
Matching Titles with Cross Title Web-Search Enrichment
and Community Detection

Nikhil Londhe, Vishrawas Gopalakrishnan
Aidong Zhang, Hung Q. Ngo, Rohini Srihari

∗

State University of New York at Buffalo

{nikhillo, vishrawa, azhang, hungngo, rohini}@buffalo.edu

ABSTRACT
Title matching refers roughly to the following problem. We
are given two strings of text obtained from different data
sources. The texts refer to some underlying physical enti-
ties and the problem is to report whether the two strings
refer to the same physical entity or not. There are mani-
festations of this problem in a variety of domains, such as
product or bibliography matching, and location or person
disambiguation.

We propose a new approach to solving this problem, con-
sisting of two main components. The first component uses
Web searches to “enrich” the given pair of titles: making ti-
tles that refer to the same physical entity more similar, and
those which do not, much less similar. A notion of similar-
ity is then measured using the second component, where the
tokens from the two titles are modelled as vertices of a “so-
cial” network graph. A “strength of ties” style of clustering
algorithm is then applied on this to see whether they form
one cohesive “community” (matching titles), or separately
clustered communities (mismatching titles). Experimental
results confirm the effectiveness of our approach over exist-
ing title matching methods across several input domains.

1. INTRODUCTION
Identifying duplicate patient records is an important and

well-studied problem in the public health-care domain for
the past 60 years [11, 13]. The essence of this problem has
now blended itself in a variety of modern settings in the
Internet-age, including aligning multilingual texts for ma-
chine translation, IP aliasing in networks [25], reconciling
photographs with correct tags [21], or matching product ti-
tles across different online merchants [8, 16, 18]. The diver-
sity in the target domains has led to a varied set of solutions
tailored for individual domains.

∗Arranged alphabetically by first name - students first

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 12
Copyright 2014 VLDB Endowment 2150-8097/14/08.

The two major goals of this paper are to (i) formulate
a generic problem capturing the above “title/record match-
ing” task, and (ii) devise a generic framework for solving this
problem that can be used for a range of textual data drawn
from several domains. For the sake of clarity, our solution
discussion will first focus on one particular problem: match-
ing titles of electronic products from heterogeneous online
merchants. The requirements, data heterogeneity and rich-
ness from this domain are sufficient to illustrate the difficulty
of the problem and the effectiveness of our approach. In a
separate section, we then explain and experimentally con-
firm, how the same approach can be used to solve the title
matching problem in other domains such as bibliography, lo-
cations and person names. There is another practical reason
why product title matching is an important problem on its
own - in UK alone, Web searches on this sector constitute a
significant portion of Web traffic: as high as 6.06% (social
networking - 7.3%) [10].

“Title matching” in product domain can be defined as
the problem of consolidating item names that refer to the
same underlying physical entity but are represented differ-
ently across sources. For example the product “d200 10.2
megapixel digital slr camera body with lens kit - 18mm -
135mm (2.5”lcd - 7.5x optical zoom - 3872×2592 image)”
from PriceGrabber.com is represented simply as “nikon d200”
at CNET.com [16]. This problem is very common, in part due
to the general lack of standardisation in how a product is
published, curated and managed [17].

At a concept level, instances to this problem can be cat-
egorised into the following, examples of which are listed in
Table 1. Amongst them, some instances can be reasonably
solved by existing methods while others need fresh ideas.

1. Matching titles with high degree of token overlap: The
input titles represent the same physical entity, and
their token sets have high overlap. This is arguably
the easiest case, which can be solved using any reason-
able similarity function such as the Jaccard coefficient.

2. Matching titles with low degree of token overlap: These
include titles that are regarded as synonyms and need
specific domain knowledge for disambiguation.

3. “Softly-matched” titles: The input titles represent vari-
ations of the same product (in physical characteristics
or configuration). Distinguishing between an exactly-
matched input and a softly-matched input using simi-
larity measures can be very tricky.

4. Unmatched titles with high degree of token overlap:
The titles do not represent the same physical entity,
but their token sets have many elements in common.

1167



Table 1: Examples of input instances to the Product Title Matching problem
Category Title 1 Title 2 Jaccard

Coefficient
TF-IDF +

cosine
EN+IMP

1 sony dvd-r recordable camcorder media 3dmr30l1h sony mini dvd-r media 3dmr30l1h 0.57 0.72 0.83
2 Rebel T3i EOS 600D 0 0 0.33
3 speck seethru green hard shell case for 15’ macbook

- mb15grnseev2
speck products seethru case for apple
15’ macbook pro - mb15-blu-see-v2

0.42 0.59 0.6

4 fe-140 digital camera battery charger replacement
for 4 aa nimh 2800mah rechargeable batterie

olympus fe-140 0.07 0.47 0.25

5 canon 2gb sd secure digital card - 3505b001 sony alpha dslr-a350 digital slr cam-
era - dslra350

0.083 0.1 0

This happens, for example, when one is a sub-category
of the other (e.g., a product vs. its accessory). Titles
under this category can be differentiated easily by hu-
mans but requires semantic understanding on the part
of machines.

5. Unmatched titles with low degree of token overlap: This
is symmetric to Category 1, and it is easily solved by
a näıve similarity measure based approach.

Most of the existing methods can be broadly classified into
two categories: based purely on a similarity measure [1, 7,
26, 8] or based on learning [20, 18, 24].

In a similarity-measure-based scheme, a score is assigned
to each token in a title and the distance between two titles
is calculated by a similarity function. After the distance
function is normalised, a distance close to 0 indicates “mis-
matching” titles and a distance close to 1 leans toward the
“matching” outcome. In a learning-based scheme, one uses
training sets to learn to: (i) categorise the tokens into appro-
priate labels like brand, model number, etc. and (ii) identify
the weight contribution of each label towards making the
decision. In this work, we will be focusing on former and
briefly describe towards the end how our method can be
used to automatically generate a training set for the latter.

Expectedly, the performance of any similarity based tech-
nique depends heavily on how the tokens are weighed and
the similarity measure used. It is easy to see that a basic
similarity-measure scheme such as Jaccard coefficient would
be effective with inputs from the “easy” categories - 1 and
5 (see examples in Table 1). However, these basic simi-
larity functions cannot consistently perform well across the
remaining three categories. Variations of the basic similar-
ity approach, such as “Term Frequency × Inverse Document
Frequency” (TF-IDF)[22] that has a global scope and stable
ranking mechanism, can handle Category 3 fairly well, but
fail in Category 4 for the reasons presented in [16].

There have been some recent works such as [8] and [16]
(EN+IMP) that try to overcome the above limitations of
these basic approaches. Although these fare better than
most standard approaches - see Category 4, their efficacy is
limited. This is largely due to their dependency on reducing
the comparison to exact matches [8] or using a similarity
measure that makes use of weights that are computed in
a way which is agnostic to the compared title [16]. Fur-
thermore, both these methods, as well as TF-IDF, fail in
understanding the semantic relationships - see TF-IDF and
EN+IMP for Category 2 in Table 1. These methods, espe-
cially TF-IDF, also fail in cases where there are no unique
identifiers, refer to Section 5 for further details.

Our approach to overcome the aforementioned limitation
of similarity-based approaches are two-fold.
Component 1. Using Web searches, we first transform a
given pair of titles to a different pair of titles that magnifies

the similarity or dissimilarity of the original pair. For exam-
ple, this component helps transform a pair of titles belonging
to Category 4 to a different pair with low overlap, effectively
reducing the difficult Category 4 case into an easier Cate-
gory 5 case. Symmetrically, we transform a Category 2 case
into a new pair belonging to the easier Category 1 case.

We refer to this component as Cross-Title Enrichment
(CTE). The motivation for this is drawn from “query rewrit-
ing”, a classic IR technique. However, our approach and
use-case is different from the traditional IR sense where
query/user logs are used to perform this task [27, 6].

Component 2. To overcome the limitation of pure simi-
larity -measure-based methods (even after title enrichment),
we create a directed graph whose nodes are the private to-
kens of the two (enriched) titles. Each edge from token a
to token b represents a degree of belief that a “can replace”
b. A token is private if it belongs to one title but not the
other; and a can replace b if in some sense a can be used to
identify b. By modelling these private nodes as a “social”
network and measuring the “community strength of ties” in
a particular way, one can now quantify the similarity be-
tween the two sets of private tokens and thus, between the
two given titles. Towards this end, we show experimentally
the drawbacks of existing algorithms and develop a commu-
nity detection algorithm (CDAM) that scores the cohesive
strength of these nodes to quantify their similarity.

Due to varied domains of the datasets that we experiment
upon and absence of a consolidated catalogue to query, we
rely on Web search engine to query and the entire Web as the
corpus. The novelty of our approach lies in breaking away
from existing similarity based approaches and in utilising
cues from search results to measure contextual similarity,
whilst not losing our focus on the generality of our approach.
Our framework not only yields better and more consistent
F1-scores over existing methods across varied domains, but
also has the power to identify phrases and logical segments.

Our contributions can be summarised as:

• We propose an end-to-end efficient system architecture
for localised and cross context based disambiguation
that is unsupervised and online.
• We develop a new community detection algorithm that

serves as a similarity measure. The proposed measure
is more suited to this problem setting and also has
good accuracy as demonstrated in the experiments to
disambiguate regular as well as soft-matches.
• Our proposed method has the ability to correlate the

semantic similarity across the comparing entities, even
under cases where there are no token overlaps.
• Our proposed method is not only suited to product do-

main but is also applicable to a wide range of domains
involving textual data.
• On a diverse set of real-world datasets, we demonstrate

1168



that the proposed method consistently performs better
than many state-of-the-art techniques.

2. OVERVIEW OF OUR APPROACH
The key problem we address is the following. We are

given two titles representing some physical entities such as
commercial products, bib entries, locations, or people. Each
title is a string of words. The two titles typically come from
different sources, such as product titles from Amazon and
BestBuy, or bib entries from ACM and DBLP, etc. Consider
accessory vs. its corresponding product as an example:

t1 = “Optio S60 camera Battery Charger Replacement”

t2 = “Pentax Optio S60 Digital Camera”

We need to determine whether t1 and t2 represent the same
physical entity or not. In some cases, t1 and t2 might be “al-
most” the same – this is the “softly matched” case discussed
as Category 3 in Table 1. The output is a score, representing
the confidence in marking the two titles “identical”.

We begin by turning the titles into two sets of words.

T1 = {optio, s60, camera, battery, charger, replacement}
T2 = {pentax, optio, s60, digital, camera}.
Then the two components introduced in Section 1 act on
these sets as follows:
• The first component called Cross-Title Enrichment (CTE)

aims to use a small number of Web searches to enhance the
quality of T1 and T2. In particular, using Web searches we
“enrich” T1 and T2 by adding/deleting tokens to them in
such a way that the enriched Ti still represents the same
physical entity as the original Ti (for i ∈ {1, 2}), and yet
the enriched versions make it “easier” to tell whether t1
and t2 refer to the same physical object. By rewriting the
titles as stated above, we “hope” that the basic similarity
measures that were ineffective earlier can be reused now.
• The second component called Community Detection for

Approximate Matching (CDAM) is responsible for com-
puting the distance between (enriched) T1 and T2 in cases
where CTE could not resolve the ambiguity. This distance
is computed based on the strength of the constructed “so-
cial” network between the private tokens, i.e., (T1 \ T2) ∪
(T2 \ T1). If these tokens form a network with separate
“communities”, then they are deemed far apart; otherwise
if the strong ties give way to a single close-knit commu-
nity, then the corresponding titles are deemed a match.
The motivation for CTE, lies in the following facts: (a)

not all tokens have the same discriminatory power, (b) even
powerful tokens like model number get their distinguish-
ing power only in conjunction with other tokens like brand
name, and (c) for matching titles, the set of shared tokens
between the two titles are the ones that have most semantic
correlation with a title’s private tokens. So then, if we have
a method that is able to “expand” the token-set shared by
the titles and they are a mismatch, then the expansion will
only increase the distinguishing power of the private tokens.
On the other hand if the titles are a match, by this expan-
sion one can “hope” to subsume all or part of the private
tokens. So if C refers to shared context (T1∩T2), then from
previous example we get:

C = {optio, s60, camera}
T1 \ C = T1 \ T2 = {battery, charger, replacement}
T2 \ C = T2 \ T1 = {pentax, digital}

Figure 1: Component Level Flow Diagram With
Algorithms

Thus, the objective of CTE is to “expand” C, so that if
t1 and t2 are really non-matching titles then discriminatory
power of T1 \C and T2 \C increases, i.e., in this case, “bat-
tery”, “charger” and “replacement”. On the other hand, if
the private tokens are not significant then their powers will
fade away, since C would tend to subsume them as it should
in the case of “pentax” and “digital”.

Note that we make use of word “hope” when describing
the expected behaviour of CTE. This is due to errors that
are introduced by a Web search engine; thus, the need for
CDAM. Apart from that, CDAM is also expected to handle
the situations of semantic correlation as in Categories 2 and
3 of Table 1. Thus, if even after “expansion”, T1 \ C and
T2\C are not equal to ∅, then CDAM measures the semantic
equivalence of the private tokens across the two titles.

One can conclude from the above discussion that the role
of CTE is to try and make the pair of titles compact and
precise, and check if they are an exact match. CDAM on
the other hand quantifies the dissimilarity in cases where
CTE is not able to make a decision. Thus, CDAM can han-
dle all the cases which CTE can but vice-versa is not true,
making CDAM the core module. CTE can be considered as
performance booster as, apart from just adding contextually
relevant tokens to aide CDAM, it also helps in reducing the
Web query firing by removing tokens that are contextually
redundant, thus pruning out private tokens for CDAM.

To get a holistic view of an end-to-end system with all the
presented algorithms, we can visualise the matching task as
a sequence of 3 stages - refer Figure 1:
(1) Querying and Blocking Stage - Responsible for is-
suing one Web query for each title and storing the obtained
result set. This is then used for blocking and also CTE.
Blocking helps in the first level of filtering where out-right
mismatches are removed from comparison.
(2) CTE - Responsible for re-ranking the result set tokens
(obtained in previous step) based upon the compared title.
It identifies new relevant tokens and removes unimportant
tokens. For example, in comparison between EOS 600D vs.
Rebel T3i, canon & camera get added to both the titles due
to their high frequencies in the search results. However, eos
which has a lower frequency is still added to T2 (by rescal-
ing) because of its presence in the enriched set of T1.
(3) CDAM - Responsible for disambiguating two enriched
titles that are not exactly similar after CTE, for example
quantifying the dissimilarity between {600D} and {Rebel,
T3i,} under the shared context of {Canon, EOS, Camera}.

3. ALGORITHMS
Here we introduce the algorithms in a bottom-up ap-

proach to create a logical thought progression. For this, we

1169



first introduce CDAM because although ideally the input
to CDAM is a pair of enriched titles this is not mandatory
- CDAM measures the semantic relatedness of the private
tokens in a given pair. We follow the discussion on CDAM
by algorithms that assist in expanding C and improve the
performance of CDAM - CTE. Each of these can be consid-
ered as an individual module that is simply plugged into the
overall system - see Figure 1.

3.1 Community Detection for Approximate
Matching - CDAM

Going by the notation introduced, the task of this section
is to measure the semantic relatedness between the private
tokens of T1 and T2 and quantify if the difference is substan-
tial enough to be labelled a mismatch. As discussed earlier,
we model this as a graph of private tokens ((T1\C)∪(T2\C))
where the edges represent the relationship of “can replace”.

Furthermore, because each token in T1 \ C and T2 \ C
derives its power only in conjunction with tokens in C, we
pair each of them with C and issue a Web query. The result
of the Web query is used to create an adjacency matrix A for
a directed graph G, where the weight of an edge from node
a to b represents the frequency of b in the result set, when a
is a part of the query - this depicts the implied association
between the tokens. Typically a Web search API returns an
XML with three fields for each result: title, abstract and the
URL of the Web-page. Based upon the level of granularity,
we can choose any of them for selecting the tokens - the
choice dictates the level of complexity. In our experiments,
we restricted ourselves to only the title and used a simple
frequency based method to identify the tokens.

Let us examine the example introduced earlier in this con-
text. We generate the query set, Q, by pairing each element
in T1 \ C and T2 \ C with C. Thus, :
Q ={optio s60 camera battery, optio s60 camera charger, op-
tio s60 camera replacement, optio s60 camera pentax,optio
s60 camera digital}

If we restrict the number of Web results to 10, the co-
occurrence adjacency matrix A obtained by firing each ele-
ment in Q is:

Tokens battery replacement charger pentax digital
battery 0 3 5 0 0

replacement 3 0 3 0 0
charger 8 3 0 0 0
pentax 0 0 0 0 4
digital 0 0 0 8 0


We do additional processing on the adjacency matrix A to

obtain a collapsed graph G′. For this, we define two terms
here, namely phrase and dominant token as follows.

Definition 1. Any two tokens, u and v, are said to form
a phrase under a given context C, if A[u, v] ≈ A[v, u], where
u, v ∈ T1 \ C or u, v ∈ T2 \ C.

Definition 2. Token u is said to dominate v under a
given context C if A[u, v] � A[v, u], where u, v ∈ T1 \ C or
u, v ∈ T2 \ C.

In our setting, two values are approximately equal if the
difference ≤ (0.3 × the total number of results) and a token
subsumes the other if the ratio of two values is >1.5.

Definition 1 consolidates private tokens of a given title
that have a semantic interdependency given the shared set
of words between the titles. Notice the importance of private

Algorithm 1 Graph Collapsing

1: Input: T1, T2, C adjacency matrix A = (auv)
2: Output: Collapsed Graph - G′

3: repeat
4: if ∃u, v ∈ T1 \C or ∃u, v ∈ T2 \C, | auv ≈ avu then
5: Collapse u and v into one node
6: Update adjacency matrix A
7: end if
8: until No more reduction is possible
9: repeat

10: if ∃u, v ∈ T1 \C or ∃u, v ∈ T2 \C, | auv � avu then
11: Update adjacency matrix A to replace v by u
12: end if
13: until No more reduction is possible
14: Return G′ formed using A

tokens being part of the same title; this definition cannot be
extended to private tokens across titles, as, such a relation-
ship amounts to “equivalence” or “can replace”, which we
are trying to quantify in the first place.

Definition 2 prunes the private token set space by identi-
fying contextually dominating tokens within a set. Thus, if
a covers b substantially in its result set but not vice-versa, it
means b can be ignored under the context C in the presence
of a.

Algorithm 1 enumerates the process of graph collapsing.
It begins by enumerating all the possible edges based on
the adjacency matrix. Continuing with the earlier example,
the candidates for t1 are (battery, replacement), (charger,
replacement), (battery, charger). The candidates (battery,
replacement) and (charger, replacement) are ranked higher
than (battery, charger) as the weights of the former are
much closer than the latter. Hence based on Definition 1,
battery and replacement are first combined to give (battery
replacement) as one token, which is subsequently combined
with charger to yield (battery replacement charger) as one
token. Thus, all the tokens in T1 \ C get collapsed to one
token {battery charger replacement}.

The second half of Algorithm 1 deals with Definition 2
that prunes out redundant tokens within a title. From A,
it is clear that for t2, digital dominates pentax under the
context described by C. Thus, at the end of this step, we
obtain a collapsed graph as shown in Figure 2b.

(a) Original Graph

(b) Collapsed Graph

Figure 2: Example of Graph Collapsing

Obtaining a collapsed graph allows us to narrow our focus
onto important private tokens that are unique to a given
title. Having identified these, the next step is to quantify
the strength of correlation between the private tokens of

1170



this collapsed graph. To do so, we formulate the problem as
one of graph clustering/community detection that measures
strength of cohesion and finds the number of communities.
If the strength of cohesion is high enough to result in a single
community, then it implies that the reduced private tokens
share high semantic dependency; if so we can term the two
entities as a match, otherwise a mismatch.

In general the average out-degree and in-degree of the
nodes in a collapsed graph are about 2 and 1 respectively.
The average number of nodes in the graph is around 5, re-
fer Section 5.4. Modularity detection algorithms on such
small graphs can give misleading results [14]. Furthermore,
edges between tokens across titles need to be interpreted
differently. Assume that the two titles create two dense
sub-graphs and an edge connects them. According to edge-
betweenness and other community detection algorithms, the-
re are at least two communities [15]. However, this interpre-
tation fails if an edge connects two important tokens across
the two titles, as depicted in Figure 3, implying there is a
high likelihood that the two titles are equivalent and the
graph has just one community.

Figure 3: Example of a Graphical Relationship Between
Tokens (represented as nodes) of Two Titles

Thus, the number of communities is a function of inter-title
edges and their respective nodes. This is formulated as:

max

{
(f(g(a), g(b), w(a, b))− λ)

∣∣∣∣ a∈T1\T2
b∈T2\T1
∃E(a,b)

}
(1)

where:

g(.) = avg. weight of out-edges(.)−avg. weight of in-edges(.)

if in-degree(.) = 0, avg. weight of in-edges(.) = -1

f(.) = any aggregating function like addition

λ = penalty value for isolated nodes (nodes with no edges)

w(a, b) = edge weight between a and b

The penalty can be a constant value or as explained in Sec-
tion 3.2 can be chosen adaptively. The logic behind Equa-
tion 1 is to weigh an edge by factoring in the importance of
the participating vertices. The importance of a vertex is di-
rectly proportional to its weighted out-degree and inversely
proportional to its weighted in-degree. This is consistent
with our hypothesis that, nodes with high discrimination
power tend to identify more nodes and are rarely identified
by others, i.e. high out-degree and a low in-degree. As it
has an upper bound of 1, a node with no incoming edges is
assigned a value of 1. As the maximum value of g(.) can
be 1, the maximum value of f(.) can be 3. If the result of
Equation 1 > threshold τ , T1 and T2 are said to be a match
- refer Algorithm 2.

Continuing our example: since after graph collapsing we
get only two nodes - battery charger replacement and digital
which are isolated, as per Equation 1 we obtain 2 commu-
nities inferring the products are different.

Algorithm 2 Community Detection Algorithm

1: Input: Collapsed Graph - G′(V ′, E′) , threshold τ
2: Output: Number of Communities
3: CE ←set of edges that connect inter title tokens.
4: for all c ∈ CE do
5: Let a be the start node and b the end node.
6: if Indegree(a) = 0 then
7: InContribution(a) = - 1
8: else
9: InContribution(a) = Incoming edge weights of a

10: end if
11: OutContribution(a) = Outgoing edge weights of a
12: g(a) = OutContribution(a) - InContribution(a)
13: Repeat 6-12 for b and calculate g(b)
14: wi ← f(g(a), g(b), edge weight(c))
15: end for
16: max val ← ∀imax(wi)
17: for all v ∈ V ′ do
18: if v is an isolated node then penalise max val
19: end if
20: end for
21: if max val > τ then return 1 (to indicate match)
22: else return -1 (to indicate mismatch)
23: end if

Algorithm 3 Approximate Matching Algorithm

1: Input: Pair of product title in set form - T1 and T2,
total number of results = κ

2: Output: Match or Mismatch
3: Compute C as T1 ∩ T2

4: Define the symmetric difference UC := (T1\C)∪(T2\C)
5: Fire C and remove tokens from UC that are present in

the top-κ result set and add them to C.
6: Query set Q := UC × {C}
7: ∀x ∈ Q : fire x to obtain top-κ results. Create the

adjacency matrix A of tokens in UC, covered versus x
8: Collapse A using Algorithm 1
9: Run the community detection algorithm - Algorithm 2.

10: if (number of communities = 1) then return Match
11: else return Mismatch
12: end if

To illustrate a walk-through for Algorithm 2, consider the
example of Category 2 of Table 1. Let t1 be “rebel t3i” and
t2 be “eos 600d”. In this example C = φ and T1\C = {rebel,
t3i} and T2 \ C = {eos,600d} and by proceeding exactly in
the same way like the earlier example, we get A as:

Tokens rebel t3i eos 600D
rebel 0 0 0 0
t3i 8 0 5 0
eos 1 0 0 0

600D 3 5 7 0


After “graph collapsing”, the adjacency matrix A reduces

to two nodes - t3i and 600d. The inter-title edge along
with the weight (for number of Web results = 10) is: (600d,
t3i)=0.5. The result based on Equation 1 is tabulated in
Table 2. Please note that since t3i and 600d do not have
any inlinks from their own title tokens, they get the in-
degree score of -1 to signify high importance. Algorithm 3
enumerates all the steps in this subsection.

1171



Table 2: Walk-through Example of Community Detection Approach

Edge In-degree Score
of Node 1

Out-degree
Score of Node 1

Total for
Node 1

In-degree Score
of Node 2

Out-degree
Score of Node 2

Total for
Node 2

Edge
Weight

Total
Score

(600d, t3i) -1.0 0.35 1.0 -1.0 0.85 1.0 0.5 2.5

Algorithm 4 Generate Result Set

Input: Title t1, number of results - k
Output: Result Set R(t1)
R(t1) ← top-k Web search result titles for t1

Algorithm 5 Cross Title Enrichment

1: Input: Result set for title t1 and t2 - R(t1) and R(t2),
support threshold η, support threshold for self determi-
nation µ

2: Output: Enriched title E(t1) and E(t2)
3: For each token wi in the ith ranked result in R(t1), let
freq(wt1i

) be the weighted frequency of the token, cal-
culated using DCG

4: Similarly compute freq(wt2i
) for all wi in R(t2)

5: Let wt11
, wt12

, . . . , wt1q
be tokens of set {freq(wt1)} ar-

ranged in decreasing order of weighted frequency;
6: Ωt1 := wt1i

if freq(wt1i
) > η × freq(wt1)

7: Perform similar operation on for Ωt2 .
8: Let avgs & avgt be average of frequencies in Ωt1 & Ωt2

9: For each tok ∈ Ωt1 ∧ T1 if freq(tok) < µ× avgs: delete
10: Perform similar operation on for Ωt2 .
11: Using Algorithm 6 calculate gain and update Ωt1 & Ωt2

12: return E(t1) := Ωt1 and E(t2) := Ωt2

3.2 Cross Title Enrichment - CTE
While the previous section was concerned with only mea-

suring the semantic relatedness, this section will instead fo-
cus on improving the shared context between the titles so as
to magnify the semantic relatedness. This would not only
improve the performance of CDAM but at the same time
improve its efficiency by identifying and removing unimpor-
tant tokens. This task involves observing the titles under
comparison and then adding or removing tokens that would
amplify the similarity (or dissimilarity). This is precisely
how our method differs from [16]. Algorithm 4 lists the ini-
tial steps for the above task.

Algorithm 5 describes the CTE process. The input to the
algorithm is the result set of the two comparable titles t1
and t2 obtained through Algorithm 4.

A Web search engine returns a set of results sorted by rele-
vance. This notion of relevancy needs to be propagated into
the token selection mechanism. Since the results are ranked
from highest to lowest, we apply a monotonically decreasing
function - Discounted Cumulative Gain (DCG). The dis-
count in DCG is given by the formula 1/ log2(i) which we
modify to dn× log2(b+ 1)e - where n is the total number of
results returned, b is the bucket in which the resulti falls in
and i=1. . . n. The total number of buckets is calculated by
d
√

(n)e and the results are equally distributed into buckets.
The need for bucketing is to provide a stratified decreas-
ing function and avoid heavy penalisation of adjacent titles.
The weighted frequency of tokens is then calculated using
this modified discount.

Algorithm 6 calculate Gain

1: Input: Weighted frequency of tokens from t1 and t2 i.e.
wt1i

& wt2i
, and Ωt1 & Ωt2

2: Output: Gained weighted frequency for wt1i
& wt2i

3: repeat
4: for each tok ∈ {(Ωt2 \ Ωt1) ∧ wt1i

} do
5: calculate contribution of tok towards the dissim-

ilarity between Ωt1 & Ωt2

6: increase weight of tok in wt1i
proportionately

7: end for
8: until All tokens are processed
9: Repeat for all tokens ∈ {(Ωt1 \ Ωt2) ∧ wt2i

}
10: return wt1i

and wt2i

We use two support thresholds in pruning out the can-
didate set of tokens. These are dependent on the weighted
frequencies rather than on the number of results. The first
support, typically around 0.5 × η - where η is the highest
weighted frequency, is more liberal in nature and is primar-
ily responsible for adding new tokens. The second threshold,
typically around 0.7×µ - where µ is the average of weighted
frequencies obtained from the previous step and is responsi-
ble for pruning tokens. Since search engines tend to return
results that cover as many query tokens as possible, the
secondary threshold acts as a regulariser and prevents un-
controlled preference to tokens from higher ranked results.

As stated before, the most distinguishing feature of our
process is the cross title context awareness. For example,
say for title 1 the token set obtained from previous step was
{canon, eos, 600d, camera} and for title 2 {canon, rebel,
t3i, camera}. Furthermore, the token eos was found during
enriching title 2, but was pruned out due to low support.
We thus, want to boost frequencies for all such tokens that:
(1) did not make it to the final set, (2) were close to their
support cut-off and (3) are present in the final set of the
compared title. The boost percentage added depends on the
contribution of that token to the dissimilarity between these
intermediate enriched titles. Thus, we boost the frequency
for eos in proportion to its contribution in the dissimilarity.
If the modified frequency now meets the support threshold,
this token is added to the set - refer Algorithm 6.

The co-occurrence matrix prepared based on the result
set can be used to measure the token’s value in a given title.
This value can be used in Equation 1 as the penalty value
for an isolated node. Based on the enrichment result thus
obtained, one of the following situation can occur:
(1) The two sets are identical - the titles are an exact match.
(2) One set is a subset of other (subsumption). This gener-
ally occurs when a product is compared with its accessory.
(3) The case which is neither (1) nor (2) - handled by the
algorithms in Section 3.1.

3.2.1 Handling Subsumption Case
Prima facie, comparisons under (2) should be labelled as

1172



Algorithm 7 Handling Subsumption Case

1: Input: E(t1) (shorter title), E(t2) & support η
2: Output: Match or Mismatch
3: Let private token set UC := E(t2) \ E(t1)
4: Fire E(t1) and get the top-k Web-pages.
5: For each tok ∈ UC: w(tok)←(# of document tok co-

occurred with E(t1))
6: if ∀i ∈ UC : w(UCi) ≥ η × k then return Match
7: else return Mismatch
8: end if

Algorithm 8 Blocking Algorithm

1: Input: Titles t1, t2; Result Sets R(t1), R(t2); threshold
γ

2: Output: Pair t1 and t2, or null
3: Represent R(t1), R(t2) as vectors Vt1 , Vt2 respectively
4: if cosine similarity between Vt1 and Vt2 ≥ γ then
5: return the pair t1 and t2 as candidate match
6: else return null
7: end if

a mismatch. However, if we delve further, we can see that
this need not always be true due to various characteristics
of a search engine. Consider the queries “Dell vostro 1400”
and “Dell vostro 1400 laptop” in Google. The results we
get are quite different from each other leading to a scenario
where one enriched title is a subset of other. Handling this
scenario requires us to go into page level processing of the re-
sults obtained from issuing the smaller title as the query and
checking the coverage of the private tokens - Algorithm 7.

3.3 Blocking
The objective of this component is to reduce the total

number of comparisons than that generated by a cartesian
product of titles from the two sources. In other words if
there are m titles from Source-1 and n titles from Source-2
and k matching titles across the two sources, then the ob-
jective of the blocking is to generate p titles such that p
� m × n, and k ∩ p should be high. Another important
criterion is that the technique should be computationally
light, preferably linear. With these considerations in mind,
we propose a simple blocking technique that piggybacks on
the existing framework to significantly reduce the number
of comparisons, while maintaining a high recall rate. The
idea here is to re-use the result set obtained from the en-
richment phase. To recap, the enrichment phase involves
firing one query per title. Our blocking system is embedded
within this module - between the query firing and cross title
enrichment phases. For each title, based on a very liberal
threshold α, we generate a token set with frequencies that
serves as a vector representation for that product. We then
use the vector representations of both the titles under com-
parison to calculate their cosine similarity which, if greater
than a threshold γ are considered for further processing; else
rejected as a mismatch. Refer Algorithm 8 for details.

4. EXTENSIBILITY TO OTHER DOMAINS
By formulating the problem as one quantifying the dissim-

ilarity allows, we can extend our method to broader entity
resolution problems. We demonstrate this using a variety of
examples drawn from diverse domains. Some of these are

also used by Bing to promote their “Synonyms API”. We
finally conclude this section by showing how the proposed
algorithms can be used to perform limited segmentation on
titles, which can be used for machine learning purposes.

4.1 Generic Entity Resolution
To illustrate our framework’s capability to even disam-

biguate entities other than product titles, consider the ex-
ample of a location represented in different ways - “Seattle
Tacoma International Airport” versus “Sea Tac”. Let t1
be “Sea Tac” and t2 be “Seattle Tacoma International
Airport”. After application of Algorithm 5 to improve the
context C, we get E(t1) as {airport, seatac, seattle} and
E(t2) as {seattle, international, airport, seattletacoma}.
After applying Algorithm 1, seattletacoma and international
form a phrase and the adjacency matrix is:[

Tokens seattletacoma international seatac
seattletacoma international 0 1

seatac 6 0

]

By the walk-through of Algorithm 2, we get the highest
score of 2.6 for the inter-title edge {seatac seattle-tacoma
international}, thereby implying them to be synonymous.

As an example from bibliography domain and also to show
the importance of Algorithm 6 in CTE consider the follow-
ing example. Let t1 be a text of authors and their paper (in
bold) - Jerry Baulier, Philip Bohannon, S. Gogate, S. Joshi,
C. Gupta, A. Khivesera, Henry F. Korth, Peter McIlroy, J.
Miller, P. P. S. Narayan, M. Nemeth, Rajeev Rastogi, Abra-
ham Silberschatz, S. Sudarshan DataBlitz: A High Per-
formance Main-Memory Storage Manager and t2 be
the list of authors - P. P. S. Narayan, S. Joshi, M. Nemeth,
Abraham Silberschatz, Henry F. Korth, A. Khivesera, Jerry
Baulier, S. Sudarshan, Philip Bohannon, Peter McIlroy, J.
Miller, S. Gogate, Rajeev Rastogi, C. Gupta. The output
of enrichment without Algorithm 6 gives an absurd enrich-
ment for t2 - {dblp}, whereas for t1 we get a more meaningful
token-set, {Jerry, Baulier, dblp}, as enrichment (consider-
ing the query was fired on a generic search engine vertical
and not like Google Scholar). With cross title approach the
situation improves considerably and we get the right out-
put at the enrichment phase itself; we get E(t2) as {Jerry,
Baulier, dblp}, which is equal to E(t1). The above result
is also an example of a “soft match” - the original text is
reduced to something more generic which could have more
than one possible match.

Finally consider “Jennifer Lopez”(t1) versus “Jlo”(t2). Th-
is is an example that is handled by Algorithm 7 as after
the cross title enrichment, we get E(t1) as {jennifer, lopez
} and E(t2) as {jlo, jennifer, lopez}. After issuing the
shared token as query (“jennifer lopez”), the Algorithm 7
is able to identify the private token “jlo” significantly and
hence, the pair is labelled a match.

4.2 Segmentation
The graphical formulation of the problem allows us to use

Definition 1 to perform “limited” segmentation. Consider
the example of Jennifer Lopez; the fact that it is a single
phrase is domain knowledge. However, with the help of adja-
cency matrix, we can deduce that the co-occurrence of “Jen-
nifer” and “Lopez” is very high and hence, it’s very likely
a phrase. For the product domain, consider the example
“linksys dual-band wireless-n gaming adapter - wga600n”.

1173



Based upon the adjacency matrix, the system outputs the
following impressive set of phrases {wga600n linksys, dual-
band wireless-n, gaming adapter}.

5. EXPERIMENTAL RESULTS
Having described the relevant algorithms and modules,

we now present parameter sensitivity analysis, a detailed
evaluation and reasoning of results of our algorithms.

Datasets: In our experiments, we have made use of 5 real
world datasets. The first four datasets are publicly available
benchmark datasets [19]. The fifth dataset is created by us,
comprising pairs from heterogeneous domains. The matches
described in the first four datasets are “exact matches” and
fall predominantly under Category 1 and 5 of Table 1 with
some them being in Category 4, whereas those in fifth belong
to Category 2, 3 and 4.

(1) Abt - Buy Dataset contains 1097 matching product
titles. This dataset comprises of electronic products
and usually has unique identifiers in each title.

(2) Amazon - Google Dataset has 1300 matching prod-
uct titles and unlike the Abt - Buy dataset, the titles
do not always have discriminatory tokens.

(3) ACM - DBLP Dataset is made up of 2224 matching
article titles. This dataset is subjected to extensive
manual curing at source level.

(4) DBLP - Scholar Dataset has around 5347 matching
article titles. Compared to ACM - DBLP dataset, this
is fairly more difficult to process.

(5) Heterogeneous Dataset has 500 pairs, equally di-
vided into matches and mismatches. It is a result of
aggregation from domains like bibliographies, celebri-
ties and their short-forms, locations and airport codes,
products, etc.

Evaluation Metrics: The first 4 datasets being bench-
mark datasets have been extensively studied in [19, 16], and
hence we use the same evaluation measure, F1-score, to com-
pare the efficacies in cases of “exact matches”. Through
“Heterogeneous” dataset we demonstrate the superiority of
our approach in handling soft-matches and synonyms. Al-
though structured data might be available for the domains
we experimented with, we did not consider them during ex-
periments as we wanted to show the general applicability of
our solution (when structured data is not available).

Using these datasets, we show the versatility of our system
to adjust the degree of required matching - from soft and
synonymous matches to exact-matches, simply by varying
the threshold of the community detection module.

Though we have been giving examples from the product
domain so far, through datasets (3), (4) and (5) we would
like to show that our method is scalable to other domains.
Note, that the queries are fired on a generic search engine
vertical that is not tuned towards a particular domain.

Schemes Compared: We evaluate the system perfor-
mance under the following three schemes:

1. Cross-title Enrichment: - Employs all the compo-
nents of the system.

2. Simple Enrichment: - Exactly like above except for
Algorithm 6.

3. No Enrichment: - This corresponds to just the graph-
based approach with no enrichment applied.

Once we have identified the right parameter settings and
scheme, we then evaluate the efficacy of our community de-
tection algorithm. The algorithms compared are:

1. Edge-Betweeness: - This algorithm was proposed by
Newman and Girvan in [15]. It is a popular community
detection algorithm which identifies the communities
based on inter-community edges. With this base-line
we would demonstrate that the classical approach of
community detection is unsuitable for our exercise.

2. Modularity: - With this we demonstrate that for
small communities, as in our case, modularity detec-
tion algorithm does not work well. Here, we use Gephi’s
implementation of [4].

For Web queries we use the Yahoo! Boss Search API. In
order to show the performance of our blocking mechanism
and complexity, we have included a section that compares
its recall to false positives for various datasets.

Our experimental results show that CTE+CDAM:
1. Outperforms several state of the art techniques includ-

ing many of the supervised approaches.
2. Has the dexterity to adapt to the required level of

matching - exact vs. soft and also perform well in dis-
ambiguating “synonymous” titles that have very little
token overlap.

3. Can be generalised to other domains.
We begin the analysis with experiments on the product do-
main and discuss the evaluations and parameter settings on
Abt-Buy dataset. Once the right combination is identified,
we evaluate the performance on other datasets. To be fair,
we reused the same settings for bibliography domain. We
conclude the section with a brief discussion on blocking and
running time.

5.1 Performance Measure on Product Titles
This section is organised based on the datasets. We use

Abt-Buy dataset to establish the right scheme and param-
eters, and then show the response curve under that setting
on both Amazon-Google and “Heterogeneous” dataset.

5.1.1 Abt-Buy Dataset
Figure 4 shows the response of F1-scores to different pa-

rameter settings for Abt-Buy dataset, where η and µ refers
to support thresholds referred in Algorithm 5. As can be
seen, better scores are obtained when self-support threshold
µ is higher than base support η. This is due to dropping of
spurious or redundant tokens from query, thereby increasing
accuracy. The remaining variable is the community detec-
tion threshold τ , with a value ≥ 3 indicating the module is
“switched-off”. We see the output stabilising at τ = 2.8, as
lower values lead to aggressive approximate matching and
thus, False Positives (FPs). We later show that this thresh-
old is dependent on the nature of the dataset and should
not be viewed as a failure of the algorithm but rather as
resilience to meet the required level of matching.

Efficiency vs. Effectiveness Analysis: - Here we anal-
yse the performance of our system by varying the different
support parameters. As observed from Figure 4, we set η
= 0.3 and µ = 0.5. The first parameter to be considered
is the number of results - k, fetched from the search en-
gine for each query during enrichment phase. We observe,
in Figure 5, that the F1-score improves with increasing k
until k = 20. Thereafter, the scores continue to dip due
to the nature and quality response of the underlying search
engine. Algorithm 3 also exhibits identical behaviour (Fig-
ure 6) but is more aggravated for lower thresholds because

1174



Figure 4: F1-Score for Abt-Buy Dataset

Figure 5: Response of F1-score to different k values

of shorter queries; thus for a better performance including
lower processing cost we set κ = 10.

Importance of the Enrichment Module: - Here we
experimentally prove the importance of the cross title en-
richment module, namely the effect on system performance
using simple enrichment and no enrichment. Figure 7 shows
the importance of Algorithm 6, the heart of cross title en-
richment. One can see, plots with gain have a higher F1-
measure compared to their counterparts. Figure 8 shows
the F1-score without enrichment for the same parameter
setting of κ = 10. The figure shows the F1-score under
both assumptions: “soft matches” as FPs and “removing
soft matches from consideration”.

5.1.2 Amazon-Google Dataset
We start with the parameters as fixed in the previous run

i.e., η = 0.3, µ = 0.5, k = 20, κ = 10, and present the result
on Amazon-Google dataset. Figure 9 shows the response
curve of our system under different scheme. As before, the
scheme with cross title enrichment performs the best.

Table 3 compares of our method with many benchmark
techniques published in [19] and [16]. A detailed discussion
on the experimental results is provided in Section 5.3.

5.1.3 Heterogeneous Dataset
Figure 10 shows the F1-score curve for the given param-

eter thresholds on our heterogeneous dataset. Compared to
Figure 4 and Figure 9, we can see the best F1-score does
not lie towards the end of the x-axis, implying there is a
significant contribution of the community detection module
towards the performance. This is expected, as the enrich-
ment module by itself is incapable of handling the charac-
teristics of the data - synonyms and abbreviations. In line
with earlier observations, schemes with no enrichment and
no cross title re-ranking give inferior results, thus reinforcing
our methodology. Table 4 compares the proposed method
with nearest competitors from Table 3.

Figure 6: Response of F1-score to different κ values

Figure 7: F1-Score Simple Enrichment vs. CTE

Figure 8: F1-score Without Enrichment Module

Figure 9: F1-Score for Amazon-Google Dataset

5.1.4 Comparison of Community Detection
Algorithms

Here we experimentally show the superiority of our ap-
proach in detecting communities in a graph under this prob-
lem setting. One can treat the non-learning approach as el-
ementary clustering baselines under the premise of pair-wise
matching. We compare the F1-score obtained by employing
[15] and [4] in our framework. Recall that a threshold of 3
in above ROCs indicate the “switching off” of the commu-
nity detection module. Hence we will ignore that thresh-
old and its neighbourhood in our comparison for Abt-Buy

1175



Table 3: Comparison of F1-Score Across Benchmark Techniques - Product Domain
Dataset Learning Techniques Non-learning Techniques

FEBRL
SVM comb.

MARLIN
ADTree
comb.

MARLIN
SVM comb.

FEBRL
FellegiSunter +

Trigram

PPJoin+ +
Jaccard

IDF based
Cosine

Similarity

EN+IMP CTE+CDAM

Abt-Buy 44.5% 18.4% 54.8% 44.5% 47.4% 57% 62% 59.8%
Amazon-Google 46.5% 45.0% 50.5% 48.4% 41.9% 52.9% 36.4% 54.4%

Figure 10: ROC curve for Heterogeneous Dataset

Table 4: Comparison for Heterogeneous Dataset
Methods IDF EN+IMP CTE+CDAM
F1-score 50.4% 53.5% 69.43%

and Amazon-Google Datasets. In fact for these, we will re-
port the worst results from our framework to show that it
still outperforms the compared techniques. For the hetero-
geneous dataset, we report the best numbers as the corre-
sponding threshold is not close to the “switch-off” value -
refer Table 5. The failure of Edge-Betweeness is due to se-
mantics associated to inter-title edges (refer Figure 3) and
is explained in Section 3.1. Though the definition of mod-
ularity is very well suited to our problem statement, it has
performance issues on smaller graph (shown here experimen-
tally and proven theoretically in [14]).

Table 5: Comparison of Community Detection Algorithms
Dataset Edge Be-

tweenness
Blondel’s
Algorithm

CDAM

Abt-Buy 29.8% 37.8% 49.41%
Amazon-Google 26.8% 31.6% 41.06%
Heterogenous 58.48% 63.2% 69.43%

5.2 Performance on Bibliography Dataset
Here we briefly discuss on how well our method scales to

other domains. As can be seen from Table 6, our method
gives promising results. However, unlike the product do-
main, the best F1-score lies between the threshold ranges of
2.6 to 3. Because these datasets do not have unique identi-
fying tokens like model number, we have removed IDF based
cosine similarity from comparison. EN+IMP has a limited
capability in assigning right scores and hence there is a high
fluctuation in scores across the two datasets. It is to be
noted that the search engine vertical is generic and despite
this, we have achieved a good F1-Score. Thus it is our hy-
pothesis, that with the right search vertical, the performance
of the system can but only improve.

5.3 Discussion on Results
So far we have evaluated our system on 5 datasets, each of

which presents unique characteristics. The results are sum-
marised below:
(1) Cases like Abt-Buy dataset that have unique identi-
fiers and no accessory titles are simpler. This can be seen

Table 7: F1-Score comparison for accessories
IDF+cosine EN+IMP CTE CDAM CTE+CDAM

% FPs 79.76% 49.4% 34.5% 0% 46.7%

from relatively high F1-Scores compared to Amazon-Google
dataset. IDF and EN+IMP are conceptually at an advan-
tage but our method is still able to match their performance.
(2) In cases where the semantics play an important role, like
Amazon-Google, “Heterogeneous” and bibliography domain
datasets, our method consistently ranks in top 2 and this
despite making use of a generic search engine. In fact we
rank the best in the more difficult of the two bibliography
dataset (DBLP-Scholar) - Table 6.
(3) Compared to learning techniques we perform better as
we are not restrained by its static features and also owing
to semantic awareness that is lacking in its training part.
(4) As shown in Table 5, the proposed technique for com-
munity detection is better suited to our problem domain
than some of the state of the art. The community detec-
tion module is strictly useful for detecting “soft-matches”
and “synonyms”. As can be seen in ROC curves for Abt-
Buy and Amazon-Google datasets, the best score lie towards
the “switch-off” value. This is because of the nature of the
datasets and should not be misconstrued as ineffectiveness
or redundancy of the community detection module. These
datasets have exact matches and they are handled promis-
ingly by cross-title enrichment module and do not require
approximate matching facilitated by CDAM. Thus, based
on the nature of dataset and the required level of match-
ing (hard vs. soft) one can fine-tune the threshold value.
The importance of community detection module is evident
in the “heterogeneous dataset” and in bibliography domain
dataset. It is also worthwhile to point out that, though with
the community detection module switched-on does not yield
the best result in Abt-Buy and Amazon-Google datasets, it
still performs better than some of the techniques in Table 3.
(5) We are able to better handle the accessories scenario
than our nearest competitors. Table 7 gives a comparison of
False Positives (FPs) for about 100 product-accessory com-
parison. EN+IMP because of its within title importance
ranking scheme tends to do a lot better than IDF based co-
sine which assigns a global score to the tokens and is not
locally sensitive. Our method goes beyond EN+IMP as it
performs cross title context aware analysis. CDAM by itself
being stricter than CTE and CTE+CDAM has high preci-
sion and hence has fewer FPs but suffers from recall as seen
in earlier graphs - no enrichment. Because CTE+CDAM
is to be used only for soft-matches and synonyms where
approximate matching is required, one can settle to simple
CTE for accessory comparison.
(6) We will compare our run-time complexity with EN+
IMP, our closest ideological competitor. EN+IMP requires
at least N × (nC2 + 1) Web-firings, where n is the aver-
age number of tokens in a title and N the number of titles,
while the CTE+CDAM requires N × (1 + k) Web-queries

1176



Table 6: Comparison of F1-Score Across Benchmark Techniques - Bibliography Domain
Dataset Learning Techniques Non-learning Techniques

FEBRL
SVM comb.

MARLIN
ADTree comb.

MARLIN
SVM comb.

FEBRL FellegiSunter
+ Trigram

PPJoin+ +
Jaccard

EN+IMP CTE+CDAM

DBLP-ACM 97.3% 96.4% 96.4% 97.6% 91.9% 68.62% 96.99%
DBLP-Scholar 81.9% 82.6% 82.6% 57.2% 77.8% 70.26% 82.77%

Figure 11: ROC curve for Blocking Mechanism

for yielding similar results in Abt-Buy and Amazon-Google
dataset, since the best results are obtained with just cross
title enrichment module itself. k above represents the k in
Algorithm 7. As this operation can be regarded as accessing
the page and not a query, we can ignore this constant.
(7) A draw-back of using Web-search engine is that say a
manufacturer discontinues a product and he is regarded as
an authority source. The search engine in its updates re-
moves the corresponding pages from the top results severely
affecting the FPs. For example, “Samsung 52’ TV” and
“Samsung 40’ TV” from the Abt-Buy dataset (dated 2009)
turn up as matches owing to product discontinuity.

5.4 Blocking and Run Time Performance
Here we briefly discuss the efficiency of our technique. We

present the True Positive Rate vs. False Positive Rate for
all the dataset and for brevity will just show the total num-
ber of firings for Abt-Buy dataset. Please note, unlike other
methods, our run-time complexity is solely on the number
of search query firings as the cost involved in processing the
queries are external constants like bandwidth, server speed,
etc. Thus, the primary objective of blocking is to reduce
this - the enrichment section also partly assists in doing
so. As the best results for “exact matches” is obtained by
“switching-off” the community detection module, the theo-
retical bound as stated earlier is N × (1+k), where N is the
number of titles and k a constant representing page access.

Figure 11 shows the ROC curve for different thresholds
for Abt-Buy Dataset. The score is similar in definition to
F1-score and is computed based on the recall and FPs. One
can see, the best point is at η = 0.48 which gives a recall
of 1072/1097 matches in case of Abt-Buy dataset, and FPs
of 11418. This is far less FPs compared to the complete
cross of 1081×1092. In terms of queries, out of 12,490 pairs
of comparisons 3,176 were decided by the enrichment phase
itself, leaving 9,314 pairs of title for Algorithm 2. This filter-
ing drastically reduced the number of search engine queries
to 4.42 per pair, which is about the average number of pri-
vate tokens in a pair. Table 8 presents the blocking result
on various datasets and compares it with the values in [19].

6. RELATED WORKS
Entity resolution is a well-established problem that has

been studied extensively in [12][5]. However, as enumerated

in [19], product domain presents a unique challenge and
much of the existing work under-performs in this regard.
Furthermore, most widely used techniques are either super-
vised or require some user interaction [23]. A full-fledged
supervised system cannot handle the dynamics of product
representation as described in Table 1 and hence, the poor
F1-scores as shown in Table 3.

To rectify this problem, work has been done that uses
Web search engines to mimic domain knowledge without
user intervention and provide reasonably good results [16],
[8], [9]. While [8], [9] use a search engine or Web corpus
to identify discriminative tokens, [16] uses them instead to
add context and measure each token’s importance. All the
three techniques suffer from the problems described in this
paper as they use similarity measures that do not capture
the implicit relationship between tokens across titles. Pair-
wise de-duplication is studied in [2] and there has been usage
of this approach in literature. However, our method differs
from these papers in terms of defining the relationship across
pairs and uses Web-search instead to quantify the implicit
relationships. Also, the enrichment done is local to the pair
giving us a better and contextually more relevant enrich-
ment set.

Another approach towards entity resolution in product
domain is to identify the annotation labels like “brand”,
“model-number”, etc. Once this tagging is done all that one
has to do is to match titles on comparable annotations. Such
annotations though widely available through resources like
Freebase may not be applicable for all the different categories
of products such as clothing, video-games, etc. Also, these
annotations will not be completely useful in cases involving
synonymous titles with no token overlap - Category 2 in Ta-
ble 1 or in cases of soft-matches (variation in model number)
as shown in Category 3 of Table 1. These cases will require
training to understand and assign appropriate weights to
the annotations labels for matching. For instance the colour
attribute “green” in Category 3 is irrelevant while the acces-
sory “battery charger replacement” is more important than
model number “fe-140” in case of Category 4. Furthermore,
availability of manually curated fields for other text domains
like bibliography, celebrities, etc. complicates the portability
of this approach to other domains.

[18] considers the problem of matching unstructured of-
fers to structured product descriptions. A feature vector is
constructed using similarity between attribute values that
match the offer and the title. The similarity function is
then learnt by training a classifier. Ours is unsupervised
and does not require training data or specifications. [3] also
formulates the problem as a graph and perform clustering.
However, they tend to use the relations present in the ref-
erence document to describe the edge, for example whether
the authors ever co-authored a paper and using “author-of”
type relationships; resulting in scalability issues to other do-
mains. We on other hand establish the implicit relationships
and do not use any token related features.

1177



Table 8: Comparison of Blocking Techniques
Sources Source Size Perfect Result Mapping size (#correspondences) Our Performance

Source 1 Source 2 Cartesian
product

Trigram
Blocking Result

Our Blocking
Mechanism

Recall False
Positives

Abt-Buy 1,081 1,092 1,097 1.2 million 164,072 12,490 1,072 11,418
Amazon-Google 1,363 3,226 1,300 4.4 million 342,761 13,202 1,240 11,962

DBLP-ACM 2,616 2,294 2,224 6 million 494,000 8,185 2,143 6,042
DBLP-Scholar 2,616 64,263 5,347 168.1 million 607,000 13,834 4,604 9,230

7. CONCLUSIONS AND FUTURE WORK
In this work, we have proposed and validated an unsuper-

vised and online framework that is semantically conscious
and hence capable of disambiguating not only product but
also generic text entities. We achieve a better consistent
F1-scores compared to most state of the art techniques, in-
cluding supervised algorithms. The state of being seman-
tically conscious allows our framework to disambiguate en-
tities where other techniques fail outright, synonyms and
abbreviations. Furthermore, we demonstrate our method’s
ability to perform limited phrase detection and segmenta-
tion as an implicit and intrinsic part of the larger process.

In this aspect we find an interesting research problem:
Can the adjacency matrix along with limited training sam-
ples be used to train a tagger that is able to tag brands,
model numbers, etc. helping us in blocking phase? Will this
allow us to use the labels in conjunction with our frame-
work’s output to train a supervised algorithm for matching,
thus reducing the queries and time? Another aspect to inves-
tigate is making use of a custom query engine and removing
Web-search aspect. In this regard, can a customised search
engine on top of reference data that incorporates domain
knowledge improve the disambiguation quality?

8. ACKNOWLEDGEMENT
A.Z’s work is partly supported by NSF grant 1218393.

H.Q.N’s work is partly supported by NSF grant CCF-1319402.

9. REFERENCES
[1] R. Bayardo, Y. Ma, and R. Srikant. Scaling up all pairs

similarity search. pages 131–140, 2007.

[2] O. Benjelloun, H. Garcia-Molina, D. Menestrina, Q. Su,
S. E. Whang, and J. Widom. Swoosh: a generic approach to
entity resolution. The VLDB Journal—The International
Journal on Very Large Data Bases, 18(1):255–276, 2009.

[3] I. Bhattacharya and L. Getoor. Collective entity resolution
in relational data. ACM Transactions on Knowledge
Discovery from Data (TKDD), 1(1):5, 2007.

[4] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and
E. Lefebvre. Fast unfolding of communities in large
networks. Journal of Statistical Mechanics: Theory and
Experiment, 2008(10):P10008, 2008.

[5] D. G. Brizan and A. U. Tansel. A survey of entity
resolution and record linkage methodologies.
Communications of the IIMA, 6(3):41–50, 2006.

[6] A. Broder, P. Ciccolo, E. Gabrilovich, V. Josifovski,
D. Metzler, L. Riedel, and J. Yuan. Online expansion of
rare queries for sponsored search. In Proceedings of the 18th
international conference on World wide web, pages
511–520, 2009.

[7] S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive
operator for similarity joins in data cleaning. In ICDE,
pages 5–5, 2006.

[8] S. Chaudhuri, V. Ganti, and D. Xin. Exploiting web search
to generate synonyms for entities. In Proceedings of the
18th international conference on World wide web, pages
151–160, 2009.

[9] S. Chaudhuri, V. Ganti, and D. Xin. Mining document
collections to facilitate accurate approximate entity
matching. Proceedings of the VLDB Endowment,
2(1):395–406, 2009.

[10] Daniel Buchuk. Uk online porn ban: Web traffic analysis of
britain’s porn affair. SimilarWeb Blog, 2013.

[11] H. L. Dunn. Record linkage*. American Journal of Public
Health and the Nations Health, 36(12):1412–1416, 1946.

[12] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios.
Duplicate record detection: A survey. Knowledge and Data
Engineering, IEEE Transactions on, 19(1):1–16, 2007.

[13] I. P. Fellegi and A. B. Sunter. A theory for record linkage.
Journal of the American Statistical Association,
64(328):1183–1210, 1969.

[14] S. Fortunato and M. Barthelemy. Resolution limit in
community detection. Proceedings of the National Academy
of Sciences, pages 36–41, 2007.

[15] M. Girvan and M. E. Newman. Community structure in
social and biological networks. Proceedings of the National
Academy of Sciences, pages 7821–7826, 2002.

[16] V. Gopalakrishnan, S. P. Iyengar, A. Madaan, R. Rastogi,
and S. Sengamedu. Matching product titles using
web-based enrichment. In Proceedings of the 21st ACM
international conference on Information and knowledge
management, pages 605–614, 2012.

[17] M. Hepp. Goodrelations: An ontology for describing
products and services offers on the web. In Knowledge
Engineering: Practice and Patterns, pages 329–346. 2008.

[18] A. Kannan, I. E. Givoni, R. Agrawal, and A. Fuxman.
Matching unstructured product offers to structured
product specifications. In Proceedings of the 17th ACM
SIGKDD international conference on Knowledge discovery
and data mining, pages 404–412, 2011.

[19] H. Köpcke, A. Thor, and E. Rahm. Evaluation of entity
resolution approaches on real-world match problems.
Proceedings of the VLDB Endowment, 3(1-2):484–493,
2010.

[20] H. Köpcke, A. Thor, S. Thomas, and E. Rahm. Tailoring
entity resolution for matching product offers. In
Proceedings of the 15th International Conference on
Extending Database Technology, pages 545–550, 2012.

[21] Lise Getoor, Ashwin Machanavajjhala. Entity resolution for
big data. KDD Tutorial, 2013.

[22] G. Salton and C. Buckley. Term-weighting approaches in
automatic text retrieval. Information processing &
management, 24(5):513–523, 1988.

[23] S. Sarawagi and A. Bhamidipaty. Interactive deduplication
using active learning. In SIGKDD, pages 269–278, 2002.

[24] H. Wang, X. Zhang, J. Li, and H. Gao. Productseeker:
entity-based product retrieval for e-commerce. In
Proceedings of the 36th international ACM SIGIR
conference on Research and development in information
retrieval, pages 1085–1086. ACM, 2013.

[25] W. Willinger, D. Alderson, and J. C. Doyle. Mathematics
and the internet: A source of enormous confusion and
great potential. Defense Technical Information Center, 2009.

[26] C. Xiao, W. Wang, X. Lin, J. X. Yu, and G. Wang.
Efficient similarity joins for near-duplicate detection.
(TODS), 36(3):15, 2011.

[27] W. V. Zhang and R. Jones. Comparing click logs and
editorial labels for training query rewriting. In WWW 2007
Workshop on Query Log Analysis: Social And
Technological Challenges, 2007.

1178


