(Lin(v) ≻ Lin(u)) < Pr(Lin(v) ≻ Lin(w))

(9)

2

Proof Sketch: Since w is a descendant of u, we have |Out(w)| <
|Out(u)| and |In(u)| < |In(w)| because Out(w) ⊆ Out(u) and
In(u) ⊆ In(w). By Eq. (7) and Eq. (8), we have |Out(w)|

|Out(w)∪Out(v)|

< |Out(u)|
|Out(u)∪Out(v)| and In(v)|

|In(v)∪In(w)| <
|In(v)|

|In(v)∪In(u)| . By Eq. (4)
(or its simplified version Eq. (5)), it shows that if p

q
decreases,

Pr(mink{π(A)} ≻ mink{π(B)}) will become larger according-
ly. Therefore the probability of Lout(u) ≻ Lout(v) becomes s-
maller than the probability of Lout(w) ≻ Lout(v) and the proba-
bility of Lin(v) ≻ Lin(u) becomes smaller than the probability of
Lin(v) ≻ Lin(w). 2

Lemma 4.1 suggests that the probability becomes higher for a
descendant of u, w, to answer the reachability queries negatively.
It implies that it is more likely to answer the reachability query by
IP labels in DFS search.

We analyze Pr(Lout(u) ≻ Lout(v)) < Pr(Lout(w) ≻ Lout(v))
in Eq. (9), where the probability Pr(·) is given as Eq. (5) for sim-
plicity. Here, w is a descendant of u. Let pu = |Out(u)| and
qu = |Out(u) ∪Out(v)|. By Eq. (5), Pr(Lout(u) ≻ Lout(v)) ≈
1− (pu/qu)

k. Let pw = |Out(w)| and qw = |Out(w)∪Out(v)|.
By Eq. (7), we know pw/qw < pu/qu, and we denote pw/qw
as α · pu/qu for α < 1. Hence, Pr(Lout(w) ≻ Lout(v)) ≈
1−αk ·(pu/qu)k, which is significantly larger than Pr(Lout(u) ≻
Lout(v)). Furthermore, if we apply the same analysis to a vertex
ω which is a child of w in a similar. That is, Let pω = |Out(ω)|
and qω = |Out(ω)∪Out(v)|, and assume pω/qω is β · pw/qw for
β < 1. Then, Pr(Lout(ω) ≻ Lout(v)) ≈ 1 - (αβ)k · (pu/qu)k.
The same analysis can be applied to Lin. As discussed, while DFS
search becomes deeper, it is much more likely to answer the reacha-
bility queries negatively, and therefore, it can stop in an early stage.

Reconsider (Q4) in Example 4.1 over G as shown in Fig. 1(a),
Out(v1) = {v1, v4, v5, v6, v7, v8, v9, v10, v11}, In(v1) = {v1}
and Out(v3) = {v3, v4, v6, v7, v8, v9}, In(v3) = {v0, v3}. There-
fore, Pr(Lout(v1) ≻ Lout(v3)) =

1
2

, Pr(Lin(v3) ≻ Lin(v1)) =
2
3

. The vertex v1 has two children, v4 and v5. Suppose it con-
ducts DFS to either of them. Pr(Lout(v4) ≻ Lout(v3)) = 14

15
,

Pr(Lin(v3) ≻ Lin(v4)) = 9
10

and Pr(Lout(v5) ≻ Lout(v3)) =
125
126

, Pr(Lin(v3) ≻ Lin(v5)) =
5
6

. The probability becomes larg-
er while DFS search.

Algorithm 1 VS (G)
1: for each vertex vi ∈ V (G) do
2: π(i)← i;
3: for i from n− 1 downto 1 do
4: j ← Random(i);
5: swap π(i) and π(j);

Algorithm 2 IP-Construct (G, k)
1: Compute the topological order for all vertices in G;
2: VS (G);
3: for each vertex u ∈ V (G) do
4: Lout(u)← {π(u)};
5: Lin(u)← {π(u)};
6: for each vertex u in the topological order do
7: for each vertex w ∈ NI(u) do
8: maintain the top-k smallest numbers inLin(u) amongLin(u)∪

Lin(w);
9: for each vertex u in the reverse topological order do

10: for each vertex w ∈ NO(u) do
11: maintain the top-k smallest numbers in Lout(u) among

Lout(u) ∪ Lout(w);

5. COMPUTING IP LABELS
We discuss computing IP. First, we discuss the algorithm to com-

pute a permutation (π), which assigns every u ∈ V (G) a unique
permutation number π(u) in O(n). Then, we give an algorithm to
compute IP based on the permutation in O(k(m+ n)).

5.1 Computing Permutation
To compute a permutation, we adopt the Knuth shuffle algorith-

m [22], denoted as KS, which is also known as the Fisher-Yates
shuffle algorithm [15]. The KS algorithm is unbiased, and has the
equal chance to generate every possible permutation, which meets
the requirement for min-wise independent permutation technique.
It is important to us that the complexity of the algorithm is O(n).
We show our VS algorithm in Algorithm 1, which is based on the
KS algorithm. The VS algorithm first assigns an initial permutation
number in [0, n − 1] to every vertex vi in G, where n = |V (G)|
(line 1-2). Then, in a for loop (line 3-5), from i = n−1 to 1, it gen-
erates a random number j uniformly in the range of [0, i] (line 4),
and swaps π(i) and π(j) between i and j (line 5). The time com-
plexity of the VS algorithm is O(n). We can see that the probability
of π(i) = x, for any i, x ∈ [0, n-1], is equal to the probability that
x has not been randomly chosen for exchange in the first n-i-1 it-
erations multiplies the probability that x is chosen for exchange in
the (n-i)-th iteration. That is,

Pr(π(i) = x) =
n− 1

n
×

n− 2

n− 1
× · · ·

i+ 1

i+ 2
×

1

i+ 1
=

1

n

Therefore, for any i ∈ [0, n-1], π(i) has the equal chance to be any
value in [0, n-1]. The VS algorithm (Algorithm 1) is equally likely
to generate any possible independent permutation.

5.2 IP Computing
We discuss how to compute IP. Consider a vertex u, its Lout(u)

can be computed by all Lout(w) in its out-neighbors (∈ NO(u)).
This is because Out(u) =

∪
w∈NO(u) Out(w). Therefore, Lout(u)

must be the subset of
∪

w∈NO(u) Lout(w). In other words, Lout(u)

consists of the top-k smallest numbers of
∪

w∈NO(u) Lout(w). In
a similar way, its Lin(u) can be computed by all Lin(w) in its in-
neighbors (∈ NI(u)). This is because In(u) =

∪
w∈NI (u)

In(w).
Therefore, Lin(u) must be the subset of

∪
w∈NI (u)

Lin(w). In
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other words, Lin(u) consists of the top-k smallest numbers from∪
w∈NI (u)

Lin(w). Based on this idea, we design an algorithm
called IP-Construct to compute IP labels for vertices in G.

The IP-Construct is shown in Algorithm 2. First, we compute the
topological order for all vertices in G (line 1), and compute the per-
mutation (π) by calling the VS algorithm (line 2). First, for every
vertex u ∈ V (G), it assigns π(u) in Lout(u) and Lin(u) (line 3-
5). Below, we maintain Lout(u) and Lin(u) in ascending order. It
is worth mentioning that the size of Lout(u) and the size of Lin(u)
is up to k. Second, we visit vertices following the topological order
(line 6-8), and compute Lin(u) from its in-neighbors (line 7-8). To
update Lin(u) by one additional in-neighbor w, it selects the top-k
smallest numbers from two lists, Lin(u) and Lin(w), which are
both sorted in ascending order. Finally, we visit vertices follow-
ing the reverse topological order (line 9-11), and compute Lout(u)
from its out-neighbors (line 10-11) in a similar way.

Construction time and Index size: To compute IP by Algorith-
m 2, it takes O(m + n) to compute the topological order (line 1),
and O(n) to compute the permutation (Algorithm 1) (line 2). The
initialization of Lout(u) and Lin(u) for every u ∈ G (line 3-5) is
O(n). Then, it takes O(k(n + m)) time to compute Lin(u) for
every u ∈ G (line 6-8). This is because it takes O(k) to update a
vertex u’s Lin(u) using Lin(w) for an in-neighbor w of u (line 8)
by merging the two sorted lists of size up to k, and such update
is to be done for every of m edges when accessing all n vertices
in G. In a similar way, it takes O(k(n + m)) time to compute
Lout(u) for every u ∈ G in line 11. Overall, the time complexity
is O(k(n+m)). Our algorithm is more efficient than GRAIL even
though both are O(k(n + m)). In our algorithm, we only need
to scan G twice. In GRAIL, it needs to scan G k times to gener-
ate k spanning trees. The IP index size is at most 2kn, because
|Lout(u)| ≤ k and |Lin(u)| ≤ k for every u ∈ G. Comparing
with GRAIL, our index size is up to 2kn, whereas the index size
for GRAIL is 2kn.

6. TWO ADDITIONAL LABELS
In this section, we discuss two additional labels together to be

used with IP labels. The two additional labels are used to reduce
the DFS search cost.

6.1 A Level Label
In order to early stop in DFS for answering Reach(u, v), we

introduce a level label for every vertex u, denoted as Llevel(u).
The Llevel(u) consists of two parts, Lup(u) and Ldown(u), and
are defined in Eq. (10) and Eq. (11).

Lup(u) =

0 if |NO(u)| = 0

1 + max
v∈NO(u)

{Lup(v)} otherwise (10)

Ldown(u) =

0 if |NI(u)| = 0

1 + max
v∈NI (u)

{Ldown(v)} otherwise (11)

Since we have already computed the topological order, it takes
O(n + m) to compute the level labels for vertices in G. Based
on Eq. (10) and Eq. (11), we have the following theorem about the
level labels, which helps to prune unnecessary search paths in DFS
effectively.

Theorem 6.3: Given two vertices u and v in G. If u can reach
v, for u ̸= v, then both Lup(u) > Lup(v) and Ldown(u) <
Ldown(v) must be true.

Proof Sketch: Based on Eq. (10), Lup(u) must be larger than
Lup(w) for w ∈ NO(u), and be larger than any descendant of
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Figure 2: Level Labels for G in Fig. 1(a)

u. If u can reach v, then NO(u) ̸= ∅ and v is a descendant of
u. This leads to the conclusion that Lup(u) > Lup(v). Also,
based on Eq. (11), Ldown(v) must be larger than Ldown(ω) for
ω ∈ NI(u), and be larger than any ascendant of v. If u can reach
v, then NI(v) ̸= ∅ and u is an ascendant of v. This leads to the
conclusion that Ldown(u) < Ldown(v). 2

Example 6.2: Consider graph G in Fig. 1(a), the level labels of
G are shown in Fig. 2. Consider Reach(v1, v0) and Reach(v1, v2).
As shown in Fig. 2(a), v1 cannot reach v0 nor v2, because Lup(v0) =
4 and Lup(v2) = 3 are not smaller than Lup(v1) = 3. Consid-
er Reach(v3, v5). From Fig. 2(a), it seems v3 can reach v5, be-
cause Lup(v3) > Lup(v5). However, From Fig. 2(b), we have
Ldown(v5) = Ldown(v3). Therefore, v3 cannot reach v5.

The level labels are effective as we will show in our experimen-
tal study, but are not new. GRAIL [30] uses a similar technique
like Lup(u), and TF-Label [10] uses Ldown(u). The difference
between the TF-Label and ours, in terms of Ldown(u) is as fol-
lows. We use Ldown(u) to early stop in DFS at run-time, whereas
TF-Label uses to construct 2-Hop labels.

6.2 A Huge­Vertex Label
A key factor that affects the performance of DFS at run-time is

how to deal with those vertices that have large out-degree. We call
such a vertex as a huge-vertex denoted as HV. With the existence of
such huge-vertices, in particular, in power-law graphs [14], when
it performs DFS starting from a huge-vertex at run-time, the time
consumption will become large, because its out-degree is high, and
the size of its out-neighbors is large. There are too many possible
paths to search in DFS. Take Reach(v0, v11) as an example, and
consider DFS search of G in Fig. 1(a). v0 itself is a relative huge
vertex in comparison with other vertices in this small graph G, so
as two of its children v4 and v5. If the DFS search order is (v0, v2,
v6, v8, v4, v9, v3, v7, v5, v10, v11), then it will search nearly the
entire G before finally answering this reachability query. There are
certain huge-vertices in many real graphs that we need to deal with
to reduce the run-time cost.

We propose a new simple but effective label, called HV-Label,
and denoted as Lhv(v) for every vertex v ∈ G. Here, Lhv(v)
contains up to top-h largest HV vertices, {u}, if u can reach v and
the out-degree of u is larger than µ where n = |V (G)| and µ is a
user-given threshold, such that Lhv(v) = {u | u  v ∧ dO(u) >
µ} for |Lhv(u)| ≤ h.

Answering with HV-Label: With HV-Label, we can decide w  
v, if w ∈ Lhv(v). In other words, suppose that we DFS search to
a huge-vertex w for answering Reach(u, v). If w ∈ Lhv(v), then
we can answer u  v immediately without any needs of DFS.
If w is not a huge-vertex of v (w ̸∈ Lhv(v)) and |Lhv(v)| < h,
w ̸ v. In addition, if w is a huge-vertex but w ̸∈ Lhv(v) and
dO(w) is larger than some out-degree of the vertices in Lhv(v), we
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Vertex Lhv(vi) Vertex Lhv(vi)
v0 {0} v6 {0,4}
v1 ∅ v7 {0,5}
v2 {0} v8 {0,5}
v3 {0} v9 {0,4}
v4 {0,4} v10 {0,5}
v5 {0,5} v11 {0,5}

Table 3: Huge-Vertices for G shown in Fig. 1(a)

Algorithm 3 HV-Construct (G, h, µ)
1: Compute topological order for all vertices in G;
2: for each vertex u ∈ V (G) do
3: if do(u) > µ then
4: Lhv(u)← {u};
5: else
6: Lhv(u)← ∅;
7: for each vertex u in the topological order do
8: for each vertex w in NI(u) do
9: maintain Lhv(u) by taking up to h vertices that have the largest

out-degree from Lhv(u) ∪ Lhv(w);

can answer w ̸ v by definition.

Example 6.3: Consider G shown in Fig. 1(a), where n = 12. Let
µ = 2 and h = 2. A vertex is a huge-vertex if its out-degree
is larger than 2. For G shown in Fig. 1(a), the huge-vertices are
v0, v4 and v5. The HV-Labels computed for G are shown in Ta-
ble 3. Consider a reachability query Reach(v0, v11). Here, v0 is a
huge-vertex and 0 ∈ Lhv(v11), we know v0  v11. Consider an-
other reachability query Reach(v0, v1). We can answer v0 ̸ v1,
because v0 is a huge-vertex and Lhv(v1) is empty. Also, we can
answer Reach(v5, v6) as v5 ̸ v6 using HV-Labels. Here, v5 is a
huge-vertex and Lhv(v6) = {0, 4}. By HV-Label, we know that
5 ̸∈ Lhv(v6) but the out-degree of v5 is larger than the out-degree
of v4, and therefore, the conclusion of v5 ̸ v6 can be made.

The algorithm to compute HV-Labels for a graph G is given Al-
gorithm 3, called HV-Construct. The idea to construct HV-Labels
is very similar to the IP-Construct algorithm. The time complexity
for Algorithm 3 is O(h(n+m)) and the space is O(hn).

We discuss the two user-given thresholds h and µ below. Here,
h determines the size of HV-Label, Lhv(u), for every vertex in G,
and µ determines what vertices are huge-vertices to be selected.
Since h is for a few of huge-vertices, it does not need to be large.
Decreasing µ will make more vertices to be huge-vertices. Doing
so will include really huge-vertices in HV-Label. However, it is not
necessary to use a small µ. We suggest to use µ = 100 after many
testings. In other words, a vertex is a huge-vertices if its out-degree
is > 100.

7. ANSWER Reach(u, v)
We have discuss three labels, IP labels, Level labels, and HV-

Label. For every vertex u ∈ G, the labels are Lout(u), Lin(u),
Lup(u), Ldown(u), and Lhv(u). Here, both Lout(u) and Lin(u)
are up to k numbers, Lup(u) and Ldown(u) are fixed to 2 numbers,
and Lhv(u) is up to h numbers. In total, the max size of labels are
2k + h+ 2 for a vertex.

We process a reachability query Reach(u, v) in a way as given
in the IP+ algorithm (Algorithm 4). First, it checks the trivial case
whether u = v, and answers u  v if u = v (line 1). Second, it
checks IP labels, and answers u ̸ v if either Lout(u) ≻ Lout(v)
is true or Lin(v) ≻ Lin(u) is true (line 2). Third, it checks Level
labels, and answers u ̸ v if either Lup(u) ≤ Lup(v) is true or

Algorithm 4 IP+ (G, (u, v))
1: if u = v then return u v;
2: if Lout(u) ≻ Lout(v) ∨ Lin(v) ≻ Lin(u) then return u ̸ v;
3: if Lup(u) ≤ Lup(v)∨Ldown(u) ≥ Ldown(v) then return u ̸ v;
4: if dO(u) > µ then
5: if u ∈ Lhv(v) then return u v;
6: if |Lhv(v)| < h then return u ̸ v;
7: if dO(u) > do(w) for some w ∈ Lhv(v) then return u ̸ v;
8: for each w ∈ NO(u) do
9: if w has not been visited then

10: if IP+ (G, (w, v)) is w  v then return u v;
11: return u ̸ v;

Dataset |V (G)| |E(G)| davg R-ratio (r)
citeseer 693,947 312,282 0.450 3.20E-6
email 231,000 223,004 0.965 5.06E-2
LJ 971,232 1,024,140 1.054 2.13E-1
mapped-100K 2,658,702 2,660,628 1.000 1.56E-6
mapped-1M 9,387,448 9,440,404 1.005 7.00E-7
uniprotenc22m 1,595,444 1,595,442 0.999 1.45E-6
uniprotenc100m 16,087,295 16,087,293 0.999 1.60E-7
uniprotenc150m 25,037,600 25,037,598 0.999 1.30E-7
web 371,764 517,805 1.392 1.48E-1
wiki 2,281,879 2,311,570 1.013 8.14E-3
yago 16,375,503 25,908,132 1.582 1.00E-6
twitter 18,121,168 18,359,487 1.013 7.39E-2
web-uk 22,753,644 38,184,039 1.678 1.50E-1
citeseerx 6,540,399 15,011,259 2.295 4.07E-4
patent 3,774,768 16,518,947 4.376 2.36E-3
go-uniprot 6,967,956 34,770,235 4.990 3.64E-6
govwild 8,022,880 23,652,610 2.948 7.20E-5
dbpedia 3,365,623 7,989,191 2.374 2.47E-2
HostLink 12,754,590 26,669,293 2.091 4.48E-2

Table 4: Large Real Graphs

Ldown(u) ≥ Ldown(v) is true (line 3). Forth, it uses HV-Label to
answer in line (4-7) when u is a huge-vertex (dO(u) > µ). There
are three cases. (a) It answers u  v if the huge-vertex u is main-
tained in Lhv(v) (line 5). (b) It answers u ̸ v if |Lhv(v)| < h
(line 6), where the condition u ̸∈ Lhv(v) is true due to line 5. (c) It
answers u ̸ v if the out-degree of u is larger than the out-degree
of some vertex in Lhv(v) (line 7). Fifth, if none of the above is
true, it will conducts DFS to search the vertices that have not been
visited before (line 8-10). Finally, it will answer u ̸ v if it is
impossible to answer positively.

Query Time: We discuss the time complexity of Algorithm 4 for
answering Reach(u, v). The time complexity is O(k), because
both labels used are sorted, when IP labels over u and v can be
directly used to answer the reachability query without the needs
of DFS. Next, we consider the cases when DFS is needed. First,
suppose the answer of Reach(u, v) is u v. Then, the time com-
plexity is related to the vertices that can be possibly on some paths
from u to v. The number of such vertices is |Out(u) ∩ In(v)|,
which is nr2, in a similar way as obtained in Eq. (6), where n is
the number of vertices and r is the R-ratio of the graph G. Since
it consumes O(k) in every vertex visited, the time complexity is
O(knr2). It does not take the HV-Label into consideration, which
can be effectively used to reduce the query time. Second, suppose
the answer of Reach(u, v) is u ̸ v. As discussed above, the IP
labels can be effectively used to terminate DFS with the assistance
of Level labels and HV-Label during DFS. The DFS search will be
terminated after a small number of vertices to be visited, which we
consider as a constant (refer to Eq. (9) in Lemma 4.1). Such a num-
ber is much smaller than n and it is not related to m. It is much less
than but can be bounded by O(knr2).
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Dataset GRAIL GRAIL∗ ScaGRAIL PWAH8 TF-Label HL DL Ferrari-G IP+
citeseer 0.959 0.635 2.611 0.530 0.780 1.108 0.589 0.537 0.37
email 0.303 0.166 1.067 0.225 0.113 0.289 0.147 0.194 0.09
LJ 1.299 0.695 5.367 1.052 0.628 1.319 0.667 0.887 0.54
mapped-100K 3.106 2.032 9.231 0.527 2.307 4.422 2.272 2.748 1.64
mapped-1M 12.334 7.299 35.229 2.830 13.049 17.347 7.736 9.986 6.12
uniprotenc22m 2.451 1.206 6.790 1.485 2.223 2.220 1.038 0.919 0.84
uniprotenc100m 33.214 13.658 90.518 17.543 39.848 26.297 12.889 14.022 12.46
uniprotenc150m 58.242 23.820 145.576 29.169 58.529 44.712 22.280 24.292 18.96
web 0.495 0.340 1.900 0.740 0.454 0.717 0.370 0.449 0.25
wiki 2.886 1.329 7.335 0.459 1.011 2.878 1.375 1.927 1.22
yago 27.489 21.353 85.837 12.723 16.905 40.886 21.121 35.977 13.35
twitter 32.323 13.162 — 11.864 15.291 27.645 13.719 19.972 12.44
web-uk 44.031 17.854 — 248.814 — 1081.390 24.240 26.927 17.46
citeseerx 23.170 23.730 61.188 19.976 91.877 131.962 12.045 19.792 7.54
patent 21.404 23.498 82.217 1098.786 238.422 — 135.628 41.729 9.00
go-uniprot 44.557 39.342 70.277 38.668 64.501 27.591 18.277 40.365 9.68
govwild 29.237 28.300 62.963 30.520 139.247 32.230 18.584 19.924 8.45
dbpedia 17.503 16.099 45.570 7.771 12.152 10.926 4.741 6.236 3.75
HostLink 58.279 63.388 158.537 42.759 303.723 33.533 16.815 24.760 11.89

Table 5: Index Construction Time on Large Real Graphs (in second)

Dataset GRAIL GRAIL∗ ScaGRAIL PWAH8 TF-Label HL DL Ferrari-G IP+
citeseer 10.588 18.530 11.941 6.565 1.789 7.713 7.145 13.607 9.440
email 3.525 6.168 4.365 2.342 0.851 2.693 2.586 5.792 3.664
LJ 14.820 25.935 18.785 9.644 3.956 11.677 11.227 18.096 19.112
mapped-100K 40.569 70.995 51.112 10.715 17.185 39.276 34.424 30.766 53.899
mapped-1M 143.241 250.672 180.650 38.078 73.933 137.352 116.089 109.546 171.253
uniprotenc22m 24.345 42.603 30.675 18.635 6.294 18.620 18.467 45.646 24.494
uniprotenc100m 245.473 429.577 310.668 208.622 76.721 204.739 197.182 460.261 251.150
uniprotenc150m 382.043 668.576 486.188 349.251 131.920 336.998 318.504 716.331 394.966
web 5.672 9.927 7.615 4.330 2.560 5.894 4.848 8.269 6.952
wiki 34.818 60.933 43.940 8.987 8.858 26.325 26.203 26.622 51.992
yago 249.870 437.273 315.017 134.646 98.831 290.393 223.766 312.701 250.567
twitter 276.507 483.887 — 95.566 70.111 211.143 202.480 237.106 384.894
web-uk 347.193 607.587 — 260.100 — 4520.436 697.646 458.302 442.890
citeseerx 249.497 399.194 303.017 148.781 1523.491 1531.189 117.542 186.650 151.018
patent 143.996 230.393 250.212 5334.114 4731.991 — 625.282 205.195 137.865
go-uniprot 265.806 425.290 399.486 244.026 430.527 291.748 247.852 378.774 184.683
govwild 306.049 489.678 409.899 304.061 3122.743 319.489 191.040 402.808 193.963
dbpedia 128.388 205.421 159.639 59.897 52.189 85.040 53.299 106.202 94.275
HostLink 486.549 778.478 580.031 115.435 5670.271 269.332 201.445 229.391 369.603

Table 6: Index Size of Large Real Graphs (in MB)

8. EXPERIMENTAL STUDIES
We conduct extensive experimental studies, and report our find-

ings in this section. We denote our approach as IP+ (Algorithm 2),
which uses IP labels with two additional Level labels and HV-
Label. And we compare IP+ with the state-of-the-art reachability
approaches including GRAIL [29], GRAIL∗ [30], ScaGRAIL [17,
29], PWAH8 [27], TF-Label [10], HL [19], DL [19], and Ferrar-
i [24]. Here, GRAIL and Ferrari are two state-of-art Label+G ap-
proaches, and their index size and construction time are in linear.
We test Ferrari using the Ferrari-G index given in [24], because
Ferrari-G is scalable to handle massive-scale graphs. GRAIL∗ is
the improved version of GRAIL [30] and ScaGRAIL is the imple-
mentation of GRAIL in the SCARAB framework [17].1 We also
test the Label-Only approaches. PWAH8 is the state-of-the-art tran-
sitive closure compression approach. And TF-Label [10], HL [19],
and DL [19] are the three state-of-the-art Label-Only approaches
based on 2-Hop labels. We use the source codes provided by the
authors to test the existing approaches. The source code of all ap-
proaches is implemented in C++ and compiled by G++ 4.8.1. All

1We can also implement our IP+ in the SCARAB framework. We
will leave it as our future work.

experiments are performed on machine with 2.67GHz Intel Xeon
X5550 CPU, 24GB RAM and running Linux.

The three measures of the testing are: index construction time,
index size, and query time. Programs that run ≥ 24 hours or exceed
the memory limit (24GB) will be terminated, and the results will be
shown “—” in the tables or “INF” in the figures.

Real Datasets: We use all large datasets used in the recent work-
s [29, 30, 17, 27, 10, 19, 24]. Here, citeseer, citeseerx (citeseerx.
ist.psu.edu), and patent (snap.stanford.edu) are 3 ci-
tation networks in which the out-degree of the non-leaf vertices is
about 10 to 30. go-uniprot is the joint graph of Gene Ontology
terms with the annotations file from the the universal protein re-
source database UniProt (www.uniprot.org). uniprotenc22m,
uniprotenc100m, and uniprotenc150m are subgraphs of the com-
plete RDF graph of UniProt. mapped-100K and mapped-1M are
two datasets used in [17, 19]. email is a DAG of the communi-
cation network email-EuAll. LJ is a DAG of social network soc-
LiveJournal1. web is the DAG of web graph web-Google. wiki
is a DAG of wiki-talk, got from Wikipedia. These 4 datasets are
from snap.stanford.edu. govwild is a large RDF graph from
govwild.hpi-web.de and is transformed into the correspond-
ing DAG. yago is a DAG of a large RDF representing a knowledge
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Dataset GRAIL GRAIL∗ ScaGRAIL PWAH8 TF-Label HL DL Ferrari-G IP+
citeseer 363.738 96.722 108.564 138.810 7.869 60.558 59.351 67.833 24.503
email 12495.148 111.984 150.430 165.464 19.341 38.145 36.005 101.753 38.135
LJ 4267759 216.862 1141.400 171.929 66.592 65.465 65.049 94.538 86.988
mapped-100K 361.348 180.750 62.324 55.395 78.988 91.895 87.881 23.931 32.030
mapped-1M 413.987 225.407 79.515 65.853 99.754 106.026 103.001 27.083 44.186
uniprotenc22m 416.848 69.703 225.292 250.250 41.326 72.286 71.939 51.734 21.791
uniprotenc100m 720.053 139.863 411.032 327.161 99.315 110.354 109.584 112.616 48.091
uniprotenc150m 820.249 186.325 448.566 344.848 119.164 123.067 119.618 116.351 54.205
web 573719 254.526 1766.090 157.571 62.971 57.815 57.206 147.893 86.664
wiki 682422 76.472 161.378 55.983 45.719 77.611 78.795 26.817 27.033
yago 609.651 191.759 167.131 134.714 119.745 119.136 135.862 137.366 88.854
twitter — 239.108 — 100.933 102.923 108.730 104.698 82.212 79.285
web-uk — 492.230 — 216.287 — 227.611 146.429 214.857 253.082
citeseerx 28774.346 410.155 723.276 274.382 230.318 187.795 111.329 131.534 101.444
patent 5912.227 6005.880 1371.050 24252.523 579.454 — 310.007 7038.440 2278.440
go-uniprot 499.505 69.349 132.072 596.555 55.279 167.387 153.214 313.300 34.577
govwild 719.494 360.247 179.312 506.232 254.785 138.939 128.199 295.432 112.990
dbpedia 119909 383.253 416.931 291.059 113.774 101.615 108.982 200.239 92.571
HostLink 8693750 464.266 5433.720 185.109 264.938 119.398 138.803 184.410 117.339

Table 7: Query Time on Large Real Graphs (in millisecond)

graph. twitter is a DAG of the social network graph crawled from
twitter.com collected by [6]. web-uk is a DAG of a web graph
dataset collected by [2]. We also add two new datasets. dbpedia
is the DAG of the knowledge graph DBpedia (dbpedia.org).
HostLink is the DAG of the latest 100 million host links extracted
from the host link graph data.webarchive.org.uk. All the
real graphs are DAGs, and the basic information is given in Table 4.
In Table 4, |V (G)| and |E(G)| are the number of vertices and the
number of edges, davg is the average degree of a graph, and R-
ratio (r) is the reachability-ratio discussed in Section 4. As shown
in Table 4, most of these graphs are tree-like graphs whose davg
is very closed to 1. We classify the real graphs into two classes:
sparse graphs (davg < 2) and dense graphs (davg ≥ 2). The 6
dense graphs are citeseerx, patent, go-uniprot, govwild, dbpedia,
and HostLink. The R-ratio of reachable pairs is very small, far
below 1% in most cases, which is consistent with our discussion
in Section 4. The following 5 datasets, email, LJ, web, twitter,
and web-uk, have relatively high R-ratio, because they have some
huge-vertices. The neighbors of the huge-vertices nearly cover the
entire vertex set of the graphs.

Synthetic datasets: We generate large DAGs with 10 million ver-
tices and an average degree from 2 to 8 using the same graph gen-
eration algorithm used in GRAIL [29]. We first randomly create 10
million vertices and do a random ordering for these vertices. Then
we randomly pick up two distinct vertices from the whole vertex
set and create an edge which points from a lower order vertex to a
higher order vertex. By repeating the process, we create the pre-
defined number of edges.

Parameters: The 3 Label+G approaches have parameters to con-
trol their index size. The Label+G approaches get better perfor-
mance when setting the parameters small for sparse graphs and
larger for dense graphs. For IP+, we set k = 2 and h = 2 for
sparse graphs and k = 5 and h = 5 for dense graphs, and µ = 100
by default. By µ = 100, a vertex u with dO(u) greater than µ
is considered as a huge-vertex. For Ferrari-G, it is set as k = 2
for sparse graphs with s = 2 seeds as an additional index for seed
based pruning, and k = 5, s = 5 for dense graphs. Similarly, we
set k = 2 for GRAIL for sparse graphs and k = 5 for dense graphs.
It is worth noting that the exact index sizes consumed by IP+ and
Ferrari-G can be bounded but cannot be fully controlled. By set-
ting the similar parameters, the three IP+, Ferrari-G, and GRAIL
will consume the similar index space.

8.1 Performance on Large Real Graphs
We report the index construction time, index size, and query time

for large real graphs in Table 5, Table 6 and Table 7. The best
results among are highlighted in bold font.

Index construction: Table 5 reports the index construction time.
IP+ is the fastest in almost all datasets. IP+ cannot reach the best re-
sults in some other sparse graphs whose davg is close to 1, whereas
PWAH8 shows good performance in these sparse graphs. For other
sparse graphs and dense graphs, IP+ performs the best compared
with others. The index construction time of 2-Hop approaches is
about 2 to 25 times of that of our approach over the dense graphs,
and the index construction of PWAH8 is on average 3 times slower
than IP+ over the dense graphs. HL fails its index construction in
the dense graph patent, whereas TF-Label fails its index construc-
tion in the largest graph web-uk. The three versions of GRAIL ap-
proaches and Ferrari-G perform significantly slower than IP+ in the
index construction. For the dense graphs, IP+ is twice faster than
GRAIL approaches and Ferrari-G. In the large graphs twitter and
web-uk, ScaGRAIL fails to compute their reachability backbone.

Index size: Table 6 shows the index size. For the dense graphs
patent and go-uniprot, IP+ constructs the smallest index, and the
index size by IP+ is closed to the best result in two other dense
graphs citeseerx and govwild. But for other graphs, the Label+G
approaches (GRAIL, Ferrari-G, and IP+) result in an index whose
size is larger than those by the three 2-Hop approaches (TF-Label,
HL, DL) and PWAH8. This is because GRAIL, Ferrari-G, and IP+
use O(k) labels and the additional index for every vertex no matter
how sparse the graph is in practice. In theory, the index size by
either GRAIL, Ferrari-G, or IP+ is in linear, whereas the 2-Hop
approaches (TF-Label, HL, and DL) and PWAH8 may construct an
unacceptably large index in dense graphs as showed in the patent
dataset, where the index by 2-Hop approaches is at least 3.5 times
larger than the index IP+ constructs.

Query time: We randomly generate queries such that every vertex
pair will be selected with the same probability. For each dataset,
we generate 1 million reachability queries. Table 7 shows the to-
tal query time taken to answer all the reachability queries generat-
ed. IP+ performs the best in 5 sparse graphs among the 13 sparse
graphs, and is comparable to the best results in other sparse graph-
s. IP+ is at least one order of magnitude faster than GRAIL and
also much faster than its two improved versions GRAIL∗ and Sca-
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GRAIL. Ferrari-G shares the similar query performance with IP+ in
sparse datasets, but significantly slower than IP+ for dense graph-
s. For dense graphs, IP+ wins the best in all dense graphs except
patent. This is because that nearly a half of vertices in patent have
at least 4 out-degree. When it needs to do DFS, it may need to vis-
it more vertices until all branches are pruned or encountering the
destination vertex. We believe that IP+ in SCARAB can perform
well in the patent dataset, because ScaGRAIL greatly improves
the query time in patent compared with GRAIL.

8.2 Scalability Study on Synthetic Graphs
We conduct experimental studies on synthetic graphs with differ-

ent density. Since GRAIL∗ has better query and index construction
performance than original version of GRAIL, we use GRAIL∗ in
the experiments. Fig. 3 shows the experimental results of different
approaches on the synthetic graphs generated.

Fig. 3(a) and Fig. 3(b) show the index construction time and in-
dex size on graphs with different density. First, except for sparse
graphs with the average degree 2, IP+ always performs the best
both on the index construction time and the index size. The index
construction time and the index size of IP+ only increases marginal-
ly while the graph density increases. Second, PWAH8 and 2-Hop
approaches (TF-Label, HL, DL) do not show good scalability in
large dense graphs. Their index construction time and index size
increases exponentially when the average degree of the graph in-
creases linearly. For the dense graphs, their memory usage exceeds
the memory size of the system and thus fails to complete the in-
dex construction. PWAH8 and HL cannot compute its labels suc-
cessfully when the average degree ≥ 5, whereas TF-Label and DL
fail their index construction for the graphs whose average degree is
≥ 6. Third, the index construction time of GRAIL∗ is on average
2 times larger than that of IP+, and the index construction time of
Ferrari-G is about 3 times larger than that of IP+. The index size of
GRAIL∗ and Ferrari-G is about two times of the index size of IP+.
In summary, IP+ has the best scalability.

We also randomly generate 1 million reachability queries over
the synthetic graphs. The total query time to answer all reachabil-
ity queries generated is shown in Fig. 3(c). The 2-Hop approaches
have the better performance in the datasets if they can construc-
t the index given the time and space limited. The query time of
IP+ is comparable to the 2-Hop approaches (TF-Label, HL, DL) in
graphs with average degree ≤ 3. IP+ is on average twice faster than
PWAH8. Only GRAIL∗, Ferrari-G, and IP+ can answer the query
in dense graphs with average degree ≥ 6. And the query time of
IP+ is about a half of the query time of GRAIL∗ and Ferrari-G in
all graphs. For answering a single reachability query in the densest
graph with an average degree 8, the query time of IP+ is on average
0.75 millisecond, whereas GRAIL∗ and Ferrari-G need more than
1 millisecond. IP+ is the best approach among all approaches that
can scale to large dense graphs.

8.3 IP label VS interval label
We show that only IP+, GRAIL∗, and Ferrari-G are scalable to

handle large dense graphs. Unlike GRAIL and Ferrari-G, IP uses
a 2-Hop-like label, instead of interval labeling. To further study
the query time of IP label vs interval label, we compare IP label,
GRAIL label, and Ferrari-G index by excluding any additional in-
dex and any query optimization techniques. For fairness, we use
similar index sizes for the three approaches. We conduct two test-
ings.

First, we test the same 1 million random queries generated over
the synthetic graph with an average degree 3 we used for the scal-
ability testing. Index sizes for the three approaches are: 776MB
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Figure 5: Equal Query Workload

for IP labels, 800MB for GRAIL labels, and 809MB for Ferrari-G
index. We measure how many vertices they visit in answering the
reachability queries generated. Fig. 4 shows the distribution of the
number of visited vertices. 94.5% of the queries can be answered
directly using IP labels while 92.3% of the queries can be answered
directly using GRAIL labels and 87.3% of the queries can be an-
swered directly using Ferrari-G index. It shows that IP label has
high potential to answer without the needs of DFS. For the reacha-
bility queries that cannot be answered directly using labels, we can
see that IP label also performs significantly better than GRAIL and
Ferrari-G. Compared with the two interval labeling approaches, IP
label is less likely to visit many vertices before finally answering a
reachability query. The percentages of visiting more than 30 ver-
tices using IP, GRAIL, and Ferrari-G, are 0.57%, 1.10%, 0.99%.
The percentage of IP is about a half of either GRAIL or Ferrari-G.
For reachability queries that need to visit more than 70 vertices, the
ratio of IP label is larger than the ratio of Ferrari-G index but the
ratio of IP label is still below 0.1%. The results shown are consis-
tent with the experiments in which IP label usually has better query
performance than GRAIL and Ferrari-G.

Second, we test equal query workload with 500,000 reachable
queries and 500,000 non-reachable queries sampled from TC over
the same 7 synthetic graphs we used for the scalability testing (av-
erage degree is from 2 to 8). The index size and the query time
are shown in Fig. 5. Ferrari-G performs well when the average de-
gree is 2, where the index size cannot be larger by controlling the
parameters provided in Ferrari-G. Overall, IP performs the best.

8.4 The IP+ Label
Here, first, we report how the 3 parameters, k, h, and µ, affect

the query performance of IP+. Second, we report the effectiveness
of the three labels used in IP+, IP label, Level label, and HV-Label.
We conducted extensive testings by 1 million random queries gen-
erated. We report the results using the real graph govwild whose
average degree is 2.95. As default, k = 5, h = 5, and µ = 100.

Fig. 6(a) shows that a larger k can improve the query time, but
it does not improve the query time when k is too large. Fig. 6(b)
shows that HV-Label helps. A small h is sufficient because there is
a few huge-vertices in a real graph. Fig. 6(c) shows that a smaller
µ is sufficient to improve the query time. It confirms that µ =
100 is reasonable. When µ becomes smaller, many vertices will be
marked as a huge-vertex, which increase the index size. Fig. 6(d)
shows the effectiveness of the labels used in IP+. We compare IP+
with IP, IP plus Level, and IP plus HV-Label. With IP label only, it
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Figure 3: Query Synthetic graphs with average degree 2 to 8
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Figure 6: IP+

needs 344 millisecond to answer all queries. Level label and HV-
Label improve the query time effectively.

9. CONCLUSIONS
In this paper, we propose a new IP labeling approach, which

is the first one to explore the randomness to answer reachability
queries. Like the up-to-date Label-Only approaches (TF-Label, H-
L, and DL), IP uses two sets of vertices. Unlike TF-Label, HL, and
DL, IP uses set-containment instead of set-intersection. The fun-
damental difference behind answering Reach(u, v) is as follows.
TF-Label, HL, and DL ensure u  v using the labels, whereas IP
is on the opposite aiming at u ̸ v by finding at least one vertex
in one set that is not contained in the other. IP is effective giv-
en the small reachability-ratio for all large graphs. IP outperforms
the up-to-date Label+G approaches, GRAIL and Ferrari. The ran-
domness by independent permutation used in IP opens a new direc-
tion to study new labeling approaches, in order to further improve
the query processing time while minimizing the index construction
time/space.
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