Differentially Private Event Sequences over Infinite Streams

Georgios Kellaris' Stavros Papadopoulosz* Xiaokui Xiao® Dimitris Papadias'

'HKUST

ABSTRACT

Numerous applications require continuous publication of statistics
for monitoring purposes, such as real-time traffic analysis, timely
disease outbreak discovery, and social trends observation. These
statistics may be derived from sensitive user data and, hence, neces-
sitate privacy preservation. A notable paradigm for offering strong
privacy guarantees in statistics publishing is e-differential privacy.
However, there is limited literature that adapts this concept to set-
tings where the statistics are computed over an infinite stream of
“events” (i.e., data items generated by the users), and published
periodically. These works aim at hiding a single event over the en-
tire stream. We argue that, in most practical scenarios, sensitive
information is revealed from multiple events occurring at contigu-
ous time instances. Towards this end, we put forth the novel notion
of w-event privacy over infinite streams, which protects any event
sequence occurring in w successive time instants. We first formu-
late our privacy concept, motivate its importance, and introduce a
methodology for achieving it. We next design two instantiations,
whose utility is independent of the stream length. Finally, we con-
firm the practicality of our solutions experimenting with real data.

1. INTRODUCTION

There is a large number of applications that benefit from the con-
tinuous monitoring of statistics. For example, traffic services pub-
lish the number of cars per area in real-time to allow for optimal
route computation [2]. Moreover, hospitals periodically release
the number of patients suffering from certain diseases [1], which
may help in the timely discovery of disease outbreaks. In addition,
social networks constantly report the number of users currently
talking about a topic [3], which enables listing the hot topics for
targeted advertising. However, the inadvertent disclosure of such
statistics may compromise the privacy of the individuals, such as
the locations a commuter visits, the type of illness a patient suffers
from, and the political views a user communicates.

A popular paradigm for providing privacy in statistics publish-
ing with strong theoretical guarantees is e-differential privacy [10].
This framework entails perturbing the data prior to their release, in

*This work was done while the author was at HKUST.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 12

Copyright 2014 VLDB Endowment 2150-8097/14/08.

1155

%Intel Labs / MIT
{gkellaris, dimitris}@cse.ust.hk stavrosp@csail.mit.edu

*Nanyang Technological University
xkxiao@ntu.edu.sg

order to hide sensitive information about the individuals that par-
ticipate in the statistical analysis. Recently, this notion has been
applied to streaming scenarios [11, 16], where statistics are contin-
uously published at certain timestamps. These statistics are com-
puted over user events, i.e., “actions” taken by users at specific
timestamps that contribute to the published data. For instance, as-
sume that a traffic service periodically publishes the count of com-
muters per location. Then, the presence of a commuter at a specific
location is an event occurring at a certain timestamp.

There exist two definitions of differential privacy in such set-
tings; event-level and user-level [16]. The former protects any
single event, whereas the latter hides all the events of any user
throughout the entire stream. For example, event-level privacy pro-
tects a single location visit, whereas user-level privacy protects all
the location visits of any commuter. The privacy level affects the
amount of perturbation used, which is proportional to the contribu-
tion of the sensitive information to the statistics.

Prior work on differential privacy on streams mainly focuses on
event-level privacy on infinite streams [11, 27, 6, 7, 4], and user-
level privacy on finite streams [17]. The first category is not useful
in realistic scenarios where users cause events in contiguous times-
tamps, which collectively disclose sensitive information. For exam-
ple, although event-level privacy protects any single location visit,
it does not protect a user path traversed in successive timestamps.
The second category has limited applicability in most practical set-
tings, where data must be published indefinitely. For instance, it
is restrictive to assume that a traffic reporting service shuts down
after an a priori known time interval. On the other hand, offering
user-level privacy over infinite streams requires infinite amount of
perturbation, which destroys the utility of the data in the long run.

A novel problem. In this paper we merge the important gap be-
tween event-level and user-level privacy in streaming settings. In
particular, we propose w-event privacy, which protects any event
sequence occurring within any window of w timestamps. This
novel privacy definition is useful in numerous applications. For
instance, it can protect any temporally constrained movement tra-
jectory in traffic services, patient hospitalization, or succession of
related topics discussed by a user.

w-event privacy captures a superset of the applications of event-
level privacy, whereas for w = 1 the two definitions become equiv-
alent. However, it is narrower than user-level privacy, since it does
not hide multiple event sequences from the same user. Setting w
to infinity, w-event privacy converges to user-level privacy, inherit-
ing though the need for infinite perturbation and utility degradation
over time. In that sense, our definition strikes a nice balance be-
tween practicality and privacy, which expands the machinery for
differential privacy in infinite streams. The challenge lies in its rig-
orous formulation and the design of effective schemes to satisfy it.

Contributions. We first formulate w-event privacy, and explain
that it gives rise to a new class of mechanisms. Next, we present a
sliding window methodology that captures a wide range of w-event
private mechanisms. A mechanism following our methodology
constructs a separate sub mechanism per timestamp, each spending
a certain privacy budget that controls the perturbation (the higher
the budget, the lower the perturbation). Then, w-event privacy is at-
tained when the sum of budgets of the mechanisms inside any win-
dow of w timestamps is at most the total privacy budget €. In the
absence of previous work on this problem, we devise three bench-
marks adapting ideas from existing schemes. Their main weakness
is that they poorly allocate the budget across the event sequences,
which results in a low overall utility. This motivates the need for
new, flexible, dynamic budget allocation schemes.

Towards this end, we introduce two novel schemes tailored to
our proposed methodology, called Budget Distribution (BD) and
Budget Absorption (BA). These mechanisms effectively allocate
the budget relying on the fact that the statistics may not change sig-
nificantly in successive timestamps. Specifically, based on a private
sub mechanism that calculates the dissimilarity between statistics,
they skip the publications that can be accurately approximated by
the last publication. Skipping a publication implies that no budget
is spent at that timestamp, which becomes available for a future
publication. BD and BA differ in the way they dynamically allo-
cate the available privacy budget over time. BD starts with the en-
tire available budget and distributes it in an exponentially decreas-
ing fashion as publications occur, while reusing the budget used
at older timestamps. On the other hand, BA uniformly allocates
the initial budget over the timestamps at first, but absorbs budgets
that became available from previously skipped publications. We
include a utility analysis for our schemes, and propose optimiza-
tions. Finally, we experimentally evaluate them on real datasets,
and confirm their effectiveness.

2. BACKGROUND

This section surveys the related work, providing the preliminary
definitions and theorems that are necessary for the rest of the pre-
sentation. Section 2.1 explains e-differential privacy, whereas Sec-
tion 2.2 describes this notion in scenarios where statistics are con-
tinuously published over time in the form of streams.

2.1 Differential Privacy

In the e-differential privacy paradigm, a trusted curator gathers
potentially sensitive data from a large number of respondents, cre-
ating a database D. The goal is to publish statistics computed on D,
without compromising the privacy of the respondents. The curator
achieves this goal by randomly perturbing the statistics, such that
(i) the presence of any individual in D is hidden, and (ii) the pub-
lished data have high utility, i.e., the perturbation does not greatly
affect their accuracy with respect to the actual statistics.

Formally, let D denote a set of databases. Each D € D is per-
ceived as a set of rows. Two databases D, D’ € D are neighbor-
ing if we can obtain D’ from D by removing or adding a single
row. Let M be a randomized mechanism, which takes as input a
database from D and outputs a transcript in some range O. The cu-
rator runs M on D € D, and publishes o € O, i.e., o constitutes
the released statistics about D. The e-differential privacy notion is
formulated as follows.

DEFINITION 1. [10] A mechanism M : D — QO satisfies €-
differential privacy, where ¢ > 0, if for all sets O C O, and every
pair D, D" € D of neighboring databases

Pr[M(D) € O] < e° - Pr[M(D") € O]

1156

The above definition states that the probability that M produces
a transcript o when a user is in D must be roughly the same as in
the case where this user is absent from D. Hence, the adversary
infers no more information from o about the user than in the case
where the individual’s data were absent from the database. The
smaller the value of ¢, the stronger the privacy guarantees.

The first technique to satisfy e-differential privacy is the Laplace
Perturbation Algorithm (LPA) [14, 12]. Its main idea is to add noise
drawn from a Laplace distribution into the statistics to be published.
The scale of this distribution must be proportional to the effect that
a single user can have on the statistical result. The latter is called
sensitivity and formalized as follows. We view the statistics as the
result of a query on D. For example, the query may ask for the
count of each column of D. We model the query as a function
Q : D — RY where d is the number of elements in the output.
Let |Q(D) — Q(D")||, denote the L1 norm of Q(D),Q(D").
The sensitivity of Q w.r.t. D is A(Q) = maxp pep ||Q(D) —
Q(D")]|1 for all neighboring D, D" € D [14].

Let Lap(\) be a random value drawn from a Laplace distribution
with mean zero and scale A. LPA achieves e-differential privacy
through the mechanism outlined in the following theorem.

THEOREM 1. [14] Let Q : D — R%. A mechanism M that
adds independently generated noise from a zero-mean Laplace dis-
tribution with scale X = A(Q)/e to each of the d output values
of Q(D), i.e., which produces o = Q(D) + (Lap(A(Q)/€))?
satisfies e-differential privacy.

The higher the A(Q) or the smaller the ¢, the larger the re-
quired noise for achieving e-differential privacy. This is justified
since (i) the larger the effect of any user on the result, the larger the
amount of noise needed to “hide” the user, and (ii) the stronger the
privacy guarantees, the more independent the M’s output should
be with respect to the input, which mandates larger noise.

Although LPA is a general methodology for e-differential pri-
vacy, there are scenarios in which the required noise is prohibitively
large, and destroys the utility of the published statistics. Therefore,
many approaches have been proposed in order to improve upon the
LPA algorithm on specific settings. The Fourier Perturbation Al-
gorithm (FPA) [29] focuses on time-series data. Roth and Rough-
garden [30] propose the median mechanism for an interactive set-
ting, where the adversary requests statistics about D multiple times
in an adaptive fashion. There are also works that focus on other
specialized scenarios, such as range-count queries [32, 8], query
consistency [19], sparse data [9, 23], correlated queries [18, 21],
frequent itemsets [33, 22], trajectories [20], minimization of rela-
tive error [31], and non-numerical query answers [26]. PINQ [25]
is a system implementation that integrates differential privacy with
data analysis. Finally, there are several relaxations of e-differential
privacy [13, 24, 28].

We include a composition theorem that is useful for our proofs.
It concerns successive executions of differentially private mecha-
nisms on the same input.

THEOREM 2. [25] Let M1,..., M, be a set of mechanisms,
where M provides €;-differential privacy. Let M be another mech-
anism that executes M1(D), ..., M, (D) using independent ran-
domness for each M, and returns the vector of the outputs of these
mechanisms. Then, M satisfies (ZLl ei)—diﬁ‘erential privacy.

The above theorem allows us to view € as a privacy budget that
is distributed among the r mechanisms. Moreover, note that the
theorem holds even when M receives as input the private outputs
of My,..., M;_1 [25].

2.2 Differential Privacy on Streams

So far we have focused on statistics that are derived from a static
dataset. In this section, we describe how e-differential privacy
applies to settings where the dataset is dynamically updated by a
stream, and the curator continuously publishes new statistics cap-
turing the updates. In such a streaming scenario, every user is as-
sociated with events, i.e., “actions” taken by the user, which are
modeled as update items in the stream that contribute to the new
statistics. There are typically two different privacy goals in the lit-
erature, namely event-level and user-level. The former hides a sin-
gle event, whereas the latter hides all the events of any user (thus
concealing completely the presence of the user in the analysis).

The two works that initiated the study on this setting are [11,
16]. They view a data stream as a sequence of symbols drawn from
a domain X, where each symbol represents a user’s event (e.g.,
x € X may refer to event “user u visited location j”). The stream
is essentially an array S, where element S[1] corresponds to the
first event that occurred, and new events/symbols are appended at
the end of S as time elapses. If the stream S is infinite, we use S
to denote the prefix of S after ¢ updates, i.e., S¢ = (S[1],. .., S[t]).

To model privacy, [16] defines the notion of adjacency between
stream prefixes, which is similar to the concept of neighboring
databases in the static case. Specifically, stream prefixes Sy, S}
are event-level adjacent, if there exists at most one ¢ such that
St[i] # Sili], i.e., if they differ in at most one symbol. More-
over, S, S; are user-level adjacent if, for any user u, it holds that
St[i] # Si[i] for any number of St[i]’s corresponding to u’s events,
i.e., if they differ in any number of symbols belonging to u. Differ-
ential privacy under continual observation is defined as follows.

DEFINITION 2. [11, 16] Let M be a mechanism that takes as
input a stream prefix of arbitrary size. Let O be the set of all
possible outputs of M. Then, M is event-level (user-level) e-
differentially private if for all sets O C O, all event-level (resp.
user-level) adjacent stream prefixes Sy, Si, and all t, it holds that

PrIM(S:) € O] < e - PrIM(S]) € O]

Most existing schemes focus on event-level privacy in publish-
ing counters, i.e., in reporting at every timestamp the number of
event occurrences since the commencement of the system. In such
scenarios, the effect of a single event spans over all subsequent pub-
lications. The schemes view the data stream as a bitstring, and at
each timestamp they publish the number of 1’s seen so far. Upon
the arrival of an update, Dwork [11] adds to the counter the up-
date value along with Laplace noise of scale 1/e. The author states
that this works well in dense (in terms of 1’s) streams, but it may
be ineffective in sparse cases. To remedy this, she also proposes to
postpone publishing a new counter value, until a predefined number
of 1’s has been seen. [11] also deals with other counting problems,
such as density estimation, cropped mean, and heavy hitters.

Dwork et al. [16] improve upon the counter publishing schemes
of [11]. They focus on a stream of fixed length 7', and build a
full binary tree over the updates of the stream. Every node stores a
noise value with scale logarithmic in T". Then, at the 5™ update, they
identify the subtrees it belongs to, and report the current counter af-
ter adding the noise values stored in the roots of these subtrees. A
similar result appeared independently in [6]. The proposed scheme
constructs a full binary tree on the updates, where each node con-
tains the sum of the updates in its subtree, plus noise with scale log-
arithmic in 7". At each update 1, it identifies the maximal subtrees
covering updates 1 to ¢, and reports the sum of the values stored in
their roots. The authors extend their work to infinite streams, by
constructing a new binary tree after seeing 2 updates, for x € N.

1157

Bolot et al. [4] extend [6] by proposing decayed sums, which
emphasize on recent data more than the data of the past. More-
over, they present the new notion of decayed privacy, where past
data are not viewed as private anymore and, thus, they can be used
in their raw form. Mir et al. [27] consider counters that may also
decrease. They improve upon the counting schemes of [11] by uti-
lizing sketches. Chan et al. [7] report the heavy hitters instead of
the counter values in various settings, such as sliding windows and
multiple streams with untrusted aggregators.

There are also two schemes that depart from the counter-based
setting. Cao et al. [5] specify a set of range queries on the time
domain before the system starts. Each query requests the sum of
the updates therein. The goal is to determine the optimal strategy
for answering all the queries, by responding to larger ranges us-
ing the noisy answers of smaller subranges. Fan and Xiong [17]
report counts at every timestamp, focusing on user-level privacy.
They assume a finite stream, and use sampling to reduce the noise;
given a pre-specified number of samples, they choose a subset of
timestamps to publish the data, in a way that reduces the total error.

3. PROBLEM DEFINITION

We introduce a new privacy definition, motivate its importance,
and propose a novel methodology for achieving it. In the absence
of direct competitors in the literature, we also devise benchmark
schemes by adapting work proposed in different scenarios.

Setting and privacy goal. The curator receives updates from an
infinite data stream S at discrete timestamps. At every timestamp 4,
the curator collects a database D; with d columns and an arbitrary
number of rows, where every row corresponds to a unique user, and
every column represents an event. The value in row u and column
7 is 1 if event 7 of user w has occurred at ¢, and 0 otherwise. Every
row contains at most one 1. We model the stream as an infinite
tuple S = (D1, Da,...), where S[i] is the i element of S. We
define a stream prefix of S at ¢ as tuple S; = (D1, D2,..., D).
At each timestamp i, the curator wishes to publish the count of
every column in D; (i.e., the number of non-zero elements in each
column). Let a count query be Q : D — R?, where D is the set
of all databases with d columns. Then, Q(S[i]) = Q(D;) = ¢, is
the data to be released at ¢, where c;[§] is the count of column j of
D;. Hence, the curator generates infinite stream (c1, c2, . . .) while
collecting S. Note that the sensitivity of Q is A(Q) = 1.

We justify our model with an example. Suppose that a curator
collects at timestamp ¢ a database D; from a traffic reporting ser-
vice. This database contains one row for every commuter, and a
set of columns corresponding to locations in a road network. The
value in row w and column j is 1 if commuter u is at location j
at timestamp 4, and O otherwise. Since any commuter can be at a
single location at each timestamp, every row can have at most a
single 1. The curator publishes at ¢ the count of every column of
D;, which represents the number of commuters per location at q.
This system runs indefinitely. We next explain our privacy goal.

We call two databases D;, D at timestamp i as neighboring if
we can obtain D) from D; by removing or adding a row (i.e., we
use the term in the same manner as in Section 2.1). We also require
a new notion of neighboring stream prefixes, defined below.

DEFINITION 3. Letw be a positive integer. Two stream prefixes
Si, S; are w-neighboring, if
(i) for each Si[i], Si[i] such that i € [t] and S.[i] # Si[i], it
holds that Si[i], Si[i] are neighboring, and

(ii) for each St[’il], St[’iQ], Sé [Z'ﬂ, Sé[lz] with 11 < 19, St[’il] 7&
Sili1] and Si[ia] # Si[i2], it holds that is — i1 + 1 < w.

In other words, if Sy, S; are w-neighboring, then (i) their ele-
ments are pairwise the same or neighboring, and (ii) all their neigh-
boring databases can fit in a window of up fo w timestamps.

DEFINITION 4. Let M be a mechanism that takes as input a
stream prefix of arbitrary size. Also let O be the set of all possi-
ble outputs of M. We say that M satisfies w-event e-differential
privacy (or, simply, w-event privacy) if for all sets O C O, all
w-neighboring stream prefixes S, Si, and all t, it holds that

PrIM(S:) € O] < e - PrIM(S]) € O]

This definition captures settings where sensitive information is
disclosed from an event sequence of some finite length w, i.e., from
a set of events where (i) each event occurs at a different timestamp,
and (ii) all the events occur within w consecutive timestamps. Re-
visiting our traffic reporting service example, an event sequence of
length w may be a trajectory over a set of locations traversed within
w consecutive timestamps. In this scenario, w-event privacy pro-
tects any such trajectory of any commuter anywhere in the stream.

w-event privacy expands event-level privacy [16]. If we set w =
1 and flatten element S;[¢] so that it corresponds to a sequence
of symbols, our w-neighboring definition becomes equivalent to
event-level adjacency and, thus, w-event privacy degenerates to
event-level privacy. For w > 1, w-event privacy offers stronger
guarantees, at the cost of an error increase. However, we shall see
that this error depends on w, but not on the stream length, which
guarantees that utility does not degrade over time. Setting w = ¢,
w-event privacy converges to user-level privacy. Hence, w-event
privacy strikes a nice balance between privacy and utility.

One may argue that w-event privacy can be satisfied by any user-
level private mechanism as follows. We decompose the stream pre-
fix S; into disjoint sub sequences, each of length w. We then break
mechanism M into sub mechanisms M;, each corresponding to
a different such sub sequence. Every M; is any user-level private
mechanism for finite streams (e.g., [17]), since we know a priori
the length of its sub sequence. By Definition 3, any w-neighboring
prefix S; will differ from S; in at most two adjacent sub sequences.
If we assign budget ¢/2 to each M, the condition in Definition 4
holds and, thus, w-event privacy is satisfied.

Nevertheless, this adaptation of user-level privacy to achieve w-
event privacy substantially constrains the design and effectiveness
of the M; instantiations. Specifically, every M, acts indepen-
dently and allocates budget €/2 to a specific sub sequence of fixed
length w. This approach increases the error by a fixed factor of
two for any sub sequence of length w in the stream. Furthermore,
it hinders budget allocation optimizations for sub sequences that
span over two sub mechanisms. In particular, the sub sequences
that fall entirely in the scope of a sub mechanism may be more
benefited (e.g., from adaptive sampling as in [17]) than those that
are split between two sub mechanisms.

Ideally, a w-event private mechanism should achieve two goals:
for every sub sequence of length w anywhere in stream S, it should
(1) allocate up to e budget, and (ii) take budget allocation deci-
sions considering the entirety of the sub sequence. From the above
discussion, the adaptation of user-level privacy fails to meet these
goals. This suggests that w-event privacy gives rise to novel mech-
anisms that depart from the user-level privacy literature. Towards
this end, we next propose a framework that allows the design of a
large class of w-event private mechanisms, achieving the two goals.

A sliding window methodology. The main idea is to view a mech-
anism M on a stream prefix S; as the composition of t mechanisms
M, ..., My, where every M, operates on S;[i] = D; at times-
tamp ¢ and uses independent randomness. We analyze the privacy

1158

level of every M separately. Let M; be ¢;-differentially private,
for some ¢;. In order for M to satisfy w-event privacy, it suffices
to ensure the following condition. Let the active window of size
w of timestamp ¢ span from ¢ — w + 1 to ¢. Then, the sum of
€i—w+1, - - -, € must be smaller than or equal to . Moreover, this
should hold for any timestamp, i.e., as the active window slides
over time. We formulate this observation in the theorem below.

THEOREM 3. Let M be a mechanism that takes as input stream
prefix Sy, where Si[i] = D; € D, and outputs a transcript o =
(01,...,0¢) € O. Suppose that we can decompose M into t
mechanisms M, ..., My, such that M;(D;) = o4, each M;
generates independent randomness and achieves €;-differential pri-
vacy. Then, M satisfies w-event privacy if

i

> oac<e (1)

k=i—w+1

Vi € [t],

PROOF. Since all the mechanisms use independent randomness,
the following holds for stream prefix S; and any mechanism output
(01,...,0,) €0 CO:

Pr[M(S;) = (01,...,0¢)] = H Pr[My(Ds) = o]

Similarly, for any w-neighboring stream prefix S; of S; and the
same (01, ...,0¢), it holds:

t
Pr[M(Sy) = (01,...,0,)] = | [Pr[Mk(D}) = ox]
k=1
By Definition 3, there exists i € [t], such that Dy = Dy, for
1<k<i—wandi+ 1 <k < t. Combining this with the above
two equations, we get
Pr[M(S:) = (01,...,0)]

Pr[M(S]) = (o1,...,00)]

PI’[Mk(Dk) = Ok]
Pr[My(D},) = ox]

k=i—w+1

Due to Definition 3, it holds that database pairs Dy, D}, are
neighboring for i — w + 1 < k < 4. Since My, is € -differentially
. s . Pr[My (Dg)=04] €k
private and due to Definition 1, it holds that PrIMy (D])=or] < ek,

Thus, we derive that

Pr[M(S¢) = (01,...,0¢)] ¢ o i
PrM(S)) = (o1, 00)] [T e —eXp(> ek>

k=i—w+1 k=i—w+1

Adding probabilities Pr[M(S;) = (o1, ...
Pr[M(S:)€0]
Pr[M(5])€O0]

mula (1) holds, then we get %ﬁﬁgg% < e which, due to Defi-

nition 4, concludes our proof. []

,0¢)] over any O €

O, we get < exp (Zzzi_wﬂ ek), Hence, if For-

Note that our theorem holds even if we provide the previous pri-
vate outputs o1, ...,0;—1 as input to M; for every i [25], as well
as the previously allocated budgets €1, ..., e;—1 [12].

This theorem enables a w-event private scheme to view € as
the total available privacy budget in any sliding window of size
w, and appropriately allocate portions of it across the timestamps
therein. Observe that, contrary to the user-level privacy adaptation
discussed before, this methodology (i) allows any sub sequence of
length w in the stream to enjoy up to € budget, and (ii) enables
each M; to decide on budget ¢; considering the budgets allocated
to sub sequence S¢[¢ —w + 1],. .., S¢[i — 1], and optimize budget
allocation for the entire sub sequence S¢[i — w + 1], ..., S¢[d].

The challenge in designing mechanisms that follow this method-
ology lies in the budget allocation technique, which must respect
the condition of the theorem for any sliding window over time. This
is because (i) the ¢; values determine the noise scale and, hence,
have a direct effect on the accuracy of the outputs, and (ii) in a
streaming setting, €; may need to be specified on-the-fly as the data
arrive at the curator.

Benchmark methods. No existing scheme is directly applicable
to our targeted setting. The works that aim at event-level privacy
in infinite streams [11, 27, 6, 7] capture counter-based scenarios,
whereas in our model each event contributes to a single published
statistic. Cao et al. [5] exploit overlapping query ranges, whereas
we publish non-overlapping counts at each timestamp. Further-
more, all the schemes in the static scenario (described in Section
2.1) require a priori knowledge of all data, whereas we process the
data on-the-fly as they arrive from the stream. The only ideas that
can be adapted to our model are from [17, 4], noting though that
these target at significantly different settings from ours. Specifi-
cally, FAST [17] supports finite streams, whereas Bolot et al. [4]
study a more relaxed privacy concept called decayed privacy. We
next design three competitors based on [17, 4]. The first is an in-
stantiation of the user-level privacy adaptation to w-event privacy
we discussed above, using FAST, which consists of sub mecha-
nisms, each operating on a disjoint window of w timestamps. On
the other hand, the other two, called Uniform and Sample, are tai-
lored to our sliding window methodology, and are comprised of sub
mechanisms, each operating at a single timestamp.

The first competitor, termed as FASTy, instantiates each sub
mechanism M; with FAST, and allocates budget €/2. M; views
its sub sequence as a finite stream of (a priori known) length w, and
applies an adaptive sampling technique to each column count sepa-
rately. Given a pre-specified number of samples, it selects (on-the-
fly as it receives the stream) only a subset of timestamps to publish,
skipping the rest and approximating them with the corresponding
lastly published statistics. The budget allocation depends on the
number of samples and the length of the stream, which explains
why FAST cannot work directly with infinite streams.

Bolot et al. [4] utilize LPA independently at every timestamp. In
particular, they inject at every published statistic Laplace noise with
scale proportional to w instead of the entire stream length. Our Uni-
form scheme employs a similar approach. Specifically, Uniform
is a mechanism M composed of sub mechanisms M, Mo, ...,
such that, at every timestamp 4, M; calculates Q(D;), and injects
to the result Laplace noise with scale \; = w - A(Q)/e. Recall
that, in our setting, the sensitivity A(Q) of Q at every timestamp
is equal to 1. Hence, due to Theorem 1, M; satisfies ¢;-differential
privacy, where ¢; = 1/\; = €/w. Observe that all the ¢;’s are
equal, i.e., Uniform distributes privacy budget uniformly across the
timestamps. It is easy to see that, for any window of size w, the
sum of the ¢;’s therein is equal to ¢, which satisfies the condition of
Theorem 3 and, hence, leads to w-event privacy.

Finally, since the adaptive sampling of FAST cannot be applied
to infinite streams, we tailor a simpler sampling technique to our
sliding window methodology. Specifically, we design Sample as a
mechanism M composed of sub mechanisms M1, Ma, Mech-
anism M; publishes Q(D;) with Laplace noise of scale \; = 1/¢
when (i mod w) = 1, and with infinife scale otherwise. Perceiv-
ing each publication with infinite noise as skipped and approximat-
ing it with its immediately preceding release, Sample performs
a single publication every w timestamps (i.e., it samples the time
domain with a fixed rate). M; is e-differentially private when (i
mod w) = 1 and O-differentially private otherwise. Therefore,
Sample satisfies Formula (1) and achieves w-event privacy.

1159

4. PROPOSED METHODS

Section 4.1 outlines the main idea behind our constructions. Sec-
tions 4.2 and 4.3 introduce our BD and BA mechanisms, respec-
tively, and Section 4.4 analyzes their utility. Section 4.5 includes
effective optimizations.

4.1 Main Idea

FAST,, inherits the budget allocation shortcomings of the gen-
eral user-level privacy adaptation we discussed in Section 3. On
the contrary, Uniform and Sample adhere to our sliding window
methodology. The latter requires that the sum of the individual
privacy budgets of the sub mechanisms operating in any window
of size w is at most equal to the total budget . Uniform assigns
the same budget to every timestamp (equal to e/w). If w is large,
this budget becomes very small, which makes the noise scale pro-
hibitively high and destroys the statistics. On the other hand, Sam-
ple invests the entire budget € on a single timestamp within the
window, which makes that publication very accurate. However, it
approximates the next w — 1 statistics with the published one. If
these statistics greatly differ from the preceding release, the result-
ing error may become excessive and even exceed that of Uniform.

Our new solutions follow the sliding window methodology, and
are motivated by the shortcomings of Uniform and Sample. Specif-
ically, contrary to Sample, we decide on which publications to
skip based on the dissimilarity between statistics. The main idea
is to check at every timestamp whether it is more beneficial to ap-
proximate the current statistics with the last release, than to pub-
lish them with the necessary noise. This check is facilitated by a
private dissimilarity calculation sub mechanism. Moreover, in con-
trast to Uniform, we do not allocate the privacy budget uniformly,
but rather invest it on publications that need it the most. At each
timestamp, our statistics are either (i) published with low noise, or
(ii) accurately approximated by another release.

Im more detail, each scheme consists of a sequence of sub mech-
anisms M1, M, ..., where M, operates at timestamp ¢. Figure
1 illustrates the architecture of M;. It takes as input all the previ-
ous private publications o1, ..., 0;_1 that occurred at timestamps
1,...,4— 1, respectively, as well as budgets €1, . .., €;—1, and out-
puts a new transcript o;.

timestamp 4
: p stream >
D;
M;
01,...,0;_1 Private Dissimilarity
< Calculation
M
v dissimilarity
€1y €61 Private Publication
> » O;
L
M2

Figure 1: Internal mechanics of M,

Mechanism M; is further decomposed into two sub mechanisms
M1 and M; o, which operate sequentially with independent ran-
domness. M 1 performs a dissimilarity computation algorithm be-
tween c; of the incoming database D; and the last private release
belonging in 01,...,0;—1. The dissimilarity measure is orthog-
onal to the implementation; any standard measure is applicable.
The result of the calculation is forwarded to M 2, which uses it to
decide whether to publish c; or not. M; 2> publishes o;, which is

either c; with noise (decided based on €1, . .., €;—1), or null. In the
latter case, c; is approximated with the last non-null publication.

Both M; 1 and M; 2> must be private, i.e., we must invest pri-
vacy budget on them, which will determine the amount of noise
injected in their outputs. Note that, although the dissimilarity re-
sult of M, 1 appears only within the internal operation of M;, we
must consider it as being published. This is because the adversary
knows that M, 1 computes the dissimilarity on the sensitive data
D;, whose value affects the decision taken by M, 2. Thus, M, 1
must add proper noise to the dissimilarity value. Let €;1 and €; 2
be the budgets spent in M 1 and M 2, respectively. Then, due to
Theorem 2, the privacy budget of M; is €; = €;,1 + €;,2.

We next present two schemes, BD and BA, that follow the archi-
tecture described above. They share a common private dissimilarity
calculation mechanism (M 1), which always spends a fixed budget
€;,1 for each timestamp. However, they differ in the private publi-
cation mechanism (M 2); each implements a different dynamic
allocation method for budget €; 2 over the stream. We refer to €; 1
as the dissimilarity budget, and to €; 2 as the publication budget.

4.2 Budget Distribution (BD)

The Budget Distribution (BD) scheme starts with the entire bud-
get ¢ and (i) allocates some fixed dissimilarity budget per times-
tamp, (i) distributes publication budget in an exponentially de-
creasing fashion to the timestamps where a publication is decided
to occur, and (iii) recycles the budget spent in timestamps falling
outside the active window. If the mechanism decides to publish
at timestamp ¢, then the statistics at ¢ are dissimilar from the last
release. Thus, it is beneficial to invest a high budget (i.e., inject
low noise) to the statistics at 4, in order to (i) prevent distorting the
dissimilarity of the current statistics to the previous ones, and (ii)
retain the accuracy of the current statistics to better approximate
future ones if necessary. BD hopes that few publications will take
place in the same window. Hence, the first publications receive an
exponentially higher portion of the budget than the subsequent ones
as the window slides over time. When an old timestamp falls out
of the active window, its publication budget is recycled, essentially
“resetting” the available budget for future publications.

Figure 2 illustrates the pseudocode of M; (operating at times-
tamp ¢) of BD. As explained in Section 4.1, M, consists of the
private dissimilarity calculation sub mechanism M; 1 (Lines 1-
4), and the private publication sub mechanism M; o (Lines 5-8).
M1 initially computes the query result on D; (Line 1); this ac-
counts for the vector ¢; of the d column counts of D;, where d is
a public system parameter. Next, it finds the last non-null release
o; from (01,...,0;—1) in Line 2. Subsequently, it calculates the
dissimilarity dis between c; and o;, employing the Mean Abso-
lute Error (MAE) as the dissimilarity measure (Line 3). We use
MAE because this is how we calculate the error in our utility anal-
ysis and experiments. M ;1 invests some fixed dissimilarity budget
€,1 = €/(2 - w) to perturb the dis value. The reason behind this
choice of ¢; 1 will become clear soon. Next (Lines 3-4), it injects to
dis Laplace noise with scale A\;;1 = (2 - w)/(e - d) because, as we
shall soon prove, this renders M 1 as ¢; 1 -differentially private.

M, 2 calculates the remaining budget €,.,,, for the active window
[i —w+ 1,] (Line 5), since it must make sure that the total budget
spent in the current window does not exceed e, before determining
€;,2. Note that €,.,, is equal to € minus (i) the dissimilarity bud-
get spent in window [¢ — w + 1, ¢], and (ii) the publication budget
spent in window [¢ — w + 1,4 — 1]. The budget in (i) is equal to
Zi:i—w+1 ex1 = w- (e/(2-w)) = €/2, ie., it is equal to half
the maximum budget, which leaves (at most) another half available
for M 2 in the same window. This justifies our choice to fix €;,1 to

1160

Input: D;, (01,...,0;_1),(€1,...,€—1)
Output: o;

/1 Sub mechanism M 1

1. Calculate ¢; = Q(D;)

2. Identify last non-null release o; from (01, ...,0;—1)

3. Setdis = 3 X0 Joylj] — calj]l and s,y = (2 w) /(e - d)
4. Set dis = dis + Lap(X;,1)

Il Sub mechanism M; 2 ,

5. Calculate remaining budget €,y = €¢/2 — Z}C;liiwjrl €k,2
6. Set)\172 = 2/Erm

7. If dis >)\i72, Return o; = c; + <Lap(>\i’2))d

8. Else Return o; = null

Figure 2: Pseudocode of M; in BD

€/(2 - w). On the other hand, the budget in (ii) is 3"} _}_, | €k.2.
where € 2 is not fixed (it depends on how publications occurred in
the past). Observe that E;C;lifwﬂ €x,2 encompasses only budgets
spent in [i — w + 1,4 — 1], which implies that any budget used out-
side this window becomes available again (for technical reasons,
fork < Oweseter1 =¢/(2-w)and €2 = 0).

Next, in Lines 6-8, M > publishes the counts c; if it is more
beneficial than approximating them with the last release o;. Specif-
ically, it checks whether the error from the approximation with oy,
which is equal to dis, is larger than the error that will be induced
if ¢; is published with Laplace noise of scale A; 2 (which is set to
2/€rm in Line 6). The error from this noise, which is expressed
as the MAE on pair (c;, 0;), is equal to \; 2. If the condition in
Line 7 is true, then we publish c; along with noise (Lap(X; 2))%;
in this case, we will show that the budget spent by M 2 is equal
to €2 = 1/Ai,2 = €rm /2. Otherwise, M, 2 sets 0; to null (Line
8), which is equivalent to approximating c; with o; and, hence,
spending no budget for M; o, i.e., €;,2 = 0.

We make the following observations about BD. Every time we
publish the current statistics c; at some 1, the budget allocated for
€i,2 is half the available budget for the active window. Now con-
sider that m publications occur after ¢, without recycling any old
budget. Then, in the m™ publication, the publication sub mech-
anism will use budget €; 2/2™. This suggests that BD allocates
the €; 2 budgets in an exponentially decreasing fashion. Moreover,
recycling old budget “resets” the available budget and, hence, the
latter does not decrease indefinitely, but rather fluctuates over time.

Figure 3 illustrates the operation of BD in 6 timestamps for w =
3. Assume that the mechanism decides to publish at timestamps
1, 3, 4, releasing transcripts 01, 03, 04, respectively. At timestamps
2,5, 6, it outputs null, which implies that the statistics at 2 are ap-
proximated with oy, and those of 5,6 with o4. For every times-
tamp 4, the M; 1 mechanism of BD enjoys a fixed budget €;,1 =
€/(2 - w) = €/6. Concerning M, o, at timestamp 1, it assigns
€1,2 = (/2 —0)/2 = ¢/4 according to Lines 5-6 in Figure 2.
At timestamp 2, e2 2 = 0 since no publication occurs. Then, at
timestamp 3, it allocates e3,2 = (¢/2 — (¢/440))/2 = €/8, which
is half of €1,2. This indicates the exponential decrease in the bud-
gets across subsequent publications within the same window. At
timestamp 4, BD assigns €42 = (e2 — (0 + ¢/8))/2 = 3¢/16.
Observe that, although the mechanism still allocates half of the re-
maining budget at timestamp 4, €42 > €3,2. This is because the
budget invested at 1 (e/4) is recycled, i.e., added to the remaining
budget. The mechanism continues similarly at timestamps 5 and
6. Finally, notice that, in every window of size w = 3, the sum of
the budgets used by BD (which encompasses the budgets for both
M1 and M;), is always smaller than or equal to €, which is the
requirement for satisfying 3-event privacy.

w =3
— skipped

€4+ €5+ €6 = 336/48 < €
|

€3+ €1+ €5 = 39¢/48 < €
I

€+ €3+ €1 =39¢/48 < ¢
I I
€1+ e +e3=21e/24 < e

[

2 4 & & time
} } } } >
€11 =¢€/6 €1 =¢/6 e31=¢€/6 e11=¢€/6 €51=¢/6 €1 =¢/6
elo=¢/4 €2=0 e2=¢8 e2=3¢/16 €2=0 ¢p2=0 budgets
€ =56/12 €3 =¢€/6 €3="T€e/24 €, =17€/48 e5=¢€/6 €5 =€/6

01 null 03 04 null null

_—
40

outputs

Figure 3: Example of BD

THEOREM 4. BD satisfies w-event privacy.

PROOF. We first prove that M, ; satisfies €; 1-differential pri-
vacy for €;,1 = €/(2 - w), and M, 3 is €; o-differentially private
for €;0 = (¢/2 — Z;li—u;+1 €k,2)/2 if it publishes, and €;5 =
0 otherwise. M, 1 privately outputs the MAE value Q'(D;) =
523:1 |o:[j] — ci[j]|. An insertion or deletion of a row from
D; results in altering the above result by at most 1/d (recall that,
in our setting, every row has a single 1 with all the rest elements
being 0). Hence, the sensitivity of Q" is A(Q’) = 1/d. M,
injects to MAE Laplace noise with scale A;1 = (2 - w)/(e - d).
Due to Theorem 1, M, 1 is €; 1-differential privacy for ¢;1 =
Gabtes = €/(2-w). Mis privately publishes Q(D;) = ¢
or null. In the former case, the sensitivity of Q is A(Q) = 1
in our setting, and the mechanism injects Laplace noise with scale
2/(6/27232_:11._11,_~_1 €k,2). Hence, due to Theorem 1, M;; 2 is €;,2-
differential privacy for €;2 = (¢/2 — Z_:liiwﬂ €k,2)/2. In the
latter case, €; 2 is trivially equal to zero, as no publication occurs.

According to Theorem 3, we must prove that, for every ¢ and
i € [t], it holds that 33, . ., ex < e. Due to Theorem 2, in
BD it holds that ez = €x,1 + €x,2 and, hence, ZZZFwH € =
Dhmicw1 kD €h2 = €/243 051 €k 2, since
every €1 is fixed to €/(2 - w). Therefore, it suffices to prove that
0< ZZ:@'—w+l €x,2 < €/2, where the comparison with zero is for
correctness (differential privacy is not defined for e < 0). We can
prove the above by induction, setting the first w timestamps as the
base window/case, and sliding an arbitrary window in the stream
by one timestamp in the inductive step (we omit the details due to
space limitations). Intuitively, this holds because M; > always uses
up to half of the available publication budget. [

4.3 Budget Absorption (BA)

The Budget Absorption (BA) mechanism follows a similar de-
cision algorithm to BD for publishing at the timestamps based on
dissimilarity, but implements a different budget allocation strategy.
Specifically, it starts by uniformly distributing publication budget to
all timestamps. If it decides not to publish at a timestamp, the corre-
sponding budget becomes available for a future publication. On the
other hand, if it decides to publish at a timestamp, it absorbs all the
budget that became available from the previous skipped publica-
tions, and uses it in order to publish the current statistics with higher
accuracy. An important subtlety arises in this case. Whenever the
mechanism absorbs budget from previous timestamps, it must nul-
lify the same budget from the immediately succeeding timestamps,
forcing their outputs to become null. The nullified budgets can-
not be absorbed in the future. This is vital for not exceeding the
maximum budget ¢ as the active window slides over time.

1161

Figure 4 presents the pseudocode of BA. The M, 1 sub mecha-
nism is identical to that of BD (Lines 1-4 in Figure 2). The M, 2
sub mechanism allocates a fixed budget €; 2 = ¢/(2 - w) to each
timestamp ¢. However, we distinguish two cases at ¢: (i) if previ-
ous publications were skipped, their budgets are added to €; 2, and
(ii) if a previous publication absorbed budget, €; » may be nullified,
i.e., set to zero, in which case the output is o; = null. The second
case is captured first in Lines 5-6, whereas the first case is captured
next in Lines 7-11. We explain these two cases in turn below.

Input: D;, (01,...,0;_1), (€1,...,€—1)
Output: o;

/I Sub mechanism M 1
/I Same as Lines 1-4 in Figure 2

/I Sub mechanism M 2

5. to_nullify = % -1

6. Ifi— 1 < to_nullify, Return o; = null

7. Else

8. Set to_absorb = i — (I + to_nullify)

9. Set €2 = €/(2 - w) - min(to_absorb,w) and \; 2 = 1/€; 2
10. If dis >)\i’g, Returno; = ¢; + <Lap(>\i’2)>d

11. Else Return o; = null

Figure 4: Pseudocode of M; in BA

Since we know the last publication o; from M, 1, we can calcu-
late the amount of budget ¢; 5 it received. If we divide €; 2 by €/(2-
w) and subtract 1 (Line 5), we get the number of skipped publica-
tions whose budgets €; > absorbed. This value, called to_nullify in
our pseudocode, indicates the number of timestamps after [whose
budgets we must nullify. Therefore, if ¢ — | < to_nullify, then
the budget at i is nullified and the mechanism outputs o; = null
(Line 6). Otherwise, M o calculates €; 2 after potentially absorb-
ing the budget of skipped publications, and decides on whether to
publish the noisy statistics or approximate them with o; (Lines 8-
11). In particular, it first computes the number of skipped publi-
cations between the last publication timestamp [and 4, and stores
it in variable to_absorb (Line 8). Note that we must not consider
the nullified budgets as skipped budgets; the nullified budgets can-
not be absorbed. Next (Line 9), the mechanism sets ¢; 2, which is
between €/(2 - w) and €/2, since the number of skipped budgets
to be absorbed cannot exceed w — 1 (otherwise a window will uti-
lize more than e budget and violate w-event privacy). BA proceeds
similarly to BD, that is, it sets A;2 = 1/¢;,2 (Line 9), compares
the dissimilarity dis to the error from injecting Laplace noise with
scale \; 2, and outputs the noisy counts if the dissimilarity is larger
(Line 10), or null otherwise (Line 11).

Figure 5 demonstrates the BA mechanism in 6 timestamps with
w = 3. At all timestamps, BA allocates ¢/(2 - w) = ¢/6 bud-
get for both M; 1 and M; 2. At the first timestamp, it publishes
the counts using the current budget €1, = €/6. Suppose that, at
timestamp 2, BA decides not to publish the current counts, i.e., it
outputs null and the statistics are approximated by o;. Budget €2 1
is then set to 0, and €/6 becomes available for absorption at a fu-
ture timestamp. At timestamp 3, the mechanism decides to publish
the current counts. It absorbs the /6 budget that became available
at timestamp 2, and adds it to its already allocated budget, yield-
ing es,2 = €/3. Due to this absorption, the budget at timestamp 4
must be nullified (i.e., €4,2 = 0) and, hence, the mechanism outputs
null. At timestamp 5, the mechanism decides to publish, but there
is no budget to absorb (recall that the nullified budget at timestamp
4 cannot be absorbed). Thus, M5 2 uses only its own budget €/6 to
publish os. Finally, at timestamp 6, the mechanism decides not to
publish, and proceeds similarly. For any window of size 3, the sum

of the budgets therein is at most e. Note that, if BA does not nullify
the budget at timestamp 4, the sum of the budgets in window [3, 5]
is 7e/6 > €, which violates w-event privacy.

w=3 eatestes=2e/3<e
— skipped I 1
>< nullified e3tete=c

€2+ €3+ €1 =5¢/6<e€
[|

€1 t+et+€e3=¢€
2 ys time
} } >
e1=¢/6 e1=¢/6 31=¢/6 e11=¢€/6 €1=¢/6 c1=¢/6
€50 =¢/6 e5o=0 budgets

>

1
T

—_——
4+

T-o

€10=¢/6 €2=0 €e2=¢/3 €2=0
61 =¢/3 e3=¢/6 €3 =¢/2 €1 =¢/6 s =¢/3 e =¢/6

0oy null 03 null 05 null

outputs

Figure 5: Example of BA

THEOREM 5. BA satisfies w-event privacy.

PROOF. Similar to BD, M, ; satisfies ¢;,1-differential privacy
fore;1 = €/(2 - w), and M, 2 is €; o-differentially private, where
€;,2 depends on previous publications, since it may be nullified
(Lines 5-6 in Figure 4), or absorb additional budget (Lines 8-9),
or be absorbed (Line 11). Moreover, in any window of size w, the
sum of budgets spent by M 1 is equal to €/2. Therefore, it suffices
to prove that 0 < ZiszH er2 < €/2.

Let ¢ be a timestamp which absorbed budget from « preceding
timestamps. According to BA, it holds that (i) €;2 = (a + 1) -
€/(2-w),({) ex2 =0for(i —a<k<i—-1DA(E+1<EkL
1+ a), and (ili)) 0 < a < w — 1. Then, any window of size w
that contains ¢ also covers n > o timestamps with € 2 = 0 which
were either absorbed or nullified exclusively by i. Therefore, the
sum of the budgets of ¢ along with the n zero-budget timestamps
isat most (o + 1) - €/(2 - w), i.e., at most equal to the case where
each of these n + 1 timestamps receives uniform budget e 2 =

% < ¢/(2-w). The above holds independently also for
any timestamp ¢’ that absorbed budget from o’ previous timestamps
and lies in the same window as ¢. Therefore, ZL:FWH €r2 <

Z;;:z;wﬂ €/(2 - w) = €/2. Finally, since a > 0, €,2 > 0 for
every k and, hence, ZZ:Z._MH ex2 > 0. O

To sum up, the difference between BA and BD is the following.
BD optimistically assumes that few publications will take place in
each window and, hence, at each publication it eagerly allocates
a large portion of the available budget. On the other hand, BA ini-
tially assumes that all publications are likely to occur in the window
and, thus, uniformly allocates the budget among them. However, it
absorbs the entire budget from the skipped publications, and nulli-
fies the budgets from the immediately succeeding timestamps, be-
cause it optimistically assumes that successive statistics may not
differ substantially. Therefore, it assigns a large budget to the cur-
rent publication, hoping that the latter can accurately approximate
at least the next few publications.

4.4 Utility Analysis

Recall that both BD and BA are data-dependent. The error at
any timestamp depends on (i) the budget used in past releases (if a
publication occurs), and (ii) how well the statistics at this times-
tamp are approximated by the previous release (if a publication
does not occur). Such data-dependent mechanisms should be eval-
vated through exhaustive experiments on real datasets, in order to

1162

better capture their effectiveness, a task we undertake in Section 5.
In this section we also include a rigorous utility analysis, which
pronounces though the data-dependent aspects. We calculate the
error of publication o; as the MAE on pair (0;, ¢;) if 0; # null,
and as the MAE on (oy, ¢;) otherwise, where oy is the first non-null
release preceding 4. In the following, we focus in turn on Uniform,
Sample, BD and BA.

Analysis of Uniform and Sample. The expected error of Uniform
is equal to the error stemming from the Laplace noise addition.
Since its scale is always A = w/e, the error at each timestamp is
w/e. Similarly, Sample results in an error of 1/ at any timestamp
i, for (i mod w) = 1, due to the injected Laplace noise with scale
A = 1/e. However, the error at any other timestamp is equal to the
error from the approximation with the previous release, which we
cannot quantify in Sample.

Analysis of BD. To facilitate presentation, we first analyze the er-
ror of M o considering that M, ; is not private and returns the
dissimilarity value without error. Subsequently, we eliminate this
assumption and assess how the error in M, ;1 affects the overall
error of BD. We assume that every publication approximates the
same number of skipped publications.

LEMMA 1. The average error per timestamp for M o in BD

. m_
is at most 42 — L if m publications occur in a window and given

that M; 1 is not private.

PROOF. At any timestamp ¢, if M, > publishes, the error is
2/€erm since the Laplace scale is A;2 = 2/€qm; otherwise, the
approximation provides a better error than 2/€,,. In both cases,
we can upper bound the error at timestamp 4 by 2/€,m, given that
M. 1 returns the actual dissimilarity value without noise. Consider
the worst case,