
Differentially Private Event Sequences over Infinite Streams

Georgios Kellaris1 Stavros Papadopoulos2
∗

Xiaokui Xiao3 Dimitris Papadias1

1HKUST 2Intel Labs / MIT 3Nanyang Technological University
{gkellaris, dimitris}@cse.ust.hk stavrosp@csail.mit.edu xkxiao@ntu.edu.sg

ABSTRACT
Numerous applications require continuous publication of statistics
for monitoring purposes, such as real-time traffic analysis, timely
disease outbreak discovery, and social trends observation. These
statistics may be derived from sensitive user data and, hence, neces-
sitate privacy preservation. A notable paradigm for offering strong
privacy guarantees in statistics publishing is ϵ-differential privacy.
However, there is limited literature that adapts this concept to set-
tings where the statistics are computed over an infinite stream of
“events” (i.e., data items generated by the users), and published
periodically. These works aim at hiding a single event over the en-
tire stream. We argue that, in most practical scenarios, sensitive
information is revealed from multiple events occurring at contigu-
ous time instances. Towards this end, we put forth the novel notion
of w-event privacy over infinite streams, which protects any event
sequence occurring in w successive time instants. We first formu-
late our privacy concept, motivate its importance, and introduce a
methodology for achieving it. We next design two instantiations,
whose utility is independent of the stream length. Finally, we con-
firm the practicality of our solutions experimenting with real data.

1. INTRODUCTION
There is a large number of applications that benefit from the con-

tinuous monitoring of statistics. For example, traffic services pub-
lish the number of cars per area in real-time to allow for optimal
route computation [2]. Moreover, hospitals periodically release
the number of patients suffering from certain diseases [1], which
may help in the timely discovery of disease outbreaks. In addition,
social networks constantly report the number of users currently
talking about a topic [3], which enables listing the hot topics for
targeted advertising. However, the inadvertent disclosure of such
statistics may compromise the privacy of the individuals, such as
the locations a commuter visits, the type of illness a patient suffers
from, and the political views a user communicates.

A popular paradigm for providing privacy in statistics publish-
ing with strong theoretical guarantees is ϵ-differential privacy [10].
This framework entails perturbing the data prior to their release, in

∗This work was done while the author was at HKUST.

This work is licensed under the Creative Commons Attribution
NonCommercialNoDerivs 3.0 Unported License. To view a copy of this li
cense, visit http://creativecommons.org/licenses/byncnd/3.0/. Obtain per
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 12
Copyright 2014 VLDB Endowment 21508097/14/08.

order to hide sensitive information about the individuals that par-
ticipate in the statistical analysis. Recently, this notion has been
applied to streaming scenarios [11, 16], where statistics are contin-
uously published at certain timestamps. These statistics are com-
puted over user events, i.e., “actions” taken by users at specific
timestamps that contribute to the published data. For instance, as-
sume that a traffic service periodically publishes the count of com-
muters per location. Then, the presence of a commuter at a specific
location is an event occurring at a certain timestamp.

There exist two definitions of differential privacy in such set-
tings; event-level and user-level [16]. The former protects any
single event, whereas the latter hides all the events of any user
throughout the entire stream. For example, event-level privacy pro-
tects a single location visit, whereas user-level privacy protects all
the location visits of any commuter. The privacy level affects the
amount of perturbation used, which is proportional to the contribu-
tion of the sensitive information to the statistics.

Prior work on differential privacy on streams mainly focuses on
event-level privacy on infinite streams [11, 27, 6, 7, 4], and user-
level privacy on finite streams [17]. The first category is not useful
in realistic scenarios where users cause events in contiguous times-
tamps, which collectively disclose sensitive information. For exam-
ple, although event-level privacy protects any single location visit,
it does not protect a user path traversed in successive timestamps.
The second category has limited applicability in most practical set-
tings, where data must be published indefinitely. For instance, it
is restrictive to assume that a traffic reporting service shuts down
after an a priori known time interval. On the other hand, offering
user-level privacy over infinite streams requires infinite amount of
perturbation, which destroys the utility of the data in the long run.

A novel problem. In this paper we merge the important gap be-
tween event-level and user-level privacy in streaming settings. In
particular, we propose w-event privacy, which protects any event
sequence occurring within any window of w timestamps. This
novel privacy definition is useful in numerous applications. For
instance, it can protect any temporally constrained movement tra-
jectory in traffic services, patient hospitalization, or succession of
related topics discussed by a user.

w-event privacy captures a superset of the applications of event-
level privacy, whereas for w = 1 the two definitions become equiv-
alent. However, it is narrower than user-level privacy, since it does
not hide multiple event sequences from the same user. Setting w
to infinity, w-event privacy converges to user-level privacy, inherit-
ing though the need for infinite perturbation and utility degradation
over time. In that sense, our definition strikes a nice balance be-
tween practicality and privacy, which expands the machinery for
differential privacy in infinite streams. The challenge lies in its rig-
orous formulation and the design of effective schemes to satisfy it.

1155

Contributions. We first formulate w-event privacy, and explain
that it gives rise to a new class of mechanisms. Next, we present a
sliding window methodology that captures a wide range of w-event
private mechanisms. A mechanism following our methodology
constructs a separate sub mechanism per timestamp, each spending
a certain privacy budget that controls the perturbation (the higher
the budget, the lower the perturbation). Then, w-event privacy is at-
tained when the sum of budgets of the mechanisms inside any win-
dow of w timestamps is at most the total privacy budget ϵ. In the
absence of previous work on this problem, we devise three bench-
marks adapting ideas from existing schemes. Their main weakness
is that they poorly allocate the budget across the event sequences,
which results in a low overall utility. This motivates the need for
new, flexible, dynamic budget allocation schemes.

Towards this end, we introduce two novel schemes tailored to
our proposed methodology, called Budget Distribution (BD) and
Budget Absorption (BA). These mechanisms effectively allocate
the budget relying on the fact that the statistics may not change sig-
nificantly in successive timestamps. Specifically, based on a private
sub mechanism that calculates the dissimilarity between statistics,
they skip the publications that can be accurately approximated by
the last publication. Skipping a publication implies that no budget
is spent at that timestamp, which becomes available for a future
publication. BD and BA differ in the way they dynamically allo-
cate the available privacy budget over time. BD starts with the en-
tire available budget and distributes it in an exponentially decreas-
ing fashion as publications occur, while reusing the budget used
at older timestamps. On the other hand, BA uniformly allocates
the initial budget over the timestamps at first, but absorbs budgets
that became available from previously skipped publications. We
include a utility analysis for our schemes, and propose optimiza-
tions. Finally, we experimentally evaluate them on real datasets,
and confirm their effectiveness.

2. BACKGROUND
This section surveys the related work, providing the preliminary

definitions and theorems that are necessary for the rest of the pre-
sentation. Section 2.1 explains ϵ-differential privacy, whereas Sec-
tion 2.2 describes this notion in scenarios where statistics are con-
tinuously published over time in the form of streams.

2.1 Differential Privacy
In the ϵ-differential privacy paradigm, a trusted curator gathers

potentially sensitive data from a large number of respondents, cre-
ating a database D. The goal is to publish statistics computed on D,
without compromising the privacy of the respondents. The curator
achieves this goal by randomly perturbing the statistics, such that
(i) the presence of any individual in D is hidden, and (ii) the pub-
lished data have high utility, i.e., the perturbation does not greatly
affect their accuracy with respect to the actual statistics.

Formally, let D denote a set of databases. Each D ∈ D is per-
ceived as a set of rows. Two databases D,D′ ∈ D are neighbor-
ing if we can obtain D′ from D by removing or adding a single
row. Let M be a randomized mechanism, which takes as input a
database from D and outputs a transcript in some range O. The cu-
rator runs M on D ∈ D, and publishes o ∈ O, i.e., o constitutes
the released statistics about D. The ϵ-differential privacy notion is
formulated as follows.

DEFINITION 1. [10] A mechanism M : D → O satisfies ϵ-
differential privacy, where ϵ ≥ 0, if for all sets O ⊆ O, and every
pair D,D′ ∈ D of neighboring databases

Pr[M(D) ∈ O] ≤ eϵ · Pr[M(D′) ∈ O]

The above definition states that the probability that M produces
a transcript o when a user is in D must be roughly the same as in
the case where this user is absent from D. Hence, the adversary
infers no more information from o about the user than in the case
where the individual’s data were absent from the database. The
smaller the value of ϵ, the stronger the privacy guarantees.

The first technique to satisfy ϵ-differential privacy is the Laplace
Perturbation Algorithm (LPA) [14, 12]. Its main idea is to add noise
drawn from a Laplace distribution into the statistics to be published.
The scale of this distribution must be proportional to the effect that
a single user can have on the statistical result. The latter is called
sensitivity and formalized as follows. We view the statistics as the
result of a query on D. For example, the query may ask for the
count of each column of D. We model the query as a function
Q : D → Rd, where d is the number of elements in the output.
Let ∥Q(D)−Q(D′)∥1 denote the L1 norm of Q(D),Q(D′).
The sensitivity of Q w.r.t. D is ∆(Q) = maxD,D′∈D ∥Q(D) −
Q(D′)∥1 for all neighboring D,D′ ∈ D [14].

Let Lap(λ) be a random value drawn from a Laplace distribution
with mean zero and scale λ. LPA achieves ϵ-differential privacy
through the mechanism outlined in the following theorem.

THEOREM 1. [14] Let Q : D → Rd. A mechanism M that
adds independently generated noise from a zero-mean Laplace dis-
tribution with scale λ = ∆(Q)/ϵ to each of the d output values
of Q(D), i.e., which produces o = Q(D) + ⟨Lap(∆(Q)/ϵ)⟩d
satisfies ϵ-differential privacy.

The higher the ∆(Q) or the smaller the ϵ, the larger the re-
quired noise for achieving ϵ-differential privacy. This is justified
since (i) the larger the effect of any user on the result, the larger the
amount of noise needed to “hide” the user, and (ii) the stronger the
privacy guarantees, the more independent the M’s output should
be with respect to the input, which mandates larger noise.

Although LPA is a general methodology for ϵ-differential pri-
vacy, there are scenarios in which the required noise is prohibitively
large, and destroys the utility of the published statistics. Therefore,
many approaches have been proposed in order to improve upon the
LPA algorithm on specific settings. The Fourier Perturbation Al-
gorithm (FPA) [29] focuses on time-series data. Roth and Rough-
garden [30] propose the median mechanism for an interactive set-
ting, where the adversary requests statistics about D multiple times
in an adaptive fashion. There are also works that focus on other
specialized scenarios, such as range-count queries [32, 8], query
consistency [19], sparse data [9, 23], correlated queries [18, 21],
frequent itemsets [33, 22], trajectories [20], minimization of rela-
tive error [31], and non-numerical query answers [26]. PINQ [25]
is a system implementation that integrates differential privacy with
data analysis. Finally, there are several relaxations of ϵ-differential
privacy [13, 24, 28].

We include a composition theorem that is useful for our proofs.
It concerns successive executions of differentially private mecha-
nisms on the same input.

THEOREM 2. [25] Let M1, . . . ,Mr be a set of mechanisms,
where Mi provides ϵi-differential privacy. Let M be another mech-
anism that executes M1(D), . . . ,Mr(D) using independent ran-
domness for each Mi, and returns the vector of the outputs of these
mechanisms. Then, M satisfies

(∑r
i=1 ϵi

)
-differential privacy.

The above theorem allows us to view ϵ as a privacy budget that
is distributed among the r mechanisms. Moreover, note that the
theorem holds even when Mi receives as input the private outputs
of M1, . . . ,Mi−1 [25].

1156

2.2 Differential Privacy on Streams
So far we have focused on statistics that are derived from a static

dataset. In this section, we describe how ϵ-differential privacy
applies to settings where the dataset is dynamically updated by a
stream, and the curator continuously publishes new statistics cap-
turing the updates. In such a streaming scenario, every user is as-
sociated with events, i.e., “actions” taken by the user, which are
modeled as update items in the stream that contribute to the new
statistics. There are typically two different privacy goals in the lit-
erature, namely event-level and user-level. The former hides a sin-
gle event, whereas the latter hides all the events of any user (thus
concealing completely the presence of the user in the analysis).

The two works that initiated the study on this setting are [11,
16]. They view a data stream as a sequence of symbols drawn from
a domain X , where each symbol represents a user’s event (e.g.,
x ∈ X may refer to event “user u visited location j”). The stream
is essentially an array S, where element S[1] corresponds to the
first event that occurred, and new events/symbols are appended at
the end of S as time elapses. If the stream S is infinite, we use St

to denote the prefix of S after t updates, i.e., St = (S[1], . . . , S[t]).
To model privacy, [16] defines the notion of adjacency between

stream prefixes, which is similar to the concept of neighboring
databases in the static case. Specifically, stream prefixes St, S

′
t

are event-level adjacent, if there exists at most one i such that
St[i] ̸= S′

t[i], i.e., if they differ in at most one symbol. More-
over, St, S

′
t are user-level adjacent if, for any user u, it holds that

St[i] ̸= S′
t[i] for any number of St[i]’s corresponding to u’s events,

i.e., if they differ in any number of symbols belonging to u. Differ-
ential privacy under continual observation is defined as follows.

DEFINITION 2. [11, 16] Let M be a mechanism that takes as
input a stream prefix of arbitrary size. Let O be the set of all
possible outputs of M. Then, M is event-level (user-level) ϵ-
differentially private if for all sets O ⊆ O, all event-level (resp.
user-level) adjacent stream prefixes St, S

′
t, and all t, it holds that

Pr[M(St) ∈ O] ≤ eϵ · Pr[M(S′
t) ∈ O]

Most existing schemes focus on event-level privacy in publish-
ing counters, i.e., in reporting at every timestamp the number of
event occurrences since the commencement of the system. In such
scenarios, the effect of a single event spans over all subsequent pub-
lications. The schemes view the data stream as a bitstring, and at
each timestamp they publish the number of 1’s seen so far. Upon
the arrival of an update, Dwork [11] adds to the counter the up-
date value along with Laplace noise of scale 1/ϵ. The author states
that this works well in dense (in terms of 1’s) streams, but it may
be ineffective in sparse cases. To remedy this, she also proposes to
postpone publishing a new counter value, until a predefined number
of 1’s has been seen. [11] also deals with other counting problems,
such as density estimation, cropped mean, and heavy hitters.

Dwork et al. [16] improve upon the counter publishing schemes
of [11]. They focus on a stream of fixed length T , and build a
full binary tree over the updates of the stream. Every node stores a
noise value with scale logarithmic in T . Then, at the ith update, they
identify the subtrees it belongs to, and report the current counter af-
ter adding the noise values stored in the roots of these subtrees. A
similar result appeared independently in [6]. The proposed scheme
constructs a full binary tree on the updates, where each node con-
tains the sum of the updates in its subtree, plus noise with scale log-
arithmic in T . At each update i, it identifies the maximal subtrees
covering updates 1 to i, and reports the sum of the values stored in
their roots. The authors extend their work to infinite streams, by
constructing a new binary tree after seeing 2κ updates, for κ ∈ N.

Bolot et al. [4] extend [6] by proposing decayed sums, which
emphasize on recent data more than the data of the past. More-
over, they present the new notion of decayed privacy, where past
data are not viewed as private anymore and, thus, they can be used
in their raw form. Mir et al. [27] consider counters that may also
decrease. They improve upon the counting schemes of [11] by uti-
lizing sketches. Chan et al. [7] report the heavy hitters instead of
the counter values in various settings, such as sliding windows and
multiple streams with untrusted aggregators.

There are also two schemes that depart from the counter-based
setting. Cao et al. [5] specify a set of range queries on the time
domain before the system starts. Each query requests the sum of
the updates therein. The goal is to determine the optimal strategy
for answering all the queries, by responding to larger ranges us-
ing the noisy answers of smaller subranges. Fan and Xiong [17]
report counts at every timestamp, focusing on user-level privacy.
They assume a finite stream, and use sampling to reduce the noise;
given a pre-specified number of samples, they choose a subset of
timestamps to publish the data, in a way that reduces the total error.

3. PROBLEM DEFINITION
We introduce a new privacy definition, motivate its importance,

and propose a novel methodology for achieving it. In the absence
of direct competitors in the literature, we also devise benchmark
schemes by adapting work proposed in different scenarios.

Setting and privacy goal. The curator receives updates from an
infinite data stream S at discrete timestamps. At every timestamp i,
the curator collects a database Di with d columns and an arbitrary
number of rows, where every row corresponds to a unique user, and
every column represents an event. The value in row u and column
j is 1 if event j of user u has occurred at i, and 0 otherwise. Every
row contains at most one 1. We model the stream as an infinite
tuple S = (D1, D2, . . .), where S[i] is the ith element of S. We
define a stream prefix of S at t as tuple St = (D1, D2, . . . , Dt).
At each timestamp i, the curator wishes to publish the count of
every column in Di (i.e., the number of non-zero elements in each
column). Let a count query be Q : D → Rd, where D is the set
of all databases with d columns. Then, Q(S[i]) = Q(Di) = ci is
the data to be released at i, where ci[j] is the count of column j of
Di. Hence, the curator generates infinite stream (c1, c2, . . .) while
collecting S. Note that the sensitivity of Q is ∆(Q) = 1.

We justify our model with an example. Suppose that a curator
collects at timestamp i a database Di from a traffic reporting ser-
vice. This database contains one row for every commuter, and a
set of columns corresponding to locations in a road network. The
value in row u and column j is 1 if commuter u is at location j
at timestamp i, and 0 otherwise. Since any commuter can be at a
single location at each timestamp, every row can have at most a
single 1. The curator publishes at i the count of every column of
Di, which represents the number of commuters per location at i.
This system runs indefinitely. We next explain our privacy goal.

We call two databases Di, D
′
i at timestamp i as neighboring if

we can obtain D′
i from Di by removing or adding a row (i.e., we

use the term in the same manner as in Section 2.1). We also require
a new notion of neighboring stream prefixes, defined below.

DEFINITION 3. Let w be a positive integer. Two stream prefixes
St, S

′
t are w-neighboring, if

(i) for each St[i], S
′
t[i] such that i ∈ [t] and St[i] ̸= S′

t[i], it
holds that St[i], S

′
t[i] are neighboring, and

(ii) for each St[i1], St[i2], S
′
t[i1], S

′
t[i2] with i1 < i2, St[i1] ̸=

S′
t[i1] and St[i2] ̸= S′

t[i2], it holds that i2 − i1 + 1 ≤ w.

1157

In other words, if St, S
′
t are w-neighboring, then (i) their ele-

ments are pairwise the same or neighboring, and (ii) all their neigh-
boring databases can fit in a window of up to w timestamps.

DEFINITION 4. Let M be a mechanism that takes as input a
stream prefix of arbitrary size. Also let O be the set of all possi-
ble outputs of M. We say that M satisfies w-event ϵ-differential
privacy (or, simply, w-event privacy) if for all sets O ⊆ O, all
w-neighboring stream prefixes St, S

′
t, and all t, it holds that

Pr[M(St) ∈ O] ≤ eϵ · Pr[M(S′
t) ∈ O]

This definition captures settings where sensitive information is
disclosed from an event sequence of some finite length w, i.e., from
a set of events where (i) each event occurs at a different timestamp,
and (ii) all the events occur within w consecutive timestamps. Re-
visiting our traffic reporting service example, an event sequence of
length w may be a trajectory over a set of locations traversed within
w consecutive timestamps. In this scenario, w-event privacy pro-
tects any such trajectory of any commuter anywhere in the stream.
w-event privacy expands event-level privacy [16]. If we set w =

1 and flatten element St[i] so that it corresponds to a sequence
of symbols, our w-neighboring definition becomes equivalent to
event-level adjacency and, thus, w-event privacy degenerates to
event-level privacy. For w > 1, w-event privacy offers stronger
guarantees, at the cost of an error increase. However, we shall see
that this error depends on w, but not on the stream length, which
guarantees that utility does not degrade over time. Setting w = t,
w-event privacy converges to user-level privacy. Hence, w-event
privacy strikes a nice balance between privacy and utility.

One may argue that w-event privacy can be satisfied by any user-
level private mechanism as follows. We decompose the stream pre-
fix St into disjoint sub sequences, each of length w. We then break
mechanism M into sub mechanisms Mi, each corresponding to
a different such sub sequence. Every Mi is any user-level private
mechanism for finite streams (e.g., [17]), since we know a priori
the length of its sub sequence. By Definition 3, any w-neighboring
prefix S′

t will differ from St in at most two adjacent sub sequences.
If we assign budget ϵ/2 to each Mi, the condition in Definition 4
holds and, thus, w-event privacy is satisfied.

Nevertheless, this adaptation of user-level privacy to achieve w-
event privacy substantially constrains the design and effectiveness
of the Mi instantiations. Specifically, every Mi acts indepen-
dently and allocates budget ϵ/2 to a specific sub sequence of fixed
length w. This approach increases the error by a fixed factor of
two for any sub sequence of length w in the stream. Furthermore,
it hinders budget allocation optimizations for sub sequences that
span over two sub mechanisms. In particular, the sub sequences
that fall entirely in the scope of a sub mechanism may be more
benefited (e.g., from adaptive sampling as in [17]) than those that
are split between two sub mechanisms.

Ideally, a w-event private mechanism should achieve two goals:
for every sub sequence of length w anywhere in stream St, it should
(i) allocate up to ϵ budget, and (ii) take budget allocation deci-
sions considering the entirety of the sub sequence. From the above
discussion, the adaptation of user-level privacy fails to meet these
goals. This suggests that w-event privacy gives rise to novel mech-
anisms that depart from the user-level privacy literature. Towards
this end, we next propose a framework that allows the design of a
large class of w-event private mechanisms, achieving the two goals.

A sliding window methodology. The main idea is to view a mech-
anism M on a stream prefix St as the composition of t mechanisms
M1, . . . , Mt, where every Mi operates on St[i] = Di at times-
tamp i and uses independent randomness. We analyze the privacy

level of every Mi separately. Let Mi be ϵi-differentially private,
for some ϵi. In order for M to satisfy w-event privacy, it suffices
to ensure the following condition. Let the active window of size
w of timestamp i span from i − w + 1 to i. Then, the sum of
ϵi−w+1, . . . , ϵi must be smaller than or equal to ϵ. Moreover, this
should hold for any timestamp, i.e., as the active window slides
over time. We formulate this observation in the theorem below.

THEOREM 3. Let M be a mechanism that takes as input stream
prefix St, where St[i] = Di ∈ D, and outputs a transcript o =
(o1, . . . ,ot) ∈ O. Suppose that we can decompose M into t
mechanisms M1, . . . ,Mt, such that Mi(Di) = oi, each Mi

generates independent randomness and achieves ϵi-differential pri-
vacy. Then, M satisfies w-event privacy if

∀i ∈ [t],

i∑
k=i−w+1

ϵk ≤ ϵ (1)

PROOF. Since all the mechanisms use independent randomness,
the following holds for stream prefix St and any mechanism output
(o1, . . . ,ot) ∈ O ⊆ O:

Pr[M(St) = (o1, . . . ,ot)] =

t∏
k=1

Pr[Mk(Dk) = ok]

Similarly, for any w-neighboring stream prefix S′
t of St and the

same (o1, . . . ,ot), it holds:

Pr[M(S′
t) = (o1, . . . ,ot)] =

t∏
k=1

Pr[Mk(D
′
k) = ok]

By Definition 3, there exists i ∈ [t], such that Dk = D′
k for

1 ≤ k ≤ i−w and i+ 1 ≤ k ≤ t. Combining this with the above
two equations, we get

Pr[M(St) = (o1, . . . ,ot)]

Pr[M(S′
t) = (o1, . . . ,ot)]

=

i∏
k=i−w+1

Pr[Mk(Dk) = ok]

Pr[Mk(D′
k) = ok]

Due to Definition 3, it holds that database pairs Dk, D
′
k are

neighboring for i− w + 1 ≤ k ≤ i. Since Mk is ϵk-differentially
private and due to Definition 1, it holds that Pr[Mk(Dk)=ok]

Pr[Mk(D
′
k
)=ok]

≤ eϵk .
Thus, we derive that

Pr[M(St) = (o1, . . . ,ot)]

Pr[M(S′
t) = (o1, . . . ,ot)]

≤
i∏

k=i−w+1

eϵk = exp

(
i∑

k=i−w+1

ϵk

)
Adding probabilities Pr[M(St) = (o1, . . . ,ot)] over any O ∈

O, we get Pr[M(St)∈O]
Pr[M(S′

t)∈O]
≤ exp

(∑i
k=i−w+1 ϵk

)
. Hence, if For-

mula (1) holds, then we get Pr[M(St)∈O]
Pr[M(S′

t)∈O]
≤ eϵ which, due to Defi-

nition 4, concludes our proof.

Note that our theorem holds even if we provide the previous pri-
vate outputs o1, . . . ,oi−1 as input to Mi for every i [25], as well
as the previously allocated budgets ϵ1, . . . , ϵi−1 [12].

This theorem enables a w-event private scheme to view ϵ as
the total available privacy budget in any sliding window of size
w, and appropriately allocate portions of it across the timestamps
therein. Observe that, contrary to the user-level privacy adaptation
discussed before, this methodology (i) allows any sub sequence of
length w in the stream to enjoy up to ϵ budget, and (ii) enables
each Mi to decide on budget ϵi considering the budgets allocated
to sub sequence St[i−w+1], . . . , St[i− 1], and optimize budget
allocation for the entire sub sequence St[i− w + 1], . . . , St[i].

1158

The challenge in designing mechanisms that follow this method-
ology lies in the budget allocation technique, which must respect
the condition of the theorem for any sliding window over time. This
is because (i) the ϵi values determine the noise scale and, hence,
have a direct effect on the accuracy of the outputs, and (ii) in a
streaming setting, ϵi may need to be specified on-the-fly as the data
arrive at the curator.

Benchmark methods. No existing scheme is directly applicable
to our targeted setting. The works that aim at event-level privacy
in infinite streams [11, 27, 6, 7] capture counter-based scenarios,
whereas in our model each event contributes to a single published
statistic. Cao et al. [5] exploit overlapping query ranges, whereas
we publish non-overlapping counts at each timestamp. Further-
more, all the schemes in the static scenario (described in Section
2.1) require a priori knowledge of all data, whereas we process the
data on-the-fly as they arrive from the stream. The only ideas that
can be adapted to our model are from [17, 4], noting though that
these target at significantly different settings from ours. Specifi-
cally, FAST [17] supports finite streams, whereas Bolot et al. [4]
study a more relaxed privacy concept called decayed privacy. We
next design three competitors based on [17, 4]. The first is an in-
stantiation of the user-level privacy adaptation to w-event privacy
we discussed above, using FAST, which consists of sub mecha-
nisms, each operating on a disjoint window of w timestamps. On
the other hand, the other two, called Uniform and Sample, are tai-
lored to our sliding window methodology, and are comprised of sub
mechanisms, each operating at a single timestamp.

The first competitor, termed as FASTw, instantiates each sub
mechanism Mi with FAST, and allocates budget ϵ/2. Mi views
its sub sequence as a finite stream of (a priori known) length w, and
applies an adaptive sampling technique to each column count sepa-
rately. Given a pre-specified number of samples, it selects (on-the-
fly as it receives the stream) only a subset of timestamps to publish,
skipping the rest and approximating them with the corresponding
lastly published statistics. The budget allocation depends on the
number of samples and the length of the stream, which explains
why FAST cannot work directly with infinite streams.

Bolot et al. [4] utilize LPA independently at every timestamp. In
particular, they inject at every published statistic Laplace noise with
scale proportional to w instead of the entire stream length. Our Uni-
form scheme employs a similar approach. Specifically, Uniform
is a mechanism M composed of sub mechanisms M1,M2, . . .,
such that, at every timestamp i, Mi calculates Q(Di), and injects
to the result Laplace noise with scale λi = w · ∆(Q)/ϵ. Recall
that, in our setting, the sensitivity ∆(Q) of Q at every timestamp
is equal to 1. Hence, due to Theorem 1, Mi satisfies ϵi-differential
privacy, where ϵi = 1/λi = ϵ/w. Observe that all the ϵi’s are
equal, i.e., Uniform distributes privacy budget uniformly across the
timestamps. It is easy to see that, for any window of size w, the
sum of the ϵi’s therein is equal to ϵ, which satisfies the condition of
Theorem 3 and, hence, leads to w-event privacy.

Finally, since the adaptive sampling of FAST cannot be applied
to infinite streams, we tailor a simpler sampling technique to our
sliding window methodology. Specifically, we design Sample as a
mechanism M composed of sub mechanisms M1,M2, Mech-
anism Mi publishes Q(Di) with Laplace noise of scale λi = 1/ϵ
when (i mod w) = 1, and with infinite scale otherwise. Perceiv-
ing each publication with infinite noise as skipped and approximat-
ing it with its immediately preceding release, Sample performs
a single publication every w timestamps (i.e., it samples the time
domain with a fixed rate). Mi is ϵ-differentially private when (i
mod w) = 1 and 0-differentially private otherwise. Therefore,
Sample satisfies Formula (1) and achieves w-event privacy.

4. PROPOSED METHODS
Section 4.1 outlines the main idea behind our constructions. Sec-

tions 4.2 and 4.3 introduce our BD and BA mechanisms, respec-
tively, and Section 4.4 analyzes their utility. Section 4.5 includes
effective optimizations.

4.1 Main Idea
FASTw inherits the budget allocation shortcomings of the gen-

eral user-level privacy adaptation we discussed in Section 3. On
the contrary, Uniform and Sample adhere to our sliding window
methodology. The latter requires that the sum of the individual
privacy budgets of the sub mechanisms operating in any window
of size w is at most equal to the total budget ϵ. Uniform assigns
the same budget to every timestamp (equal to ϵ/w). If w is large,
this budget becomes very small, which makes the noise scale pro-
hibitively high and destroys the statistics. On the other hand, Sam-
ple invests the entire budget ϵ on a single timestamp within the
window, which makes that publication very accurate. However, it
approximates the next w − 1 statistics with the published one. If
these statistics greatly differ from the preceding release, the result-
ing error may become excessive and even exceed that of Uniform.

Our new solutions follow the sliding window methodology, and
are motivated by the shortcomings of Uniform and Sample. Specif-
ically, contrary to Sample, we decide on which publications to
skip based on the dissimilarity between statistics. The main idea
is to check at every timestamp whether it is more beneficial to ap-
proximate the current statistics with the last release, than to pub-
lish them with the necessary noise. This check is facilitated by a
private dissimilarity calculation sub mechanism. Moreover, in con-
trast to Uniform, we do not allocate the privacy budget uniformly,
but rather invest it on publications that need it the most. At each
timestamp, our statistics are either (i) published with low noise, or
(ii) accurately approximated by another release.

Im more detail, each scheme consists of a sequence of sub mech-
anisms M1,M2, . . ., where Mi operates at timestamp i. Figure
1 illustrates the architecture of Mi. It takes as input all the previ-
ous private publications o1, . . . ,oi−1 that occurred at timestamps
1, . . . , i− 1, respectively, as well as budgets ϵ1, . . . , ϵi−1, and out-
puts a new transcript oi.

Mi

i

Di

streamtimestamp

Private Dissimilarity
Calculation

Mi,1

Private Publication

Mi,2

oi

o1, . . . ,oi−1

ǫ1, . . . , ǫi−1

dissimilarity

Figure 1: Internal mechanics of Mi

Mechanism Mi is further decomposed into two sub mechanisms
Mi,1 and Mi,2, which operate sequentially with independent ran-
domness. Mi,1 performs a dissimilarity computation algorithm be-
tween ci of the incoming database Di and the last private release
belonging in o1, . . . ,oi−1. The dissimilarity measure is orthog-
onal to the implementation; any standard measure is applicable.
The result of the calculation is forwarded to Mi,2, which uses it to
decide whether to publish ci or not. Mi,2 publishes oi, which is

1159

either ci with noise (decided based on ϵ1, . . . , ϵi−1), or null . In the
latter case, ci is approximated with the last non-null publication.

Both Mi,1 and Mi,2 must be private, i.e., we must invest pri-
vacy budget on them, which will determine the amount of noise
injected in their outputs. Note that, although the dissimilarity re-
sult of Mi,1 appears only within the internal operation of Mi, we
must consider it as being published. This is because the adversary
knows that Mi,1 computes the dissimilarity on the sensitive data
Di, whose value affects the decision taken by Mi,2. Thus, Mi,1

must add proper noise to the dissimilarity value. Let ϵi,1 and ϵi,2
be the budgets spent in Mi,1 and Mi,2, respectively. Then, due to
Theorem 2, the privacy budget of Mi is ϵi = ϵi,1 + ϵi,2.

We next present two schemes, BD and BA, that follow the archi-
tecture described above. They share a common private dissimilarity
calculation mechanism (Mi,1), which always spends a fixed budget
ϵi,1 for each timestamp. However, they differ in the private publi-
cation mechanism (Mi,2); each implements a different dynamic
allocation method for budget ϵi,2 over the stream. We refer to ϵi,1
as the dissimilarity budget, and to ϵi,2 as the publication budget.

4.2 Budget Distribution (BD)
The Budget Distribution (BD) scheme starts with the entire bud-

get ϵ and (i) allocates some fixed dissimilarity budget per times-
tamp, (ii) distributes publication budget in an exponentially de-
creasing fashion to the timestamps where a publication is decided
to occur, and (iii) recycles the budget spent in timestamps falling
outside the active window. If the mechanism decides to publish
at timestamp i, then the statistics at i are dissimilar from the last
release. Thus, it is beneficial to invest a high budget (i.e., inject
low noise) to the statistics at i, in order to (i) prevent distorting the
dissimilarity of the current statistics to the previous ones, and (ii)
retain the accuracy of the current statistics to better approximate
future ones if necessary. BD hopes that few publications will take
place in the same window. Hence, the first publications receive an
exponentially higher portion of the budget than the subsequent ones
as the window slides over time. When an old timestamp falls out
of the active window, its publication budget is recycled, essentially
“resetting” the available budget for future publications.

Figure 2 illustrates the pseudocode of Mi (operating at times-
tamp i) of BD. As explained in Section 4.1, Mi consists of the
private dissimilarity calculation sub mechanism Mi,1 (Lines 1-
4), and the private publication sub mechanism Mi,2 (Lines 5-8).
Mi,1 initially computes the query result on Di (Line 1); this ac-
counts for the vector ci of the d column counts of Di, where d is
a public system parameter. Next, it finds the last non-null release
ol from (o1, . . . ,oi−1) in Line 2. Subsequently, it calculates the
dissimilarity dis between ci and ol, employing the Mean Abso-
lute Error (MAE) as the dissimilarity measure (Line 3). We use
MAE because this is how we calculate the error in our utility anal-
ysis and experiments. Mi,1 invests some fixed dissimilarity budget
ϵi,1 = ϵ/(2 · w) to perturb the dis value. The reason behind this
choice of ϵi,1 will become clear soon. Next (Lines 3-4), it injects to
dis Laplace noise with scale λi,1 = (2 · w)/(ϵ · d) because, as we
shall soon prove, this renders Mi,1 as ϵi,1-differentially private.
Mi,2 calculates the remaining budget ϵrm for the active window

[i−w+1, i] (Line 5), since it must make sure that the total budget
spent in the current window does not exceed ϵ, before determining
ϵi,2. Note that ϵrm is equal to ϵ minus (i) the dissimilarity bud-
get spent in window [i − w + 1, i], and (ii) the publication budget
spent in window [i − w + 1, i − 1]. The budget in (i) is equal to∑i

k=i−w+1 ϵk,1 = w · (ϵ/(2 · w)) = ϵ/2, i.e., it is equal to half
the maximum budget, which leaves (at most) another half available
for Mi,2 in the same window. This justifies our choice to fix ϵi,1 to

Input: Di, (o1, . . . ,oi−1), (ϵ1, . . . , ϵi−1)
Output: oi

// Sub mechanism Mi,1

1. Calculate ci = Q(Di)
2. Identify last non-null release ol from (o1, . . . ,oi−1)

3. Set dis = 1
d

∑d
j=1 |ol[j]− ci[j]| and λi,1 = (2 · w)/(ϵ · d)

4. Set dis = dis + Lap(λi,1)

// Sub mechanism Mi,2

5. Calculate remaining budget ϵrm = ϵ/2−
∑i−1

k=i−w+1 ϵk,2
6. Set λi,2 = 2/ϵrm
7. If dis > λi,2, Return oi = ci + ⟨Lap(λi,2)⟩d
8. Else Return oi = null

Figure 2: Pseudocode of Mi in BD

ϵ/(2 · w). On the other hand, the budget in (ii) is
∑i−1

k=i−w+1 ϵk,2,
where ϵk,2 is not fixed (it depends on how publications occurred in
the past). Observe that

∑i−1
k=i−w+1 ϵk,2 encompasses only budgets

spent in [i−w+1, i− 1], which implies that any budget used out-
side this window becomes available again (for technical reasons,
for k ≤ 0 we set ϵk,1 = ϵ/(2 · w) and ϵk,2 = 0).

Next, in Lines 6-8, Mi,2 publishes the counts ci if it is more
beneficial than approximating them with the last release ol. Specif-
ically, it checks whether the error from the approximation with ol,
which is equal to dis , is larger than the error that will be induced
if ci is published with Laplace noise of scale λi,2 (which is set to
2/ϵrm in Line 6). The error from this noise, which is expressed
as the MAE on pair (ci,oi), is equal to λi,2. If the condition in
Line 7 is true, then we publish ci along with noise ⟨Lap(λi,2)⟩d;
in this case, we will show that the budget spent by Mi,2 is equal
to ϵi,2 = 1/λi,2 = ϵrm/2. Otherwise, Mi,2 sets oi to null (Line
8), which is equivalent to approximating ci with ol and, hence,
spending no budget for Mi,2, i.e., ϵi,2 = 0.

We make the following observations about BD. Every time we
publish the current statistics ci at some i, the budget allocated for
ϵi,2 is half the available budget for the active window. Now con-
sider that m publications occur after i, without recycling any old
budget. Then, in the mth publication, the publication sub mech-
anism will use budget ϵi,2/2m. This suggests that BD allocates
the ϵi,2 budgets in an exponentially decreasing fashion. Moreover,
recycling old budget “resets” the available budget and, hence, the
latter does not decrease indefinitely, but rather fluctuates over time.

Figure 3 illustrates the operation of BD in 6 timestamps for w =
3. Assume that the mechanism decides to publish at timestamps
1, 3, 4, releasing transcripts o1,o3,o4, respectively. At timestamps
2, 5, 6, it outputs null , which implies that the statistics at 2 are ap-
proximated with o1, and those of 5, 6 with o4. For every times-
tamp i, the Mi,1 mechanism of BD enjoys a fixed budget ϵi,1 =
ϵ/(2 · w) = ϵ/6. Concerning Mi,2, at timestamp 1, it assigns
ϵ1,2 = (ϵ/2 − 0)/2 = ϵ/4 according to Lines 5-6 in Figure 2.
At timestamp 2, ϵ2,2 = 0 since no publication occurs. Then, at
timestamp 3, it allocates ϵ3,2 = (ϵ/2− (ϵ/4+0))/2 = ϵ/8, which
is half of ϵ1,2. This indicates the exponential decrease in the bud-
gets across subsequent publications within the same window. At
timestamp 4, BD assigns ϵ4,2 = (ϵ2 − (0 + ϵ/8))/2 = 3ϵ/16.
Observe that, although the mechanism still allocates half of the re-
maining budget at timestamp 4, ϵ4,2 > ϵ3,2. This is because the
budget invested at 1 (ϵ/4) is recycled, i.e., added to the remaining
budget. The mechanism continues similarly at timestamps 5 and
6. Finally, notice that, in every window of size w = 3, the sum of
the budgets used by BD (which encompasses the budgets for both
Mi,1 and Mi,2), is always smaller than or equal to ϵ, which is the
requirement for satisfying 3-event privacy.

1160

1 2 3 4 5 6

ǫ1,1 = ǫ/6 ǫ2,1 = ǫ/6 ǫ3,1 = ǫ/6 ǫ4,1 = ǫ/6 ǫ5,1 = ǫ/6 ǫ6,1 = ǫ/6

w = 3

skipped

ǫ1,2 = ǫ/4 ǫ2,2 = 0 ǫ3,2 = ǫ/8 ǫ4,2 = 3ǫ/16 ǫ5,2 = 0 ǫ6,2 = 0

ǫ1 = 5ǫ/12 ǫ2 = ǫ/6 ǫ3 = 7ǫ/24 ǫ4 = 17ǫ/48 ǫ5 = ǫ/6 ǫ6 = ǫ/6

ǫ1 + ǫ2 + ǫ3 = 21ǫ/24 ≤ ǫ

ǫ2 + ǫ3 + ǫ4 = 39ǫ/48 ≤ ǫ

ǫ3 + ǫ4 + ǫ5 = 39ǫ/48 ≤ ǫ

ǫ4 + ǫ5 + ǫ6 = 33ǫ/48 ≤ ǫ

o1 o3 o4null null null outputs

time

budgets

Figure 3: Example of BD

THEOREM 4. BD satisfies w-event privacy.

PROOF. We first prove that Mi,1 satisfies ϵi,1-differential pri-
vacy for ϵi,1 = ϵ/(2 · w), and Mi,2 is ϵi,2-differentially private
for ϵi,2 = (ϵ/2 −

∑i−1
k=i−w+1 ϵk,2)/2 if it publishes, and ϵi,2 =

0 otherwise. Mi,1 privately outputs the MAE value Q′(Di) =
1
d

∑d
j=1 |ol[j] − ci[j]|. An insertion or deletion of a row from

Di results in altering the above result by at most 1/d (recall that,
in our setting, every row has a single 1 with all the rest elements
being 0). Hence, the sensitivity of Q′ is ∆(Q′) = 1/d. Mi,1

injects to MAE Laplace noise with scale λi,1 = (2 · w)/(ϵ · d).
Due to Theorem 1, Mi,1 is ϵi,1-differential privacy for ϵi,1 =

1/d
(2·w)/(ϵ·d) = ϵ/(2 · w). Mi,2 privately publishes Q(Di) = ci

or null . In the former case, the sensitivity of Q is ∆(Q) = 1
in our setting, and the mechanism injects Laplace noise with scale
2/(ϵ/2−

∑i−1
k=i−w+1 ϵk,2). Hence, due to Theorem 1, Mi,2 is ϵi,2-

differential privacy for ϵi,2 = (ϵ/2 −
∑i−1

k=i−w+1 ϵk,2)/2. In the
latter case, ϵi,2 is trivially equal to zero, as no publication occurs.

According to Theorem 3, we must prove that, for every t and
i ∈ [t], it holds that

∑i
k=i−w+1 ϵk ≤ ϵ. Due to Theorem 2, in

BD it holds that ϵk = ϵk,1 + ϵk,2 and, hence,
∑i

k=i−w+1 ϵk =∑i
k=i−w+1 ϵk,1+

∑i
k=i−w+1 ϵk,2 = ϵ/2+

∑i
k=i−w+1 ϵk,2, since

every ϵk,1 is fixed to ϵ/(2 · w). Therefore, it suffices to prove that
0 ≤

∑i
k=i−w+1 ϵk,2 ≤ ϵ/2, where the comparison with zero is for

correctness (differential privacy is not defined for ϵ < 0). We can
prove the above by induction, setting the first w timestamps as the
base window/case, and sliding an arbitrary window in the stream
by one timestamp in the inductive step (we omit the details due to
space limitations). Intuitively, this holds because Mi,2 always uses
up to half of the available publication budget.

4.3 Budget Absorption (BA)
The Budget Absorption (BA) mechanism follows a similar de-

cision algorithm to BD for publishing at the timestamps based on
dissimilarity, but implements a different budget allocation strategy.
Specifically, it starts by uniformly distributing publication budget to
all timestamps. If it decides not to publish at a timestamp, the corre-
sponding budget becomes available for a future publication. On the
other hand, if it decides to publish at a timestamp, it absorbs all the
budget that became available from the previous skipped publica-
tions, and uses it in order to publish the current statistics with higher
accuracy. An important subtlety arises in this case. Whenever the
mechanism absorbs budget from previous timestamps, it must nul-
lify the same budget from the immediately succeeding timestamps,
forcing their outputs to become null . The nullified budgets can-
not be absorbed in the future. This is vital for not exceeding the
maximum budget ϵ as the active window slides over time.

Figure 4 presents the pseudocode of BA. The Mi,1 sub mecha-
nism is identical to that of BD (Lines 1-4 in Figure 2). The Mi,2

sub mechanism allocates a fixed budget ϵi,2 = ϵ/(2 · w) to each
timestamp i. However, we distinguish two cases at i: (i) if previ-
ous publications were skipped, their budgets are added to ϵi,2, and
(ii) if a previous publication absorbed budget, ϵi,2 may be nullified,
i.e., set to zero, in which case the output is oi = null . The second
case is captured first in Lines 5-6, whereas the first case is captured
next in Lines 7-11. We explain these two cases in turn below.

Input: Di, (o1, . . . ,oi−1), (ϵ1, . . . , ϵi−1)
Output: oi

// Sub mechanism Mi,1

// Same as Lines 1-4 in Figure 2

// Sub mechanism Mi,2

5. to nullify =
ϵl,2

ϵ/(2·w)
− 1

6. If i− l ≤ to nullify , Return oi = null
7. Else
8. Set to absorb = i− (l+ to nullify)
9. Set ϵi,2 = ϵ/(2 · w) ·min(to absorb, w) and λi,2 = 1/ϵi,2
10. If dis > λi,2, Return oi = ci + ⟨Lap(λi,2)⟩d
11. Else Return oi = null

Figure 4: Pseudocode of Mi in BA

Since we know the last publication ol from Mi,1, we can calcu-
late the amount of budget ϵl,2 it received. If we divide ϵl,2 by ϵ/(2 ·
w) and subtract 1 (Line 5), we get the number of skipped publica-
tions whose budgets ϵl,2 absorbed. This value, called to nullify in
our pseudocode, indicates the number of timestamps after l whose
budgets we must nullify. Therefore, if i − l ≤ to nullify , then
the budget at i is nullified and the mechanism outputs oi = null
(Line 6). Otherwise, Mi,2 calculates ϵi,2 after potentially absorb-
ing the budget of skipped publications, and decides on whether to
publish the noisy statistics or approximate them with ol (Lines 8-
11). In particular, it first computes the number of skipped publi-
cations between the last publication timestamp l and i, and stores
it in variable to absorb (Line 8). Note that we must not consider
the nullified budgets as skipped budgets; the nullified budgets can-
not be absorbed. Next (Line 9), the mechanism sets ϵi,2, which is
between ϵ/(2 · w) and ϵ/2, since the number of skipped budgets
to be absorbed cannot exceed w − 1 (otherwise a window will uti-
lize more than ϵ budget and violate w-event privacy). BA proceeds
similarly to BD, that is, it sets λi,2 = 1/ϵi,2 (Line 9), compares
the dissimilarity dis to the error from injecting Laplace noise with
scale λi,2, and outputs the noisy counts if the dissimilarity is larger
(Line 10), or null otherwise (Line 11).

Figure 5 demonstrates the BA mechanism in 6 timestamps with
w = 3. At all timestamps, BA allocates ϵ/(2 · w) = ϵ/6 bud-
get for both Mi,1 and Mi,2. At the first timestamp, it publishes
the counts using the current budget ϵ1,2 = ϵ/6. Suppose that, at
timestamp 2, BA decides not to publish the current counts, i.e., it
outputs null and the statistics are approximated by o1. Budget ϵ2,1
is then set to 0, and ϵ/6 becomes available for absorption at a fu-
ture timestamp. At timestamp 3, the mechanism decides to publish
the current counts. It absorbs the ϵ/6 budget that became available
at timestamp 2, and adds it to its already allocated budget, yield-
ing ϵ3,2 = ϵ/3. Due to this absorption, the budget at timestamp 4
must be nullified (i.e., ϵ4,2 = 0) and, hence, the mechanism outputs
null . At timestamp 5, the mechanism decides to publish, but there
is no budget to absorb (recall that the nullified budget at timestamp
4 cannot be absorbed). Thus, M5,2 uses only its own budget ϵ/6 to
publish o5. Finally, at timestamp 6, the mechanism decides not to
publish, and proceeds similarly. For any window of size 3, the sum

1161

of the budgets therein is at most ϵ. Note that, if BA does not nullify
the budget at timestamp 4, the sum of the budgets in window [3, 5]
is 7ϵ/6 > ϵ, which violates w-event privacy.

1 2 3 4 5 6

ǫ1,1 = ǫ/6 ǫ2,1 = ǫ/6 ǫ3,1 = ǫ/6 ǫ4,1 = ǫ/6 ǫ5,1 = ǫ/6 ǫ6,1 = ǫ/6

w = 3

skipped

ǫ1,2 = ǫ/6 ǫ2,2 = 0 ǫ3,2 = ǫ/3 ǫ4,2 = 0 ǫ5,2 = ǫ/6 ǫ6,2 = 0

ǫ1 = ǫ/3 ǫ2 = ǫ/6 ǫ3 = ǫ/2 ǫ4 = ǫ/6 ǫ5 = ǫ/3 ǫ6 = ǫ/6

ǫ1 + ǫ2 + ǫ3 = ǫ

ǫ2 + ǫ3 + ǫ4 = 5ǫ/6 ≤ ǫ

ǫ3 + ǫ4 + ǫ5 = ǫ

ǫ4 + ǫ5 + ǫ6 = 2ǫ/3 ≤ ǫ

o1 o3 o5null null null outputs

time

budgets

nullified

Figure 5: Example of BA

THEOREM 5. BA satisfies w-event privacy.

PROOF. Similar to BD, Mi,1 satisfies ϵi,1-differential privacy
for ϵi,1 = ϵ/(2 · w), and Mi,2 is ϵi,2-differentially private, where
ϵi,2 depends on previous publications, since it may be nullified
(Lines 5-6 in Figure 4), or absorb additional budget (Lines 8-9),
or be absorbed (Line 11). Moreover, in any window of size w, the
sum of budgets spent by Mi,1 is equal to ϵ/2. Therefore, it suffices
to prove that 0 ≤

∑i
k=i−w+1 ϵk,2 ≤ ϵ/2.

Let i be a timestamp which absorbed budget from α preceding
timestamps. According to BA, it holds that (i) ϵi,2 = (α + 1) ·
ϵ/(2 · w), (ii) ϵk,2 = 0 for (i − α ≤ k ≤ i − 1) ∧ (i + 1 ≤ k ≤
i + α), and (iii) 0 ≤ α ≤ w − 1. Then, any window of size w
that contains i also covers n ≥ α timestamps with ϵk,2 = 0 which
were either absorbed or nullified exclusively by i. Therefore, the
sum of the budgets of i along with the n zero-budget timestamps
is at most (α+ 1) · ϵ/(2 · w), i.e., at most equal to the case where
each of these n + 1 timestamps receives uniform budget ϵk,2 =
(α+1)·ϵ/(2·w)

n+1
≤ ϵ/(2 ·w). The above holds independently also for

any timestamp i′ that absorbed budget from α′ previous timestamps
and lies in the same window as i. Therefore,

∑i
k=i−w+1 ϵk,2 ≤∑i

k=i−w+1 ϵ/(2 · w) = ϵ/2. Finally, since α ≥ 0, ϵk,2 ≥ 0 for
every k and, hence,

∑i
k=i−w+1 ϵk,2 ≥ 0.

To sum up, the difference between BA and BD is the following.
BD optimistically assumes that few publications will take place in
each window and, hence, at each publication it eagerly allocates
a large portion of the available budget. On the other hand, BA ini-
tially assumes that all publications are likely to occur in the window
and, thus, uniformly allocates the budget among them. However, it
absorbs the entire budget from the skipped publications, and nulli-
fies the budgets from the immediately succeeding timestamps, be-
cause it optimistically assumes that successive statistics may not
differ substantially. Therefore, it assigns a large budget to the cur-
rent publication, hoping that the latter can accurately approximate
at least the next few publications.

4.4 Utility Analysis
Recall that both BD and BA are data-dependent. The error at

any timestamp depends on (i) the budget used in past releases (if a
publication occurs), and (ii) how well the statistics at this times-
tamp are approximated by the previous release (if a publication
does not occur). Such data-dependent mechanisms should be eval-
uated through exhaustive experiments on real datasets, in order to

better capture their effectiveness, a task we undertake in Section 5.
In this section we also include a rigorous utility analysis, which
pronounces though the data-dependent aspects. We calculate the
error of publication oi as the MAE on pair (oi, ci) if oi ̸= null ,
and as the MAE on (ol, ci) otherwise, where ol is the first non-null
release preceding i. In the following, we focus in turn on Uniform,
Sample, BD and BA.

Analysis of Uniform and Sample. The expected error of Uniform
is equal to the error stemming from the Laplace noise addition.
Since its scale is always λ = w/ϵ, the error at each timestamp is
w/ϵ. Similarly, Sample results in an error of 1/ϵ at any timestamp
i, for (i mod w) = 1, due to the injected Laplace noise with scale
λ = 1/ϵ. However, the error at any other timestamp is equal to the
error from the approximation with the previous release, which we
cannot quantify in Sample.

Analysis of BD. To facilitate presentation, we first analyze the er-
ror of Mi,2 considering that Mi,1 is not private and returns the
dissimilarity value without error. Subsequently, we eliminate this
assumption and assess how the error in Mi,1 affects the overall
error of BD. We assume that every publication approximates the
same number of skipped publications.

LEMMA 1. The average error per timestamp for Mi,2 in BD
is at most 4 2m−1

mϵ
, if m publications occur in a window and given

that Mi,1 is not private.

PROOF. At any timestamp i, if Mi,2 publishes, the error is
2/ϵrm since the Laplace scale is λi,2 = 2/ϵrm; otherwise, the
approximation provides a better error than 2/ϵrm. In both cases,
we can upper bound the error at timestamp i by 2/ϵrm, given that
Mi,1 returns the actual dissimilarity value without noise. Consider
the worst case, in which m ≤ w publications occur in a window
of size w, and no budget is recycled from old timestamps that lie
outside the window. Recall that BD distributes the budgets to the
m publications in an exponentially decreasing fashion, namely the
budget sequence is ϵ/4, ϵ/8, . . . , ϵ/2m+1. Since each publication
approximates the same number of skipped releases, every publica-
tion approximates w/m − 1 skipped releases on average. In other
words, the error induced by each publication is shared among w/m
timestamps. Hence, the average error per timestamp in the window
is bounded by 1

w
·
(

w
m

· 4
ϵ
+ . . .+ w

m
· 2m+1

ϵ

)
= 4 2m−1

mϵ
.

Sub mechanism Mi,1 introduces error to the dissimilarity value.
Thus, it contributes an additive factor to the error of Mi,2. This is
captured in the theorem below, which states the total error of BD.

THEOREM 6. The average error per timestamp in BD is at most
4 2m−1

mϵ
+ 2·w

ϵ·d , if m publications occur in a window.

PROOF. Mi,1 induces error when its noisy dissimilarity output
guides Mi,2 into making a false publication decision, i.e., when
Mi,2 (i) falsely skips a publication, or (ii) falsely performs a pub-
lication. When a correct publication occurs, the error of BD is the
error induced by Mi,2, which is captured by Lemma 1. When a
publication is correctly skipped, the error is the actual dissimilarity
between the current statistics ci and the last publication ol, which is
bounded by the error of Mi,2 (again captured by Lemma 1). How-
ever, when a publication is falsely skipped, the actual dissimilarity
is underestimated due to the noise of scale λi,1 added by Mi,1.
Conversely, when a false publication occurs, the actual dissimilar-
ity is overestimated due to the noise of scale λi,1 added by Mi,1.
The expected under/overestimation of dissimilarity is equal to 2·w

ϵ·d
due to the noise of Mi,1. Hence, due to Lemma 1, the average
error of BD is 4 2m−1

mϵ
+ 2·w

ϵ·d .

1162

BD is benefited when the number of publications m per window
is small, otherwise its error increases exponentially with m. More-
over, the error from Mi,1 (second term of the total error) rises with
w, but diminishes as d increases. This is justified by the fact that
the dissimilarity measure is MAE, which averages the attribute dif-
ferences over d and, hence, reduces the sensitivity.

Analysis of BA. Contrary to BD, BA distinguishes between skipped
and nullified publications. The former are decided based on dissim-
ilarity, whereas the latter are enforced due to budget absorption. We
can assess the error of the skipped publications similarly to BD.
However, we cannot quantify the error of the nullified publications,
as we possess no information about the underlying statistics; nulli-
fication is enforced prior to their arrival. Therefore, we will express
the error as a function of the average error for a nullified publica-
tion, which we denote by errnlf . Moreover, in contrast to BD, the
error of BA depends on the average number of absorbed budgets
(i.e., skipped releases) per publication, denoted by α, rather than
the number of publications per window.

THEOREM 7. The average error per timestamp in BA is at most
1

2α+1
· (2·w

ϵ
· Hα+1 + α · errnlf) + 2·w

ϵ·d , where α is the number
of absorbed budgets per publication, and Hx is the xth harmonic
number.

PROOF. Similar to BD, we first analyze the error of Mi,2, and
then add the error contributed by Mi,1, which is the same as in BD
(since Mi,1 is identical in BD and BA). Every publication is as-
sociated with α skipped publications preceding it (whose budgets
it absorbs), and α nullified publications succeeding it. The pub-
lication receives budget (α+1)·ϵ

2·w and, hence, its error is 2·w
(α+1)·ϵ .

The first of the α skipped publications cannot have a larger er-
ror than 2·w

ϵ
because, otherwise, it would not have been skipped.

The second skipped publication cannot have a larger error than
2·w
2·ϵ , since it performs the dissimilarity check considering that it

absorbs the budget from the first skipped publication. In a simi-
lar fashion, we can obtain that the αth skipped publication induces
at most error 2·w

a·ϵ . Furthermore, each of the α nullified publica-
tions introduces error errnlf . Averaging over the above 2α + 1
errors, we derive the average error per timestamp of Mi,2 in BA,
which is 1

2α+1
· (2·w

ϵ
+ . . . + 2·w

α·ϵ + 2·w
(α+1)·ϵ + α · errnlf) =

1
2α+1

· (2·w
ϵ

· Hα+1 + α · errnlf). Adding the error incorporated
by Mi,1 (see Theorem 6), we get the average error per timestamp
in BA, namely 1

2α+1
·
(
2·w
ϵ

·Hα+1 + α · errnlf
)
+ 2·w

ϵ·d .

The error in BA decreases as the number α of skipped publica-
tions increases. This is because (i) the skipped publications are ap-
proximated with a smaller error than that they would have induced
were they published with noise, and (ii) budgets from the skipped
publications are utilized by others to increase their accuracy. The
average error errnlf of a nullified publication contributes to the
total error, but it solely depends on the underlying data. Finally,
Mi,1 injects some error as well which, similar to BD, decreases as
d becomes larger than w.

4.5 Optimizations and Extensions
In this section we provide optimizations for BD and BA, and ex-

plain how to augment our schemes with pan-privacy. Due to space
limitations, we only sketch the modifications, delegating the de-
tailed descriptions and proofs to the long version of our paper.

Column partitioning. When our schemes calculate the dissimilar-
ity (MAE) between counts ci and last release ol, they consider all
the elements of ci. Suppose that very few counts from ci change

over time, whereas others remain roughly constant. In this case,
only a few counts are responsible for increasing MAE and, hence,
for potentially causing a publication to occur at timestamp i. When
this release occurs, all the counts receive the noise, i.e., even the
ones that could have been approximated with the previous release
more accurately. Ideally, we should allow column counts to be pub-
lished with different rates, based on their fluctuation over time.

Towards this goal, we partition the columns into groups, based
on the magnitude of change of their counts over time. We form the
groups periodically by observing the private releases. Then, we
execute an independent instantiation of BD or BA on every group
per timestamp. Note that we do not compromise the privacy of the
overall scheme, as we do not access any raw data. The result is that
the instantiations of the groups with high magnitude of change will
publish more frequently than those of groups with low magnitude.

Shifting budget from Mi,1 to Mi,2. Both BD and BA assign a
fixed budget ϵi,1 = ϵ/(2 · w) to Mi,1, which results in injecting
noise with scale λi,1 = (2 ·w)/(ϵ · d) due to the sensitivity 1/d of
MAE. Over a window of size w, the sum of the budgets for the dis-
similarity calculation sub mechanism is ϵ/2, which leaves only half
of the maximum budget to Mi,2. We investigate whether we can
shift some budget from Mi,1 to Mi,2, in order to improve the ac-
curacy of the publications, without significantly affecting the accu-
racy of the noisy dissimilarity value returned by Mi,1. Specifically,
we observe that, when d ≫ w, λi,1 becomes too small. Motivated
by the fact that the typical scale value of 1/ϵ yields high accuracy
in other scenarios (e.g., histogram queries [12]), we set λi,1 = 1/ϵ,
which translates to spending budget ϵi,1 = ϵ/d < ϵ/(2 · w). This
leaves ϵ− w · (ϵ/d) > ϵ/2 budget for publication in any window.

Pan-Privacy. A notion relevant to ϵ-differential privacy on streams
is pan-privacy [15]. A mechanism is pan-private if it can preserve
ϵ-differential privacy even when an adversary observes snapshots
of the mechanism’s internal states. These states account for the
memory contents during the execution of the mechanism. There are
two different intrusion types in the literature; single unannounced
intrusion and multiple announced intrusions. The former assumes
that the adversary breaches the system only once during its lifetime,
without the curator being able to detect the intrusion. The latter
considers that the adversary infiltrates the system multiple times,
and the curator detects each breach just after it occurs.

We modify BD and BA so that they satisfy pan-privacy. A crucial
point towards this goal is to never store raw data in main memory.
Therefore, at every timestamp i, we reset dis and initialize it with
noise Lap(λi,1). We do the same for all the elements of ci us-
ing noise Lap(λi,2). Then, dis and ci are calculated as Di arrives
from the communication channel, without storing any raw item in
a variable without pre-assigned noise. Values λi,1 and λi,2 are cal-
culated as follows. For Mi,1, λi,1 remains unaffected because,
as mentioned in Section 4.2, we perceive dis as being published
at every timestamp. Hence, any intrusion does not disclose any
additional information on dis. On the other hand, we must mod-
ify λi,2 for BD and BA. The reason is that, although an intrusion
at a timestamp where a publication must occur does not help the
adversary (since we release what the adversary accessed in main
memory anyway), an intrusion at a timestamp where Mi,2 outputs
oi = null gives extra information. This case becomes equivalent
to publishing the noisy ci, since the adversary accessed it in mem-
ory. Consequently, the budget that would have been saved by the
approximation is lost and, hence, future budgets (and correspond-
ing noise scales) must be adjusted to retain w-event privacy.

We first focus on the case of a single unannounced intrusion. In
BD, instead of setting ϵi,2 = ϵrm/2, we set it to ϵrm/3, i.e., to a

1163

smaller value. For the windows where no intrusion takes place, pri-
vacy is not affected; following a similar analysis to Theorem 4, we
derive that the sum of budgets spent for publication therein are at
most ϵ/3 ≤ ϵ/2 as required for w-event privacy. Consider now any
window where the (single) intrusion takes place for a timestamp i
where Mi,2 outputs null . In this case, ϵi,2 must be considered
twice; once for noisy ci in the intruded main memory, and once as
part of ϵrm at the next timestamp a publication occurs. The value
of ϵi,2 is ϵrm/3 ≤ (ϵ/2)/3 = ϵ/6. Therefore, the budget spent by
the publication sub mechanisms in a window where a single unan-
nounced intrusion occurs is at most ϵ/6+ϵ/3 = ϵ/2, and Theorem
4 holds. The utility of BD degrades by a factor of 1.5, because ev-
ery publication uses 1.5 times less budget (ϵrm/3 versus ϵrm/2).

On the other hand, in BA, we set the initial budget ϵi,2 at times-
tamp i as ϵ/(4 · w) instead of ϵ/(2 · w). We can prove in the
same fashion as Theorem 5 that the sum of budgets per any window
where the intrusion did not occur is at most ϵ/4. For any window
where the intrusion took place, we must add the maximum budget
that can be absorbed by a timestamp, which is (w−1)·(ϵ/(4·w)) <
ϵ/4. Hence, the total publication budget in the window becomes at
most ϵ/2, and w-event privacy is retained. The utility degrades by a
factor of 2, since we halve ϵi,2 as compared to the original scheme.
A final remark concerns an intrusion during a nullified publication.
This is handled by discarding Di from the communication channel
when i corresponds to a nullified publication. In this case, BA con-
structs no private information on Di and, thus, spends no budget.

We next turn to the setting of multiple announced intrusions.
Similar to the case of a single intrusion, BD and BA keep only
noisy versions of dis an ci in main memory, and Mi,1 remains
intact. However, here BD and BA do not alter λi,2. The reason is
that here the curator always knows when an intrusion takes place,
and adjusts the behavior of Mi,2 on-the-fly. Specifically, when it
detects an intrusion, it simply forces the publication to occur (i.e.,
behaves as if the publication had to occur). The schemes never use
a timestamp’s budget more than once, and the privacy proofs re-
main identical to those in the original schemes. These intrusions
considerably affect the utility of the schemes. The full analysis is
rather complex, and we defer it to the long version of this work.

5. EXPERIMENTAL EVALUATION
We compared BD and BA with benchmarks FASTw, Uniform

and Sample over real datasets. We implemented FASTw in Java,
using the Fan et al. [17] implementation of FAST1, and configured
it according to [17]. We implemented all other methods also in
Java, and fine-tuned BD and BA for every experiment according to
the optimizations of Section 4.5. We conducted the experiments on
a machine with Intel Core i5 CPU 2.53GHz and 4GB RAM, run-
ning Windows 7. We ran each experiment 100 times, and reported
the average error, expressed as the Mean Absolute Error (MAE)
and the Mean Relative Error (MRE). We fixed ϵ = 1.

We experimented with two real datasets. For the first, we con-
nected our system to an actual online traffic monitoring service in
Rome [2], and we periodically retrieved the data real-time as they
were generated by the service. We executed our schemes for 10
consecutive days, where every data collection period was 10 min-
utes (i.e., our time domain consisted of 1442 timestamps). At each
timestamp i, we directly retrieved vector ci, where element ci[j]
is the number of commuters on road j at i. The total number of
roads (and, hence, the size of ci) is d = 25, 936. Note that, in such
a scenario, our schemes protect any single trajectory of any user
consisting of up to w road segments.

1
http://www.mathcs.emory.edu/∼lfan3/FAST/tool/

For the second, we created a stream from a well-known archived
dataset, namely World Cup2. The latter contains 1,352,804,107
Web server logs from the FIFA 1998 Soccer World Cup website,
gathered in 88 consecutive days. Each log entry consists of a client
ID, the ID of the requested URL, the size of the response, etc. This
dataset does not define a specific period length for each timestamp
and, hence, we regard the number of timestamps per day as a vari-
able parameter under investigation. At every timestamp i, we col-
lected from the stream a database Di, where each row is a unique
log, every attribute is a URL, and cell (u, j) is 1 if log u accessed
URL j, and 0 otherwise. Moreover, at each timestamp i, we calcu-
lated vector ci such that ci[j] is the number of logs accessing URL
j at i. The number of unique URLs (and, hence, the size of ci) is
d = 89, 997. Our schemes protect any single sequence of URL
accesses of a user over at most w timestamps (given that each user
browses at most a single URL per timestamp).

Varying parameter w. Figure 6 illustrates (in logarithmic scale)
the MAE and MRE of our schemes as a function of w for the Rome
dataset. We vary w between 40 and 200. BA is the best method. It
outperforms Uniform and FASTw by up to one order of magnitude
in both MAE and MRE. It is up to five (four) times better than
Sample in MAE (MRE). Moreover, its MAE (MRE) is 46% (35%)
smaller than in BD. Finally, its MRE varies in range 5-11%.

The budget in Uniform is fixed for all timestamps, and linear
in w. Hence, its performance deteriorates significantly for large
w. FASTw behaves similarly to Uniform, because it uses a fixed
number of samples, assigning a uniform budget over all samples.
As w is raised, the samples increase and, thus, a smaller budget
is available for the publications. FASTw outperforms Uniform in
MAE, but features a similar performance in MRE. This is because
FASTw approximates well the large counts (which dominate the
MAE), but does not equally benefit the small counts, whose col-
lective MRE becomes dominant in the total MRE. Sample per-
forms better than FASTw and Uniform, and is relatively unaffected
by w, mainly because (i) it utilizes more budget per publication,
and (ii) the statistics do not vary a lot across timestamps and, thus,
each sample approximates relatively well the counts in subsequent
timestamps. BA and BD are superior due to their data-dependent
sampling and approximation (as opposed to Sample), as well as
sophisticated budget allocation (as opposed to all benchmarks). For
small w, they have a similar performance. However, as w increases,
the performance gap between BA and BD increases as well. This
is due to the combination of (i) the exponential decay of budget in
BD as more publications occur in a larger window, and (ii) the fact
that a larger window prevents BD from recycling budget. On the
contrary, BA allocates the budget over the multiple publications in
the larger window more effectively, via the initial uniform budget
distribution and the subsequent dynamic budget absorption.

100

101

102

103

 40 80 120 160 200

M
A

E

w

Uniform
FASTw
Sample

BD
BA

(a) MAE

10-2

10-1

100

101

 40 80 120 160 200

M
R

E

w

Uniform
FASTw
Sample

BD
BA

(b) MRE

Figure 6: Error vs. w (Rome dataset)

2
http://ita.ee.lbl.gov/html/contrib/WorldCup.html

1164

Figure 7 illustrates the MAE and MRE of our mechanisms ver-
sus w for the World Cup dataset. We fix the number of publica-
tions per day to 15 (which translates to an experiment spanning
1320 timestamps), and vary w between 40 and 200. BA outper-
forms Uniform by approximately two orders of magnitude in MAE
and MRE, Sample by up to three (two) orders of magnitude in
MAE (resp. MRE), FASTw by more than one order of magnitude
in both MAE and MRE, and BD by up to 51% in MAE and 30%
in MRE. Moreover, the MRE in BA is always below 11.8%. Sam-
ple is always worse than Uniform in terms of MAE. The reason is
that the statistics have great fluctuations in successive timestamps
in this dataset, inducing a huge approximation error to Sample,
which is higher than that of Uniform even for large values of w.
The difference between Sample and Uniform in MRE is marginal.
This is because the largest approximation error in Sample occurs
in the most popular URLs. This greatly affects the total error in
absolute terms, but does not impact it in relative terms to the same
extent. Finally, contrary to the case of the Rome dataset, FASTw

outperforms Uniform even in MRE. This is because the sampling
of FASTw approximates more effectively the highly variable counts
of the World Cup dataset across time.

100

101

102

103

104

 40 80 120 160 200

M
A

E

w

Sample
Uniform
FASTw

BD
BA

(a) MAE

10-2

10-1

100

101

102

 40 80 120 160 200

M
R

E

w

Sample
Uniform
FASTw

BD
BA

(b) MRE

Figure 7: Error vs. w (World Cup dataset)

The effect of the magnitude of change. The next set of exper-
iments evaluates the effectiveness of our schemes, when the in-
coming updates change the statistics over time with various magni-
tudes. We derived datasets of variable magnitude from our two real
datasets. In the Rome dataset, we grouped the database columns
based on the average Root Mean Square (RMS) of their counts over
the entire stream (the RMS is a standard statistical tool for measur-
ing the magnitude of change of a varying quantity). In the World
Cup dataset, we varied the number of timestamps per day, as this
adjusts the magnitude of change; the larger the number of times-
tamps, the fewer updates per timestamp and, hence, the smoother
the change in the statistics in successive timestamps.

Figure 8 presents our results for the Rome dataset. We parti-
tioned the stream into four sub streams. Each sub stream focused
on a disjoint subset of roads. The reported counts of the roads in
the same sub stream featured a similar RMS. We ran every mecha-
nism on each sub stream independently, and reported its MAE and
MRE, setting w = 120. For each sub stream in the x-axis, we also
include the average RMS of the counts it generates (smaller RMS
values indicate smaller magnitudes of change). BA and BD are
always superior to the benchmarks, once again due to their more
effective budget allocation. BA is the most robust scheme to RMS,
for both MAE (Figure 8(a)) and MRE (Figure 8(b)). For small
RMS values, BD and BA have comparable performance, featuring
excellent utility (about 3% MRE when RMS=5 in Stream 1). The
reason is that the small magnitude of change enables the accurate
approximation of the current statistics with an older release. They
also handle larger magnitude of change better than the benchmarks
and continue to be effective even for RMS=29 in Stream 3 (about

11% MRE). For the largest RMS value (114 in Stream 4), BD does
not perform well compared to BA (24% vs. 13% MRE) because
the large magnitude of change results in numerous publications per
window, which greatly impact BD. On the contrary, BA manages to
attain excellent performance even for a large RMS, due to its ability
to allocate the privacy budget more effectively than BD when many
publications occur per window.

On the other hand, Uniform always performs badly, as it pub-
lishes the current statistics with large noise independently of the
RMS. FASTw is also relatively unaffected by small RMS values,
and only for extreme RMS values does its error increase notice-
ably. Sample outperforms FASTw in small RMS values. This is
because very few samples are needed per window to effectively
approximate the skipped statistics, and FASTw unnecessarily allo-
cates budget to a fixed number of samples, which is always larger
than that of Sample. However, Sample rapidly deteriorates as
RMS increases, since a steep count change over time leads to an
excessive approximation error.

100

101

102

103

Stream 1 Stream 2 Stream 3 Stream 4

M
A

E

Avg RMS: 5 15 29 114

Uniform
FASTw
Sample

BD
BA

(a) MAE

10-2

10-1

100

101

Stream 1 Stream 2 Stream 3 Stream 4

M
R

E

Avg RMS: 5 15 29 114

Uniform
FASTw
Sample

BD
BA

(b) MRE

Figure 8: Error vs. RMS (Rome dataset)

Figure 9 plots the MAE and MRE of all schemes for the World
Cup dataset, where we vary the timestamps per day and set w =
120. Note that every value in the x-axis corresponds to a different
dataset. A smaller number of timestamps per day translates to more
abrupt changes in consecutive statistics. The performance trends of
all mechanisms are similar to those in Figure 8, i.e., the error in-
creases for larger magnitudes of change. Our schemes outperform
the baselines form one to up to three (two) orders of magnitude in
MAE (resp. MRE). The errors of BA and BD become marginally
close as the number of timestamps increases, whereas their MRE
ranges in 10-14% and 10-25%, respectively.

100

101

102

103

104

105

5 10 15 20 25

M
A

E

Timestamps per day

Sample
Uniform
FASTw

BD
BA

(a) MAE

10-2

10-1

100

101

102

103

5 10 15 20 25

M
R

E

Timestamps per day

Sample
Uniform
FASTw

BD
BA

(b) MRE

Figure 9: Error vs. timestamps per day (World Cup dataset)

Effect of column partitioning. Figures 10(a) and 10(b) assess the
effect of the column partitioning optimization for BD and BA (see
Section 4.5) on the Rome and World Cup datasets, respectively,
when varying the number of groups, and setting w = 120. We
decomposed the database columns into disjoint groups, ran our
schemes independently on every group, and reported the average
MAE over all groups. As the mechanisms received updates from
the stream, they periodically modified the groups, such that each

1165

group contained columns whose counts feature a similar magnitude
of change (measured as the RMS).

In Figure 10(a), BD and BA exhibit the best performance when
the number of groups is 20. BD improves its MAE by up to 10%,
and BA by up to 21%, as compared the case of the single group.
Observe that the error increases when the number of groups be-
comes large after its initial improvement in both schemes. When
the number of groups increases, the number of attributes in each
group decreases, resulting in higher sensitivity for computing dis
in Mi,1. Thus, more budget is assigned to the dissimilarity calcu-
lation sub mechanism, leaving less budget for publishing. Hence, a
large number of groups results in higher error. In Figure 10(b), the
error curves feature similar trends as in Figure 10(a), i.e., the num-
ber of groups initially improves the performance of both methods,
but then adversely impacts it for the same reasons explained for the
Rome dataset. BD and BA exhibit the best performance when the
number of groups is 150. BD improves its MAE by up to 36%, and
BA by up to 71%, as compared the case of the single group.

 0

 2

 4

 6

 8

 10

 12

1 20 40 60 80

M
A

E

of groups

BD
BA

(a) Rome

 0

 1

 2

 3

 4

 5

1 150 300 450 600

M
A

E

of groups

BD
BA

(b) World Cup

Figure 10: Error vs. number of groups

Summary. Our experimental evaluation demonstrated the superi-
ority of BD and BA over the benchmark methods, and their prac-
ticality in two real datasets. Specifically, our novel schemes out-
performed the baselines approaches by orders of magnitude in the
majority of our settings, in both absolute and relative error. More-
over, BA outperformed BD in all experiments, due to its more ef-
fective budget allocation when several publications must occur per
window. The error in BA was up to about 50% smaller than that of
BD in all scenarios. Furthermore, the relative error of BA ranged
in 3-14% in all settings and datasets. This renders BA practical for
data mining tasks, and confirms the viability of the w-event privacy
concept in real-life applications. Finally, we demonstrated the per-
formance boost achieved by our column partitioning optimization.

6. CONCLUSION
We introduced the novel notion of w-event ϵ-differential privacy

in privacy-preserving statistics publishing on infinite streams. This
concept protects a sequence of w events occurring in successive
time instants, and finds practical application in numerous scenar-
ios where sensitive information can be inferred from user activity
spanning over a time window. We formulated a sliding window
methodology for satisfying this property, and designed three bench-
mark methods. We then introduced two novel mechanisms that are
based on sophisticated sampling and dynamic privacy budget al-
location techniques, and outlined several optimizations. We con-
ducted thorough experimentation with real datasets, which demon-
strated the superiority of our mechanisms against the benchmarks,
and the practicality of our novel privacy notion in real applications.

Acknowledgements
Georgios Kellaris and Dimitris Papadias were supported by grant
618011 from Hong Kong RGC. Xiaokui Xiao was supported by
grant ARC19/14 from MOE, Singapore and a gift from MSRA.

7. REFERENCES
[1] HCUP net. http://hcupnet.ahrq.gov/.
[2] informaservizi.it.

http://apprendistato.informaservizi.it/.
[3] People Talking About This. www.insidefacebook.com/

2012/01/10/people-talking-about-this-defined/.
[4] J. Bolot, N. Fawaz, S. Muthukrishnan, A. Nikolov, and N. Taft.

Private decayed predicate sums on streams. In ICDT, 2013.
[5] J. Cao, Q. Xiao, G. Ghinita, N. Li, E. Bertino, and K.-L. Tan.

Efficient and accurate strategies for differentially private sliding
window queries. In EDBT, 2013.

[6] T. Chan, E. Shi, and D. Song. Private and continual release of
statistics. TISSEC, 14(3):26, 2011.

[7] T.-H. H. Chan, M. Li, E. Shi, and W. Xu. Differentially private
continual monitoring of heavy hitters from distributed streams. In
PETS, 2012.

[8] G. Cormode, C. M. Procopiuc, D. Srivastava, E. Shen, and T. Yu.
Differentially private spatial decompositions. In ICDE, 2012.

[9] G. Cormode, C. M. Procopiuc, D. Srivastava, and T. T. L. Tran.
Differentially private publication of sparse data. In ICDT, 2012.

[10] C. Dwork. Differential privacy. In ICALP, 2006.
[11] C. Dwork. Differential privacy in new settings. In SODA, 2010.
[12] C. Dwork. A firm foundation for private data analysis. CACM,

54(1):86–95, 2011.
[13] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor.

Our data, ourselves: Privacy via distributed noise generation. In
EUROCRYPT, 2006.

[14] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise
to sensitivity in private data analysis. In TCC, 2006.

[15] C. Dwork, M. Naor, T. Pitassi, G. Rothblum, and S. Yekhanin.
Pan-private streaming algorithms. In ICS, 2010.

[16] C. Dwork, M. Naor, T. Pitassi, and G. N. Rothblum. Differential
privacy under continual observation. In STOC, 2010.

[17] L. Fan and L. Xiong. Real-time aggregate monitoring with
differential privacy. In CIKM, 2012.

[18] M. Hardt and K. Talwar. On the geometry of differential privacy. In
STOC, 2010.

[19] M. Hay, V. Rastogi, G. Miklau, and D. Suciu. Boosting the accuracy
of differentially private histograms through consistency. PVLDB,
3(1-2):1021–1032, 2010.

[20] K. Jiang, D. Shao, S. Bressan, T. Kister, and K.-L. Tan. Publishing
trajectories with differential privacy guarantees. In SSDBM, 2013.

[21] C. Li and G. Miklau. Optimal error of query sets under the
differentially-private matrix mechanism. In ICDT, 2013.

[22] N. Li, W. Qardaji, D. Su, and J. Cao. PrivBasis: Frequent itemset
mining with differential privacy. PVLDB, 5(11):1340–1351, 2012.

[23] Y. D. Li, Z. Zhang, M. Winslett, and Y. Yang. Compressive
mechanism: Utilizing sparse representation in differential privacy. In
WPES, 2011.

[24] A. Machanavajjhala, D. Kifer, J. Abowd, J. Gehrke, and L. Vilhuber.
Privacy: Theory meets practice on the map. In ICDE, 2008.

[25] F. McSherry. Privacy Integrated Queries: An Extensible Platform for
Privacy-preserving Data Analysis. In SIGMOD, 2009.

[26] F. McSherry and K. Talwar. Mechanism design via differential
privacy. In FOCS, 2007.

[27] D. Mir, S. Muthukrishnan, A. Nikolov, and R. N. Wright. Pan-private
algorithms via statistics on sketches. In PODS, 2011.

[28] K. Nissim, S. Raskhodnikova, and A. Smith. Smooth sensitivity and
sampling in private data analysis. In STOC, 2007.

[29] V. Rastogi and S. Nath. Differentially private aggregation of
distributed time-series with transformation and encryption. In
SIGMOD, 2010.

[30] A. Roth and T. Roughgarden. Interactive privacy via the median
mechanism. In STOC, 2010.

[31] X. Xiao, G. Bender, M. Hay, and J. Gehrke. iReduct: Differential
privacy with reduced relative errors. In SIGMOD, 2011.

[32] X. Xiao, G. Wang, and J. Gehrke. Differential privacy via wavelet
transforms. TKDE, 23(8):1200–1214, 2011.

[33] C. Zeng, J. F. Naughton, and J.-Y. Cai. On differentially private
frequent itemset mining. PVLDB, 6(1):25–36, 2012.

1166

